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Abstract

Let a, b, c be fixed coprime positive integers with min{a, b, c} > 1. We discuss the conjecture that the
equation ax + by = cz has at most one positive integer solution (x, y, z) with min{x, y, z} > 1, which is far
from solved. For any odd positive integer r with r > 1, let f (r) = (−1)(r−1)/2 and 2g(r) ‖ r − (−1)(r−1)/2. We
prove that if one of the following conditions is satisfied, then the conjecture is true: (i) c = 2; (ii) a, b and
c are distinct primes; (iii) a = 2 and either f (b) � f (c), or f (b) = f (c) and g(b) � g(c).
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1. Introduction

Let N be the set of all positive integers. Let a, b, c be fixed coprime positive integers
with min{a, b, c} > 1. We assume without loss of generality that a, b and c are not
perfect powers. The purely exponential Diophantine equation

ax + by = cz, x, y, z ∈ N (1.1)

has been studied deeply (see [17] for a survey of the results). In 1933, Mahler [18]
used his p-adic analogue of the Diophantine approximation method of Thue–Siegel to
prove that (1.1) has only finitely many solutions (x, y, z), but his method is ineffective.
Let N(a, b, c) denote the number of solutions (x, y, z) of (1.1). An effective upper bound
for N(a, b, c) was first given by Gel’fond [7], using his new method in transcendental
number theory. Subsequently, as a straightforward consequence of an upper bound for
the number of solutions of binary S-unit equations due to Beukers and Schlickewei [2],
the bound was improved to N(a, b, c) ≤ 236. More accurate upper bounds for N(a, b, c)
have been obtained under certain conditions:

(i) if 2 � c, then N(a, b, c) ≤ 2 (Scott and Styer [21]);
(ii) if max{a, b, c} > 5 × 1027, then N(a, b, c) ≤ 3 (Hu and Le [10]);
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(iii) if 2 | c and max{a, b, c} > 1062, then N(a, b, c) ≤ 2 (Hu and Le [11]);
(iv) if 2 | c and a < b < 1062, then N(a, b, c) ≤ 2, except for N(3, 5, 2) = 3 (Miyazaki

and Pink [19]).

Nevertheless, deeper problems about the number of solutions of (1.1) remain
unresolved. Let N′(a, b, c) denote the number of solutions (x, y, z) of (1.1) with
min{x, y, z} > 1. In this paper, we will discuss the following conjecture.

CONJECTURE 1.1 (Terai–Jeśmanowicz conjecture). For any triple (a, b, c) of positive
integers with min{a, b, c} > 1, we have N′(a, b, c) ≤ 1.

This conjecture contains the famous Jeśmanowicz conjecture concerning
Pythagorean triples (see [12]) and its original form was put forward by Terai [22]. It
is related to the generalised Fermat conjecture (see Problems B19 and D2 of [8]) and
seems very difficult. In 2015, Hu and Le [9] gave a general criterion to judge whether
Conjecture 1.1 is true, but this criterion is difficult to apply because it involves some
unsolved problems such as the existence of Wieferich primes (see Problem A3 of [8]).

We now discuss Conjecture 1.1 for 2 ∈ {a, b, c} using a different approach from the
one in [9]. First, by means of the results of [14, 20], we can directly prove the following
result.

THEOREM 1.2. If c = 2 or a, b and c are distinct primes, then Conjecture 1.1 is true.

For any odd positive integer r with r > 1, we define f (r) = (−1)(r−1)/2 and
2g(r) ‖ r − (−1)(r−1)/2. Obviously, f (r) ∈ {−1, 1} and g(r) is a positive integer with
g(r) ≥ 2. Using a combination of various methods including Baker’s method and
known results on exponential Diophantine equations, we prove the following result.

THEOREM 1.3. If a = 2 and either f (b) � f (c), or f (b) = f (c) and g(b) � g(c), then
Conjecture 1.1 is true.

2. Preliminaries

For any positive integer s, let ord2(s) denote the order of 2 in s, namely, 2ord2(s) ‖ s.

LEMMA 2.1. For any positive integers r and s such that r > 1, 2 � r and 2 | s, we have

ord2(rs − 1) = g(r) + ord2(s). (2.1)

PROOF. Since 2 | s and r = 2g(r)r1 + f (r), where r1 is an odd positive integer,

rs − 1 = (2g(r)r1 + f (r))s − 1

= (( f (r))s − 1) + 2g(r)r1s( f (r))s−1 +

s∑
i=2

(
s
i

)
(2g(r)r1)i( f (r))s−i

= 2g(r)r1s f (r) +
s∑

i=2

(
s
i

)
(2g(r)r1 f (r))i. (2.2)
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Further, since g(r) ≥ 2 and 2 � r1 f (r), we see that 2g(r)+ord2(s) ‖ 2g(r)r1s f (r) and
(
s
i

)
(2g(r)r1 f (r))i ≡ 2g(r)s

(
s − 1
i − 1

)
2g(r)(i−1)

i
(r1 f (r))i ≡ 0 (mod 2g(r)+ord2(s)+1), i ≥ 2.

Therefore, by (2.2), we obtain (2.1). �

For any real number α, let logα denote the natural logarithm of α.

LEMMA 2.2. Let α1, α2, β1, β2 be positive integers with min{α1,α2} > 1. Further, let
Λ = β1 logα1 − β2 logα2. If Λ � 0, then

log |Λ| > −25.2(logα1)(logα2)
(

max
{
10, 0.38 + log

(
β1

logα2
+
β2

logα1

)})2
.

PROOF. This is the special case of [13, Corollary 2] for m = 10. �

LEMMA 2.3. Let α1, α2 be odd integers with min{|α1|, |α2|} ≥ 3 and let β1, β2 be
positive integers. Further, let Λ′ = αβ1

1 − α
β2
2 . If Λ′ � 0 and α1 ≡ α2 ≡ 1 (mod 4), then

ord2(|Λ′|) < 19.55(log |α1|)(log |α2|)

×
(

max
{
12 log 2, 0. 4 + log(2 log 2) + log

(
β1

log |α2|
+
β2

log |α1|

)})2
.

PROOF. This is the special case of [4, Theorem 2] for p = 2, y1 = y2 = 1, α1 ≡ α2 ≡
1 (mod 4), g = 1 and E = 2. �

LEMMA 2.4 [6, 16]. The equation

X2 + 2m = Yn, X, Y , m, n ∈ N, gcd(X, Y) = 1, n > 2

has only the solutions (X, Y , m, n) = (5, 3, 1, 3), (7, 3, 5, 4) and (11, 5, 2, 3).

LEMMA 2.5 [1, Theorem 8.4]. The equation

X2 − 2m = Yn, X, Y , m, n ∈ N, gcd(X, Y) = 1, m > 1, n > 2

has only the solution (X, Y , m, n) = (71, 17, 7, 3).

LEMMA 2.6 [5]. If a = 2 and b and c are distinct odd primes with max{b, c} < 100,
then N′(a, b, c) ≤ 1.

LEMMA 2.7 [21]. If 2 � c, then N(a, b, c) ≤ 2.

LEMMA 2.8 [20, Theorem 6]. N′(a, b, 2) ≤ 1.

According to Theorems 1, 2 and 3 of [14] and the proof of them, we can obtain the
following lemma.
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LEMMA 2.9. Let p and q be fixed odd primes with p � q.

(i) The equation

2x + py = qz, x, y, z ∈ N (2.3)

has at most one solution (x, y, z) with 2 | y and this solution has z = 1, except for
(p, q, x, y, z) = (3, 5, 4, 2, 2), (5, 3, 1, 2, 3), (7, 3, 5, 2, 4) and (11, 5, 2, 2, 3).

(ii) Equation (2.3) has at most one solution (x, y, z) with 2 | x and 2 � y.
(iii) Equation (2.3) has at most one solution (x, y, z) with 2 � xy.

REMARK 2.10. The reference [14] is written in Chinese and the proof of the theorems
mentioned is rather complicated. In the present case, this lemma can be easily obtained
using the tools in [3, 15, 24].

3. Further lemmas on (1.1) for a = 2

Let a = 2 and let b and c be fixed coprime odd positive integers with min{b, c} ≥ 3.
In this section, we give some results on the solutions (x, y, z) of the equation

2x + by = cz, x, y, z ∈ N, min{x, y, z} > 1. (3.1)

LEMMA 3.1.

(i) If f (b) � f (c), then (3.1) has no solutions (x, y, z) with 2 � yz.
(ii) If f (b) = f (c) and g(b) � g(c), then all the solutions (x, y, z) of (3.1) with 2 � yz

satisfy x = min{g(b), g(c)}.

PROOF. Let (x, y, z) be a solution of (3.1) with 2 � yz.
(i) Note that f (b) � f (c) is equivalent to b � c (mod 4). Since 2 � yz, by (3.1), we

have 2x = cz − by ≡ 2 (mod 4). This means x = 1, which contradicts x > 1. Therefore,
we obtain the conclusion (i).

(ii) Since 2 � bc, we may write

b = 2g(b)b1 + f (b), c = 2g(c)c1 + f (c), b1, c1 ∈ N, 2 � b1c1. (3.2)

Assume that f (b) = f (c). Since 2 � yz and f (b) = f (c) ∈ {−1, 1}, we see from (3.1) and
(3.2) that

2x = (2g(c)c1 + f (c))z − (2g(b)b1 + f (b))y

=

max{y,z}∑
i=1

((z
i

)
(2g(c)c1)i( f (c))z−i −

(
y
i

)
(2g(b)b1)i( f (b))y−i

)

= (2g(c)c1z − 2g(b)b1y) +
max{y,z}∑

i=2

((z
i

)
(2g(c)c1)i −

(
y
i

)
(2g(b)b1)i

)
( f (c))i+1. (3.3)
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When g(b) � g(c), since 2 � b1c1yz, we have

2min{g(b),g(c)} ‖ 2g(c)c1z − 2g(b)b1y

and
max{y,z}∑

i=2

((z
i

)
(2g(c)c1)i −

(
y
i

)
(2g(b)b1)i

)
( f (c))i+1 ≡ 0 (mod 2min{g(b),g(c)}+1).

Since min{g(b), g(c)} ≥ 2, we see from (3.3) that x = min{g(b), g(c)} and the conclu-
sion (ii) is obtained. �

LEMMA 3.2. All solutions (x, y, z) of (3.1) with max{b, c} > 100 satisfy

x < 16460(log b)(log c), y < 14261 log c, z < 14261 log b if 2x < c0.8z, (3.4)

and

x < 1784(log b)(log c), y < 1236 log c, z < 1236 log b if 2x > c0.8z. (3.5)

PROOF. We first consider the case 2x < c0.8z. By (3.1) with max{b, c} > 100, we have
by > 2x and

z log c = log(by + 2x) = y log b + log
(
1 +

2x

by

)

< y log b +
2x

by
= y log b +

2x+1

2by
< y log b +

2c0.8z

cz = y log b +
2

cz/5 . (3.6)

Let (α1,α2, β1, β2) = (c, b, z, y) and Λ = z log c − y log b. By (3.6), 0 < Λ < 2/cz/5 and

log 2 − log |Λ| > z
5

log c. (3.7)

Since min{b, c} ≥ 3, using Lemma 2.2, we have

log |Λ| > −25.2(log c)(log b)
(

max
{
10, 0.38 + log

( z
log b

+
y

log c

)})2
. (3.8)

When 10 ≥ 0.38 + log(z/log b + y/log c), by (3.7) and (3.8), we have

log 2 + 2520(log c)(log b) >
z
5

log c,

which gives

z < 12601 log b. (3.9)

When 10 < 0.38 + log(z/log b + y/log c), by (3.6), (3.7) and (3.8), we have

log 2 + 25.2(log c)(log b)
(
0.38 + log

( 2z
log b

))2

> log 2 + 25.2(log c)(log b)
(
0.38 + log

( z
log b

+
y

log c

))2
>

z
5

log c,
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which gives

5 log 2
(log b)(log c)

+ 126
(
0.38 + log 2 + log

( z
log b

))2
>

z
log b

. (3.10)

Since (log b)(log c) > (log 3)(log 100), we can calculate from (3.10) that z satisfies

z < 14261 log b. (3.11)

Therefore, since y log b < z log c and x log 2 < (4z log c)/5, by (3.9) and (3.11), we
obtain (3.4).

Next, we consider the case 2x > c0.8z. Let (α1,α2, β1, β2) = (c f (c), b f (b), z, y) and
Λ′ = (c f (c))z − (b f (b))y. Since x ≥ 2, by (3.1) and (3.2), we have |Λ′| = 2x, that
is, ord2(|Λ′|) = x. Since min{|c f (c)|, |b( f (b)|} = min{b, c} ≥ 3 and c f (c) ≡ b f (b) ≡
1 (mod 4), by Lemma 2.3,

x < 19.55(log c)(log b)
(

max
{
12 log 2, 0.4 + log(2 log 2) + log

( z
log b

+
y

log c

)})2
.

(3.12)

However, since 2x > c0.8z,

x >
0.8z log c

log 2
. (3.13)

The combination of (3.12) and (3.13) yields

z < 16.94(log b)
(

max
{
12 log 2, 0.4 + log(2 log 2) + log

( z
log b

+
y

log c

)})2
. (3.14)

When 12 log 2 ≥ 0.4 + log(2 log 2) + log(z/log b + y/log c), by (3.14), we get z <
1172 log b. When 12 log 2 < 0.4 + log(2 log 2) + log(z/log b + y/log c), by (3.6) and
(3.14), we have

z
log b

< 16.94
(
0.4 + log(2 log 2) + log

( z
log b

+
y

log c

))2

< 16.94
(
0.4 + log(2 log 2) + log

( 2z
log b

))2
,

whence

z < 1236 log b. (3.15)

Hence, if 2x > c0.8z, then all the solutions (x, y, z) of (3.1) satisfy (3.15). Therefore,
since y log b < z log c and x log 2 < z log c, by (3.15), we obtain (3.5). �

LEMMA 3.3. Assume that x = min{g(b), g(c)} ≤ 23. Then, all solutions (x, y, z) of (3.1)
satisfy

y < 2530 log c, z < 2530 log b.
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PROOF. The proof proceeds along the same lines as that of the first half of Lemma 3.2.
Since 2x ≤ 2g(b) ≤ b + 1 < by, we see from (3.1) that

0 < Λ := z log c − y log b = log
(
1 +

2x

by

)
<

2x

by
<

2x+1

cz , (3.16)

which, together with the assumption x ≤ 23, implies that

24 log 2 − log |Λ| > z log c. (3.17)

We know by Lemma 2.2 that (3.8) holds.
When 10 ≥ 0.38 + log(z/log b + y/log c), by (3.8) and (3.17),

24 log 2 + 2520(log c)(log b) > z log c,

whence

z < 2530 log b. (3.18)

When 10 < 0.38 + log(z/log b + y/log c), by (3.8) and (3.17),

24 log 2 + 25.2(log c)(log b)
(
0.38 + log

( 2z
log b

))2
> z log c,

which together with (log b)(log c) ≥ (log 3)(log 5) yields

z < 1879 log b. (3.19)

The inequalities in the lemma now follow from (3.18), (3.19) and y log b < z log c. �

LEMMA 3.4. If (x, y, z) is a solution of (3.1) with 2 � yz, then gcd(y, z) = 1.

PROOF. Let d = gcd(y, z). Then we have

y = dY , z = dZ, Y , Z ∈ N. (3.20)

By (3.1) and (3.20),

2x = cz − by = (cZ)d − (bY )d = (cZ − bY )(cZ(d−1) + · · · + bY(d−1)). (3.21)

Since 2 � yz, we have 2 � d. Since 2 � bc, if d > 1, then cZ(d−1) + · · · + bY(d−1) is an odd
positive integer greater than 1 contradicting (3.21). So we must have d = 1. �

By Lemmas 2.4 and 2.5, we can directly obtain the next two lemmas.

LEMMA 3.5. Equation (3.1) has only the solution (b, c, x, y, z) = (11, 5, 2, 2, 3)
satisfying 2 | y and 2 � z.

LEMMA 3.6. Equation (3.1) has only the solution (b, c, x, y, z) = (17, 71, 7, 3, 2)
satisfying 2 � y and 2 | z.

LEMMA 3.7. Equation (3.1) has only the solutions

(b, c, x, y, z) = (7, 3, 5, 2, 4) (3.22)
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and

(b, c, x, y, z) = (2t − 1, 2t + 1, t + 2, 2, 2), t ∈ N, t ≥ 2 (3.23)

satisfying 2 | y and 2 | z.

PROOF. Let (x, y, z) be a solution of (3.1) with 2 | y and 2 | z. Then, 2x = cz − by =

(cz/2 + by/2)(cz/2 − by/2). Further, since gcd(cz/2 + by/2, cz/2 − by/2) = 2,

cz/2 + by/2 = 2x−1, cz/2 − by/2 = 2,

which gives

cz/2 = 2x−2 + 1, by/2 = 2x−2 − 1. (3.24)

Since b > 1, we see from the second equality of (3.24) that y/2 is odd. If y/2 > 1,
then 2x−2 = by/2 + 1 = (b + 1)(by/2−1 − by/2−2 + · · · − b + 1), where by/2−1 − by/2−2 +

· · · − b + 1 is an odd positive integer greater than 1, a contradiction. So we have
y
2
= 1, b = 2x−2 − 1, x ≥ 4. (3.25)

Similarly, if z/2 is odd, then from the first equality of (3.24),
z
2
= 1, c = 2x−2 + 1. (3.26)

Hence, by (3.25) and (3.26), we obtain (3.23).
If z/2 is even, then 2x−2 = cz/2 − 1 = (cz/4 + 1)(cz/4 − 1), whence

cz/4 + 1 = 2x−3, cz/4 − 1 = 2. (3.27)

Therefore, by (3.25) and (3.27), we obtain (3.22). The lemma is proved. �

Here and below, we assume that (x1, y1, z1) and (x2, y2, z2) are two distinct solutions
of (3.1). We can further assume without loss of generality that x1 ≤ x2.

LEMMA 3.8. We have 2 � y1y2z1z2.

PROOF. By Lemmas 3.5, 3.6 and 3.7, if 2 | y1y2z1z2, then

(b, c) ∈ {(11, 5), (17, 71), (7, 3), (2t − 1, 2t + 1)}, t ∈ N, t ≥ 2. (3.28)

However, by Lemma 2.6, we can eliminate the cases (b, c) = (11, 5), (17, 71) and (7, 3).
Alternatively, by Lemma 2.7, if (a, b, c) = (2, 2t − 1, 2t + 1), then (1.1) has only two
solutions (x, y, z) = (1, 1, 1) and (t + 2, 2, 2). Therefore, we can eliminate the cases
(b, c) = (2t − 1, 2t + 1)(t = 2, 3, . . .) in (3.28). Thus, the lemma is proved. �

LEMMA 3.9. We have y1z2 � y2z1.

PROOF. By Lemmas 3.4 and 3.8, gcd(y1, z1) = gcd(y2, z2) = 1. Hence, if y1z2 = y2z1,
then y1 | y2 and y2 | y1. This implies that y1 = y2, z1 = z2 and (x1, y1, z1) = (x2, y2, z2), a
contradiction. The lemma is proved. �
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LEMMA 3.10. If max{b, c} > 8 × 106, then 2x1 < c0.8z1 .

PROOF. By (3.1), by1 ≡ cz1 (mod 2x1 ) and by2 ≡ cz2 (mod 2x2 ). Since x1 ≤ x2, we
get by1y2 ≡ cz1y2 ≡ cz2y1 (mod 2x1 ) and cz1z2 ≡ by1z2 ≡ by2z1 (mod 2x1 ). Consequently,
b|y1z2−y2z1 | ≡ c|y1z2−y2z1 | ≡ 1 (mod 2x1 ). Let m = max{b, c}. We have

m|y1z2−y2z1 | ≡ 1 (mod 2x1 ). (3.29)

By Lemmas 3.8 and 3.9, |y1z2 − y2z1| is an even positive integer. Since 2 � m, by
Lemma 2.1,

2g(m)+ord2 |y1z2−y2z1 | ‖ m|y1z2−y2z1 | − 1. (3.30)

Hence, by (3.29) and (3.30),

2g(m)+ord2 |y1z2−y2z1 | ≥ 2x1 . (3.31)

Further, since 2g(m) ≤ m + 1 and 2ord2 |y1z2−y2z1 | ≤ |y1z2 − y2z1|, by (3.31),

(m + 1)|y1z2 − y2z1| ≥ 2x1 . (3.32)

Furthermore, by Lemma 3.2, if 2x1 > c0.8z1 , then

|y1z2 − y2z1| < max{y1z2, y2z1} < 14261 × 1236 (log b)(log c) < (4199 log m)2. (3.33)

Hence, by (3.32) and (3.33),

(4199 log m)2(m + 1) > 2x1 . (3.34)

Recall that cz1 > by1 , 2 � y1z1 and min{y1, z1} ≥ 3. We have cz1 ≥ m3. Therefore, if 2x1 >
c0.8z1 , then from (3.34), we get

(4199 log m)2(m + 1) > m2.4,

whence m < 8 × 106. Thus, if m > 8 × 106, then 2x1 < c0.8z1 . �

4. Proof of Theorem 1.2

Obviously, by Lemma 2.8, the theorem holds for c = 2. Moreover, in case a, b and
c are distinct primes, we only have to consider (a, b, c) = (2, p, q), where p and q are
odd primes with p � q. Then, (1.1) can be rewritten as (2.3). Further, by Lemma 2.6,
the theorem holds for (p, q) = (3, 5), (5, 3), (7, 3) and (11, 5).

We now assume that N′(2, p, q) > 1. It follows that (2.3) has two solutions
(x1, y1, z1) and (x2, y2, z2) with min{xj, yj, zj} > 1 for j = 1, 2. Since we have excluded the
cases (p, q) = (3, 5), (5, 3), (7, 3) and (11, 5), by Lemma 2.9, we can assume without
loss of generality that 2 | x1, 2 � x2 and 2 � y1y2. Then

2x1 + py1 = qz1 , 2x2 + py2 = qz2 . (4.1)
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If p � 3, since 2 � y1y2 and py1 ≡ py2 ≡ p (mod 3), then from (4.1),

qz1 ≡ 1 + p (mod 3), qz2 ≡ 2 + p (mod 3). (4.2)

However, since p � 3, 1 + p � 2 + p (mod 3) and 3 | (1 + p)(2 + p), (4.2) is false.
If p = 3, by (4.1), then we have qz1 ≡ 1 (mod 3) and qz2 ≡ 2 (mod 3), whence

q ≡ 2 (mod 3), 2 | z1 and 2 � z2. Hence, by the first equality of (4.1),

qz1/2 + 2x1/2 = 3y1 , qz1/2 − 2x1/2 = 1. (4.3)

Eliminating qz1/2 from (4.3), we have

2x1/2+1 = 3y1 − 1. (4.4)

However, since x1/2 + 1 ≥ 2 and 2 � y1, we get from (4.4) that 0 ≡ 2x1/2+1 ≡ 3y1 − 1 ≡
3 − 1 ≡ 2 (mod 4), a contradiction. Thus, the theorem is proved.

5. Proof of Theorem 1.3

To show Theorem 1.3, we need the following lemma.

LEMMA 5.1. If a = 2, f (b) = f (c), g(b) � g(c) and max{b, c} > 8.4 × 106, then
Conjecture 1.1 is true.

PROOF. Assume that a = 2, f (b) = f (c), g(b) � g(c), max{b, c} > 8.4 × 106 and
N′(a, b, c) > 1. Then, by the conclusions of Lemma 3.8 and of Lemma 3.1(ii), (3.1)
has two distinct solutions (x1, y1, z1) and (x2, y2, z2) with

x1 = x2. (5.1)

Since (x1, y1, z1) � (x2, y2, z2), by (5.1), we may assume without loss of generality that

y1 < y2, z1 < z2. (5.2)

Let

Λj = zj log c − yj log b, j = 1, 2. (5.3)

We see from (3.6) and (5.3) that

0 < Λj = log
(
1 +

2xj

byj

)
, j = 1, 2. (5.4)

Further, by (5.1), (5.2) and (5.4),

0 < Λ2 < Λ1 = log
(
1 +

2x1

by1

)
. (5.5)

Furthermore, by Lemma 3.10, we have 2x1 < c0.8z1 . Hence, by (3.6) and (5.5),

0 < Λ2 < Λ1 <
2

cz1/5
. (5.6)
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However, by Lemmas 3.8 and 3.9, |y1z2 − y2z1| is an even positive integer. So,

|y1z2 − y2z1| ≥ 2. (5.7)

By (5.3),

|y1z2 − y2z1| =
1

log c
|y1(z2 log c) − y2(z1 log c)|

=
1

log c
|y1(y2 log b + Λ2) − y2(y1 log b + Λ1)|

=
1

log c
|y1Λ2 − y2Λ1|. (5.8)

Since y1Λ2 > 0 and y2Λ1 > 0 by (5.4), we see from (5.8) that

|y1z2 − y2z1| < max
{y1Λ2

log c
,

y2Λ1

log c

}
. (5.9)

Further, by (5.2) and Lemma 3.2,
y1

log c
<

y2

log c
< 14261. (5.10)

Hence, by (5.6), (5.7), (5.9) and (5.10),

2 ≤ |y1z2 − y2z1| < max{14261Λ2, 14261Λ1} = 14261Λ1 <
2 × 14261

cz1/5
,

whence we obtain

cz1/5 < 14261. (5.11)

However, since max{b, c} > 8.4 × 106 and cz1 ≥ (max{b, c})3, (5.11) is false. Thus, we
have N′(a, b, c) ≤ 1 if a = 2, f (b) = f (c), g(b) � g(c) and max{b, c} > 8.4 × 106. �

We are now ready to prove Theorem 1.3.

PROOF OF THEOREM 1.3. Obviously, by the conclusion of Lemma 3.1(i),
Conjecture 1.1 is true if a = 2 and f (b) � f (c). We now assume that a = 2, f (b) = f (c),
g(b) � g(c) and N′(a, b, c) > 1. Moreover, by Lemma 5.1, we may assume that

max{b, c} < 8.4 × 106. (5.12)

Then, by the conclusion of Lemma 3.1(ii), (3.1) has two distinct solutions (x1, y1, z1)
and (x2, y2, z2) with

x1 = x2 = min{g(b), g(c)}, (5.13)

and we may assume that y1 < y2 and z1 < z2. Further, by (5.12), we have 2g(b) ≤ b + 1 ≤
8.4 × 106, which together with (5.13) implies that

x1 = x2 = min{g(b), g(c)} ≤ 23. (5.14)
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It follows from Lemma 3.3 that
y1

log c
<

y2

log c
< 2530,

z1

log b
<

z2

log b
< 2530. (5.15)

Furthermore, by (3.16) and (5.14),

0 < Λ1 := z1 log c − y1 log b <
2x1+1

cz1
≤ 224

cz1
. (5.16)

Thus, by the same argument as the proof of Lemma 5.1, we see from (5.15) and (5.16)
that

2 ≤ |y1z2 − y2z1| < 2530Λ1 <
224 × 2530

cz1
,

whence we obtain

by1 < cz1 < 223 × 2530 < 2.123 × 1010.

Consequently, it only remains to show that (3.1) has no solutions if

3 ≤ b ≤ 2767, 3 ≤ c ≤ 2767, 2 ≤ x1 ≤ 23, 3 ≤ y1 ≤ 21, 3 ≤ z1 ≤ 21

with 2 � bcy1z1 (by Lemma 3.8). We checked that the above claim is true by a simple
program in PARI/GP [23] with precision 100. Indeed, the result showed that for any c,
x1, y1, z1 in the above ranges, the fractional part of (cz1 − 2x1 )1/y1 is greater than 10−6.
The computation time was within 1 minute. Thus, the theorem is proved. �
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