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Abstract

We investigate a locally full HNN extension of an inverse semigroup. A normal form theorem is obtained
and applied to the word problem. We construct a tree and show that a maximal subgroup of a locally
full HNN extension acts on the tree without inversion. Bass-Serre theory is employed to obtain a group
presentation of the maximal subgroup as a fundamental group of a certain graph of groups associated
with the Z-structure of the original semigroup.
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1. Introduction and preliminaries

1.1. Background The study on the embeddability of HNN extensions of semi-
groups began in [7]. The HNN extension of a semigroup was formalized in terms of
presentations, and several types of embeddings of semigroups into HNN extensions
and the relationship with amalgamated free products were studied in [15, 16]. Vari-
ous inverse semigroups have ap HNN extension structure. For example, free inverse
semigroups, free inverse monoids and free Clifford semigroups can be presented as
an HNN extension of a semilattice. Furthermore, any Bruck-Reilly extension of an
inverse monoid is an HNN extension of an appropriate inverse monoid, and hence, any
bisimple regular w-semigroup and any simple regular w-semigroup can be presented
as an HNN extension ([18]).

There exist considerable applications of HNN extensions to algorithmic and struc-
tural problems in inverse semigroup theory as well as in group theory. The undecid-
ability of Markov properties and several other properties of inverse semigroups are

© 2001 Australian Mathematical Society 0263-6115/2001 $A2.00 + 0.00
235

https://doi.org/10.1017/51446788700002639 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002639

236 Akihiro Yamamura 2]

proved using HNN extensions and amalgamated free products ([15, 16]). Further-
more, HNN extensions are applied to give an alternative proof of Reilly’s theorem that
every inverse semigroup can be embedded into a bisimple inverse monoid ([15]).

In [17], HNN extensions are employed to investigate an idempotent pure image
of a free inverse semigroup and to prove the existence of an F-inverse cover over a
free group for an inverse semigroup. There exist numerous similarities between an
HNN extension of a semilattice and a free group. Therefore, an HNN extension of
a semilattice is considered as a natural generalization of a free group. For example,
an HNN extension of a semilattice is the universal object in a certain category on a
fixed set of generators as a free group is the universal object of the class of groups
generated by a fixed set. Contracted Schiitzenberger gr\phs of an HNN extension of
a semilattice with respect to a certain subset form a forest. Recall that the Cayley
graph of a free group with respect to its base is a tree. The Nielsen-Schreier subgroup
theorem in group theory can be generalized to the class of full HNN extensions of
semilattices with an identity.

These results suggest more applications of HNN extensions to algorithmic and
structural problems in inverse semigroup theory and motivate us to study the structure
of HNN extensions. An HNN extension is called locally full if the associated inverse
monoids are full in the local monoids defined by their identities. This condition makes
the structure of HNN extensions transparent. In fact, locally full HNN extensions
resemble HNN extensions of groups and have many nice properties. Therefore, we
study locally full HNN extensions in this paper.

Let us outline the paper. In this section, we review several fundamental results
in inverse semigroup theory. In Section 2, we obtain the normal form theorem for
a locally full HNN extension. In Section 3, we apply it to solve the word problem.
In Section 4, we build a tree on which a maximal subgroup of a locally full HNN
extension acts. In Section 5, the Bass-Serre theory is employed to obtain a group
presentation for the maximal subgroup. In Section 6, we give several examples.

For basic results in inverse semigroup theory we refer the reader to [9, 13]. We
use basic results and terminologies from group theory without mention. The reader is
referred to [3, 10, 14] for definitions and results on combinatorial group theory.

1.2. Presentations We briefly review inverse semigroup presentations and HNN
extensions. A semigroup S is called inverse if there exists a unique element x~!
satisfying xx~'x = x and x~!xx~!' = x~! for every x in S. It is equivalent to say
that S is a regular semigroup (in the sense of von Neumann) whose idempotents
form a semilattice. The set of idempotents of a semigroup § is denoted by E(S).
The class of inverse semigroups has a free object, that is, there exists a free inverse
semigroup on any non-empty set. Let X be a non-empty set. Then the free semigroup
on X is just the set of all non-empty words on X and is denoted by X*. Now we
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take a copy X! of X such that X! is disjoint from X. We have a one to one
correspondence ™' : X — X~! (x —» x~! for all x € X). We extend the mapping ~'
to the correspondence ~! : (X UX™') —» (X U X~1) by defining (x~")~! = x for
al x!' € X7'. w e (X UX-D* then we can write w = x;x,---x,, where
x; € XUX ‘foreveryi =1,2,...,n. Wedenote the element x'x;”, - - - x;'x;! by
w™!'. Note that the operation ~! is an involution. Consider the relation R, consisting
of all pairs of the form (ww™'w, w) and (ww™'zz7!, zz 'ww™"), where w and z are
elements of (X U X~!)*. The Wagner congruence 8 is the congruence generated by
Ro. Then the semigroup (X U X ~!)*/6 is the free inverse semigroup on X. Denote
the free inverse semigroup on X by FIS(X).

Every inverse semigroup is a homomorphic image of a suitable free inverse semi-
group; if S is an inverse semigroup, there exists a certain non-empty set X such that
FIS(X)/n = S for some congruence 1 on FIS(X). If 5 is generated by some set R of
relations on (X U X ~!)*, then we say that S is presented by the set X of generators
and the set R of relations. Then we write § = Inv(X | R). If {X] is finite, S is called
finitely generated. 1f both | X | and |R| are finite, then S is called finitely presented.

Assume that an inverse semigroup S has a presentation Inv(X | R). Take aset ¥
disjoint from X U X ™! and the set R’ of relations on (¥ U Y~!)*. Then the inverse
semigroup presented by Inv(X, Y | R, R’) is denoted by Inv(S, Y | R’) for brevity.

The inverse semigroup Inv(X | R) is regarded as the freest inverse semigroup
generated by the set X subject to the relation R because of the following well-known
result, which is equivalent to von Dyck’s theorem in group theory.

PROPOSITION 1.1. Suppose that an inverse semigroup S is presented by Inv(X | R)
and ¢ is a homomorphism of FIS(X) into an inverse semigroup T. If ¢ (w,) = ¢(w,)
inT forallw;, wy € (XUX™")* withw, = w, in R, then there exists a homomorphism
¥ : S = T such that ¢(x) = Y (p(x)) for every x € X, where ¢ is the natural
homomorphism of FIS(X) into S.

1.3. HNN extensions and embeddability Let S be an inverse semigroup, and let
A; and B; (i € I) be invers&subsemigroups of S. Suppose that ¢; € A; C ¢;Se;,
fi € B; C f:5f: for some idempotents ¢;, f; of S and that ¢, : A; — B, is an
isomorphism for every i € I. Then the inverse semigroup S* presented by

(1.1 Inv(S,t; (i € I) | t7'at; = ¢i(a) for every a € A;,

t7' = f, 7 = e foreveryi € I),
or equivalently,
(1.2) Inv(S, t; (i € I) | t7'at; = ¢i(a) for every a € A/,

ti_lt,' =f,', t,'tl-_l =¢; fOl'eVCry i€ I),
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where A is a set of generators of A,, is called the HNN extension of S associated with
¢: - A; > B; (i € I). Eachelement ¢; in $* is called a stable letter. In general, a class
C of semigroups is said to have the weak HNN property if C satisfies the following
condition.

Suppose that S, A, Be C,ec€ A C eSe, f € B C fSf forsomee, f € E(S).
Let ¢ : A — B be an isomorphism. Then there exist T € C and an embedding
Y : § — T such that

(1.3) ty(a)t = Y(¢p(a)) forallaec A,
and N
(1.4) 't =y(f) and ' =1 (e) forsomet e T and its inverse t'.

A class C of semigroups is said to have the strong HNN property if C satisfies the
following condition.

Suppose that S,A,B € Cand A C eSe,B C fSf for some e,f € E(S).
Let ¢ : A — B be an isomorphism. Then there exist T € C and an embedding
¥ : S < T satisfying the conditions (1.3), (1.4) and

(1.5) 1Y (SN Y (8) =y (A) = ¥ (B)

PROPOSITION 1.2 ([15, 16}). The class of inverse semigroups has the strong HNN
property.

By Proposition 1.2, an inverse semigroup S is always embedded into S* presented
by (1.1). We usually identify S with the corresponding inverse subsemigroup of the
HNN extension under the natural isomorphism, and hence, (1.5) implies

(1.6) ti"Sti nsS= ti_'Ait,- = B; foreveryiel

in the HNN extension.

We note that the class of inverse semigroups also has the strong amalgamation
property ([5, 6]). The weak and strong HNN embeddability of several classes of
semigroups and the relationship with the amalgamation property are investigated
in [15, 16].

1.4. Locally full HNN extensions If A, is full in ¢;Se; and B, is full in f;Sf;, that
is, E(A;) = E(e;Se;) and E(B;) = E(f;Sf;) forevery i € I, then the HNN extension
S* is called locally full. If M is an inverse monoid and A; and B; are full submonoids,
that is, E(A;) = E(M) and E(B;) = E(M), then the HNN extension M* is called
full. Full HNN extensions of inverse monoids and locally full HNN extensions of
semilattices are investigated in [15] and [17], respectively.
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For example, the free Clifford semigroup on the set {#,, t,, ... , ,} is presented by

Inv(E, ti, by ... .1, | 7' f 1t = ¢i(f) = f forevery f € Ee,,
t7' =417 = e forevery i = 1,2,...n),

where E is the free semilattice on the set X = {e), e,, ... , €,} and ¢; is the identity
mapping of Ee; forevery i = 1,2, ..., n. Hence, any free Clifford semigroup is a
locally full HNN extension of a free semilattice.

The formation of a locally full HNN extension yields no new idempotents as we
see in Corollary 3.1. Hence, the partial order structure of a locally full HNN extension
is not so complicated as a more general HNN extension. We can generalize Britton’s
lemma to the class of locally full HNN extensions. The following is obtained in [17].

PROPOSITION 1.3. Any HNN extension of a semilattice E with stable letters t;
(i € I) can be presented as a locally full HNN extension of a semilattice Eo with |1 |
stable letters, where E, is an extension of E.

A similar result holds for HNN extensions of inverse semigroups.

PROPOSITION 1.4. Any HNN extension of an inverse semigroup S with stable letters
t; (i € I) can be presented as a locally full HNN extension of T, with |1 | stable letters,
where Ty is an inverse semigroup extension of S.

PROOF. Let § be an inverse semigroup. Suppose that A; and B; are inverse sub-
semigroups of S suchthate; € A; C ¢;Se; and f; € B, C f,;Sf; forsomee,, f; € E(S)
for every i € 1. Let ¢; be an isomorphism of A; onto B; for every i € I. We show
that the HNN extension $*, presented by (1.1), is a locally full HNN extension of
a certain inverse semigroup with the same cardinal number of stable letters. Let Tg
be an inverse subsemigroup of $* generated by § and E(S*). Let C; be the inverse
subsemigroup of S* generated by A; and E(S*)e; foreach i € 1. Let D; be the inverse
subsemigroup of S* generated by B; and E(S*)f; for each i € 1. We note that C; and
D; are inverse subsemigroups of §* such thate; € C; C ¢;S*e; and f; € D; C f:S*f;
for each i € I. We also notdthat E(C;) = E(e;S*e;) and E(D;) = E(f;S*f;) for
each i € I. We define a mapping ¢} of C; into D; by ¢*(s) = ¢ 'st; for s € C;. Since
t,-"Aiti C B; and tf'E(S*)e,-t,- C E(S8*)f; foreach i € I, we have ti'lC,-t,- C D; for
each i € 1. Hence, ¢} is well defined. Similarly, we can show that t,~D,-t,A’l C C; for
each i € 1. Itis clear that ¢; is an isomorphism of C; onto D; for each i € I and
that the restriction ¢} |4, of ¢; to A, is equal to ¢;. Let T be the inverse semigroup
presented by

Inv(To, pi (i € I) | p;'pi = ¢} (c) for every c € C;,
p;'pi=fi, pip;' = e foreveryi € I).
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Then T is alocally full HNN extension of 7;. We show that T is isomorphic to $*. We
define amapping ® of SU{s; | i € I} into T by ®(s) = s fors € Sand ¢(t;) = p, for
each i € I. Since the defining relations of S* are satisfied by T under @, the mapping
@ can be extended to a homomorphism by Proposition 1.1. We next define a mapping
Vof HhU{p;|ieI}into S*by W(s) =sfors € S, ¥(e) = efore € E(S*) and
Y (p;) = t; foreach i € I. It is easy to check that the defining relations are satisfied
by S* under V. Hence, W can be extended to a homomorphism by Proposition 1.1.
Apparently W o @ = ids. and so ® is injective. We next show that @ is surjective.
To prove this we show that every ¢ in E(S*) can be written as a product of p;’s and
elements of S in 7. Take any e € E(S*). Since e is in S*, the element e can be written
as a product of several stable letters £,’s and their invedses and elements of S. Since
L7, 7't € E(S), we may assume that e is written as

€ = Sol;' S1828 = Su_1t;" Sn,
wheres; € Sfori =0,1,2,... ,nande; =Xl fori =1,2,...,n. Notethat

e=¢& =¢le

— ¢y =l mEm 1~
=35, ti.. Sp1lin., Saa R #

€ —~1 €] € €,
n—1 . SO S()til sltiz N R S,,_lt,-n Spe

Therefore, every element of e in E(S*) can be written as

~1,—€y —1 =€ —1 —1,—€ -1 € €2 €n
Syt S b s s 8 Sy S0t S1t) S Spmt 8] S,
wheres; € Sfori =0,1,2,... ,nande; = £l fori =1,2,...,n. We claim that
if e can be written in S* as above then we have

—€p-t —1

SRS | T T WY T S €
e=s, p; "sn—|pi,,_, Sp_2° 8 Py 8o SoP; 1P, 52 Sn—1P;, Sn

in T by indaction on n. If n = 0, then the claim is trivial. Suppose that the claim is
true for non-negative integers less that n (n > 1). Assume that

e = sn_lt-_f"s-l t_en-l -1

—€) -1 €) € €,
i Sn_i So Soly Sil;, Sz Sn—1l; Sn
in §*. Let

-1
it Sn—2 81 L

€n—1i
-1

— o1 € 1 -1,—€ -1 €] €2 R
S =8, 08, Sy b Sy Soly!Sit)sy e

n—1%i,_, Sn-1-

By the inductive hypothesis,

— o1 —~€p-1 —1 -1 __—€ -1 € € .. €p—1
f= Sp_1Pi,_, Sp=2°7'Sy Pi So SoDPiS$iPy 527 P, Sa-1
in T. Then we have

e o—1l,—€ (7 S e €y ,—€p L€y
e=s 4 ft sy =58 " fU s,
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Note that f "1, € E (S*)tfn" t,". Then we have

e s = (@) (f 1) (by the definition of ¢})
=p. " (fe)p;r  (by the relation p ' cp; = ¢} (c)
forceC,eT)

=p.feip."py (st el = e, = pip;' and

L "%, =fi =P,~:1Pi,. eT)

=p.“fpi.
Therefore, we have

e=s Tt f 1t s, = 5, pr e fDES

1,.1
—€n—1 —l

= sn pi,, n— lpl,ﬁ —2 : 'sl—lpi_lﬂs()_lsopf,lslp:;sl o 'pi‘:__,lsn—lp:sn‘
Hence, the claim is true for every non-negative integer. It follows thatevery e € E(S*)
can be written as a product of p;’s and elements of S. Since T is generated by S, E(S§*)
and p;’s, the homomorphism ¢ is surjective. Consequently @ is an isomorphism of
S*onto T. O

2. Normal form theorem

Any element of an HNN extension of a group has a unique expression called a
normal form (or canonical form). The method using such an expression is useful to
study algorithmic and structural problems. In this section we obtain a normal form of
an element of a locally full HNN extension of an inverse semigroup.

2.1. Normal form Let S be an inverse semigroup, and let H be an inverse subsemi-
group of S. We define a relation ~ on S.
Forx, y € S, we define

2.1) ' X~nYy

if one of the followings holds:

(1) x=y.
(E2) x7'x,y 'y € E(H) and there exists 4 € H such that xh =y withx ~'x =hh~!.

PROPOSITION 2.1. The relation ~y is an equivalence relation on S.

PROOF. Clearly, x ~y x for every x € S. Suppose that x ~y y. Then either (E1)
or (E2) holds. In the case of (E1), x = y and so clearly y ~y x. We assume (E2).
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Then, we have x'x,y"'y € E(H) and xh = y and x'x = hh™' forsome h € H.
Then, yh™' = xhh™" = xx~'x = x. We note that h~! € H. It is easy to see that
y~'y = h~'(h™))~!. Hence, y ~y x.

Suppose now that x ~y y, y ~y z. We consider only the case that x~'x, y~!y,
z7'z7€ E(Hyand xh =y, yk = z, x"'x = hh~' and y~'y = kk~! for some h, k
in H. Then z = x(hk) and hk € H. Itis easy to see that x 'x = (hk)(hk)~'. Hence,
x ~g z. Consequently, we have shown that ~ is an equivalence. O

The ~y class of S containing an element x is denoted by X. We denote the
equivalence class of § containing x for Green’s relation ¢, #Z, .Z and 2 by Hg(x),
Rs(x), Ls(x) and Dg(x), respectively. N

LEMMA 2.2. For an element h of H we have h = Rs(h) N H = Ry(h).

PROOF. Suppose x € h. Then x ~y h, and hence, x = h or hk = x and
h™'h = kk™! for some k € H. Since h,k ¢ H, we have x = hk € H. Then x%h
in S, since x = hk and h = xk~'. Hence, x € Rs(h) N H. Take x from Rs(h) N H.
Then xZh in S and x € H. Hence, xx~' = hh™! and so x € Ry(h). Take x
from Ry (h). Then, x € H and x%Zh in H and so xx~! = hh~!. Then, we have
h(h™'x) = xx7'x = x. We note that h='x € H (as h,x € H). It is easy to see that
(h~'x)(h~'x)~" = h~'h. Hence, x € h. O

LEMMA 2.3. Forx,y € S, x ~y y ifand only if

(1) x=yandx"'x ¢ E(H) or
Q) xx'=yy L x'ye Handx'x, y~'y € E(H).

PROOF. ‘Only if” part: Suppose x ~y y. If (E1) holds, then we have (1) or (2)
according to whether or not x ~'x is in E(H). We now suppose that (E2) holds. Then
x~'x,y 'y € E(H). There exists h € H such that xh = y and x~'x = hh™'. Then
we have x 'y = x'xh € E(H)H C H. ltis easy to see that yy~! = xx~!. Hence,
(2) holds.

‘If” part: Suppose (2) is true. Then x~'x,y~'y € E(H). Setx™'y = h € H.
Then we have xh = xx "'y = yy~'y = y. Itis easy to see that x'x = hh~!. Hence,
x ~g y. f (1) holds, clearly x ~5 y. O

PROPOSITION 2.4. If H = E(S), then ~y is the identity relation on §.
PROOF. Suppose x ~ y and the condition (E2) holds. Then there exists h € E(S)

such that xh = y and x~'x = hh~'. Since h € E(S), we have x 'x = hh™! = h.
Then y = xh = xx~'x = x. Hence, x = y and so ~y is the identity on S. O
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PROPOSITION 2.5. If H = S, then ~y is identical to Green's #-relation.

PROOF. Obviously ~ is included in #. Suppose x#y. Then, xx~' = yy~! and
sox = xx~'x = yy~lx. Itis easy to see that y~'y = (y~'x)(y'x)~!. Note that
y~!x € § = H. Hence, (E2) holds, and so, x ~y y. It follows that ~ is identical
with Z. O

We begin to seek a unique expression of an element of a locally full HNN extension.
Let S be an inverse semigroup, A; and B; (i € I) inverse subsemigroups of S.
Suppose that ¢; € A; C e;Se;, f; € B; C f.;Sf; for some idempotents ¢;, f; of S
and that ¢; : A; — B, is an isomorphism for every i € I. We also assume that
E(A;)) = E(e;Se;) and E(B;) = E(f;Sf,;) for every i € I. Let S* be the inverse
semigroup presented by

(2.2) Inv(S,t (i € I) | 7 at; = ¢;(a) forevery a € A;,
ti'lt,- = fi, t,‘t,.'l = ¢, forevery i € I).

Note that S* is the locally full HNN extension of S associated with the isomorphisms
¢; (i € I). In the rest of the paper we assume that S, A;, B; and S* are defined as
above.

We choose and fix a set C(~,4,) of ~,, representatives of S for each i € I.
Similarly, we choose and fix a set C(~,) of ~p, representatives of S foreach j € I.
If r € C(~y4,) 15 in the ~4, class Rs(e) N A; (this is 2 ~4, class by Lemma 2.2) for
some idempotent ¢ € E(A;), then we assume r = e. Similarly, if s € C(~,) is in the
~p, class Rs(f) N B, for some idempotent f € E(B;), then we assume s = f .

Let X be a sequence

(x01 t,'ell’xls tiezzv cee sy t:"n)xn)’
wheren > 0,x;, € Sforeveryk =0,1,2,...,n,¢t, is a stable letter and ¢, = £1 for
everyl = 1,2, ..., n. Weconsider the following conditions on the sequence X :
(C1) If ¢ =1, then xk__'lxk}; € E(A,). If ¢, = —1, then x,:_‘lxk_. € E(B,), and
ot Ol ixim1) = xpxy forevery k =1,2,... ,n.

(C2) If e =1, then x,_, belongs to C(~4, ), and if ¢, = —1, then x,_, belongs to
C(~s,) foreveryk=1,2,---n.

(C3) There exists no subsequence of the form (¢!, ¢, ;) (e € E(A;)) nor (¢, e, ')
(e € E(By)).

(C4) There exists no subsequence of the form (tfl, a,t;) (a € A)) nor (¢, b, t,.")
(b € B).
A sequence satisfying (C1), (C2) and (C3) ((C1) and (C4)) is called normal (reduced).
Note that a normal sequence is always reduced. A pinch is a word of the form ¢ 'at,
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(a € A) or t;bt7" (b € B;), where ¢, is a stable letter. Let x be an element of S*.
Suppose that x is written as

(2.3) xotfl'xltfzz s tf""x,,.
If the sequence
(2'4) (x01 tiell’xlvtfzzv"' ,t,i",x,,)

satisfies the condition (C1), then we say that x has a form (2.3). Moreover, if the
sequence (2.4) is normal (reduced), then we say that x has a normal form (reduced
Sform) (2.3). Note that a form is reduced if and only if it contains no pinch. We
remark that a form in an inverse semigroup correspomts to the trace product in the
corresponding inductive groupoid. The inductive groupoid approach is employed
in [4].

LEMMA 2.6. If an element x in S* has a form xot;'x,1} - - - t;" x, then the following
hold:
(1) xx~'=xexy.
2) x7'x =x'x,.

PROOF. We prove (1) using induction on n. If n = 0, then x = x, and the claim is
trivially true. Next suppose that the claim is true for every non-negative integer less
than n and that x has the form xof;'x,# - - - ;"x,. By the inductive hypothesis, we

have
ooty Xyt - 15 X)) (ot Xy 1 - 1 ) T = xox; "
Therefore
xx~ = (ot Xy 257 - - - 157 X) (ot X 87 - - tfn"x,,)‘l
= (Kot 1ty - 1 X XX, T (ot £t X y)
= (xot{ Xyt - 1 X)X, X (ol X 8 )T
(by (C1) and the relations ¢, 'at; = ¢;(a) for all a € A,
and t;bt7' = ¢;'(b) for all b € B,)
= oty x 17 - 17 X)) (Kot Xy 12 <+ - 1 X)) TH = xoxg
This completes the induction. Similarly we can prove (2). O

2.2. Normal form theorem In this section we prove the normal form theorem for
a locally full HNN extension.

THEOREM 2.7. Let S be an inverse semigroup, and let A; and B; be inverse sub-
semigroups such that e; € A; C e;Se;, E(A;)) = E{(e;Se), fi € B, C f;5f: and
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E(B;)) = E(f;Sf:) forevery i € 1. Let ¢; : A; > B; be an isomorphism of A, onto
B; forevery i € 1. Let S* be the locally full HNN extension presented by (2.2). Every
element of S* has a unique normal form (2.3).

The proof is divided into four lemmas. Lemma 2.8 shows that every element has
a form and also provides an algorithm that finds a form. Lemma 2.9 shows that
we can construct a reduced form from a form and provides an algorithm for doing
so. Lemma 2.10 shows that we can obtain a normal form from a reduced form.
Lemma 2.11 guarantees the uniqueness of the normal form.

LEMMA 2.8. Every element of §* has a form. Moreover, if the isomorphisms ¢; and
¢! are effectively computable for every i € I, then we can effectively find a form for
any element of S*.

PROOF. Take an element x € S*. Note that S* is generated by S and the stable
letters #,. Since #;;' = e, and ¢!t = £, the element x can be written as

P ) Sm
X = Yo'yt " Yms

where y; € Sforj =0,1,... ,mand §; = £l forj = 1,2,...,m. Since we
have 117" = ¢; and £'t; = f;, we may assume that y; 'y, < tfl‘ t,-l'a', ymy, ! < t,f“ t,.‘i",
yoyit <l fork =1,2,... ,m,and yi 'y, < £ % fork =0,1,... ,m— 1.
Then

(2.5) )’;:_IIYk—l e EA,) ifé=1

and

2.6) Vi1 Y1 € E(B,) if & =—1

for k = 1,2,...,m. Using induction on m, we show that if x is written as

yotfl‘ y,tfz’ e tf: ym satisfying (2.5) and (2.6), then the element x has aformxot,f:xlt,fj e
t,f:x,,,. If m = 0, the result is trivially true. Suppose that the result is true for any
non-negative integer less tha‘m (1 < m), and that x is written as yot,fsl‘ylt,.‘i2 . tfm'" Vm
satisfying (2.5) and (2.6). We set

8 8 Sm— =8 -
= yotillylti22 ct ym—2tim_|lym—l¢i,,, ()’m.)’ml)-
Note that x = zt’~y,, since ¢~ (y,.y; )’ = t*y,y,'. By inductive hypothesis, the
element z has a form zotfl‘zl t,-‘zz .ne z,,,_zt,fn "' Zm-1- ILis easily verified that

s 8 b
Zo"i.lzltiz2 © Zm—2l;

Im-1

Sm 4.8m -
lzm—lt,'md’ (Zml_lzm—l)ym

is a form for x. It is also easy to see that there exists an algorithm that finds a form for
an element if the isomorphisms ¢; and ¢, ! (i € I) are effectively computable. O
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LEMMA 2.9. Every element of S* has a reduced form. Moreover, if the isomor-
phisms ¢; and ¢" are effectively computable and the membership problems for A;
and B; in S are solvable for every i € I, then we can effectively find a reduced form
for a given element x of §* provided that a form for x is given.

PROOF. Take x € S*. Suppose that x has aformx = xot,.‘sl‘xlt,.‘i’ “e- ti"x,,. If the form
contains a pinch, that is, a subword of the form t,fi‘xkt,-'i !, where iy = ixgy, Xk € Ay,

8¢ = —land 8y = 1 (or iy = ixq1, Xz € By, 8 = 1 and §;4; = —1), then we replace
itby ¢, %(x). Recall that ¢ % (x,) = t,fs‘xktfs‘*‘ in $*. Then we have

L3 k I+l

5 _ b S -3 ™5 3
X = xoty' X8 - 6 0@ ‘(xk)xk+hi:22 .. tf" Xn.
It is easy to see that this is a form of x. We continue this process until all pinches
disappear, and then the resulting form is reduced. Obviously we can construct an
algorithm to find a reduce form using the argument above if the isomorphisms ¢, and
#;' (i € I) are effectively computable and the membership problems for A; and B, in

S are solvable forevery i € 1. O

LEMMA 2.10. Every element of S* has a normal form. Furthermore, if x has a re-
duced form xot;' x,1; - - - ;" X, then a normal form for x is written as uot;' u,t} - - - £;" u,
for some ug, uy, ... u, €S.

PROOF. Take an element x of $*. By Lemma 2.8 and Lemma 2.9, x has a reduced
form xof;'x, - - - t;"x,. If €, = 1, then we rewrite xo as xo = uoco, Where up isa ~4,
representative for xo and ¢, € A, with ug Yup = CoCy ! If¢; = —1, then we rewrite xq
as xg = UpCo, where ugis a ~B, representative for xo and ¢, € B;, with ug Yy = coCy L
Then we have

X = uocotfl'xltf; e tfn"x,, = uot;'qbfl'(co)xlt;z e If:x,,.
It is easy to see that the resulting sequence is a reduced form for x. Then we have
¢ (co)x; = uyc; where ¢; is a ~4, or ~p, representative according to €; = =*1.
We rewrite the form by applying a similar argument to the subword ¢;' (co)x,#;’ and
continue the same process. We eventually get a form uot;'u,t;? - - - t;" u, for x. Clearly

I

it 1s a normal form for x. a
LEMMA 2.11. A normal form for any element of S* is unique.
PROOF. We use the Artin-van der Waerden method. Let N be the set of normal

sequences. Let Sym(N) be the symmetric inverse semigroup on N. We assume that an
element of Sym(N) acts from the right. We define a mapping ® of SU{t;, 7' | i € I}
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into Sym(N) as follows. For any X € N, if X = (xo, ¢, x1, £, ... , ", x,), then we
define Z(X) to be the last component x,. For s € S, we define ®(s). We set

2.7) Dom(®(s)) = {X e N | 2(X) € Sss7'}
and for X = (xo, ', ... , ", x,) € Dom(P(s))
(2.8) XP(s) = (xo, s ..o L £, X,5).

Clearly X ®(s) satisfies the condition (C1), (C2) and (C3), and hence, it belongs to N.
It is easy to see that Ran(®(s)) = {X € N | 2(X) € Ss~'s} and the inverse mapping
of ®(s) is ®(s7') for every s € S. Therefore, ®(s) belongs to Sym(N). It is also
easy to see that for s, r € S we have

O(sr) = O(s)D(r),

that is, ¢ is a homomorphism on S.
We now define @ (¢;) and (D(t,-") forevery i € I. We set

Dom(d () ={X e N| 2(X) € Se;}
and
Ran(® (%)) = {X € N | z(X) € 5fi},
where t,-t,._1 = ¢; and t,.“'t,- = f;. Note that if X € Dom(®(%,)), then Z(X)~'2(X) €

E(A;) since E(A;) = E(e;Se;). Take X = (x,, tfl', ,t,-‘"",x,,) from Dom(®(1,)).
We define & (1;) by

(2‘9) X¢(tl) = (x()v tisll7 ey fn ll’xn l¢1(xn)) lfz(X) = Xn € Ai,.v
i=i,ande, = —1,
(2.10) Xo) = (xo, z,.‘l‘, cee l, " Xno1s 5", Yns by @i(@))  Otherwise,

where x, = y,a and y, is a ~,4, representative, y. 'y, = aa™' and a € A,. Similarly,
we define ¢ (¢7') as follows. We set

Dom(d¢")) = {X e N | 2(X) € 5f;}
and

Ran(® (1 ")) = {X e N| z(X) € Se;}.

Note that if X € Dom(d>(ti"')) then z(X)~'z(X) € E(B;) since E(B;) = E(f;Sf:).
Take X = (xo, 1, ... , #", x,) from Dom(® (¢7')). We define (") by

Q1) XU = (o £ £ X167 (), if2(X) = x, € By,
i=i,ande, =1,

(2.12) X ) = o, 'y s 5 X £ Y 17 @7 (b)) otherwise,
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where x, = y,b and y, is a ~, representative, y, 'y, = bb~' and b € B;.

If all defining relations for S* are preserved under & then the mapping & can be
extended to a homomorphism ¢ : §* — Sym(N) by Proposition 1.1. To show all
relations are preserved, we prove

(2.13) <I>(ti)<I>(t,.‘l) = ®(e;) foreveryi € I,
(2.14) QETHP(E) = P(f) foreveryi € I,
2.15) T HP(@)D(1) = P(¢i(a)) foreverya € A,.

Since @ is a homomorphism on S, it preserves the relations for S.
We prove the relation (2.13). Since ¢; is an idempotc{lt, we have
Dom(®(e;)) = {X € N| 2(X) € Se;}
by (2.7). Then we have
X(D(ei) = (x07 tiell’ s t,‘e:yxnei) = (X(), tisll’ RN tie:’-xn) =X
for any X = (xo,,..., %", x,) € Dom(®(e;)) by (2.8). Therefore, ®(e;) is the
identity mapping on Dom(® (e;)). On the other hand, we have
Ran(®(1;)) = {X € N | z(X) € §f;} = Dom(P (7).
It follows that
Dom(®(1,)® (1)) = (Ran(®(#)) N Dom(® (1, )P (1)™"
= Ran(® (1))@ (1;)~" = Dom(®(#))
={X e N| 2(X) € Se;} = Dom(P(e;)).
Take an element X from Dom(®(e;)) = {X € N | Z(X) € Se;}. Suppose that
X = (xo, 8, ..., 1;", xn), where 2(X) = x, € Se;. We compute Xo(t)®(t"). In
computing X ®(¢;) for X and ¢, there are two possible cases; (2.9) and (2.10).

Suppose that (2.9) is true. Then we have x, € A;, { = i, and ¢, = —1. Remark
that in this case, it cannot happen thatx, | € B;,i = i,_, and ¢,_; = 1 since X € N.
We have

X)) = (o, 1o, 157, Xpoy (X))
By the remark above, t,.‘n"_“'x,,_,qS,-(x,,)t,.‘1 is not a pinch, and so, we have
X(D(ti)¢(t,'-l) = (Xo, ti€l|’ ey tf:_.llv xn—1¢i(xn))q)(t,‘_l)

n— -1 -1
= (xo’ tig,lv DR tii_‘l’ Yn-1, t,‘ ’ ¢j (b))t

where x,_19;(X,) = Yo_1b, ¥,_, is a ~p, representativeand b € B, with y, | y,_, = bb~".
Then y,_, = x,_1¢i(x,)b~"'. Note that

19 (X)) " o1 (X)) = (e Hx ! 01 i (x2)
= ¢i(xn_l)¢i(xnx;l)¢i(xn) = ¢i(xn—1xn)-

https://doi.org/10.1017/51446788700002639 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002639

{15} Locally full HNN extensions 249

Since x,_;¢;(x,) = y,_1b, we have
(-xn 1¢1(-xn)) (xn l¢t(xn)) - (yn lb) (yn lb) =b" ! ,,_llyn lb b” b

It follows that 5~'b = ¢;(x'x,). Then we have

(@i(x)b™ ) (@i (xa)b7) ™ = ¢i(xa) b7 i (x, ")
= i (x)i (x;, " X)pi(x; ) = Pi(xax, ) = x, X0

Note that x, ', x,_; € E(B)), ;'\ yn-1 = bb~' € E(B;) and ¢;(x,)b"! € B;. Hence,
(E2) holds for x,_, and y,_,, and s0, x,_; ~p, Y. Since both x,_, and y,_, are ~3
representative, we have x,_; = y,_;. By (C1), we have ¢; ' (x; ! ,x,_1) = x,x!. Then
@i(xn) = x !\ xu_100:(x,) = ¥, ya1b = b, and so, ¢;'(b) = x,. Consequently, we
have X® (1) (") = X

Next suppose that (2.10) holds. Then we have

X¢(tl)= (-XO’ tiell’--' ,t‘ stn 11 in ’ynvtﬂ¢t(a))

where x, = y,a and y, is a ~,, representative with y 'y, = aa~' anda € A;. Remark
that #,¢;(a)t]" is a pinch. Hence, we have
Xq)(tl)¢(t,—l) = (x()v tjellv ey tf’l-l » Xn— lv ,” » Yno t, ¢i(a))d)(t,'—l)
= (x0a t,‘?y ceey t,'n_l yxn——lv ,'n ’ yn¢i (¢,(d)))
= (o, £ oo L 5T X, ,‘", y,.a)

= (Ko, 8 oo B Xty 1 X)) =
Consequently, we have X <I>(t,-)<b(t,-") = X in both (2.9) and (2.10). It follows that
S(1)P (") = idpom@uy) = idpom@ ey = P(e).

We have proved (2.13). Similarly, we can prove (2.14). This implies that d>(t,-'1) =
& () in Sym(N) forevery i € 1.
Next we prove the relation¥2.15). Take a from A;, where i € I. Note that

Ran(®@)) ={X eN|2(X) € Sa’la}
and
Dom(®()) = {X € N| 2(X) € Se;}.

Since a € A; C ¢;Se;, we have a~'a < ¢; and aa™! < ¢;. Then we have

Ran(®(a)) N Dom(® (1)) = (X € N | z(X) € Sa~'aN Se;}
= {X e N| 2(X) € Sa~'a} = Ran(®(a)).

https://doi.org/10.1017/51446788700002639 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002639

250 Akihiro Yamamura [16]
Hence

Dom(®(a)® (1)) = (Ran(®(a)) N Dom(®(#)))®(a)™" = (Ran(P(a)))®(a)~'
= Dom(®(a)) = {X e N | 2(X) € Saa'}.
Since
Ran(®(17") = {X e N[ 2(X) € Se,},
then
Ran(® (")) N Dom(P(a) (%)) = {X € N | 2(X) € Saa™" N Se;}

={XeN}|z(X) e Saa™")
~
since aa™! < e;. Recall that ®(¢;') = & ()" in Sym(N). Then it is easy to see that

Dom(® (7)Y P(a)® (1)) = (X e N | 2(X) € Saa™"}o( )"
={X eN|2(X) € Saa '}® ()
={X e N | 2(X) € S¢;(aa™")}.

On the other hand, we have
Dom(®(¢;(a))) = {X € N | z(X) € $¢;(a)(¢:(a))”'}
={X e N|2(X) € S¢;(aa”™")}.

Hence, Dom(d)(ti")cb(a)d)(ti)) = Dom(® (¢:(a))).

Take a normal sequence X from Dom(®(z; Hd(a)d(1)). Suppose that X =
(X0, £, X1, - -+ s Xne2y £ Xy, 87, X,). In computing X @ (¢7") for X and ¢!, there
are two possible cases; (2.11) and (2.12).

Suppose that (2.11) holds. Then we have i = i,, ¢, = 1 and x, € B, = B,.
Remark that it cannot happen that x,_, € A;,, i = i, and ¢,_, = —1 since X € N.

Then (,15,—():'_l Xoo1) = ¢@; (7 xpz1) = x,x7! by (C1). We have
n-1 n \Yn—1 x

-1 n— -1
X)) = (oo 8], X100 oo Xna, 1770, X1 (X)),

Then we have

X(D(tj-l)q)(a) = (x0$ t,'Eil7 Xiyoer sy Xn-2, t:’:" xn—ld)i_l(xn)a)'

By the remark above f; P T '(x,)at; is not a pinch, and so, we have

XO P@P(t) = (xo, ', X1, .o Xuc2s 7 Yuct, 1, 93(0)),

where y, | is a ~,, representative and y,,“_lly,,_l =ccl,ce A; and x,,_1¢,-"(x,,)a =
Ya_1¢. Then both x,_, and y,_; are ~,, representative. Note that x,,'_‘lx,,_l belongs to
E(A);) by the condition (C1). Also note that y,- _'1 vn—1 belongs to E(A;) since ¢ € A;
and y,,‘_llyn_, =cc7!. Seth = ¢,-"'(x,,)ac“. Then h belongs to A; (asx, € B;,a € A;
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and c € A;). Since x, = Z(X) € S¢:(aa™'), we have x, = s¢;(aa") for some s € S.
Then x,$;(aa™!) = x,, and so, ¢, (x,)aa™" = ¢; ' (x,). We have

xn—lh = xn—1¢,‘_l(xn)ac_l = )’n—lCC_l = yn—ly,:_llyn—l = Yn-1
and
-1 __ -1 ,-1 -1y -1 -1 4-1 -1
Yn-th™ =yn1ca™ ¢ (x,) = xp19; (xp)aa™ ¢ (x,7)
= xn—l¢i_-l(xn)¢,‘_l(x,,_l) = xn——l¢i_l(-xnxn—l) = xn—lx,,—_llxn—l = Xp-1-
Then x,_1x,; = y,—1y,,. Furthermore, we have

-1 -1 -1 -1 -1
Xp_\Ynt = X Xpmih =X, X019 (x4)ac

= ¢ (xux, N (x)ac™ = ¢ (xacT = h € A
It follows that x,_; ~4, y.—; by Lemma 2.3. Since both x,_; and y,_; are ~,,
representative, we have x,_; = y,_;. Since x,_;1¢; '(x,)a = y,_1c and y;'|y,_, =

cc™!, we have ¢ = y; ! y.oic = x,  xam197 (x)a = ¢! (xa)a. Hence, ¢,(c) =
#:(¢7 " (xn)a) = x,¢:(a). Consequently, we have

-1 n—
X(D(t, )CD(a)d)(t,) = (x()’ tiEllaxls cee 3 Xpn—2, ,E" llv yn—h ti’ ¢,(C))
=(x07 tiilvxl,'~' s Xn—2, t‘n lvxn 1,l,,x,,¢,(a))

= XP(¢i(a)).
Next suppose that (2.12) holds. Then
X(D(t,-_l) = (xo, t:l,xl,--- Xn-2, 1;, 1,xn LL S e ! & '(b)),

where x, = y,b and y, is a ~, representative such that y; 'y, = bb~' and b € B,.
Then

XOUTYP(@) = (xo, 1, X1y oo s Xnoas ot X, 57, Yo 871, 67 (B)a).
Since £7'¢; ! (b)at, is a pinch,

X(D(t_l)q)(a)d)(t) - (xO’ X|, cee 3 Xp_2, tl,, i s Xn— l’ )’n¢:(¢ (b)a))
= (X(), i s-xl’ cee 3 Xp-2, t,‘" | ’xn | X i ’ ynb¢l(a))
= (Xo, t:,laxl, cee 3 Xp-2, t,,I 1 ,x,, s ¢ ," xn¢ (a))

= X®(¢i(a)).

We have proved (2.15).

Consequently, we can extend the mapping @ to ahomomorphism of S* into Sym(N)
by Proposition 1.1. Now suppose that x (€ $*) has a normal form xot;'x, 2 - - - ;" x,,.
Then the sequence (xo, ¢;', X1, £, ... , £;", X,) is normal, and so, it belongs to N. Set
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e = xx~!. By Lemma 2.6, we have e = xox;'. Then it is easy to see that the normal
sequence (e) is in Dom(®(x)) and

(@P(x) = (P (xot; X1 -+ 1] Xn)
= (Yo, 55 X0 10 o 17 Xn).

This implies the uniqueness of a normal form of x. O

We have completed the proof of Theorem 2.7. A similar normal form is obtained
for a full HNN extension of an inverse monoid with one stable letter and a locally full
HNN extension of a semilattice in [15] and [17], respeg\tively.

3. Applications of the normal form theorem

An immediate consequence of Theorem 2.7 is that an inverse semigroup S is
strongly embedded into any locally full HNN extension S*. Note that this follows
from Proposition 1.2. Another easy consequence is that a formation of a locally full
HNN extension yields no new idempotent. Conversely, if an HNN extension of an
inverse semigroup has the same semilattice of idempotents as the original semigroup,
then it must be locally full as we will see next.

COROLLARY 3.1. An inverse semigroup S is strongly embedded into a locally full
HNN extension S* and E(S*) = E(S). Conversely, if S* is an HNN extension of S
with the property that E(S*) = E(S), then §* is a locally full HNN extension of S.

PROOFE. Every element x of S has the normal form x since the sequence (x) satisfies
the conditions (C1), (C2) and (C3). It follows that S can be naturally embedded into S*.

Take x € #;7'St; N S. Then x = ¢ 'st;, where s € S. Using Lemma 2.8 we may
assume that 7 lst; is a form. If t,-“sti is not a pinch, then x has the normal form
Sot; 15.8;, where so, s, € S. On the other hand, since x € S, x is in the normal form.
This contradicts the uniqueness of the normal form. Thus, £, 's#, must be a pinch, and
s0, s € A; and ¢ 'st; = ¢;(a) € B;. It follows that £7'St, N S = B, and that S is
strongly embedded in §*.

Take any idempotent e from E (S*). Suppose that € has the normal form xot;' x, ;7 - - -
1;"x,. By Lemma 2.6, we have

e=ee! = (xoti' X187 - - - 17 xn) (xot X125 - - - rx,) " = xox;' € E(S)
since xo € §. This shows that E(S*) C E(S). Clearly E(S) C E(S*) since § is

embedded into S*.
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Conversely, we assume that the semilattice E(S*) is equal to E(S). We show
that each E(A;) coincides with E(e;Se;)) = E(S)e;. Take any e € E(S)e;. The
element ti"eti is an idempotent of S*. Since E(S*) = E(S), ¢ 'et; is in E(S). Then
t et € E(S)NtT(E(S)e)t: € SNt St;. On the other hand, we have SN 7' St; =
t7'A;t; = B; by (1.6). It follows that 1 'et; € ¢7'A;t; and that e = ;¢ etit]! C
Lt AT C A (as 17 = e € A; and e < ;). Therefore, E(A;) = E(S)e;, and
hence, S* is a locally full HNN extension of S. O

COROLLARY 3.2. If an element x of S* has a reduced form
(31) xotfl‘xlti? . tf""x,,,
where n > 1, then x ¢ E(S*) = E(S).

PROOF. By Lemma 2.10, if the element x has a reduced form (3.1), then x has the

normal form uot;'u,t} - - - t{"u, for some ug, U1, ... , U, in S. Since E(S*) = E(S)
by Corollary 3.1, every idempotent e has the normal form e. Since the expression is
unique, we have x ¢ E(S). O

Note that Corollary 3.2 is considered as a generalization of Britton’s lemma in
group theory ({3, 10]).

Some algebraic properties are not preserved under a formation of a locally full
HNN extension. For examples, the property of being a finite semigroup, being
commutative, being free, being E-unitary, being factorizable, being combinatorial,
being fundamental, being congruence-free, being completely semisimple or having
a zero element is not necessarily preserved under a formation of a locally full HNN
extension.

On the other hand, we show that several algebraic properties are preserved under a
formation of a locally full HNN extension. It is easy to see that an HNN extension of
a monoid (group) is always a monoid (group).

COROLLARY 3.3. Let S bexgn inverse semigroup. Let & be one of the properties
listed below. Then a locally full HNN extension S* satisfies & if S does.
(1) Having finitely many idempotents.
(2) Being torsion-free.
(3) Being bisimple.
(4) Being simple.

PROOF. (1) By Corollary 3.1, E(S) = E(S*) and so the HNN extension S* has
finitely many idempotents if S does so. (2) Using Theorem 2.7, we can easily show
that §* is torsion-free if S is. (3) We note that an inverse semigroup is bisimple if
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and only if all idempotents are 2-related. By Corollary 3.1, all idempotents of S* are
P-related in S* if all idempotents of S are 2-related in S. (4) We note that an inverse
semigroup is simple if and only if all idempotents are _# -related. By Corollary 3.1, all
idempotents of $* are _¢# -related in S* if all idempotents of § are _# -relatedin §. [

Under a certain condition on associated inverse submonoids A; and B; (i € I),
algebraic properties are preserved.

COROLLARY 3.4. Let S be an E-unitary inverse semigroup. Suppose that S* is a
locally full HNN extension of S associated with ¢; : A; — B; (i € I). If A; and B,
are closed in S for every i € 1, then S* is E-unitary. '~

PROOF. Suppose that S* is not E-unitary. There exist ¢ € E(S*) = E(S)
and x € S$*\ E(S) such that ¢ < x. By Theorem 2.7, x has the normal form
Xot{' X1t -+ Xp_11;"x,, where either n > 1 or xo ¢ E(S). Since e < x, there exists
f € E(S) such that f x = e. Then it is easy to see that

fx = fxot! x4 - Xn ()X = Xl X187 - X, 10X,
for some xg, x|, ... ,x, in § with x] < x; for every i. By Lemma 2.8, we may assume
that e = f x has the form xg¢;' x{#> - - - x;,_ ;" x,. Then either x; € A; or x| € B; holds

for some i by Corollary 3.2. On the other hand, we have x; ¢ A; and x; ¢ B;. This
contradicts the fact that A; (or B;) is closed in S. Consequently S* is E-unitary. [

Similarly any locally full HNN extension of an F-inverse monoid associated with
closed inverse submonoids is F-inverse. We next discuss the word problem for a
locally full HNN extension.

LEMMA 3.5. Let S be an inverse semigroup, and let S* be a locally full HNN
extension of S associated with the isomorphisms ¢; : A, - B; (i € I). If the
membership problems for the semilattice E(S), A; and B; (i € 1) in S are solvable and
the isomorphisms ¢; and ¢;" are effectively computable (i € I), then the membership
problem for E(S) in S* is solvable.

PROOF. For a given word w on generators of 5*, we can effectively obtain a reduced
form for w by Lemma 2.8 and Lemma 2.9. Suppose that the reduced form for w is
xof{' X112 - - ti"x,. 1f n > 0, then we can conclude that w ¢ E(S*). If n = 0, w
is written as a word on generators of S. We use the algorithm for the membership
problem for E(S) in S to determine whether or not w is in E(S). If so, we can
conclude that w € E(S*), otherwise w ¢ E(S*). O
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THEOREM 3.6. If the word problem for S is solvable and ¢; and ¢;" are effectively
computable for every i € I and the membership problems for A; and B, in S are
solvable for every i € 1, then the word problem for S* is solvable.

PROOE. Let w; and w, be given words on generators of S*. We note that w, = w,
if and only if w,w," = wzw{I and wz"w, € E(S*) = E(S). For, if wlwl’l = wzu){1
and wz"wl € E(S), then we have

w, = wlwl‘lwl = wzwz—lwl = wzwz_lwlwz"wl
-1 —1 -1 -1, -1 -1
= Whw; wiw; W @sw; wy = (w;, w))~ =w] wy)

= wzwz“lwzwz"wz = w,.

Hence, to solve the word problem for S* it is enough to decide for given words w, and
w, whether or not w,w;' = wow; "' and w;'w; € E(S).

Since the word problem for S is solvable, we can effectively determine whether or
not w = w? for a given word w on the generators of S. Therefore, the membership
problem for E(S) in § is solvable. By Lemma 3.5, we can effectively determine
whether or not w;'w; € E(S). By Lemma 2.8 and Lemma 2.9, we can effectively
find reduced form e; and e, for wyw;' and w,w;’, respectively. Then w,w;" and
w,w; " are written as words on the generators of S. By Corollary 3.1, e, and e, are in
E(S). Since the word problem for § is solvable, we can effectively decide whether or
not e; = e, in S. Consequently, the word problem for S* is solvable. a

COROLLARY 3.7. A locally full HNN extension of a finite inverse semigroup has
solvable word problem.

PROOF. Obviously the word problem for a finite inverse semigroup is solvable,
the membership problems for inverse subsemigroups are solvable and the partial
isomorphisms are effectively computable. O

Margolis and Meakin [11] solved the word problem for an idempotent pure image
of a free inverse monoid using Rabin’s tree theorem. Using their result, the author
showed that any HNN exten¥on of a finite semilattice has solvable word problem
([17]). Note that any idempotent pure image of a free inverse semigroup is an HNN
extension of a semilattice. However, a finitely generated idempotent pure image of a
free inverse semigroup does not necessarily have solvable word problem. Jajcayova
[8] solved the word problem for an HNN extension of a free inverse semigroup
associated with finitely generated inverse subsemigroups using graphical methods. It
is not known whether or not any HNN extension of a finite inverse semigroup has
solvable word problem. We remark that Cherubini, Meakin and Piochi [2] proved
the solvability of the word problem for an amalgamated free product of free inverse
semigroups associated with finitely generated inverse subsemigroups.
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4. Action of a maximal subgroup on a tree

Haataja, Margolis and Meakin [4] employed the Bass-Serre theory to obtain a
group presentation of a maximal subgroup of a full amalgamated free product of
regular semigroups. See [1, 8, 12, 15] for similar applications of the Bass-Serre
theory to find presentations of maximal subgroups of free constructions of inverse
semigroups. We obtain a group presentation of a maximal subgroup of a locally full
HNN extension using the Bass-Serre theory. The reader is referred to [3, 14] for the

detail of the Bass-Serre theory.

Let §* be the locally full HNN extension given by (2.2). Let e be an idempotent in
E(S*) = E(S). We denote the maximal subgroup (graup F¥-class) of $* containing
e by S;. We construct a graph X, on which S} acts without inversion.

4.1, Forest X Let S be an inverse semigroup and H an inverse subsemigroup of S.
For any x in S with x~'x € E(H), we define a coset x H to be

xH ={xh|x'x =hh™" (h € H)).
LEMMA 4.1. The coset x H is identical to the ~y class containing x ifx 'x € E(H).

PROOF. Recall that ~ is defined in (2.1). Suppose that x"'x € E(H). Then, if
y € xH, then y = xh for some h € H with x~'x = hh~!. By the definition of ~,
we have x ~y y and so xH C Xx. Conversely, we take y € x. Then, y = xh with
he Handx 'x = hh™'. Hence,y = xh € xH. Thus,x C xH. O

LEMMA 4.2. Forx,y € Swithx™'x,y™'y € E(H),xH = yH ifand only if x®Zy
inSandx~'y € H.

PROOF. This is an immediate consequence of Lemma 2.3 and Lemma 4.1. i

LEMMA 4.3. Letx,y € Swithx~'x,y'y € E(H). If xH = yH, then x#®y and
x'x2yyinH.

PROOF. By Lemma 4.2, we have x#Zy in S and x 'y € H. Let h = x~'y. Then
we have

R = 7'y y) T =7y D = T e e = 37

Hence, h%x~'x in H. Similarly we can show h.%y~'y in H. Consequently,
x'xPy~'yinH. a
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i(xA) =xS§ t(xA) = xt;S t(xB) =x¢t7'S i(xB;)==xS$
@) —0 @) @)
XA,' XBi

FIGURE 1. Edge and initial and terminal vertex

xS xS xt7'S xS
O O O O
E:xt,vB,- xBi =Xti_1Ai

FIGURE 2. Inverse edge

The graph X consists of the set Vert(X) of vertices and the set Edge(X) of edges.
The set Vert(X) consists of cosets x S:

4.1) Vert(X) = {xS | x € §*}.

Note thatx~'x € E(S*) = E(S) forevery x € S*. The set Edge, (X) of the positively
oriented edges of X consists of cosets xA; (i € I):

4.2) Edge,(X) = {(xA;|x € S, x7'x < e, =117 fori € I}.
The set Edge_(X) of the negatively oriented edges of X consists of cosets x B; (i € I):
4.3) Edge (X) ={xB;|x e §*, x"'x < fi=¢""t,fori € I}.

We make a convention that xA; and xA; are distinct for distinct i and j even if A;
coincides with A;, and similarly, x B; and x B; are distinct for distinct i and j even if
B, coincides with B;. The se‘t‘Edge(X ) is the union of Edge, (X) and Edge_(X):

4.4) Edge(X) = Edge, (X) U Edge_(X)
Here we make a convention that Edge_ (X) and Edge_(X) are disjoint (evenif A; = B;
for some i and j ).

We define the initial vertex, the terminal vertex and the inverse edge. The initial

vertex of xA; and x B; are defined by

4.5) i(xA;)) =xS, i(xB;) =xS.
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i(yis1)

i(yis2)

i(y1)

FIGURE 3. Circuit

The terminal vertex of xA; and x B; are defined by

(4.6) txA) = xS, t(xB) = xt'S.
The inverse edge of xA; and x B; are defined by

“.7) xA; =xt,B;,  xB; =xt'A,

See Figure 1 and Figure 2. It is routine to verify that Vert(X) and Edge(X) forms a
graph in the sense of Serre [14].

THEOREM 4.4. The graph X defined by (4.1)—(4.7) is a forest.

PROOF. Suppose that X is not a forest. Then there exists a circuit without backtrack-
ing. Suppose that the edges yi, ¥2, ... , Y. (n > 1) form a circuit without backtracking
in this order. See Figure 3. We have t(y;) = i(y,,,) foreachk =1,2,... ,n—1and
t(y,) = i(y)). Wealsohave y, # ¥, fork=1,2,... ,n—landy, #Y,.

We assume that n > 2 and derive a contradiction. In the case of n = 1, we can
similarly derive a contradiction and so we do not discuss the case. If y, € Edge  (X),
then we have y, = z,_,4,, for some z;_; € S* with z;,zc-1 € A,,. Then we define ¢,
tobe 1. We note thati(y;) = z_Sand t(y,) = 714, S = zk_ltf: S. Ify, € Edge_(X),
then we have y, = z;_,B;, for some z,_, € $* with z;',z;_1 € B;,. Then we define
€ to be —1. We note that i(y,) = z-1S and t(y,) = zf,'S = z1£*S. In the
both cases, we have i(yy) = z-1S and t(y;) = zk_ltf:S forevery k = 1,2,... ,n.
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Since t(y;) = i(yis1) forevery k = 1,2,... ,n — 1, we have zk_lt,.i‘S = . S. There
exists x;, € S such that z; = z;_ £ x; With (%)™ (i t) = xexy' for every
k=1,2,...,n— 1. Similarly there exists x, € S such that z5 = z,,_lt,-i"x,, with
(Za=15") " (za=1t]") = xax,', since we have t(y,) = i(y;). Then we have

-1 I P e | €x Y | -1 — 1
Lo T =X by G -1l X = X XaXy X = Xy Xy

forevery k = 1,2,... ,n — 1. Therefore,

-1 €xy—1 € —€x -1 € -
XXy = (Zk—lti:) (Zk—lt,‘:) =1, kzk_lzk-lti: =1, <

xk_._]rxk—lt,ik = ¢i€: Ot ).
forevery k = 2,3,... ,nand also x;x{' = ¢} (z5'20). We note that if ¢, = 1, then
we have xk‘_‘lxk_l € E(A,) and that if ¢, = —1, then we have xk‘_]lxk_l € E(B,).
Using the equations z; = z1#'x, (k = 1,2,...,n — 1) and 2y = z,18" X, We
can inductively derive z,_y = zot;'x, 22X, - - - £;* ' x4y, forevery k = 2,3,... , n, and
hence, we have zo = zof;'x117xy - - ;"' X, 11;"X,. Set f = z3'zo. Then we have
f =5 ol % - - 1 Xy 15X, Since xpx; ' = ¢5* (x7 1 x4-1) holds for every
k=2,3,...,nandxx;" = ¢;'(z5'2), f has a form

€n_

-1 €] €2 1 €
2y Zoti| xlti2 X+ t‘”_l x,._lt,»n"x,,.

Since 75 'z € E(S*) = E(S), the form zo”’zot,.‘l‘xlt,.‘;xz - 1" X,y 15X, i nOt reduced
by Corollary 3.2.
We assume that t,-i‘xkt-““ is a pinch for some k = 1,2,...n — 1. There are two

b1
possible cases; (1) iy = iy, & = —1, €41 = land x, € A, or (2) ix = ixy1,
& =1,€¢41 = —1andx, € B,,,. We now suppose that case (1) holds. Then we have
Y« = %1 B, and yi1 = 2A,,,. We show that z, £ x,A;, = z_11;*A;,. Note that
(@) @ t)) = xex; " and s0 g 1 xR zi 1t . We have
-1 -1
(21657 @t tiixi) = Xixy X = Xi € Ay, = Ay,
-1 -1 -1
(15150 ™ (e 50 30) = x5 (Z—15) 7 (1 1) x4
—t, -1 -1
=X, xax, xx =x, xx € E(A;)
and X
-1 -1
(@1 @) = xex; ' € E(AL).
Hence, we have zk_lt,.i‘xkA,-k = z,,_ltfk *A;, by Lemma 4.2. Then we have
Yirt = GAi,, = Gl XAy, = Lol XA,
-1 — —
=5l Ay, = L1, Ay = 2By, =Y,

which contradicts the assumption that there exists no backtracking in the circuit. In
the case (2), we can similarly derive a contradiction. Consequently, there exists no
circuit in the graph X . a
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eS = xS xot;'S xot;' x4 S x8§ =xot'x 8 1S
0) ®) O eens 0
yi y: Ys Yn

FIGURE 4. Path form eS to x S

4.2. Connected component For an idempotent ¢ € E(S*), we denote the connected
component of X containing the vertex eS by X,. We now describe the tree X,.

LEMMA 4.5. Let e be an idempotent in E(S*) = K(S). Forx € §*, the vertex
xS (the edge x A; provided that x'x € E(A)) or the edge x B; provided that x'x €
E(B))isin X, ifand only if xx~! = e.

PROOF. Suppose that xx~' = e. Suppose that x has the normal form xof;'x,2x; - - -
1 x, 1" x,. By Lemma 2.6, we have e = xx~! = xox;'. By Lemma 4.2, eS = xoS
since we have e, xo € S. Similarly, we have xof'x; - - - 'S = Xot;'x; - - - £ x, S for
every k = 1,2,...,n. Foreach k£ = 2,3,...,n, we define y, to be the edge

xoti'x b -+t xey Ay if € = 1 and to be the edge xoff'x,f - ;' x, B, if

fg-1 iy

€, = —1. We define y, to be x¢A;, or xoB;, according to €, = £1. Then the
path connecting ¢S and x S is given in Figure 4.
Note that xot;'x; - - - £;*S = xot;'xy -+t xS forevery k = 1,2, ..., n. Hence, xS

is in the connected component X ,.

LetxA; (x~'x € E(A;)) be a positively oriented edge such that xx~' = e. Suppose
that t(xA,) = zS. Note that x~'x < ¢; = titi", i(xA;) = xS and t(xA;) = x1S.
Moreover, we have (x#)(x£;)™" = x#,7'x ™! = xx~' = e since x~'x < £;#7". On the
other hand, by Lemma 4.2, zz7' = (xt;)(xt;)~! since we have xS = zS. Hence,
zz7! = e. Similarly, we can show that for a negatively oriented edge x B; such that
t(xB;) = zS we have zz~! = e. It follows that if a vertex zS is connected to a
vertex xS such that xx~! = e then we have zz™' = e. Since X, is connected, every
vertex zS in X, has the property that zz™' = e.

We have shown the result for vertices. It is similarly shown that xA; (or x B;) is

inX,ifandonlyif xx~! = e. O

1

4.3. Action of a maximal subgroup We now consider a maximal subgroup S}
of §*, where e € E(S*). Take a vertex x S from X, and w from S*. We have xx™! = e
by Lemma 4.5. Then we have

wx)wx)'=wxxwl =wew ' =wwl =e

(as ww™ = w™'w = e). This implies that wx S is in X,. Similarly, we can show
that wxA; and wx B; are in X, if xA; and x B, are in X,. Furthermore, we have
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i(sy) = si(y), t(sy) = st(y) and @ = sy for s € S} and y € Edge(X,), that is to
say, the group S acts on the tree X, from the left. The action preserves the orientation
of X,: S} Edge, (X.) C Edge, (X,) and S; Edge_(X,) C Edge_(X.). Hence, S} acts
on X, without inversion. Denote the orbit of xS (x A; and x B;) by Orb(x S) (Orb(x A ;)
and Orb(x B;)). Denote the stabilizer of xS (xA; and x B;) by Stab(xS) (Stab(xA;)
and Stab(x B;)). We describe the orbits and the stabilizers of the vertices and the edges

of X,.

LEMMA 4.6. Let x be an element in S* such that xx~' = e.
(1) We have

Orb(xS) = {wS | ww™ =e, x 'xDsw™'w).
(2) Ifx~'x € E(A)), then we have
Orb(xA;) = {wA; |ww™ =e, w'w e E(A), x 'xD,,w™'w).
(3) Ifx~'x € E(B,), then we have
Orb(xB;) = {wB; | ww™' = e, w™'w € E(By), x 'xDpw ' w}.
Here D5, D, and Dy, denote Green’s D-relation of S, A; and B,, respectively.

PROOF. Take wS from Orb(xS). There exists z in S} such that z(x§) = wS. Note
that

@) ' =x""zzx =xlex = x 7 ax e = x 7.

By Lemma 4.3, we have zx Zw and (zx)~!(zx) Dsw'w. Since (zx)~'zx = x~'x, we
have x ~!'x 9;w~'w. Moreover, we have

1 1

ww™ = () (@) = xx iz =zez7 ' =e.
A -1 -
Hence, we have shown that ww™' = e and x " 'x Zsw™"w.
Conversely, we assume that ww ™' = e and x ~'x Zsw~'w. There exists a € S such

that w™'w#saLsx~'x. Let d = wax~'. Then we have

dd™' = wax ' (wax™")™' = wax"'xa 'w™!

=waa'aa”'w ' = waa v = ww lww T = ww T =e

and
d7'd = (wax™) '(wax™") = xa'w ' wax ™!

=xalaa 'lax ' =xalax ' =xx"xx" =e.
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Hence, d € S}. We now note that

1 1 -1

wa)(wa)” =waa” w  =ww ww = ww
(wa)(wa)™' : !

Hence, waZw. Sincea € Sandw™'w € E(S), wehave w'wa € §. By Lemma4.2,
we have wS = wasS. On the other hand, we have

dxS§ = wax"'xS = waa 'aS = was$.
Hence, wS = dx S and so wS € Orb(x S). It follows that
Orb(xS) = {wS | ww™" = e, x *Zsw 'w}.

We can similarly show the other two statements. ~ O

LEMMA 4.7. (1) Forx € §* withxx™ = eandx™'x = f we have
Stab(x S) = x Hs(f )x~",

where Hg(f ) is the group S -class of S containing f .
(2) Suppose that xA; (x B;) is in the tree X,. Then we have

Stab(xA,) = xHa, (f )x ™" (Stab(x B;) =xH3,.(f)x_'),
where Hy,(f ) (Hp,(f)) is the group ¢ -class of A; (B;) containing f .

PROOF. We show that Stab(x S) = x Hs(f )x~!. Take an element z from Stab(x S).
Then zx S = xS. Note that zz™' = z7!z = e = xx~!. By Lemma 4.2, we have zx %x
and x~!(zx) € S. Set g = x~'zx. Then we have

gg l=x""ax (7 lax) T =x o T x =g g e =x T T Ix =x Tl =f
and
glg=0""ax) xax=x Tl e e =x 7 g e =x T Tl =x T = £
Hence, g € Hg(f). Thenz = xx~'zxx~! = xgx~! € x Hs(f )x~'. Thus, Stab(x ) C
xHs(f)x~". .
Conversely, we take an element v from Hg(f ). Then we have
(xvx xS =xvx'xS =xvf S =xvS§

(as v € Hg(f)). We next show that xv#x and x~!(xv) € S. Note that

1

V= xx L,

E)EY) P =xvv T x ! =xfx = ax 7T

Hence, xv#x. Since x™'xv = fv = v (as v € Hs(f)), we have x"'xv € S (as
v € S). By Lemma 4.2, we have xvS = xS§. It follows that (xvx ")xS§ = x8S.
Hence, xvx~' € Stab(x S). This shows that x Hs(f )x~! C Stab(xS). Consequently,
Stab(xS) = x Hs(f )x~'. Similarly it can be shown that Stab(xA;) = x Hy,(f )x ™!
and Stab(x B;) = xHp (f )x~'. d
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5. Presentation of a maximal subgroup

Using the action of S¥ on X, we obtain a group presentation of S>.

5.1. Graph of groups SS\ X, = (K, Z,) We describe the graph of groups induced
from the action of S on the tree X,. Let S\ X, = (K, Z,) be the graph of groups ob-
tained from the action of S} on X, in the Bass-Serre theory. We recall the construction
of (K, Z,).

(1) Graph Z, The graph Z, is formed by the set of vertices

Vert(Z,) = {Orb(xS) | xx™' = ¢}
and the set of edges
| Edge(Z,) = Edge, (Z.) UEdge_(Z.),
where
Edge, (Z,) = {Orb(xA)) | xx' =e, x"'x € E(A)), i € I}

is the set of positively oriented edges and
Edge_(Z,) = {Otb(xB) | xx ' =e, x 'x € E(B), i €1}

is the set of negatively oriented edges. The initial vertex and the terminal vertex of
Orb(xA;) are Orb(x §) and Orb(x¢;S), respectively. The initial vertex and the terminal
vertex of Orb(x B;) are Orb(x S) and Orb(x¢;'S), respectively. The inverse edge of
Orb(xA;) is Orb(x¢;B;) and the inverse edge of Orb(x B;) is Orb(xt,-"lA,-). It is easy
to verify that Z, forms a graph.

(2) Groups K Let T be a maximal subtree of Z,, that is, a spanning tree of Z..
There exists a lifting j : T — X, because 7T is a tree (see [14]). We extend j to all
edges of Z, so that we can have j (i(y)) = i(j (y)) for every y € Edge,(Z,). Then j
is no longer a graph morphism. The groups associated with Orb(x S), Orb(xA;) and
Orb(x B;) (i € I) are defined by

Kowisy = Stab(j ((zrb(xS))), Kowia, = Stab(j (Orb(xA))))
and )

Kowis,) = Stab(j (Orb(x B)))).

If sy =y, then sy = ¥y for every y € Edge(X,). Therefore, Kggzzas = Kowxa, and
Kowesy = Kowws)-

(3) Monomorphisms Suppose that y is a positively oriented edge of Z,. Then
y = Orb(xA;) forsome x € S*and i € I suchthatxx! = eand x~'x € E(A;). We

define group isomorphisms

oy: Ky > Kjyy and 1y: Ky = Kyy).
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Suppose that j (y) = xA;. Then j (i(y)) = i(j (y)) = xS. We have

Kiy) = Stab(j (i(y))) = Stab(i(j (y)))
= Stab(i(xA;)) = Stab(x §) = x Hs(x "'x)x 7.
We also have
K, = Stab(j (y)) = Stab(xA,) = xHy, (x 'x)x ',

Note that x Hy,(x"'x)x~' C xHs(x"'x)x~". Then o, : K, - K, is defined to be
the inclusion mapping.

Since we have
~

Orb(j (t(y))) = Orb(t(j (¥))) = Orb(t(xA,)) = Orb(x#.S),
we can choose an element y, from S such that
6.1 J @) = yyxt;S.
Then we have
Ky = Stab(j (t(3))) = Stab(yyx£:S) = (yyxt:)Hs((ryx1) ™' (1yx 1)) (1yx 1)
= yyxt; Hg(t] lx‘lyy‘1 yJct,-)t X 1yy" = YyXt; Hs(¢,(x‘1x))t'11|c“yy
because
7Ty et = 17 T ety = 7 T T s = 7 T o = ()

(asx~'x € E(A)) C A)). Then 7y : Ky — Ky is defined by
(5.2) 7,(s) = sy, !
for s € K,. Fory € Edge_(Z.), we define oy and 1, by 0y = 17 and 7, = 0y.

5.2. Graph of groups (G, Y,) We construct a graph of groups (G, Y,) associated
with S, A; and B; (i € I) for each idempotent e € E(S) using Green’s 2-relation.
We also show that (G, Y,) is conjugate isomorphic to the graph of groups SS\ X, =
(K, Z,). Then we can conclude that S} is isomorphic to the fundamental group of
(G, 1.). Let us start to define the graph of groups (G, Y.).

(1) Graph Y Let Vert(Y) be the set of Z-classes of S, Edge_(Y) be the set of
D-classes of A; for all i € I and Edge_(Y) be the set of P-classes of B; foralli € I.
We make a convention that Edge, (Y) and Edge_(Y) are disjoint although A; may be
equal to B; for some i, j € I. We also make a convention that for distinct i, j € I the
set of D-classes of A; is disjoint from the set of Z-classes of A; even though A; may
coincide with A;. We make a similar convention for the set of Z-classes of B;’s. The
set of edges Edge(Y) is the union of the set Edge  (Y) of positively oriented edges and
the set Edge_(Y) of negatively oriented edges. Suppose that D,, € Edge, (Y), thatis,
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D,, is a D-class of A, for some i € I. Then the initial vertex i(D,,) is the 2-class of
S including Dy, the terminal vertex t(D,,) is the Z-class of S including ¢,(D,,) and
the inverse edge 5; is ¢:(D,,). Note that ¢;(D,,) is a D-class of B;. Suppose that
Djp, € Edge_(Y), thatis, Dp, is a Z-class of B, for some i € /. Then the initial vertex
i(Dp,) is the P-class of § including Dy, the terminal vertex t(Dp,) is the Z-class of
S including ¢;'(Djp,) and the inverse edge Dy is ¢;'(Dp,). Note that ¢, (Dj,) is a
D-class of A;. It is routine to verify that Y forms a graph in the sense of Serre. We
remark that Y is not necessarily connected.

(2) Groups G For each Ds € Vert(Y), that is, Dy is a P-class of S, we choose
a group S¥-class of S included in Dg and denote it by Gp,. Similarly, for each
D,, € Edge, (Y), we choose a group J€ class of A; included in D,, and denote it by
Gp,,. For each Dg, € Edge_(Y), we set Gp, = Gy-+(p,) = G,

(3) Monomorphisms Suppose D,, € Edge (Y). There exists a unique Ds €
Vert(Y) such that Ds, C Ds. Let K be a group S#-class of S including Gp, . Then
K and Gp, are group J#-classes of S included in Ds. By Green’s lemma there exists
n € Ds such that nKn~' = Gp,. We choose such an element n from D; and fix it.
Then op,, : GDA,. — Gp, is defined by

(5.3) op,, (k) = nhn™'

for h € Gp,. We note that Gp; = Gip,,, as Ds = i(D,,). We now define
o, : Gp,, = Gyo,)- There exists a unique Dy € Vert(Y) such that ¢;(D,,) C Ds.
Let K be the group ##-class of S including ¢:(Gp, ). Then K and Gp, are group
H-classes included in Ds. By Green’s lemma there exists n € D such that

5.4 nKn™! = Gp,.-
We choose such an element n from D; and fix it. Then 7p, : Gp, — Gp; is defined by
(5.5) tp,, (k) = ng;(hyn™"

forh € GDA‘,. We note that G, = Gyo,,) as Ds = t(D,,). For Dp, € Edge_(Y), 0p,,
and Tp,, are defined by op,, < s, and tp, = 0Dy

(4) Connected component Y, For e € E(S*) = E(S), let Y, be the connected
component of Y containing the Z-class of S containing e. We denote the restriction
of (G, Y)to Y. by (G, Y.). Then (G, Y,) is a connected graph of groups.

5.3. Conjugate isomorphism We prove that (G, Y,) is conjugate isomorphic to
(K, Z,). The reader is referred to [3] for the definition of a conjugate isomorphism of

graphs of groups.

THEOREM 5.1. The graph of groups (K, Z,) is conjugate isomorphic to the graph
of groups (G, T.).
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PROOF. We define a graph morphism @ : Z, — Y, by

®(Orb(x S)) = Ds(x'x), ®(Orb(xA;)) = D4, (x"'x)
and
®(Orb(x B)) = D, (x"'x),

where Ds(x ~'x) (D4, (x "'x) and Dp,(x~'x)) is the Z-class of S (A, and B;) containing
x~'x. By Lemma 4.6, ® is a well-defined bijection. Note that

®(i(Orb(xA;))) = P(Orb(xS)) = Ds(x'x) = i(Dy4,(x 'x)) = i(P(Orb(xA)))).
Ay

Therefore, ®(i(y)) = i(P(y)) for every y € Edge,(Z,). Similarly we can show
that ®(t(y)) = t(P(y)) for every y € Edge, (Z.) and that ®(i(y)) = i(P(y)) and
DA(y)) = t(P(y)) foreveryy € Edge_(Z,). Itis also easy to see that ®(¥) = (P (y))
for every y € Edge(Z.). Thus & is a graph isomorphism of Z, onto ¥..

We define isomorphisms between the vertex groups. Let v be a vertex in Z,.
Suppose j (v) = xS. Then v = Orb(j (v)) = Orb(xS) and so ®(v) = € (Orb(x5)) =
Dg(x~'x). Then we have

K, = Stab(j (v)) = Stab(x §) = x Hs(x 'x)x~".

Since Hg(x~'x) and Gp,-1,) are group J#-classes of S included in Ds(x~'x), there
exists m, € Dg(x~'x) such that

(5.6) m,(Hs(x_lx)m;l = Gpyx-tx)

by Green’s lemma. We choose such m, and fix it. Then a mapping ¢, : K, —
Gd>(v) = GD;(X"X) is defined by

4.7 d,(s) ='m,()c"sxm;1
fors € K, = x Hs(x "'x)x~'. We show that ®, is well defined. Since

xlsx e x ' Hs(x 7 'x)x7'x = Hg(x " 'x),
we have

&, (s) € m Hg(xx Yym' = Gp,-1x)-

Note that the choice of m, depends on x. We show that @, can be defined so that any
other choice of the coset representative z for xS can have an element m, in Ds(z™'z)
such that m,z"'szm;' = m,x~'sxm_' for s € K,. Suppose that x§ = zS. We
define m, to be m,x~'z. Then m, belongs to S since m, and x 'z belong to S.
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Then m, € Ds(z7'z) = Ds(x"'x) and m,z 'szm]! = mx~'zz7'sz(mx ') =
m.x~'sxm!. Therefore, ®, is well defined. Clearly &, is an isomorphism.

We next define isomorphisms between the edge groups. Suppose y is in Edge  (Z,)
and j (y) = xA;. Then we have

y = Orb(j (y)) = Orb(xA;)
and so
D(y) = P(Orb(xA;)) = D,,(x"'x).
We also have
K, = Stab(j (y)) = Stab(xA;) = x Hy,(x 'x)x .

Since Hy,(x~'x) and GDM(X_lx) are group J¥-classes of A; included in D, (x'x),
there exists a, € D4, (x ~'x) such that

(5.8) a Hy (x7'x)a]" = Gp, (10

by Green’s lemma. Then a mapping @, : Ky — Goyy is defined by

(5.9 Dy (s) = ax " 'sxa]

fors € Ky = x'Hy(xx~")x. For any z such that xA; = zA; we can choose a, from
Dy, (z7'2) = Da,(x7'x) such that a,z7'sza]' = a,x'sxa;'. Therefore @, is well
defined. Clearly &, is an isomorphism. For any edge y in Edge_(Z.), we define &y
to be P,.

We now prove that ¢ is a conjugate isomorphism of (K, Z,) onto (G, Y,). Recall
that @ is a conjugate isomorphism if for every edge y € Edge(Z,) the diagram

Ty
Ky ? Kt(y)

>y l l%y}
N

Goyy — > Goay
oy

is commutative up to conjugation by an element of Gyoy) = Geay-

There are two cases: (1) y € Edge, (Z,) and (2) y € Edge_(Z.). We prove the first
case and omit the second case.

Suppose thaty is in Edge, (Z,) and j (y) = xA;. Theny = Orb(j (y)) = Orb(xA)).
We have

K, = Stab(j (y)) = Stab(xA;) = x Hy, (x 'x)x .
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Recall that y, satisfies the equation j (}(y)) = yyx1;S by (5.1). Then we have

Kyy) = Stab(j (2(y))) = Stab(yyx1,S)
= X ti Hs((yx 1) " (ryx t)) (ryx 1) ™" = yyx t; Hs (s (x ")) (ryx 1) ™",
since
(Byxt)(yyxt) = 7Ty et =07 e = ().

Then 7y : Ky — Ky, is defined to be the mapping s +—> vysy, ' fors € K, by (5.2)
and @y : Ky, — Gqy is defined to be the mapping s > ax"‘sxa‘l fors € K,
by (5.9). Note that a = a, is the element of D4,(x~'x) defined in (5.8). Hence,
we have a, H, (x7'x)a;' = Gp, -1r). We recall hat dyy) : Kyyy = Goqg) is
defined to be the mapping s > m(yyx1,) 's(y,xt;)m™" for s € Ky, by (5.7). Note
that m = m,,,, is the element of Ds(¢;(x 'x)) defined in (5.6). Hence, we have

mHs(¢,-(x'lx))m“1 = GDS(¢,-(x"x))' Note that
Q(t(y)) = ©(Orb(x1,5)) = Ds((xt;)' (x1;)) = Ds(t7'x 7 'xt;) = Ds(¢;(x'x)).

We alsorecall that 7o) : Goy) = Gy is defined to be the mapping s — ng;(s)n!
for s € G by (5.5). Note that n is the element of Ds(¢;(x~'x)) defined by (5.4).
Hence, we have nKn™' = Gp4(-1xy), Where K is the group S#-class of S including
¢i(Gp,,-1x))- See Figure 5 for the Z-structure and the location of the elements

m,n,a.
Take an element s from H,, (x~'x). Thenxsx~' € xH,, (x 'x)x ="' = K,. We have

<1>uy>(ry(xsx D) = Oy (yxsx ™ty ) = mypx) ™ (yyxsx ¥y D(yxt)m™!

= mt Tl xsxixtmT l_mti stm™ = me;(s)m™".

On the other hand, we have

rq,(y,(d)y(xsx")) = td,(y)(ax'lxsx'lxa") = rd,(y)(asa")

= nei(asa”yn"' = ng;(@)p.(s)(npi(a)) ™.

Then we have

ngi(@)ym™" Dy (1, (xsx ")) (ndi(@ym ™)™
= ngi(@)m™" (m@;(s)m ™) (ng;(@m™")
= ng(a@)pi(s)(ngi(a)) ™' = Tow (Py(xsx™)).

-1

We prove that ng;(@)m™' € Gpypu-1xy. By our choice of n and a, the el-

ement n~'n is the identity of K and the element ¢:(@)g;(a™") is the identity of
$:{(Gp, «-10)- Since ¢;(Gp, -1n) C K, we have n~'n = ¢(a)¢p:(a”"). Since
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a'a =x"'x, ¢;(aV)¢p;(a) = ¢;(x"'x). On the other hand, by the choice of m, we
have ¢;(x ~'x)#Zm~". Hence, we have m~'m = ¢;(x"'x) = ¢;(a"'a). Then we have

(ngi(@ym™") " (npi(@)ym™") = m@i(a~)n"'ngp;(@ym™!

=mei(a)p;(@)ym™ = mm'mm™} -1

=mm
and so n¢;(a)ym~'Zmm™=". By our choice of n and m, both nn! and mm~" are the
identity of Gp(,«-1x). Therefore, nn~! = mm™!, that is, n%#m. Then

(ngi(@m Y (npi(@m™ ") = ng;(@ym™'me;(a")n™!
= n¢i(a)pi(a " )pi(a)p: (@ )n™!
-1 -1

=n¢;(@)pia I =nn"'nn = nn = mm

it follows that n¢;(@)m~'Zmm='. Hence, n¢,(a)m='#mm=". This implies that
ng;(a)m~" is in the S#-class of mm™', that is, G p,,-1xy)- Recall that Gpgg,ix-ixy) =
Gyoqy- Consequently, for every s € Hy,(x~'x), the element <I>,(y)(ry(xsx“)) 1s
conjugate to Tey) (P (xsx ")) by the element n¢g;(a)m™" of the group Gya(y))- O

THEOREM 5.2. S} is isomorphic to the fundamental group n (G, Y,).

PROOF. By the Bass-Serre theory, the group S is isomorphic to 7 (K, Z.). On the
other hand, (G, Y,) is isomorphic to 7 (K, Z,) since (G, Y,) is conjugate isomorphic
to (K, Z,) (see [3, Lemma 21, page 202]). Therefore, S is isomorphic to 7 (G, Y,).

O

We remark that the group action of the maximal subgroup on the corresponding
tree can be integrated into an inverse semigroup action of S* on the forest X. The
Bass-Serre theory can be generalized to the class of inverse monoids acting on ordered
forests; an inverse monoid acting on an ordered forest is characterized as a fundamental
inverse monoid of a certain graph of inverse monoids and vice versa. See [12] for the
inverse monoid actions on o@ered forests, fundamental inverse monoids and graphs
of inverse monoids. ’

6. Examples

EXAMPLE 6.1. Let S be an inverse semigroup. Let A; be an inverse subsemigroup
such that e¢; € A; C ¢;Se; and E(A;) = E(e;Se;) forevery i € I, where e; € E(S).
Suppose that B; is an inverse subsemigroup of S such that ¢; € B; C ¢;Se; and
E(B;) = E(e;Se;) forevery i € I. Let ¢; be an isomorphism of A; onto B; such that
&:i(f)2f forall f € E(A;) forevery i € I. It is easy to see that the graph of groups
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P
Conjugation by x
9 class of A;
Q a”!
o
P class of A; '
a T
U m~}
P=xHy(x x)x™! 2 class of B;
Q= Hy,(x7'x)
T= GDA,-(X"X) 1
U =:(0) C Hs(¢i(x'x)) 4 "
V=¢:(T)CK
W = Gpggix-xn
=nKkn'=mUm™! m n W
Dclassof §

FIGURE 5. @-structure of S, A; and B;

(G, Y.) has the property that Y, is a bouquet, that is, a graph consisting of only one
vertex and several edges. It follows that each maximal subgroup of §* is an HNN
extension of the maximal subgroup of S.

EXAMPLE 6.2. Let B be the bicyclic monoid. Let ¢ be the identity mapping on
E(B). Let B* be the full HNN extension of B associated with ¢. We can conclude
that the group #-class B} of B* is a free group of infinite rank since the graph of
groups defined from B is just a bouquet with infinitely many edges such that every
vertex group is trivial and the fundamental group of such a graph of groups is a free
group generated by infinite generators.

EXAMPLE 6.3. Let S be a strong semilattice S (E, S, p;), where E is the w-chain,
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thatis, E = {eg, €], e, ... } (withthe order e,, < e, ifand onlyif m > n), S, isagroup
for every e, € E and P S, > S, isa transition homomorphism for e,, e¢,, € E
with m < n. Let A be an inverse subsemigroup of S such that £(S) = E(A). Let B
be an inverse subsemigroup of S such that E(B) = E(S) \ {ey}. Suppose that there
exists an isomorphism ¢ of A onto B. Then it is easy to see that the locally full HNN
extension S* of § presented by

Inv(S,t |t 'at = ¢p(a) foreverya € A, t7't = e, tt7™' = ¢p)

is a bisimple regular w-semigroup, that is, a Reilly extension of a group. The maximal
subgroup containing e, is isomorphic to the fundamental group of the graph of groups
(G, Y,,), where Y, is a half chain, that is, a graph consisting of countably many vertices
v, and countably many edges y, with i(y,) = v,_;andt(y,) = v, forn =1,2,3,....
Therefore, S* is a Reilly extension of the fundamental group 7 (G, Y,,) of the graph
of groups (G, Y,,).

In the case that every S,, is the trivial group, the fundamental group of the graph
of groups (G, Y,,) is trivial. Then, S* is a Reilly extension of the trivial group, that is,
S* is the bicyclic semigroup.

EXAMPLE 6.4. Let S be the free Clifford semigroup on a set X. Let E be a free
semilattice on a set {e, | x € X}. For every e, (x € X), we let ¢, be the identity
mapping on the principal ideal Ee, generated by e,. Clearly, ¢, is an isomorphism of
Ee, onto itself. It is easy to see that the locally full HNN extension E* presented by

Inv(E, t,(x € X) | t;'at, = ¢.(@) =aVa € Ee,, 1]'t, = 1,1 = ¢, Vx € X)

is isomorphic to S. Take an idempotent e from E. Then e = e,¢e,, - - - €,, for some
X1,X2,...%X, € X such that x;’s are distinct each other. We consider the graph of
groups (G, Y,). Clearly, the graph Y, is a bouquet with n edges since all ¢, are
identity mappings. Every vertex group is trivial since E is combinatorial. It follows
that the fundamental group of (G, Y,) is a free group of rank . Therefore, the maximal
subgroup of the free Clifford semigroup containing the idempotent

-1

-1, -1
€= €&, 6, =X1X| XoX; ‘:-XpX,

is a free group of rank n.

EXAMPLE 6.5. Itis known that auniversally E-unitary inverse semigroup is a locally
full HNN extension of a semilattice of idempotent rank zero ([17]). Hence, a maximal
subgroup is a fundamental group of the graph of groups (G, Y.), where every vertex
group G(v) is trivial. This implies that the fundamental group of the graph of group is
a free group. Hence, a maximal subgroup of a universally E-unitary inverse semigroup
is a free group. The rank of the maximal subgroup can be determined by the shape of
the graph Y,, in fact, the rank is given by the number of circuits in the graph Y,.
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