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ABSOLUTE PURITY 

DAVID J. FIELDHOUSE 

1. Introduction. Throughout this paper we use the Bourbaki [1] conven­
tions for rings and modules: all rings are associative but not necessarily 
commutative and have a 1; all modules are unital. 

Our purpose is to extend and simplify some recent results of Maddox [7], 
Megibben [8], Enochs [3], and the author [5] on absolutely pure modules by 
introducing several new dimensions, and using the absolutely pure dimension 
introduced by the author in [6], This completes some work on character 
modules and dimension in [5] and [6]. 

An A -module will be called an FFR-module if and only if it has a resolution 
by finitely generated free A -modules. A cyclic module A/I, where / is a 
one-sided ideal, is called ip-cyclic if and only if / is finitely generated. We use 
ufp" for finitely presented (modules), i.e. a module of the form F/K where 
F and K are both finitely generated modules and F is free. 

2. The dimensions. Flat dimensions. For any left A -module M we define 
H M = infO|Torw + 1(X M) = 0 for all right .4-modules A) . In [6] we have 
shown that û M = inf(n\Torn+l(X, M) = 0 for all fp cyclic X). This is 
the usual weak dimension of Cartan-Eilenberg [2]. We define also flr M = 
inf (tt|Torn+1(X, M) = 0 for all FFR-modules X). If these infs have no finite 
value we wrrite fi M — co, etc. 

Absolutely pure dimension. We define 

ap M = inf 0|Ext*+ 1(X, M) = 0 for^all fp modules X). 

Some basic properties of this dimension were established in [6], 

Injective dimensions. We define: 
(1) inj M = mi(n\Extn+1(X, M) = 0 for all Ar), which is also equal to 

inf («lExt^CX, M) = 0 for all cyclic X). 
(2) inj' M = inf (» |Extn + 1(^, M) = 0 for all FFR-modules X). 
(3) winj M = inf (w|Extn+1(^, M) = 0 for all fp cyclics A) , which is called 

the weak injective dimension. 

Projective dimension, we define 

pr M = inf (n\Extn+1(M9 X) = 0 for all A) . 

We use capitals to denote the corresponding global dimensions: thus 
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FL(A) = weak or flat global dimensions of the ring A = sup fl M, with 
the sup taken over all modules M. When only one ring A is under considera­
tion we sometimes just write FL in place of FL(^4), etc. Some of these dimen­
sions are of course one-sided, in which case they are denoted as l.INJ', r.AP, 
etc. 

If d denotes any one of these dimensions then clearly d! ^ d, i.e. d'M ^ dM 
for all M, and hence Df(A) ^ D(A). We have also: inj' ^ ap ^ inj and 
winj ^ ap ^ inj with corresponding results for the global dimension case. 
It is also well-known that INJ = PR = the global dimension in the sense of 
Cartan-Eilenberg [2]. 

3. Relationship between the dimensions. Character modules. For 
any A -module M we define its character module: 

M* = Hom z(M, Q/Z). 

Further details may be found in [5]. In particular we shall frequently use the 
fact that M = 0 if and only if M* = 0. 

The following theorem extends earlier results of the author in [5] and [6], 
and completely describes the relationship between dimension and character 
modules. 

THEOREM 3.1. For any module M we have 
(1) fl' M = inj' itf*; 
(2) inj' M = fl' M*; 
(3) fl M = winj ikT* = ap Af* = inj M*. 

Proof. We use two basic isomorphisms: 

(i) Extn(N, M*) ~ (Torn(N, M))* 

which is valid for all right A -modules N, left A -modules M, and all n ^ 1, and 

(ii) (Extw(iV, M))* ^ Torn(M*, N) 

which is valid for all left A -modules M, all left FFR A -modules N, and all 
n ^ l . 

We have used (i) in [5] and remark that (ii) is a slight extension of our 
results in [6]. We now show (1): 

fl' M S n «=> Torw+1(7V, M) = 0 for all FFR N 

<=> Extn+1(N, M*) = 0 for all FFR N 

<=» inj' M ^ n. 
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(2) is shown in exactly the same way. For (3), we have 

inj M* ^ n & Extn+1(N, M*) = 0 for all N 

<=» Torn+1(N, M) = 0 for all N 

^>fl M ^ » 

«=> Torw + 1(^, Af) = 0 for all fp cyclic N 

<=> Extn+l(N, M*) = 0 for all fp cyclic iV 

<=> winj M* ^ w. 

Since winj ^ ap ^ inj we have the desired result. 

COROLLARY 1. For any ring A we have: 

r .INJ' = l.FL' g FL g 1.WINJ ^ LAP ^ l.INJ = l.PR 

and l.INJ' = r.FL'. Also: r. cow/d replace 1. ira last four terms. 

Proof. r .INJ' = sup inj7 M = sup fl' Af* ^ sup fl' iV = l.FL', for M 
right ,4-module, and N left y4-module. Similarly l.FL' ^ r.INJ' . The other 
statements are clear. 

COROLLARY 2. We have that fl' i f = fl' M** and inj' M = inj' M** /or a// 
modules ikf. 

4. Coherent rings. We recall that a ring 4̂ is called left coherent if and 
only if every finitely generated left ideal is finitely presented. (See Bourbaki [1] ). 

THEOREM 4.1. If A is a left coherent ring then 
(1) every finitely presented left A-module is an FFR-module. 
(2) ap M = inj'ikf = winj'ikf for all left A-modules M. 
(3) fl M = 9! M for all left A-modules M. 

Proof. (1) is given in [5], To show (2) note that by (1) we have ap M = 
inj'ikf for all M. Now 

ap M S n <=> Extn+1(N, M) = 0 for all fp N 

<=» Tof+^M*, N) = 0 for all fp N 

using the second isomorphism and (1) 
<=» Torn+1(M*, N) = 0 for all fp cyclic iV 
«=» Extn+1(N, M) = 0 for all fp cyclic iV 
<=> winj M S n. 

(3) follows from (1) and the definitions. 

COROLLARY. If A is left coherent then LAP = l.WINJ = l.INJ' = r.FL' = 
FL 

5. Global dimensions. We can now give alternative characterizations of 
the global dimensions, which will be used in the next section. 
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THEOREM 5.1. For any ring A we have 
(1) PR = INJ = sup(prM\M cyclic) 
(2) AP = sup(pr M\M finitely presented) 
(3) WINJ = sup(pr M\M fp cyclic) 
(4) r .INJ' = sup(pr M\M is right FFR) 

= l.FL' = sup (fl M\ is left FFR) 
(5) FL = sup (fl M\M is fp cyclic) 

Proof. (1) is well-known and is given in Cartan-Eilenberg [2] For 
(2) we have AP(A) ^ n ^ apiV ^ n for all N 

<^ Extn+1(M, N) = 0 for all N and for 
all fp modules M 

t=ï pr M ^ n for all fp M 

<=> sup pr M ^ n. 

The proof of the other parts is similar. 

COROLLARY. If any one of these dimensions is ^ 1, we have, for example, 

AP = 1 + sup pr K, 

with the sups taken over all finitely generated submodules of (finitely generated) 
free {or projective) modules. 

For WINJ and INJ we need only look at the dimension of the one-sided ideals 
in this case. 

6. Special cases. 

THEOREM 6.1. The following statements are equivalent for any ring A: 
(1) AP(A) = 0 ; 
(2) WINJ (A) = 0 ; 
(3) FL(i4) = 0; 
(4) A is von Neuman regular; where in (1) and (2) either 1. or r. may be used. 

Proof. Clearly (1) => (2) =» (3) and (3) <̂> (4) is well-known. But if A is 
regular then all submodules are pure (see [4]). Hence (4) => (1). It is also 
well-known that (3) and (4) are left-right symmetric. 

THEOREM 6.2. For any ring A the following conditions are equivalent: 
(1) A is left semihereditary, but not regular. 
(2) LAP (4) = 1. 
(3) 1.WINJG4) = 1. 
(4) FL(^4) = 1 and A is left coherent. 

Proof. (1) => (2). In Cartan-Eilenberg [2] it is shown that finitely generated 
submodules of projective left modules are projective if and only if the ring is 
left semihereditary. Hence by Theorem 5.1 we have l.AP(i4) ^ 1. But by 
Theorem 6.1 AP (4) ^ 0. 
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(2) => (1). By Theorem 5.1 all finitely generated left ideals are projective 
and hence A is left semihereditary. By Theorem 6.1 A is not regular. 

(2) =» (3). Clearly WIN J (4) S 1 and cannot be zero by Theorem 6.1. 
(3) => (4). Again FL(A) = 1. By Theorem 5.1 every finitely generated 

left ideal is projective, hence finitely presented, and A is left coherent. 
(4) => (2). Since A is left coherent we can use the corollary of Theorem 4.1. 

Remark 1. Using Theorem 6.1 (as in the proof) we could delete "regular" 
from statement (1) of the Theorem and write ^ 1 in place of = 1 everywhere. 

Remark 2. These results extend and simplify some of the results of Enochs 
[3]. 

REFERENCES 

1. N. Bourbaki, Algèbre commutative, Chapter 1 (Hermann, Paris, 1961). 
2. Cartan-Eilenberg, Homological algebra (Princeton Univ. Press, Princeton, 1956). 
3. E. Enochs, On absolutely pure modules (to appear). 
4. D. Fieldhouse, Pure theories, Math. Ann. 189 (1969), 1-18. 
5# Character modules, Comment. Math. Helv. 46 (1971), 274-276. 
6. Character modules, dimension, and purity (to appear). 
7. B. Maddox, Absolutely pure modules, Proc. Amer. Math. Soc. 18 (1967), 155-158. 
8. C. Megibben, Absolutely pure modules, Proc. Amer. Math. Soc. 26 (1970), 561-566. 

University of Guelph, 
Guelph, Ontario 

https://doi.org/10.4153/CJM-1975-002-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-002-x

