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FUNCTIONAL CALCULI AND DECOMPOSABILITY OF
UNBOUNDED MULTIPLIER OPERATORS IN LA(RY)

by ERNST ALBRECHT and WERNER J. RICKER*
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It is known, for each 1<p<oo, p#2, that there exist differential operators in L?(R") which are not
(unbounded) decomposable operators in the sense of C. Foiag. In this note we exhibit large classes of
differential (and unbounded multiplier operators which are decomposable in L?(R") and hence have good
spectral mapping properties; the arguments are based on the existence of a sufficiently rich functional calculus.
The basic idea is to take advantage of existing classical results on p-multipliers and use them to generate
appropriate functional calculi.

1991 Mathematics subject classification: 47B40, 42B15.

0. Introduction

When investigating the global nature of linear differential operators with constant
coefficients in spaces like LP(R") an effective tool, when available, is the existence of a
sufficiently rich functional calculus for the operator. Interpreting such operators as
unbounded p-multiplier operators has the advantage of allowing the use of harmonic
analysis techniques and shows the difficulties involved when p # 2. Since the range of the
polynomial Q determining the differential operator is always a subset of the spectrum of
the operator, one cannot expect a large class of such operators to be infinitesimal
generators of semigroups or integrated semigroups. Similarly, for p#2, differential
operators with constant coefficients are never spectral (in the sense of N. Dunford [4])
in the space LP(RY) except in the trivial case that Q is constant [2]. Despite this
negative aspect, there is a large class of operators which are not required to decompose
the underlying LP-space in such a strong way and whose members still enjoy the
spectral mapping property; this is the class of those unbounded multiplier operators
which are decomposable in the sense of C. Foias.

It is shown in [2] that all (constant coefficient) elliptic differential operators are
decomposable in LP(RY), for every 1<p<oo; the arguments are based on the existence
of a sufficiently rich functional calculus. An example is given there of a (non-elliptic)
differential operator which is not decomposable for every ps#2. The characterization of
all (constant coefficient) differential operators which are decomposable seems to be a
difficult task. The aim of this note is to present further classes of differential (and more
general unbounded multiplier) operators which admit reasonable functional calculi and
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are decomposable. For instance, the generator of the Poisson semigroup, which
corresponds to the unbounded multiplier ér——»|é| in LP(R"), turns out to be decompos-
able, as does the wave operator

s
o’ oy’

in LP(R®). The basic idea is to take advantage of existing classical results on
p-multipliers (e.g. Mihlin, Marcinkiewicz, Littman-McCarthy—Riviére) and use them to
generate appropriate functional calculi.

1. Notation and preliminary results

Given a Banach space X we denote the space of all bounded linear operators in X by
Z(X) and write 1y (or simply 1) for the identity operator on X. We recall that a
Banach space has the Banach—Saks property (resp. weak Banach—Saks property) if every
bounded sequence (resp. every weakly convergent sequence) has a subsequence whose
arithmetic means are norm-convergent. Uniformly convex spaces (hence LP-spaces for
1 <p< o) have the Banach-Saks property [8] and L!-spaces have the weak Banach—
Saks property [13]. The following fact is probably known; we include a proof for the
sake of completeness.

Lemma 1.1. Let X be a separable Banach space with the weak Banach—-Saks property
and let (T,);- be a sequence in £(X) which converges to some operator Re ¥(X) with
respect to the weak operator topology. Then there is a sequence of operators (S,)%
converging to R in the strong operator topology, where each operator S, belongs to the
convex hull of the set {T,;neN}.

Proof. Note that K:=sup {||T,||; ne N} is finite. Let {f,;neN} be a dense subset of
X. By the weak Banach-Saks property, there exists a sequence (T{")®.,, whose
members are the arithmetic means (and hence, finite convex combinations) of a
subsequence of (T,)%,, such that T"f,»Rf, in norm, as n— oo, and still T{"—>R, as
n—oo, with respect to the weak operator topology. Moreover, sup {||T$,”||;neN}_S_K.

Using the weak Banach-Saks property we can find, by induction, sequences (T)% ,,
for each j e N, with the following properties.

(i) T9—>R in the weak operator topology, as n— co.

(i) Each operator TY, for j,neN, is a finite convex combination of operators in
{T,;meNj}.

(iii) sup {||T?|; neN}<K, for all jeN.
(iv) T9f,—>Rf, in norm, as n— o0, for all 1<k<jand jeN.

Now choose S,e{T";neN} such that ||S,f;—Rf||<2™' and, inductively,
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S;e{T¥;ne N} such that ||S;,—Rf|| <27/ for all 1<k< j. It follows that S,f,~R f;, as
j—oo, for all keN, and that sup{||S;|; je N} <K. Accordingly, S;~R in the strong
operator topology. 0O

The set of all closed linear operators with domain D(T) and range ran(7T) contained
in a given Banach space X is denoted by €(X). If Te¥%(X) and Y is a closed subspace
of X, then Y is invariant for T if T(YND(T))<Y. The operator T|Y with
D(T| Y):=Y n D(T) and defined by (T| Y)y:=Ty, for every yeD(T| Y), is an element of
%(Y). Recall that T is decomposable in the sense of C. Foias (cf. [14]) if, for every finite
open cover {U,,...,U,} of the one-point compactification C:=C u {0} of the complex
plane, there are closed invariant subspaces X,,..., X, for T such that o(T | X;)< U,, for
all 1=j<r,and X, 4+ - +X,=X. If Se¥4(X) and F is a closed subset of C, we write
Z(F) for the set of all those xe X for which there exists an analytic X-valued function
f:C\F->X such that f(z)eD(S) and (z—S8)f(z)=x on C\F. Then S has the Ljubic-
Macaev property [11] if, for every locally finite open cover (U;);2, of C by bounded
open sets, the space X coincides with the closed linear span of the linear submanifolds
Zs(U;), jeN.

By #?(R") we denote the semisimple, unital, commutative Banach algebra of all
p-multipliers on RY, for 1 <p< oo, considered as essentially bounded functions on RM.
Let %°(R") denote the set of all local p-multipliers on RY, that is, those measurable
functions ¢:R¥—C with the property that p¢ e #?(R") whenever p e €2(R").

Let 1 <p<oo and fix Y e #?(R"). Let 2°(R") be the subspace of LP(R") defined by

DP(RM):={ f € LA(R™); supp(f) is compact},

where f:=%(f) is the Fourier transform of f considered in the sense of distributions.
The operator S, defined by D(S,):=2%R") and S,f:=% ~1(¢]), for every feD?(R"),
is closable; its closure is denoted by S5. For 1 <p<2 it turns out that

D(S5)={f e L"R"); ¢ f e F(LA(R")) = LAR")}

and S;f=9"“(¢f), for every feD(S}), where p~'+q~'=1. Using the fact that an
element of #(L?(R)) is a p-multiplier operator if and only if it commutes with all
translations it follows that if 1 is in the resolvent set p(S}) of S, then necessarily
(A1—S5)~! is a p-multiplier operator. This observation implies that the essential range
ess ran(¢) of ¢ is always contained in o(S%). If, in addition, S is also decomposable,
then ess ran(¢) =a(S3); see [2, Corollary 3.4].

For keNg=NuU {0}, let 27* denote the algebra of all functions ¢ e%*(C) satisfying
(with x=x, +ix, € C identified with (x,, x,) € R?),

*¢
ox*

(x)

”¢”4k1= Z a!_lsug(lq.lx')lal. <o,

lal Sk

where we use standard multi-index notation and ae N2. Endowed with this norm «* is
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a commutative, semisimple Banach algebra with unit which has the following two
properties.

(A) For every open cover {U,,...,U,} of C there are elements ¢,,...,¢, in o*
(having continuous extensions at oo) such that supp¢;cU;, for j=1,...,r, and
¢+ -+¢,=1onC.

(B) For every ¢ €.o7* and every Ae C\supp ¢ the function

2 $,(2) = $(2)/(2—2)

is in &/* and vanishes at co.
Let N and k be positive integers. Denote by A4 *(RM) the family of all functions
Y e €*(R¥\{0}) which satisfy the condition

aﬂ
2L @<,

”w”-ﬁ"‘(RN): = Z i 1 sup |§|Iﬂ| .
18l sk E£0

where e N§ and |.f| denotes the usual Euclidean norm on R". Endowed with this norm
A¥RFN) is a commutative, semisimple Banach algebra with unit. If k>N/2 then the
classical Mihlin multiplier theorem [12, p. 96], ensures that 4#*(R¥) is continuously
imbedded in .#?(R"), for every 1 <p < 0.

The following fact can be established by induction.

Lemma 1.2. Let k and N be positive integers and Q< RY be an open set. Let ¢ € €*(C)
and Y € €*(Q). Identify C with R? and write x=(x,,x,) for points in C. Denote Yy by
(Y 1,¥,) where Yy, =Rey and y,=Imy. Let BeNY satisfy |ﬁ|<k Then, for each ae N3
satisfying |«|<|B|, there exist numbers c,e{0,1} and r(a,f)eN, integers n(j,a,m)e{l, 2}
and multi-indices y( j,a, m) < B (co-ordinatewise), for 1 < j<|a| and 1 Em=Zr(a, B), satisfying

B=Y, v(j,,m) such that

(o w) ¢ r@.p) |l 370“"')\0 wm
o 0= L cqu@ X I —Zngant@.

Jor every E€Q.

We can now establish some facts about the algebras &/* and A*(RM) which are
needed later but which may also be of independent interest. For the definition of an
operator T e #(X) being generalized scalar we refer to the monograph [3].

Lemma 1.3. (i) Let keN, and € 7%

(a) The multiplication operator M. f, for fesl*, is generalized scalar in
L(A").
(b) The Banach algebra </* is regular.
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(ii) Let k and N be positive integers and ¢ € /™HR").

(a) The multiplication operator M:g—yg, for ge N K(R¥), is generalized scalar in
L(NERNY).

(b) The Banach algebra A*(R") is regular.

(©) If k>1/2, then for each 1<p<co, the (bounded) p-multiplier operator S% is
generalized scalar in £ (LP(RY)).

Proof. (i) To establish (a) it suffices to show that p+spoy defines a continuous
homomorphism from %X%(C) into «* This follows from Lemma 1.2 (by direct
computation). Part (b) follows from (a) and [5, Theorem 2], after noting that
generalized scalar operators are decomposable.

Parts (a) and (b) of (ii) can be proved similarly to those in (i). Finally, (c) follows from
(a) and continuity of the canonical imbedding of #"¥(R") into .#P(R"). O

Given a positive integer k, let #* denote the space of all functions he%(C)
%2+(C\{0}) satisfying

|I|ex: = Zk: B~ 1sup

Endowed with this norm J#* is a unital, commutative, semisimple Banach algebra. The
following can be established along the lines of the proof of Lemma 1.3(i).

Lemma 14. Let keN and y e #*.

(@) The multiplication operator M, f—yf, for feH* is generalized scalar in
L(AH").

(b) #* is a regular Banach algebra.

Given keN, let Z,:={J!, {xeR"x;=0}. Let BeN§ be a multi-index satisfying
|B| =k. Then £#(R¥) denotes the space of all functions we‘g"(R"\Z,‘) such that

*Y

& 3

()

< 0.

Wloi= X o™ sup

§¢Zx

Equipped with this submultiplicative norm £#(R*) is a unital, commutative, normed
algebra.

Lemma 15. (i) Let keN and BeN} satisfy |B|=k. Fix ¢ € LP(R*). For each pe€*(C)
the composition po¢pe LP(R¥) and the homomorphism p+po¢ is continuous from the
Fréchet algebra €*(C) into L#(R").

(ii) Let B:=(1,...,1). Then each y € #°(R*) belongs to MP(R*), for every 1 <p < oo, and
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the canonical inclusion of ¥*(R*) into #P(R*) is continuous. Moreover, the (bounded)
p-multiplier operator S} is generalized scalar in £ (LP(R")).

Proof. (i) follows from the definition of the norm ||-||; and Lemma 1.2.

(i) The first claim follows from Theorems 4.4 and 4.5 of [9]; put there d=r=k and
let P:R:—R; be the identity transformation. To establish the second claim it suffices to
show that the map p+ S5, is continuous. This follows from (i) and the continuity of
the homomorphism g~ S} from AP(R*) into £ (LP(R¥)). d

2. Main results

It was shown in [2] that elliptic differential operators with constant coefficients are
always decomposable in LP(R"), 1 <p<oo, and have a rich functional calculus. This is
not the case in general [2, Corollary 3.5]. In this section we wish to exhibit further
classes of multiplier operators which are decomposable. We begin with a result which is
an extended version of Theorem 3.1 in [2] and shows that “elliptic” multiplier operators
have a functional calculus rich enough to ensure that they are decomposable.

Theorem 2.1. Let pe(l,0). Let k and N be positive integers such that k> N/2 and
Y € €<(RM\{0}). Assume, for some m=0, that the following conditions are satisfied.

@ 1p©@|=0(¢™ for |¢-co.

(i) For all ye N with |y| <k we have %(é) =0(jg[""" for |¢|-o0.

(iii) For all yeNJ with |y| <k we have %(é) =0(|g|=") for |¢-o0.

Then, for every ¢ € %, the function ¢ oy is a p-multiplier on R™ and the homomorphism
O: A+ L(LP(RY)) defined by ®(¢):=S5.,, for ¢ €L*, is continuous and has the following
properties.

(a) For all compactly supported elements ¢ € oZ*,
(¢)S; S S{0(P) = V(- ide).
(b) There exists a sequence (p,)=, of functions in of* with compact supports such that

®(p,)— 1, as n— oo with respect to the strong operator topology. (1)
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Moreover,

D(S5)={f e LA(R™); lim ®(p, - id¢)f exists in LP(RM)}

and
S¢S =1lim ®(p,-idc)f, feD(S})

n— @

() The closed linear operator S is decomposable and has the Ljubic—Macaev property.
Moreover, 6(85) = y(R¥\{0}) =supp(®), where the bar denotes closure in C.

(d) Every operator S5.,e £L(LP(RY)), for d)ed", is generalized scalar. In particular, for
every A€ p(S}), the operator (211 —S5) ™! is generalized scalar.

Proof. For ae N} with |« <k it follows from the definition of &/* that

It/f(é)l'“'

<w<¢»|<c||¢||,k, EeRM\(0},

for some constant C>0. Hence, for feN§ with |B|<k, we obtain from assumptions (i)
and (ii) and Lemma 1.2 that there exist constants R>0 and C’'>0 such that

EQ a(géﬁw(é) C||o|| e |€]>R. @

On the other hand, by assumption (iii) and Lemma 1.2 this inequality also holds in a
deleted neighbourhood of 0 in RY (with a possibly larger constant C” than C’). Since ¢
maps compact subsets of R¥\{0} into compact subsets of C we conclude (again via
Lemma 1.2) that (2) holds in R¥\{0} (with a constant C, possibly larger than C’' and C”
but still independent of ¢). By the Mihlin multiplier theorem [12, p. 96], ¢o¥y is a p-
multiplier on R¥ and

(1S54l 2o S CBl| @] for des.

It follows that ®:o*—%(LP(RY)) is a continuous unital homomorphism. Then (a)
follows, after noting that condition (i) implies that the range of ®(¢) is contained in
D(S%) whenever supp(¢) is compact.

To prove (b) fix any 6 € €°(C) with ¢(0)=1 and any u>0. Define

g,z 0(n"#z), zeC,

for each neN. Since n"#<1 it follows from the definition of &/* that ¢,e* and
|loal|ax<|lo]|ax for all neN. Accordingly, {®(s,);neN} is uniformly bounded in
Z(LRM)). Since g,0¢—1 pointwise in R¥\{0}, as n—oo, it follows that ®(c,)=
§? .w—1, as n— oo, with respect to the weak operator topology [6]. By Lemma 1.1 there
is a sequence (S,);%, of the form

m(n) min)
S,=Y o"®(o;), with a{?">0 satisfying ) a”=1,
j= =
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such that S,—1, as n— oo, for the strong operator topology. This proves (1) with

m(n}
pni=Y, ;.
j=1

The remaining statements in (b) can now be obtained from (1) and part (a) along the
lines of the proof of Theorem 3.1 in [2].

(c) The subalgebra #* of all fe./* having continuous extensions at co is quasi-
admissible in the sense of [14, Def. IV.9.2]. Hence, by the properties of ® and [14,
Corollary 1V.9.8], the operator S} is decomposable. The Ljubic-Macaev property is
obtained in the same way as for elliptic polynomials (c.f. the last part of the proof of
Theorem 3.6 in [2]), as is the spectral mapping statement given in (c).

(d) As seen above, for each ¢ e.#*, the function ¢ oy is in #*(RY). Then Lemma 1.3
implies that S%., is generalized scalar. Suppose now that A€ p(S5). Let >0 be such that
the closure of the open disc B(4) in C (centred at A and of radius &) is contained in
p(S5). Let Ue¥>(C) be any function such that u=1 in C\B/(4) and u=0 in B,;,(4).
Define ¢(z): =u(z)/(A—z) for AeC. Then ¢pe* and ¢(z)=(A—z)"! in a neighbourhood
of o(S§)=supp(®). Accordingly, ®(¢) is generalized scalar. But, ®(¢)=S5.,=
(A1—-S85)~ L O

Remark. (i) The original version of the above result, formulated for elliptic polyno-
mials of degree m (c.f. [2, Theorems 3.1 and 3.6]) contained an algebra «/* depending
on m. The present proof shows that we can always replace &/ by the larger algebra <7*.

(ii) Examples of functions satisfying conditions (i)—(iii} of Theorem 2.1, besides elliptic
polynomials, include all functions of the form y=f, +---+ f,, where f; is a homo-
geneous function in ¥¥(R"\{0}) (k> N/2) of order v;20, with v,<v, for all 1< j<r, and
/, has no zeros in RM\{0}. For instance, this includes the local p-multiplier (&) =|¢|"
for any >0, and hence in particular, includes the generator of the Poisson semigroup
(put aa=1). 0O

It is easy to exhibit local multipliers (even polynomials) which do not fall into the
scheme covered by Theorem 2.1. The wave operator in 2-dimensions, whose symbol is
x2—y?, is such an example. We wish now to suggest an approach which treats a class of
operators of the form Q(D) where Q=Q,+iQ, is a polynomial in RY (with Q; being
R-valued) such that both Q, and Q, can be factorized into the product of real affine
functionals. The underlying technique is a modification of a multiplier result of Littman,
McCarthy and Riviére, [9, Theorem 4.6].

Theorem 2.2. Let pe(l,00) and let k and N be positive integers. Let |,:R¥>R and
m,:R¥N >R, for 1 <r<k, be affine functionals and define

k

Q(x):= f] L(x)+i [ m(x), for xeRM.
r=1

r=1
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Then, for each ¢ € H#*, the function ¢poQ is a p-multiplier on RY and the homomorphism
O: "~ L(LP(RY)) given by ®(¢):=S5.0, for ¢ € 3", is continuous and has the following
properties.

(a) For all ¢ e #* with compact support,
D(¢9)ShH< SHP(P) =D(¢ - id).

(b) There exists a sequence (p,)>- . of functions in €*(C)< #* such that ®(p,)—1 as
n— o0, in the strong operator topology. With this sequence we have

D(SB)=D,:={f € L*(R™); lim ®(p,-idc)f exists in L (R")}

and
85 = lim ®(p,idJ)f, feD(S5).

n—w

(c) The differential operator Q(D)=S% is decomposable in LP(RY), has the Ljubic—
Macaev property and satisfies 6(S5) =Q(R") =supp(®).

(d) Every operator S;,QE.?(L"(RN)), for ¢pesH*, is generalized scalar. In particular,
the operator (A1 —S5) ™! is generalized scalar whenever 1€ p(S}).

Proof. We proceed as in the proof of Theorem 4.6 in [9]. Consider the affine
transformation from R” into R** given by ¢,=1,(x) and ¢, ,=m,(x), for 1 £r<k. Define
F(Q) =W ,(8),¥2(Q), for £eR*, where y,(&):=[Tr-; &, and ¢ (&):=]T];-, &-+,n and &
is considered as a function in R>~C. That is, F = ¢ oy where ¢ =(i/,, {,) maps R?* into
R?=C. As in the proof of Theorem 4.6 in [9], it suffices to show that

0°F

¢ Fr

(a]ga,,nqsnﬂ, FeRM, 3

for any 2k-tuple o consisting of zeros and ones only. It follows from the chain rule and
an inductive argument that, for every such a,

P v @ lue), cer®,

o G Stu.v) os' o

where u=Y x_,«, and v=) %_, o, and the C;, are constants depending only on «
and k. From the assumption that ¢es#* it follows that (3) is satisfied and hence
¢ o Qe . A*(R"). Moreover, (3) also establishes the estimate

@) =155l < Bllélex, $e#*,

where B only depends on N, k and p; see Theorems 4.4 and 4.5 in [9].
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(a) A “Banach-Saks type argument” along the lines of the proof of Theorem 2.1(b)
shows that there exists a sequence ()=, in €2°(R") such that 57, —1, as m—co, in the
strong operator topology. Note that the range of S%, is contained in D(S}), for all
meN. For f eD(Sp) we have

Sim®()Sof = B(P)SSimS = S5 ®( - idc) f =SS5 P(9) .

Since the left-hand-side of this identity converges to ®(¢)S%f, as m—oco, and
SZa®(¢) f > ®(¢) f, as m— o, the closedness of S§ implies that d(¢) f € D(S5) and

D($)SoS =S50(d) S =D(¢-idc)f.

(b) The functions (p,);-, are constructed in the same way as in the proof of Theorem
2.1(b) to deduce that ®(p,)—>1, as n— o0, in the strong operator topology. The inclusion
D(Sp)= D, is obtained as in the proof of Theorem 3.1 in [2]. The converse inclusion is
not so obvious as in Theorem 2.1. Fix feD, and let (x,,),-=, be as in the proof of (a).
Then, for each me N, we have S feD, and

lim ®(p, - idc)S?, f =S?_lim ®(p, " ide)f.

The left-hand-side of this equation is also equal to

lim 2,.085S%,.f =SS5,/

Letting now m— oo and using the closedness of S it follows that f € D(Sj) and

S5f = lim ®(p,"idc) f.

n-w

To establish (c) observe that the algebra 2 of all functions in #* having continuous
extensions at oo is again quasiadmissible and then proceed as in the proof of Theorem
2.1(c).

(d) By (3) we have ¢ o Qe L#R") with f=(1,...,1). Hence, Lemma 1.5(ii) shows that
®(¢) is generalized scalar whenever ¢ e#*. The remainder of the argument follows
along the lines of the proof of Theorem 2.1.(d). ad

It follows from Theorem 2.2 that the wave operator

# &
ox2 oy

in two dimensions is decomposable in LP(R?), for all 1<p<oo; put l,(x,y)=x+}y,
L(x,y)=y—x and m, =m,=0. Similarly
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o _2.0
ox* ay* ox
is decomposable in L?(R?); put !, and I, as above and m(x,y)=x and m,=—1. So,

Theorem 2.2 applies to a different class of differential operators than Theorem 2.1.

We now suggest a third result which applies to yet another class of multiplier
operators. First we need some further notation.

Let N be a positive integer and write e:=(1,...,1)e N¥. For any multi-index f<e we
define R%={xeR";x;=0 if B;=0,1<j< N} and consider R® as a subspace of R". For
xeR¥ we denote by x, R? the canonical projection of x into R?, that is

{0 if B=0
(x“)"_{x,. if B,=1.

A bounded function m=%¢"(RM\Z,) is said to have the Marcinkiewicz property if there
exists a constant B>0 such that ||m||,, < B and for each non-zero f<e,

Pm

sup | ¥rG dx;<B

Xa-pp

for every dyadic rectangle p of R? (see [12, p. 103], for the definition of dyadic
rectangles). If f=e, the “sup” sign is omitted. The classical Marcinkiewicz multiplier
theorem [12, p. 109], states that such a function m belongs to #P(R¥), for every
1 <p<oo. Moreover, an examination of the proof of Theorem 6’ in [12, p. 109], shows
that ||S2||¢ws@vySB-C, v, Where C, y is a constant only depending on N and p. Let
limll denote the infimum of all constants B>0 with the above property. Then also
B=1Imll satisfies this property and so

|12l ¢zomn < Cpon - NmL. @

Moreover, Il-1l is a norm on the linear subspace of ¥R \Z,) consisting of all
functions m having the Marcinkiewicz property. Unlike the spaces of multipliers in the
previous parts of this section, the Marcinkiewicz multipliers do not form an algebra.

Proposition 2.3. Let e €Y (R¥\Zy) be a bounded function. Assume that there exists
some constant A>0 such that, for each non-zero B<e and each partition
B=y(1)+ - +y(v), 1 Sv=|B|, with y(j) non-zero for all j=1,...,v, we have

ﬁ Y

U556 dxg< A,

sup |

Xe-p P

for every dyadic rectangle p of R? and every choice of n(1),...,n(v)e{1,2}, where
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Y,=Rey and y,=Imy. Then, for any function ¢ €€™(%), the function oy has the
Marcinkiewicz property and satisfies

g oyl < Coqul(9), )

where C, is a constant depending only on A and N, and with K:=y(R"\Zy),

*¢
aa

gx(¢)=max {SUP ();

zeK

aeN3 |a|§N}.

In particular, ¢ oy € MP(R™), for every pe(1, ), and

[1S5-ull 2zr@my = Cp.xCodx(4). (6)

The map @:6"(C)-»L(L(R")) given by ®(¢):=S5.,, for $e¥™(C), defines a
€™ (C)-functional calculus for S§ and hence each operator S5.,, ¢ €6"(C), is generalized
scalar, too.

Proof. The fact that ¢oy has the Marcinkiewicz property and the estimate (5)
follow by means of Lemma 1.2. By (4) and (5) we obtain (6) which implies the remaining
statements. O

We illustrate the use of Proposition 2.3 in some examples.

First consider y(x,y)=|x|"?|y|"*(x*+)?)"*/? which is an element of ¥*(R*\Z,)
satisfying the Marcinkiewicz property; see [12, p. 110]. Noting that Imy =0 and ¢ is
symmetric with respect to the variables x and y, we see that the assumptions of
Proposition 2.3 reduce to checking that

dx dy< o, (7

where the sup is taken over all dyadic rectangles in the positive quadrant of R2. Direct
calculation shows that

4
x+y

oyl
oy|~

oy
0x

Accordingly, for
p____[2n’ 2n+ 1] X [2m, 2m+ l] or p= [2—n— l’z—n] X [2—m— l,z—m]
the estimate (7) clearly holds. For “mixed” cases

P=[2",2"+ 1] X [2—m—1’2—m]
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or the other possibility, a change to polar coordinates shows that (7) holds. So, the
conditions of Proposition 2.3 are satisfied. Hence, the operator S} is generalized scalar,
for every 1 <p<oo.

For the next consequence of Proposition 2.3 we need the following general fact, which
is probably known. For the sake of completeness we include a proof.

Lemma 24. Let X be a Banach space and T € 4(X) be a closed, injective operator in
X.

(a) For all closed sets F<C, we have X{F)=%r-(F~'), where *F~'={z"';z¢F}
with the convention oo~ '=0 and 0™ ' = co.
(b) T is decomposable if and only if T™! is decomposable.

Proof. (a) Fix an arbitrary element x € Z{F). Hence we have x=(z— T)f(z) on C\F,
where f is an analytic X-valued function on C\F with f(z)e D(T) for all ze C\F. It
follows that x=(z"'—= T~ ")(—zTf(z)) on C\F. The X-valued function

gwgw):i=—w T f(w H=wx—wlf(w™ 1)
is analytic on C\(F ' u {0}) with g(w)e D(T~')=ran(T), for all we C\(F~' L {0}), and

o0 is a removable singularity if Qe F. If co¢ F, we still have to show that 0 is a
removable singularity for g. Notice that in this case, the limit

lim T(z™ ! f(z))=lim (f(z)—z 'x)= f(0)e X

zZ-w zZ— o

exists on X. Since T is a closed operator and z~'f(z)—0 for z— oo this shows that
f(o0)=0 (this fact is also contained in the proof of Satz 3.19 in [1]). The function f
being analytic at oo, this implies that lim,_, , z f(2) exists in X. Using again the fact that
T is closed we see that

lim z£(2) = lim (Tf(2) + x)=x.

zZ— z—®

Therefore the function h with

_fx—wTlf(w ") for weC\(F~'u {0})
h(w)_{O for w=0

is analytic on C\F ~'. This shows that

lim g(w)=h'(0)

w0

exists in X. In particular, 0 is a removable singularity of g. Moreover, from the
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closedness of the operator T~ ! and the equation x=(w—T"!)g(w) on C\(F~'u {0})
we see that g(0):=h(0)e D(T~'). Thus we have proved that Z(F)=Zr-:(F!). The
proof of the reverse inclusion is now obtained by interchanging T with T~! and F with
F~' in the first part of the proof.

(b) Let T be decomposable. A straight forward consideration using (a) and some
basic facts from local spectral theory ([14, Sections IV.3 and IV.4] show that the map
F—%;-(F™') then defines a spectral capacity for T. Hence, T ! is decomposable by
[14, IV.4.26]. The converse implication is obtained by interchanging T with T~! in
these arguments. O

Corollary 2.5. Let pe(l, ) and let Qe €¥(R¥\Z\) N UP(R™) be a function such that
for some AeC\Q(RF\Zy) the function Y(x)=(A—Q(x))™" satisfies the assumptions in
Proposition 2.3. Then the (possibly unbounded) multiplier operator S} is decomposable and
hence satisfies o(55) = Q(RM\Zy).

Proof. By Proposition 2.3 the operator S} is bounded and generalized scalar. Since
then S5 =(1—5%)~ ! it follows from the preceding lemma that S5 is decomposable. O

Corollary 2.5 is applicable to certain differential operators Q(D) which do not satisfy
the criteria of Theorems 2.1 and 2.2. The idea is to find a point AeC such that
(A—Q(x)) ! satisfies the criteria of Proposition 2.3. For example, consider the differen-
tial operator

PPN
_O L 09
Rl R

It is clearly not elliptic nor does its symbol Q(x, y) =Q,(x, y)+iQ,(x, y), where Q,(x,y)=
x2—y*—2 and Q,(x,y)=2x, have the property that both Q, and Q, factorize into a
product of real affine functionals (Q, is the problem). Consider the point A=0 and let

Y(x,y)=(A—Q(x,y))" . Then

x2—y?-2 —2x

(x2_y2_2)2+4x2 and (Im !p)(xay)=(x2_y2_2)2+4x2 for (x,y)e[Rz,

(Rey)(x,y)=

and hence, Y € 4°(C)=¥>(R?) with lim ,,_ . ¥(x,y)=0. Making the change of vari-
ables s=x—y and t=x+y we see that Reyy and Imy belong to .#?(R?) if and only if
the transformed functions

st—2 —s—t
Gi—irern? MVSD=GTrero?

Yi(s, )= for (s,t) e R?

belong to .#7(R?). The Mihlin multiplier theorem does not apply as
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Y(s,1)

2 t2
(s*+1t°) 352

is not bounded. However, direct computation shows that both s, and ¥, satisfy the
conditions of Proposition 2.3. So, Corollary 2.5 implies that S, .;, and hence, also
S;=(A11—Q(D))™! is generalized scalar. In particular, the (unbounded) differential
operator Q(D) is decomposable and the spectral mapping property o(Q(D))=Q(R?)
holds for every 1 <p< 0.

We have restricted our attention to the particular case of local p-multipliers (often
just polynomials) because in this setting it is possible to use a systematic approach to
develop results (via classical multiplier theorems) which apply to large classes of p-
multiplier operators. However, it should be noted that there exist relatively simple
functions which may fail to be local multipliers (even bounded reciprocals of polyno-
mials); see [10], for example. Such “multipliers”, although not covered by the framework
of this note, may still be “nice”. For example, consider y(x)=In x|, for 0#xeR. Then ¢
is not a local p-multiplier in our sense, for any 1<p<oo. Let A(x)=(i+In|x])"", for
0#xeR. Then direct calculation shows that Ae# ~!(R). Accordingly, the resolvent
operator §§ ,;-:=3% is generalized scalar and, in particular, S} is decomposable. A
point which has been passed over, but actually needs checking, is that S} is closed and
densely defined. This can be seen as follows (for 1 <p<2). Define ¢,(z) =¢€™, for zeC, in
which case ¢, e ¢*(C)=%*(R?) for every teR. Then ¢,.,e¢*(R\{0}) and the estimates
for the Mihlin theorem show that [|¢,.,||l.e»<C,t|, teR. So, W,=S5,.,, for teR, is a
group of bounded operators in LP(R). Since ¢t,0o—1 pointwise on R\{0} as n—oco,
whenever t,—0, and sup {||W, |;neN} < oo, it follows that W, —1 in the weak operator
topology as n—co, [6]. By general semigroup theory it follows that actually W, —1 in
the strong operator topology as n— oo, [7, Theorem 10.6.5]. That is {W,},.s is a strongly
continuous Cy-group and hence, its infinitesimal generator (defined via general semi-
group theory) is closed and densely defined. That this infinitesimal generator coincides
with the multiplier operator S¥, with its natural domain

D(S%,) ={ge L”(R); iyg = h for some he L?(R)},
can be argued as in the proof of Theorem 21.4.2 in [7].
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