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DISTRIBUTION THEORY FOR DEPENDENT RENEWAL–REWARD
PROCESSES AND THEIR FIRST-PASSAGE TIMES USING SADDLEPOINT
AND RESIDUE EXPANSIONS
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Abstract

The distribution theory for discrete-time renewal–reward processes with dependent
rewards is developed through the derivation of double transforms. By dependent, we
mean the more realistic setting in which the reward for an interarrival period is depen-
dent on the duration of the associated interarrival time. The double transforms are the
generating functions in time of the time-dependent reward probability-generating func-
tions. Residue and saddlepoint approximations are used to invert such double transforms
so that the reward distribution at arbitrary time n can be accurately approximated. In
addition, double transforms are developed for the first-passage time distribution that the
cumulative reward exceeds a fixed threshold amount. These distributions are accurately
approximated by inverting the double transforms using residue and saddlepoint approxi-
mation methods. The residue methods also provide asymptotic expansions for moments
and allow for the proof of central limit theorems related to these first passage times and
reward amounts.
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1. Introduction

Renewal–reward or cumulative processes are processes which accumulate rewards based
upon an underlying renewal process. At the renewal epochs, random rewards are realised and
the process which accumulates these rewards as they occur in time is a renewal–reward pro-
cess. Most often in applications, these rewards depend on the duration of the interarrival time
leading up to the renewal epoch and we refer to such processes as dependent renewal–reward
processes. This paper develops the distribution theory for such processes in discrete time using
double transform theory, i.e. the generating function (GF) in time n ∈N= {0, 1, . . .} of the
time-indexed probability-generating function (PGF) or moment-generating function (MGF)
for the cumulative reward at time n. A rich theory for such dependent reward processes results.
The current literature, e.g. [20], [12, Section 8.10], [16, Chapter 6], [19], and [10, Section 3.4],
assumes the reward R during an interarrival is independent of the interarrival duration F, which
may be far from realistic. For example, if the renewal process epochs refer to the service times
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2 R. W. BUTLER

for a system, typically the cost of such service will depend on the duration of time since the
last service and will not be independent of this duration as assumed in the literature. A sec-
ond limitation of the existing literature is the lack of focus on higher-order distribution theory
which can be derived from using such double transforms. We provide such higher-order theory
using saddlepoint and residue approximations which lead to distributional results that are very
accurate and which cannot be matched by using lower-order central limit theorems.

The distributions for two important aspects of these processes are considered in detail.
First, we consider the cumulative reward R(n) up to time n and develop its double PGF-GF
when rewards are discrete, and double MGF-GF when rewards are continuous. Based on
recent advances in the approximate inversion of such double transforms in [6], we develop
double-saddlepoint approximations and residue-saddlepoint approximations which provide
highly accurate approximation of the survival function of R(n).

The second aspect of such processes is in determining the distribution of the first-passage
time Px to cumulative reward x. We develop the double transform theory for the distribution
of Px for both discrete and continuous rewards. Discrete rewards entail determining the GF in
x ∈N of the PGF of Px, which we call a PGF-GF double transform. Continuous rewards entail
determining the Laplace transform (LT) in x > 0 of the PGF of Px, which we call an LT-GF
double transform. In both instances, the double transform inversion methods in [6] provide the
means for accurately determining the survival function for Px.

Such first-passage time distributions are especially important in the field of reliability where
shock model processes are renewal–reward processes. Shocks occur at the renewal epochs and
the reward for each shock is additional damage to the system or operating unit. If x is the failure
threshold for the safe use of a mechanical system, then Px represents the useful lifetime of the
system. See [20] for a detailed account of such processes that only considers settings in which
the reward R and shock interarrival time F are independent variables.

As an example, consider the lifetime of an airplane which is retired once a measure of the
cumulative stress to the wing structure exceeds amount x. The lifetime of the plane is Px for
a renewal–reward process in which renewals occur at the end of flights, R is the incremental
stress of a flight, and F is the duration of that flight. The correlation between R and F is
certainly natural as, apart from other factors such as turbulence, longer flights tend to contribute
greater incremental stress. The assumption of independence for R and F as used in the shock
model literature seems questionable in this and many other contexts.

Other important aspects of the distribution theory are derived from these double transforms.
Moment expansions follow for R(n) as n → ∞ and Px as x → ∞. When such moments are
used to standardise R(n) and Px, then central limit theorems (CLTs) are proved as a result.
These derivations first use the double transforms to determine residue approximations for
the cumulative generating functions of R(n) and Px. For the purpose of rigorous proof, these
approximations suffice in representing the true cumulative generating functionss, and their lim-
its as n, x → ∞ provide the means for deriving the CLTs. Multivariate rewards can be dealt
with in the same manner to determine multivariate CLTs. Throughout, we provide numerical
examples which demonstrate the remarkable accuracy which results from using residue and
saddlepoint approximations to invert double transforms.

In previous work when R and F are independent, [4] applied saddlepoint approximations
to determine expansions for the first-passage distribution of Px. This approach considered the
renewal–reward passage time as a boundary-crossing time in a two-dimensional random walk.
Further work applying saddlepoint expansions to approximate boundary-crossing distributions
has been given in [3, 13, 14, 17].
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Distribution theory for dependent renewal-reward processes 3

2. Renewal rewards

Suppose a discrete-time renewal process has independent and identically distributed (i.i.d.)
interarrival times F1, F2, . . . with the common mass function {0 = f0, f1, f2, . . .} and PGF
F(z) =∑∞

n=1 fnzn with convergence radius r> 1. The distribution may be defective, in which
case F(1) < 1. Let F denote an arbitrary interarrival time with GF F . Assuming a renewal at
time n = 0, the cumulative number of renewals N(n) occurring during {1, . . . , n) is a renewal
process.

Suppose at the end of the ith renewal period of duration Fi, reward Ri is realised and Ri is
allowed to depend on Fi so that (R1, F1), (R2, F2), . . . form an i.i.d. sequence whose joint PGF
is

H(y, z) =
∞∑

m=0

∞∑
n=1

P{R = m, F = n}ymzn, (y, z) ∈N .

Assume N is the maximal convergence region and includes (1, 1) in its interior. We use the
notation y � m and z � n to show the association that roman variables in the transform
domain have with their original function arguments. It is also standard notation to write fn =
[zn]F(z) and P{R = m, F = n} = [ymzn]H(y, z) to indicate the operation of specifying the zn-
coefficient and ymzn-coefficient for the respective GFs. Define

FS(z) = 1 −F(z)

1 − z
=

∞∑
n=0

P{F > n}zn,

so that P{F > n} = [zn]FS(z).
The renewal–reward process is R(n) = 1{F1≤n}

∑N(n)
i=1 Ri, and R(n) is the cumulative reward

after time n. Denote the marginal PGF of R(n) as Rn(y) =E{yR(n)} and define

R(y, z) =
∞∑

n=0

Rn(y)zn (1)

as the double GF, or equivalently the GF of the bivariate measure μ(m, n) = P{R(n) = m},
(m, n) ∈N2 = {0, 1, . . .}2. In this bivariate measure, variable n has counting measure on N as
its marginal measure.

Theorem 1. (PGF for R(n) and GF for E{R(n)}.) Assume the conditions above, and that H(y, z)
is convergent in a neighbourhood of (1, 1). Then

R(y, z) =
∞∑

n=0

Rn(y)zn = FS(z)

1 −H(y, z)
, (2)

Rn(y) = [zn]R(y, z),

P{R(n) = m} = [ymzn]R(y, z),

E{R(n)} = [zn]
H′

y(1, z)

FS(z)(1 − z)2
= [zn]

H′
y(1, z)

{1 −F(z)}(1 − z)
, (3)

where H′
y = ∂H/∂y.
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In the special case in which H(y, z) = yF(z), then R(n) = N(n) with probability 1 and the
reward process is the renewal counting process. In this case, expression (2) agrees with the
double GF for N(n) given in [6, Section 2.1] and previously derived in [8, Section 7.2].

Proof. We first prove (2). If N(n) = 0, then P{N(n) = 0} = P{F1 > n} = [zn]FS(z). Denote
the conditional PGF of F1 as E{zF1 | R1 = r1} =F(z | r1). Working conditionally on R1 = r1
with n � z, then the conditional GF in n � z with one reward is

∞∑
n=0

P{N(n) = 1 | R1 = r1}zn =
∞∑

n=0

n∑
m=0

P{F1 = m, F2 > n − m | R1 = r1}zn

=
∞∑

n=0

n∑
m=0

P{F2 > n − m}zn−mP{F1 = m | R1 = r1}zm

=FS(z)F(z | r1).

In the more general argument for the conditional GF given k rewards, we condition on {Ri =
ri : i = 1, . . . , k}. By induction, we are led to the general result

∞∑
n=0

P{N(n) = k | Ri = ri : i = 1, . . . , k}zn =FS(z)
k∏

i=1

F(z | ri), k ≥ 1.

For fixed k, we take the expectation over R1, . . . , Rk to get
∞∑

n=0

E
{
yR(n)1{N(n)=k}

}
zn =ER1,...,Rk

[
yR1+···+Rk

∞∑
n=0

P{N(n) = k | R1, . . . , Rk}zn

]

=ER1,...,Rk

[
yR1+···+RkFS(z)

k∏
i=1

F(z | Ri)

]

=FS(z)
k∏

i=1

E
{F(z | Ri)y

Ri
}=FS(z)H(y, z)k.

Thus,
∞∑

n=0

znE{yR(n)} =
∞∑

k=0

FS(z)H(y, z)k = FS(z)

1 −H(y, z)
.

Also,

E{R(n)} = [zn]
∂

∂y
Rn(y)

∣∣∣∣
y=1

= [zn]
∂

∂y

FS(z)

1 −H(y, z)

∣∣∣∣
y=1

= [zn]
FS(z)H′

y(1, z)

{1 −F(z)}2
= [zn]

H′
y(1, z)

FS(z)(1 − z)2
. �

Example 1. (Bernoulli(r) process.) Suppose the interarrival time is deterministic and has value
1 with probability 1 so that F(z) = z. Let the rewards form a Bernoulli(p) process with q =
1 − p. For this setting, we know that R(n) ∼ Binomial(n, p), which is a result confirmed from
Theorem 1. Here, FS(z) = 1 and Hn(y) = z(py + q), so that

Rn(y) = [zn]
1

1 − z(py + q)
= (py + q)n.
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TABLE 1. Cross-classification probabilities of test results (rows) with true states (columns) for an RNA
test of a swab sample.

True state
− +

Testing − p00 = 0.882 p01 = 0.02 p0· = 0.902

Outcome + p10 = 0.018 p11 = 0.08 p1· = 0.098

p·0 = 0.9 p·1 = 0.1 p·· = 1.0

Example 2. (Viral RNA tests.) Assume laboratory RNA tests for a virus have a false negative
rate of 20% and a false positive rate of 2%. Independent swab samples are drawn from a
population with a 10% infection rate. The four possible outcomes for the classification of each
swab sample are displayed in Table 1 along with the classification probabilities.

Suppose that lab results are reported in batches following the occurrence of a positive
test result. The number of tests before such a positive test is the interarrival time for a pos-
itive test and has distribution F ∼ Geometric(p1·) with P{F = n} = p1·pn−1

0· for n ≥ 1. Let the
‘reward’ R from an interarrival be the count for the number of true positive cases that can be
found within the interarriving F tests. The joint PGF of (R, F) may be computed by noting
that R | F = n ∼ Binomial(n − 1, p01/p0·) + Bernoulli(p11/p1·), where these two quantities are
independent. The binomial count is for the first n − 1 negative tests and the Bernoulli count is
for the last positive test. This gives

H(y,z) =EF{E�yR | F)zF} =EF
[{

B0(y)

p0·

}F−1{B1(y)

p1·

}
zF
]
,

with B0(y) = p01y + p00 and B1(y) = p11y + p10, so that

H(y,z) = zB1(y)

1 − zB0(y)
. (4)

Quite a few other bivariate mass functions for (R, F) have tractable joint PGFs which
would serve in renewal–reward modelling. These include the bivariate Bernoulli, the bivari-
ate Poisson, and the various sorts of bivariate geometric models arising from shock models;
see [9, 11]. The next example is a variation on a bivariate geometric model.

Example 3. (Bivariate geometric rewards.) Consider the failure time of a parallel connection
of two identical electrical components. At all times there is a single backup component avail-
able to protect against a single component failure but not against a double failure. At each tick
of the clock the status of the circuit follows a multivariate Bernoulli distribution: both compo-
nents fail simultaneously with probability p2, one of the two components fails with probability
p1, and neither fails with probability p0 = 1 − p1 − p2. The time to failure F of the circuit is the
interarrival time of a renewal event. Let the reward R be the count of the number of components
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which fail during time F. The marginal distribution of F is Geometric(p2) and the joint mass
function of (R, F) is the bivariate geometric mass function

P{R = m, F = n} =
(

n − 1

m − 2

)
pm−2

1 pn−m+1
0 p2, 2 ≤ m ≤ n + 1, n ≥ 1.

For this probability, two simultaneous failures must occur at time n and the remaining m − 2
single failures are spread over time points {1, . . . , n − 1}. The joint PGF is H(y, z) =E{yRzF},
where

H(y, z) =
∞∑

n=1

n+1∑
m=2

ymzn
(

n − 1

m − 2

)
pm−2

1 pn−m+1
0 p2

= p2y2
∞∑

n=1

znpn−1
0

n−1∑
k=0

(
n − 1

k

)(
p1y

p0

)k

= p2y2
∞∑

n=1

zn(p0 + p1y)n−1 = p2y2z

1 − (p0 + p1y)z
.

Example 4. (Reward as an interarrival random walk.) Suppose that during an interarrival a
reward with PGF G0(y) is accumulated with each tick of the clock. Then R given F = n has
PGF G0(y)n so the bivariate PGF for reward and interarrival time is H(y, z) =F{zG0(y)}. This
is defined over {(y, z) ∈ [0, ∞)2 : zG0(y) < r, y < r0}, where r0 is the convergence radius of
G0.

Of the previous three examples, only Example 1 falls within this general class. For that
example, F(z) = z and G0(y) = py + q so that H(y, z) = z(py + q).

3. Double GF inversion

The expression for the double GF in (2) of Theorem 1 takes on added importance once there
are methods for inverting it to determine the survival function for R(n). Two methods specific
to this task which use saddlepoint and residue expansions have recently been developed in [6].
We summarise their usage below. A sufficient condition for using both methods is that the
convergence region for H(y, z) is an open neighbourhood of (0, 0) that includes (1, 1).

3.1. Skovgaard double-saddlepoint approximations

The first method is simple and easy to describe as it uses the Skovgaard double-saddlepoint
approximation [18]. This method amounts to taking the double GF R(y, z) and treating it as
a bivariate PGF in variables R(T) and T , where R(T) given T = n has the distribution of R(n),
and T has an improper uniform distribution over N specified by counting measure. This is
exactly how R(y, z) is computed in (1) as the GF of {Rn(y)} in n � z, with variable n asso-
ciated with counting measure. This is not a proper mass function since R(1, 1) = ∞, but the
point made in [6, Section 2] is that this doesn’t matter: the Skovgaard approximation remains
valid despite this. Thus we proceed by treating M(r, s) =R(er, es) as the joint MGF of the
random pair {R(T), T}, and approximate the survival function of R(n) as the Skovgaard double-
saddlepoint approximation for the conditional survival function P{R(T) ≥ m | T = n}. We treat
K(r, s) = ln R(er, es) as the joint cumulant-generating function (CGF) and from it determine
two continuity-corrected double-saddlepoint approximations PD1 or PD2 as described in the
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TABLE 2. Exact values (P) for P{R(40) ≥ m} are compared with two double-saddlepoint approxima-
tions (PD1 and PD2), two residue-saddlepoint approximations (PR1 and PR2) from Section 3.2, and a
continuity-corrected Normal(3.79, 3.69) approximation (Norm) from Section 4. The bold digit indicates
the last ‘accurate’ digit or the last digit in agreement with the exact result when both are rounded to the
same number of digits. In the notation used here, 0.0243 = 0.0043, etc. A Binomial(40, 0.1) upper bound

(Binomial) is shown.

m = 1 m = 2 m = 3 m = 4 m = 6 m = 8 m = 10

P 0.9715 0.8902 0.73629 0.53502 0.18469 0.03658 0.024340
PD1 0.9747 0.8935 0.73909 0.53702 0.18532 0.03670 0.024354
PD2 0.9748 0.8933 0.73889 0.53690 0.18528 0.03668 0.024351
PR1 0.9711 0.8900 0.73627 0.53516 0.18483 0.03662 0.024347
PR2 0.9722 0.8914 0.73762 0.53614 0.18510 0.03666 0.024348
Norm 0.9567 0.8835 0.74917 0.56003 0.18657 0.02666 0.021470
Binomial 0.9852 0.9195 0.77719 0.57686 0.20627 0.04190 0.025063

Supplementary Material and further discussed in [1, Section 4.2]. Approximation PD1 uses the
solution (r̂, ŝ) to the saddlepoint equations

m =K′
r(r̂, ŝ), n =K′

s(r̂, ŝ), (5)

where K′
r = ∂K(r, s)/∂r. Approximation PD2 uses the saddlepoint solution (r̃, s̃) to m − 1

2 =
K′

r(r̃, s̃) and n =K′
s(r̃, s̃), with m offset to the value m − 1

2 .

Example 5. (Viral RNA tests.) This example provides the means for judging the accuracy of the
double-saddlepoint approximations since it is possible to compute the exact survival function
of R(40) up to m = 10. The exact value of Rn(y) is

Rn(y) = [zn]
FS(z)

1 −H(y,z)

= v[zn]
(1 − p0·z)−1

1 − zB1(y)/{1 − zB0(y)} = B1(y)

B(y) − p0·
B(y)n + B0(y) − p0·

B(y) − p0·
pn

0·, (6)

where B(y) = B0(y) + B1(y) = p·1y + p·0. Expression (6) follows from a partial fraction expan-
sion with exact inversion in z� n. The true survival function can now be computed by
expanding {1 − yR40(y)}/(1 − y) in a power series in y using Maple, since

P{R(40) ≥ m} = [ym]
1 − yR40(y)

1 − y
.

Such expansions in Maple failed for n > 40 and this motivates our choice of n = 40. The exact
values are shown in Table 2 as P, where they are compared with the two double-saddlepoint
approximations PD1 and PD2.

For this example, we might have mistakenly thought that R(n) has a Binomial(n, p·1) distri-
bution so that Rn(y) should be B(y)n rather than the more complicated expression Rn(y) in (6).
As such, then at time (test) n we should expect a Binomial(n, p·1) count of true positives. This
reasoning is incorrect, and this is related to how R(n) packages the true positives. After n tests,
there are N(n) packages each with a Geometric(p1·) number of tests so we are not counting
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FIGURE 1. Percentage relative errors respecting the tails for PD1 (crosses), PD2 (diamonds), PR1 (solid
red line), PR2 (dashed blue line), and a continuity-corrected Normal(3.79, 3.69) approximation (boxes).

Missing boxes for the normal approximation are out of the range −1%–11%.

rewards for exactly n tests. The counts from an unfulfilled renewal span at time n do not get
counted so that if C ∼ Binomial(n, p·1), then R(n) ≤ C with probability 1. Thus, the last table
entry in Table 1 provides an upper bound to the true probabilities which becomes a sharper
bound as n increases.

Figure 1 plots the percentage relative error for the approximations, given as

% rel. err = 100
PD1{R(40) ≥ m} − P(m)

min{P(m), 1 − P(m)} ,

where P(m) = P{R(40) ≥ m}. This percentage respects both the sign of the difference as well as
the tails by dividing by the smaller value of P(m) and 1 − P(m). Approximations PD1 (crosses)
and PD2 (diamonds) are shown along with the residue-saddlepoint approximations PR1 (solid
red line) and PR2 (dashed blue line) discussed in Section 3.2 and a continuity-corrected normal
approximation (boxes) developed in Section 4.

Figure 2 shows the boundary for the convergence domain of the double MGF R(er, es) as
a solid line. Plotted within its convergence domain below as circles are the saddlepoints (r̂, ŝ)
solving (5) for the PD1 approximation.

In general, the convergence domain of the double MGF R(er, es) is B ∩ C where B =
{(r, s) ∈R2 : H(er, es) < 1} and C = {(r, s) ∈R2 : s < ln r}. This leads to a piecewise conver-
gence boundary which combines the boundaries of the two regions B and C. Only the boundary
∂B is shown in Figure 2 since ∂C = {s = ln r} is a horizontal line which is out of the range of
the graph. The two boundaries meet at (r0, s0) = (−3.91, 0.103) = ∂B ∩ ∂C, so the boundary
is flat for r < −3.91, and for r ≥ −3.91 it is concave and determined by ∂B. The proof of the
next result is given in the Supplementary Material.

Corollary 1. (Convergence domain for MGF R(er, es).) Subject to the conditions of
Theorem 1, the convergence boundary for R(er, es) is flat for r ≤ r0. For r > r0, the bound-
ary is decreasing, concave, and passes through the origin as shown in Figure 2. The value r0
is the coordinate of the junction point (r0, s0) ∈ ∂B ∩ ∂C.
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FIGURE 2. Plot of the convergence boundary (solid line) for the double MGF FS(es)/{1 −H(er, es)}
in the viral RNA example. Circles within the convergence domain show saddlepoints for the PD1

approximation for m = 1 (upper left) up to m = 10 (lower right).

3.2. Residue-saddlepoint approximations

The second approach to the inversion of R(y, z) is to perform the inversion in two steps.
First, we approximately invert R(y, z) in z � n using a residue expansion as in Lemma 1 to
get an approximation R̂n(y) for Rn(y). Then, using R̂n(y) as a surrogate for the true PGF of
R(n), we apply a single-saddlepoint approximation to the approximate CGF ln R̂n(er) to deter-
mine what we call a residue-saddlepoint approximation. There are two such single-saddlepoint
approximations, which we denote as PR1 and PR2, that relate to the continuity correction
applied, as presented in the Supplementary Material.

For the first stage, the residue approximation R̂n(y) for Rn(y) extends the development in
[6, Section 3] by using residue expansions developed in [5, Corollary 1], which we summarise
as follows.

Lemma 1. Consider the generating function A(z) =∑∞
n=0 anzn with an ≥ 0 for all n. Assume

A(z) is analytic on {z ∈C : |z| ≤ r} apart from a simple pole at r ∈ (0, ∞). Then, for some
ε > 0,

an = − ξ−1

rn+1
+ o{(r+ ε)−n}, n → ∞, (7)

where ξ−1 = limz→r{(z − r)A(z)} is the residue of A at r.

The value of ε is limited by any singularity r2 ∈C∪ {∞} of A(z) which has the next largest
modulus, say |r2|. Then ε may be any value in (0, |r2| − r). If no other singularities exist
(including at ∞), then the approximation in (7) is exact. For a PGF, this means that A(z) =
(1 − 1/r)/(1 − z/r).

Suppose R(er, es) has a convergence region as described for Figure 2 and fix er = y > y0 =
er0 . If ẑ(y) denotes the smallest-modulus pole of R(y, z) in z for fixed y, then (y, ẑ(y)) lies on
the convergence boundary of R(y, z) and ẑ(y) is the smallest positive root of 1 −H(y, z) = 0
and a dominant pole for R(y, z). Thus, the range of allowable values of y for using Lemma 1
is y ∈ (y0, y1), where y0 = er0 and y1 is the largest value of y for which (y, ẑ(y)) remains on the
convergence boundary of R(y, z).
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10 R. W. BUTLER

Theorem 2. (R̂n(y)). Assume H(y, z) has a maximal convergence region which is an open
neighbourhood of (1, 1), and F(z) =H(1, z) is aperiodic with convergence region {z ∈
C : |z| < r} for r> 1. A residue approximation for Rn(y) is

R̂n(y) = 1

ẑ(y)n+1

FS{ẑ(y)}
H′

z{y, ẑ(y)} , y ∈ (y0, y1).

The order of the expansion as n → ∞ is o{(ẑ(y) + ε)−n} for any 0 < ε < min{r− ẑ(y), |ẑ2(y)| −
ẑ(y)}, where |ẑ2(y)| is the modulus of the second largest zero of 1 −H(y, z), if such a zero exists,
or ∞ otherwise.

Proof. While holding y ∈ (y0, y1) fixed, H(y, z) is monotone increasing from 0 to ∞ as z
increases from 0 until (y, z) approaches the convergence boundary of R(y, z). Thus, a smallest
positive real root ẑ(y) exists. To show that ẑ(y) is the dominant pole of R(y, z) as in Lemma 1,
we show that it is the unique zero of 1 −H(y, z) with smallest modulus. It suffices to show
that, for z ∈ (0, ẑ(y)],

|H(y, zeiθ )| <H(y, z), θ �= 0, (y, z) ∈N . (8)

Then |H(y, zeiθ )| <H(y, z) ≤H{y, ẑ(y)} = 1, with equality only occurring when z = ẑ(y) and
θ = 0. Inequality (8) is proved in the Supplementary Material. It is the strict inequality in (8)
that matters, as the non-strict inequality ( ≤ ) for (8) easily follows from the triangle inequality
(see the Supplementary Material).

From (8), we see that as z increases from 0 for fixed y, the value of |H(y, zeiθ )| increases
the fastest in the direction θ = 0. Hence, for y fixed, H(y, z) is analytic on {z ∈C : |z| ≤ ẑ(y)}
apart from the pole at ẑ(y), as required by Lemma 1. The pole is simple since H′

z{y, ẑ(y)} > 0.
The order of the expansion follows from the discussion of order for Lemma 1. �

The assumption that H(y, z) has an open convergence domain can be relaxed as long as ẑ(y)
is uniquely defined for each y and the value of y is appropriately restricted.

Example 6. (Viral RNA tests.) The value ẑ(y) which solves H(y, z) = 1 in z using (4) is ẑ(y) =
1/B(y), and

R̂n(y) = B(y)n B1(y)

B(y) − p0·
, y > y0 = 0.02,

with y1 = ∞. This replicates the dominant term in the partial fraction expansion (note that pn
0· is

small) in (6). We now use K̂n(r) = ln R̂n(er) as a surrogate for the true CGF Kn(r) = ln Rn(er)
for R(n). Table 2 displays the results of this strategy where PR1 and PR1 are continuity-corrected
single-saddlepoint approximations as presented in [3, Section 1.2.3]. To approximate P{R(n) ≥
m}, PR1 uses saddlepoint r̂ solving K̂′

n(r) = m and PR2 uses saddlepoint r̃ solving K̂′
n(r) =

m − 1
2 . Table 2, as well as the percentage relative error plots in Figure 1, show that PR1 (solid

red line) and PR2 (dashed blue line) achieve remarkable accuracy.
At y = y0, B(y0) − p0· = 0 and R̂n(y0) is undefined. For y ∈ (0, y0), R̂n(y) < 0 but in the

true PGF expansion in (6) with both terms, Rn(y) > 0. This limitation in the domain for R̂n(y)
had no practical relevance in this or the other examples.

3.3. Continuous rewards

For continuously valued rewards R ≥ 0, the distribution of R(n) is a mixture distribution
which puts a point mass at x = 0 with probability P{F > n} and has a continuous density over
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Distribution theory for dependent renewal-reward processes 11

(0, ∞) with probability P{F ≤ n}. In order to best use saddlepoint and residue approximations,
the point mass should be removed so we are dealing only with the continuous portion of the
distribution.

We assume that R and F have a mixed MGF-PGF Hc(r, z) =E{erRzF}, and the maximal
convergence region is an open neighbourhood of (r, z) = (0, 1). The portion of the double
transform of reward R(n) associated with the point mass is

∞∑
n=0

E
{
erR(n)1{R(n)=0}

}
zn =

∞∑
n=0

P{F > n}zn =FS(z).

Removing this from Rc(r, z) gives

Rc0(r, z) =
∞∑

n=0

E
{
erR(n)1{R(n)>0}

}
zn =Rc(r, z) −FS(z) = FS(z)Hc(r, z)

1 −Hc(r, z)
, (9)

and the conditional MGF of R(n) given R(n) > 0 is [zn]Rc0(r, z)/cn, with cn = P{F ≤ n}.
To approximate the marginal probability P{R(n) ≥ x} for x > 0, we may apply the con-

tinuous version of the Skovgaard double-saddlepoint approximation PC in (54) as outlined
in the Supplementary Material. As noted in [6, Section 6.1], we may take the joint CGF as
K(r, s) = ln{Rc0(r, es)} and the approximation PC is for P{R(n) ≥ x | R(n) > 0}. This needs to
be scaled by cn = P{F ≤ n} to give the marginal survival probability as

P{R(n) ≥ x} ≈ cnPC{R(T) ≥ x | T = n}, x > 0.

The joint CGF K(r, s) = ln{Rc0(r, es)} is convergent on a region, as seen in Figure 2.
For the residue-saddlepoint approximation, the first stage gives an approximate marginal

MGF for R(n). We apply Lemma 1 to (9) and take ẑc(r) as the smallest positive zero of 1 −
Hc(r, z) in z. Then, using Hc{r, ẑc(r)} = 1,

R̂cn(r) = 1

ẑc(r)n+1

FS{ẑc(r)}
H′

cz{r, ẑc(r)} , r ∈ (r0, r1). (10)

The range for r has r0 such that (r0, r) is the junction point in the boundary of convergence for
Rc(r, z), i.e. 1 −Hc(r0, r) = 0, where r is the convergence radius of FS. The upper range r1 is
the supremum of values r such that Hc(r, ẑc(r)) = 1 so that (r, ẑc(r)) remains on the convergence
boundary of Rc(r, z).

At the second stage, R̂cn(r) is used as a surrogate for the true MGF Rn(r) =E{erR(n)} in a
single-saddlepoint approximation of the Lugannani–Rice [15] type as given [1, Section 1.2.1].
No rescaling by cn is required here as with the double saddlepoint method.

Computations for continuous rewards can be found in Example 13, and in Example 15 of
the Supplementary Material.

4. Asymptotic expressions

Expansions for the mean and variance of R(n) as n → ∞ are now given. Their derivations
follow from straightforward but tedious computations from the appropriate GFs and are out-
lined in the Supplementary Material. The expansions hold when R(n) has either a discrete mass
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12 R. W. BUTLER

function or a continuous distribution. We let E{R, F} = (ρ, μ) and denote the variance of R as
V{R} and the covariance of R and F as C{F, R}.
Corollary 2. (Mean and variance expansions.) Under the conditions of Theorem 1, and with
rewards given at the end of interarrivals, then

E{R(n)} = (n + 1)
ρ

μ
+ 1

μ

{
−E{FR} + ρ

2μ
[E{F2} − μ]

}
+ o(1) (11)

as n → ∞. An expansion for the variance is V{R(n)} ∼ nσ 2
R.F, where

σ 2
R.F = 1

μ
E

{
R − ρ

μ
F

}2

= 1

μ

[
V{R} − 2

ρ

μ
C{F, R} + ρ2

μ2
V{F}

]
. (12)

If R = 1 with probability 1, then (11) is E{N(n)} = n/μ + o(1) and (12) reduces to give
V{N(n)} ∼ nV{F}/μ3 as n → ∞. These expressions agree with the renewal expansions in [7,
XIII.6].

Example 7. (Viral RNA tests.) The true mean and variance computed from Rn(y) in (6)
match up with the asymptotic expansions in (11) and (12) as E{R(40)} = 3.7992 ≈ 3.7959 and
V{R(40)} = 3.742 ≈ 3.690.

For the special case in which the sequences {Fn} and {Rn} are independent, then E{R(n)} =
ρE{N(n)} and V{R(n)} =V{R}E{N(n)} + ρ2V{N(n)}, and the expansions in Corollary 2
conform to these identities.

The same expansions apply when the rewards are continuously valued and H(r, z) =∑∞
n=0 E{erR(n)}zn. This follows by noting that

E{R(n)} = [zn]

{
∂

∂r

FS(z)

1 −H(r, z)

∣∣∣∣
r=0

}
= [zn]

H′
r(0, z)

FS(z)(1 − z)2
= [zn]

H′
r(0, z)

{1 −F(z)}(1 − z)
.

The GF of E{R(n)} here depends on both the moments of R and the GF argument z in the exact
same way as in (3) of Theorem 1. The same can be shown for the GF of E{R(n)2}. Hence,
the derivations of the moment expansions can be shown to lead to the same expressions as in
Corollary 2.

4.1. Uniform expansion and central limit theorem

The CGF for R(n) is Kn(r) = ln Rn(er), which is approximated by using K̂n(r) = ln R̂n(er).
The residue approximation is uniformly o{(1 + ε)−n} as n → ∞ over compact subsets of r, as
stated in Corollary 3. Building upon this, we show that the standardised value of R(n) using
the moments of Corollary 2 has a CLT. Since the distribution of R(n) tends to be quite skewed
even for moderately large n, these normal limits only achieve reasonable accuracy when n is
quite large.

Corollary 3. (Uniform asymptotic expansion.) For any compact interval D on which K̂n(r) is
well-defined, there exists an ε > 0 such that

max
r∈D

|Kn(r) − K̂n(r)| = o{(1 + ε)−n}, n → ∞. (13)

Proof. The result follows directly from the derivation of R̂n(y) as shown in the
Supplementary Material. �
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Distribution theory for dependent renewal-reward processes 13

A central limit is now derived for Zn = [R(n) −E{R(n)}]/√V{R(n)}, the standardised value
of R(n), with E{R(n)} and V{R(n)} as given in Corollary 2.

Corollary 4. (Central limit.) Subject to the conditions of Theorem 1, the standardised value of
R(n) converges weakly to a standard normal distribution as n → ∞.

Proof. The proof is given in the Supplementary Material. Based on the uniform expan-
sion in (13), the exact CGF Kn(r) can be replaced by K̂n(r), which in turn can be replaced
by the dominant term −n ln{ẑ(er)} as an approximation for the CGF of R(n) for r in a com-
pact neighbourhood of 0. When transformed to an approximate CGF for Zn, we show in the
Supplementary Material that the resulting approximate CGF converges to r2/2 in this com-
pact neighbourhood. From this we may conclude that the weak limit is a standard normal
distribution. �

5. Multivariate rewards

The approach taken for univariate rewards generalises to multivariate dependent rewards
as we now indicate in the bivariate case, with analogous results in higher dimensions. Denote
by Q(n) =∑N(n)

j=1 Qj a second reward process along with R(n) =∑N(n)
j=1 Rj and suppose that

(Q, R) has a bivariate PGF J (x, y) convergent in a neighbourhood of (1, 1). We suppose the
triple (Q, R, F) has joint PGF H(x, y, z) convergent in a neighbourhood of (1, 1, 1) with
J (x, y) =H(x, y, 1). The approach allows general dependence among all three variables. The
proof of the next result is the same as for Theorem 1.

Corollary 5. (Multivariate rewards.) Subject to the above conditions, the joint PGF for
{Q(n), R(n)} is

Jn(x, y) = [zn]
FS(z)

1 −H(x, y, z)
,

P{Q(n) = l, R(n) = m} = [xlymzn]
FS(z)

1 −H(x, y, z)
.

Assuming the convergence domain of H(x, y, z) is an open neighbourhood of (1, 1, 1), a
residue approximation for Jn(x, y) is

Ĵn(x, y) = 1

ẑ(x, y)n+1

FS{ẑ(x, y)}
H′

z{x, y, ẑ(x, y)} . (14)

Here, ẑ(x, y) is the smallest positive root of 1 −H(x, y, z) = 0. This approximation is for
values of (x, y) such that H{x, y, ẑ(x, y)} = 1 and ẑ(x, y) is in the convergence domain of FS.

From Corollary 5 we may determine moment expansions for each component using the
marginal expansions in Corollary 2. We write E{Q, R} = (ρQ, ρR), so

E{Q(n), R(n)} ∼ n(ρQ, ρR)/μ, V{R(n)} ∼ nσ 2
R.F, V{Q(n)} ∼ nσ 2

Q.F

for σ 2
R.F defined in (12). The same arguments used for deriving the expansion for V{R(n)} lead

to C{Q(n), R(n)} ∼ nσ 2
QR.F , where

σ 2
QR.F = 1

μ
E

{(
Q − ρQ

μ
F

)(
R − ρR

μ
F

)}
.
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14 R. W. BUTLER

Corollary 6. Subject to the above conditions,

1√
n

(
Q(n) − nρQ/μ

R(n) − nρR/μ

)
D−→ N2

{(
0

0

)
,

(
σ 2

Q.F σ 2
QR.F

σ 2
QR.F σ 2

R.F

)}

as n → ∞.

Proof. The proof is outlined in the Supplementary Material and follows the same outline as
the proof for Corollary 4. �

6. First-passage time to reward m ∈N

The first-passage time to reward m is Pm = inf{n ∈N : R(n) ≥ m}. Given that rewards are
issued at the end of interarrival times, the event {Pm = n} means that a renewal occurred at
time n and that R(n − 1) < m ≤ R(n). At epoch n, the reward count jumped from below m to
m or above. Equivalent events expressed in terms of random variable Pm and R(n) are {Pm >

n} = {R(n) < m}, and this leads to

P{Pm > n} = P{R(n) < m} = 1 − P{R(n) ≥ m}. (15)

Thus, the survival function of R(n) at m provides the survival function for Pm at n − 1. To
compute (15), we may invert the double GF R(y, z) and use both residue-saddlepoint methods
and double-saddlepoint approximations for R(n). However, this usage fixes the cutoff value
m and allows the value for n to vary so that multiple time-indexed distributions are involved
in making this computation. Residue-saddlepoint approximations from R(y, z) are especially
amenable to this computation and may be used along with a parametric plot to give a smooth
curve for the survival function of Pm, as discussed in Section 7.

Alternatively, the identity in (15) may be used to derive the double GF P(y, z) for the
sequence of PGFs for {Pm : m ≥ 1}. The same inversion strategies can now be used with
P(y, z). Both approaches are developed below.

6.1. The double GF of {Pm : m ≥ 0}
The PGF of Pm is Pm(z) =∑∞

n=1 P{Pm = n}zn for m ≥ 1. For m = 0, P0 = 0 with probabil-
ity 1. The double GF in variables (y, z) � (m, n) is

P(y, z) =
∞∑

m=0

Pm(z)ym, |y| < 1, |z| < 1.

Let E(y) =H(y, 1) be the reward PGF and write ES (y) = {1 − E(y)}/(1 − y).

Theorem 3. (GF for the first-passage reward mass function.) Suppose (R,F) has a joint PGF
H(y, z) which is convergent in a neighbourhood of (1, 1). Then

P(y, z) = 1

1 − y

[
1 − y{1 −F(z)}

1 −H(y, z)

]
, (16)

so that Pm(z) = [ym]P(y, z) and P{Pm = n} = [ymzn]P(y, z). Furthermore,

P{Pm ≥ n} = [ym−1zn−1]

{ FS (z)

(1 − y){1 −H(y, z)}
}
,

E{Pm} = [ym−1]

{
μ

(1 − y)2ES (y)}
}

.
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Distribution theory for dependent renewal-reward processes 15

Note that y = 1 is a removable singularity of P(y, z) in (16) for values of z in the
convergence domain of F(z).

Proof. Starting with (15), compute the GF in n � z of the left side and the GF in m � y
of the right side expressed as P{R(n) ≤ m − 1}. The equality in (15) says that the respective
inversions of these transforms are equal and that

[zn]

{
1 −Pm(z)

1 − z

}
= [ym−1]

{Rn(y)

1 − y

}
= [ym]

{
yRn(y)

1 − y

}
,

where Rn(y) is the PGF of R(n). Now take the GF in m � y of the left side and the GF in
n � z on the right side to get

[ymzn]

{
1

(1 − y)(1 − z)
− P(y, z)

1 − z

}
= [znym]

{
y

1 − y

FS (z)

1 −H(y, z)

}
,

where

R(y, z) =
∞∑

n=0

Rn(y)zn = FS (z)

1 −H(y, z)

has been used on the right-hand side. Equating the two expressions in curly braces and solving
for P(y, z) leads to (16).

To derive the survival function double GF in (16), start with

P{Pm ≥ n} = [zn]

{
1 − zPm(z)

1 − z

}
= [zn]

{
1 − z[ym]P(y, z)

1 − z

}

= [ymzn]

{
1

(1 − y)(1 − z)
− zP(y, z)

1 − z

}

= [ymzn]

{
1

1 − y
+ yz{1 −F(z)}

(1 − y)(1 − z){1 −H(y, z)}
}

= [ym−1zn−1]

{ FS(z)

(1 − y){1 −H(y, z)}
}

. (17)

To get the third line we have substituted the value of P(y, z). For the fourth line, note that
[zn]{1/(1 − y)} = 0.

Since E{Pm} =∑∞
n=1 P{Pm ≥ n}, the inverse in y � m − 1 of the double GF in (17) when

evaluated at z = 1 gives the GF for the sequence of means as
∞∑

n=0

P{Px ≥ n} − 1 = [ym]

{
1

1 − y
+ yFS(1)

(1 − y){1 −H(y, 1)}
}

− 1 = [ym−1]

{
μ

(1 − y)2ES (y)

}
.

�
6.2. Asymptotic expansions

Expansions for the moments and distribution of Pm as m → ∞ are given below.

Corollary 7. (Mean and variance expansions for first-passage reward moments.) If (R,F) has
a joint PGF H(y, z) which is convergent in a neighbourhood of (1, 1), then

E{Pm} =
(

m − 1

2

)
μ

ρ
+ μ

2ρ2
E{R2} + o(1),

V{Pm} = m
μ2

ρ3
E

{
R − ρ

μ
F

}2

+ O(1) = m

(
μ

ρ

)3

σ 2
R.F + O(1), (18)

as m → ∞.
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Proof. The derivations of these expansions are given in the Supplementary Material and
follow from residue expansions applied to results in Theorem 3. �

The passage time Pm has a limiting normal distribution as m → ∞ after standardisation
using the mean and variance of Corollary 7 to order O(1). The proof is a standard result and
given in the Supplementary Material.

Corollary 8. (Central limit for Pm.) Subject to the conditions of Corollary 7,

Pm −E{Pm}√
V{Pm}

w−→ Normal(0, 1) as m → ∞.

The convergence in Corollary 8 tends to be very slow as Pm has a skewed distribution even
for moderately large m.

Example 8. (Bivariate geometric rewards.) Expansion of P(y, z) in powers of y provides the
first few PGFs for P0, . . . , P3. With qi = 1 − pi, then

P(y, z) = 1 + p2z

1 − q2z
(y + y2) + q0z

1 − p0z

p2z

1 − q2z
y3 + O(y4). (19)

From this, we see that P0 = 1 with probability 1, and P1 and P2 are Geometric(p2). The stop-
ping time for a reward of at least one or two only happens when a renewal occurs in which the
two fail simultaneously, hence this is a Geometric(p2) waiting time as seen in (19). As a check,
take p0 = 7

10 , p1 = 2
10 , and p2 = 1

10 . The geometric probability P{P2 = 2} = p2q2 = 1
10 × 9

10 =
9

100 and occurs in two steps with outcomes {02} ∪ {12}, where {12} means one failure followed
by two failures in the first two ticks of the clock. These probabilities add to 7

100 + 2
100 = 9

100 ,
which agrees.

The stopping time for three or more rewards is P3 ∼ Geometric(q0) + Geometric(p2), with
the two geometric distributions independent. This amounts to first waiting for one or two fail-
ures in Geometric(q0) time followed by Geometric(p2) time for a renewal event to realise the
reward. To check this numerically, we compute the convolution as

P{P3 = 3} =
2∑

k=1

(
7

10

)k−1 3

10

(
9

10

)3−k−1 1

10
= 6

125
.

Since {P3 = 3} = {012} ∪ {102} ∪ {202} ∪ {022} ∪ {112} ∪ {212}, summing these mutually
exclusive outcomes gives

P{P3 = 3} = 2

(
14

1000

)
+ 2

(
7

1000

)
+ 4

1000
+ 2

1000
= 6

125
.

The expansion terms of Corollary 7 and the true moments for P5 are

18.148 =E{P5} = 18.125 + o(1), 111.76 =V{P5} = 34.375 + O(1).

While the mean expansion is quite accurate, the variance expansion of order O(m) is very
inaccurate. This is partly due to a small value of m = 5, but it also suggests that the quite
complicated term of order O(1) which has been left out is large and most likely even larger than
34.375. Without a more accurate variance approximation, the normal approximation would be
very inaccurate and misleading. The double-saddlepoint and residue-saddlepoint methods of
the next section provide much greater accuracy.
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7. Inversions of the double generating functions R(y, z) and P(y, z)

We consider both the residue-saddlepoint inversions introduced in Section 3.2 and the
double-saddlepoint inversions of Section 3.1. Both methods are applicable when the conver-
gence domain of H(y, z) is an open neighbourhood of (1, 1). There are four residue-saddlepoint
approximations to consider. Two of these approximations follow by using a residue approxima-
tion to the CGF of Pm from P(y, z) followed by two single-saddlepoint continuity-corrected
approximations; we call these approximations PR1 and PR2, and they are based on inverting
P(y, z).

Two more continuity-corrected residue-saddlepoint approximations instead use a residue
approximation to the CGF of R(n) from the double transform R(y, z). The distribution for Pm

is related to the distribution of R(n) according to

P{Pm ≥ n + 1} = 1 − P{R(n) ≥ m} (20)

after rewriting equality (15). Thus, according to (20), the residue-approximated CGF of R(n)
with the two continuity-corrected single-saddlepoint approximations provide the two remain-
ing approximations to the distribution for Pm. We also call these approximations PR1 and PR2,
and say they are based on inverting R(y, z). In all cases, the residue expansions assume without
loss of generality that F has an aperiodic mass function.

Likewise, there are four double-saddlepoint approximations of the Skovgaard type. Two
continuity-corrected double-saddlepoint approximations which invert P(y, z) and the same
two approximations used to invert R(y, z).

7.1. Residue-saddlepoint inversion using R(y, z)

Inversion of the right-hand side of (20) starts with the double GF for mass function P{R(n) =
m} in (2) of Theorem 1. If ẑ(y) is the smallest positive root of 1 −H(y, z) = 0, then the PGF of
R(n) has residue approximation

R̂n(y) = 1

ẑ(y)n+1

FS{ẑ(y)}
H′

z{y, ẑ(y)} , y ∈ (y0, y1), (21)

where 0 ≤ y0 < 1 < y1. The value y0 solves ẑ(y0) = r and the value y1 is the supremum of the
values of y which solve 1 −H{y, ẑ(y)} = 0. Substituting y = er, the approximate CGF for R(n)
is K̂n(r) = −(n + 1) ln{ẑ(er)} + l(r) for

l(r) = ln
FS{ẑ(er)}

H′
z{er, ẑ(er)} ,

where r ∈ (r0, r1) with r0 = ln y+
0 < 0 < ln y1 = r1. To compute PR1, the saddlepoint r̂ = r̂(m)

solves the saddlepoint equation

m = K̂′
n(r̂) = −(n + 1)

ẑ′(er̂)er̂

ẑ(er̂)
+ l′(r̂). (22)

This determines the single-saddlepoint approximation P̂R1{R(n) ≥ m} for the right-hand side
of (20), which is the survival approximation of Pm at n + 1.

A parametric plot in Maple and Mathematica avoids having to solve (22). For fixed m, the
value for n can be expressed explicitly in terms of r̂ by solving (22) so that r̂ becomes the
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parametric index for the plot. If n(r̂) solves (22) in n for given r̂, then the parametric plot is
(n(r̂) + 1, 1 − PR1{R{n(r̂)} ≥ m}), r̂ ∈ (r0, r1). This provides a smooth approximation for the
survival function of Pm valid at integer arguments. The form of this parametric curve follows
from the identity (20) in which the second component is the survival probability at n(r̂) + 1 for
Pm.

A small value of r̂ just above r0 computes the right tail of Pm, and values approaching r1
compute the left tail. To see this, note that ẑ(y) is decreasing in y = er, and hence r. Thus, a
small value of r̂ reflects a large value of n(r̂) or the right tail for Pm and the left tail of R{n(r̂)}.

The second continuity-corrected saddlepoint approximation is much the same except that
one solves saddlepoint equation (22) with m offset to m− = m − 1

2 . With saddlepoint r̃, and
n−(r̃) the solution using m−, the parametric plot is (n−(r̃) + 1, 1 − PR2{R{n−(r̃)} ≥ m}), r̃ ∈
(r0, r1).

Example 9. (Bivariate geometric rewards.) Solving for ẑ(y) leads to

ẑ(y) = 1

p0 + p1y + p2y2
= :

1

D(y)
,

where D(y) is the GF for the number of failures with each tick of the clock. Since FS(z) =
1/(1 − 9z/10),

{
y > 0 : ẑ(y) < 10

9

}= {
y > 0 : D(y) > 9

10

}= {y > 0.732},

so y0 = 0.732. As y → ∞, ẑ(y) → 1/p0 so y1 = ∞. This leads to the unbounded saddlepoint
range r̂ > ln (0.732) = −0.312 = r0 as the index range of the parametric plot. The PR1 survival
approximation of P5 is given in the left panel of Figure 3 (solid red line) with exact values
shown as circles. The PR2 approximation is overlaid (dashed blue line) and is almost indis-
tinguishable. Percentage relative errors are shown with matching line types in the right panel,
showing under −2.0% and under −3.5% respectively above the median. As n increases, the
residue approximation R̂n(y) approaches Rn(y) for each y, which helps to explain its greater
accuracy for larger n.

Exact computations were based on inverting P(y, z) using symbolic Taylor expansion.
The double GF P(y, z) was expanded in z to extract P5(y) as the coefficient of z5. This was
followed by Taylor expansion of the GF {1 − yP5(y)}/(1 − y) in y. This is only feasible due to
the small value of m = 5.

Example 10. (Reward as an interarrival random walk.) In the context of Example 4 in which
the joint PGF takes the form H(y, z) =F{zG0(y)}, the residue expansion for the PGF of R(n) in
(21) takes a particularly simple form. We assume that the convergence domains of both F(z)
and G0(y) are open neighbourhoods of 0 with radii r> 1 and r0 > 1 respectively. The value
ẑ(y) = 1/G0(y), and (21) reduces to

R̂n(y) = G0(y)nFS{1/G0(y)}
μ

, y ∈ (y0, r0).

Here, y0 < 1 solves 1/G0(y0) = r. For Example 1, FS(z) = 1 = μ so that R̂n(y) = (py + q)n is
exact.
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FIGURE 3. Left: Approximations for the survival function of P5 by inverting R(y, z). The PR1 (solid red
line) and PR2 (dashed blue line) approximations are shown with exact values (circles) for odd integers
of n. Right: Percentage relative errors respecting the tails are shown for the PR1 and PR2 approximations
using matching line types. Also shown are the errors for the double-saddlepoint PD1 (red crosses) and

PD2 (blue diamonds) approximations when inverting R(y, z).

7.2. Double-saddlepoint inversion of R(y, z)

We use the double-saddlepoint method in Section 3.1 and treat

K(r, s) = ln R(er, es) = ln
FS(es)

1 −H(er, es)
, (r, s) ∈B ∩ C,

as the CGF for {R(T), T} whose joint measure is μ{R(T) = m, T = n} = P{R(n) = m} with
(m, n) � (y, z). This CGF is well-defined over the open convex region B ∩ C, where B =
{(r, s) : H(er, es) < 1} and C = {(r, s) : s < ln r}. Region B excludes the first quadrant and
has the form in Figure 2. Then P{Pm ≥ n + 1} = 1 − P{R(n) ≥ m} = 1 − P{R(T) ≥ m | T = n},
where the last conditional probability is approximated to determine the survival function of Pm

at n + 1.
For Example 9, the PD1 approximation (red crosses) and the PD2 approximation (blue

diamonds) are shown in Figure 4 compared with exact values (solid line). The percentage
relative errors using matching symbol types are shown in the right panel of Figure 3. The
residue-saddlepoint approximations are somewhat more accurate, but these double-saddlepoint
approximations are still quite accurate.

7.3. Residue-saddlepoint inversion of P(y, z)

From Theorem 3,

P(y, z) =
∞∑

m=0

Pm(z)ym = 1

1 − y

[
1 − y{1 −F(z)}

1 −H(y, z)

]
. (23)

A residue expansion as in Lemma 1, which inverts in y � m to approximate Pm(z) from the
right-hand expression, is

P̂m(z) = 1

ŷ(z)m

1 −F(z)

{ŷ(z) − 1}H′
y{ŷ(z), z} , z < r, (24)
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FIGURE 4. Double-saddlepoint approximations for the survival function of P5 by inverting R(y, z). The
PD1 (red crosses) and PD2 (blue diamonds) approximations are shown at every third value. Exact values

are on the solid line.

where ŷ(z) is the smallest positive root of 1 −H(y, z) = 0 in y. This compares with the residue
expansion in Section 7.1 for inverting the double GF R(y, z) in z to get Rn(y). In that expan-
sion, ẑ(y) is the smallest positive root of 1 −H(y, z) = 0 in z rather than y. Thus, the functions
ẑ(y) and ŷ(z) are inverse functions.

At z = 1, P̂m(1) = 1 and P̂m(z) has a removable singularity, as may be shown using
l’Hôpital’s rule. To show this, we compute ŷ(1) = 1 and note that

dŷ(z)

dz
= −H′

z{ŷ(z), z}
H′

y{ŷ(z), z} < 0.

Thus, ŷ(z) − 1 ≷ 0 if and only if z ≶ 1, which ensures that P̂m(z) > 0. The factor 1 −F(z) in
P̂m(z) constrains z ∈ (0, r), where r> 1 is the convergence radius of F(z). The right tail for the
distribution of Pm uses a saddlepoint approaching ln r. As z ↑ r, ŷ(z) ↓ ŷ(r) < ŷ(1) = 1.

For Example 9, the left panel of Figure 5 shows the PR1 and PR2 residue-saddlepoint approx-
imations from inverting P(y, z), which are remarkably accurate. The right panel shows the
percentage relative errors with a maximum error of −2% above the median for both approxi-
mations. The two double-saddlepoint approximations PD1 and PD2 from inverting P(y, z) are
also shown, and both have a maximum percentage relative error of −4% above the median.

Example 11. (Reward as an interarrival random walk.) Here, H(y, z) =F{zG0(y)} and we
assume both F and G0 convergence in open circles of radius r and r0. A residue approximation
for the first-passage PGF Pm(z) of Pm, as given in (24), uses the value ŷ(z) which solves
G0(y) = 1/z. The expression in (24) reduces to

P̂m(z) = 1

ŷ(z)m

1 −F(z)

{ŷ(z) − 1}μzG′
0{ŷ(z)} , 0 < z < r.

As z ↓ 0, P̂m(z) → 0 =Pm(0) for m ≥ 1, as shown in the Supplementary Material.
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FIGURE 5. Left: Approximations for the survival function of P5 by inverting P(y, z). The PR1 (solid
red) and PR2 (dashed blue) approximations are shown with exact values (circles) for the odd integers n.
Right: Percentage relative errors respecting the tails are given for the PR1 and PR2 approximations with
matching line types. Also shown are the errors for the double-saddlepoint PD1 (red crosses) and PD2

(blue diamonds) approximations from P(y, z).

For Example 1, Pm has a negative Binomial(m, p) distribution. The pole is ŷ(z) = (1 −
qz)/(pz) and the residue approximation is exact:

P̂m(z) =
(

pz

1 − qz

)m

=Pm(z).

7.4. Double saddlepoint inversion of P(y, z)

This approach for inverting P(y, z) in (23) to determine P{Pm ≥ n} fixes the value of m � y
in the double-saddlepoint expressions given in the Supplementary Material. The resulting PD1
(red crosses) and PD2 (blue diamonds) approximations are shown in the left panel of Figure 6
with exact values (solid line). Percentage relative errors are shown in the right panel of Figure 6
as red crosses and blue diamonds respectively.

7.5. Summary of methods

Eight plots estimating the first-passage distribution of P5 have been provided and two con-
clusions are apparent for this example and which we suggest will apply more generally. First,
inverting P(y, z) rather than R(y, z) tends to result in slightly greater accuracy regardless of
the particular method used. Secondly, the residue-saddlepoint approximations tend to provide
greater accuracy than the double-saddlepoint approximations regardless of the type of conti-
nuity correction and regardless of the double GF which is inverted. The right panel of Figure 6
overlays six relative error plots for the four residue-saddlepoint approximation plots invert-
ing both P(y, z) and R(y, z) and the two double-saddlepoint approximations from inverting
P(y, z). This shows that the residue-saddlepoint PR1 and PR2 plots (solid red, dashed blue)
for inverting P(y, z) are the most accurate. The double-saddlepoint methods PD1 and PD2 still
achieve remarkable accuracy even though they are not the most accurate.
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FIGURE 6. Left: Approximations for the survival function of P5 by inverting P(y, z). Double-saddlepoint
approximations PD1 (red crosses) and PD2 (blue diamonds) are shown at every third value. Exact values
are on the solid line. Right: Percentage relative errors respecting the tails for the residue-saddlepoint
approximations PR1 (solid red) and PR2 (dashed blue) which invert P(y, z), the residue-saddlepoint
approximations PR1 (dotted green) and PR2 (dot-dashed magenta) which invert R(y, z), and the
double-saddlepoint approximations PD1 (red crosses) and PD2 (blue diamonds) from inverting P(y, z).

8. First-passage with continuous rewards

When rewards are continuous, then Px, the first-passage time to cumulative reward x, has
a distribution which may be analysed by using the identity P{Px > n} = P{R(n) < x}. Suppose
(R, F) has a mixed MGF-PGF Hc(r, z) =E{erRzF} which converges in a neighbourhood of
(r, z) = (0, 1). Let Hc(0, z) =F(z) be the PGF of F with convergence radius r> 1 and let
Hc(−r, 1) = E(r) be the marginal LT of R. Denote the PGF of Px as Px(z) =∑∞

n=0 P{Px =
n}zn. Define the double LT-PGF and the LT inversion symbol [e−xr] so that

Pc(r, z) =
∫ ∞

0
Px(z)e−rx dx, Px(z) = [e−xr]Pc(r, z).

The proof of the next theorem is given in the Supplementary Material and is fundamentally the
same method of proof as used for Theorem 3.

Theorem 4. (PGF for the first-passage reward mass function.) If Hc(r, z) =E{erRzF} con-
verges in a neighbourhood of (r, z) = (0, 1), then

Pc(r, z) =
∫ ∞

0
E{zPx}e−rx dx = 1

r

{
1 − 1 −F(z)

1 −Hc(−r, z)

}
, (25)

where Hc(−r, z) =E{e−rRzF}. Thus, the PGF of Px is Px(z) = [e−xr]Pc(r, z) and P{Px = n} =
[e−xrzn]Pc(r, z). Furthermore,

P{Px ≥ n} = [e−xrzn]

[
1

r

{
1 + zFS (z)

1 −Hc(−r, z)

}]
, (26)

E{Px} = [e−xr]

{
μ

r2ES (r)

}
, ES (r) = 1 − E(r)

r
.
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Note that r = 0 is a removable singularity of Pc(r, z). Residue expansions for inverting
MGFs and LTs were developed in [2, Theorem 1 and Lemma 1] and lead to expansions for
the mean and variance. The derivations are briefly outlined in the Supplementary Material.

Corollary 9. (First-passage continuous reward moments.) If Hc(r, z) converges in a neigh-
bourhood of (r, z) = (0, 1), then

E{Px} = x
μ

ρ
+ μ

2ρ2
E{R2} + o(1), (27)

V{Px} = x
μ2

ρ3
E

{
R − ρ

μ
F

}2

+ O(1) = x

(
μ

ρ

)3

σ 2
R.F + O(1) (28)

as x → ∞.

These expressions have the same form as the expansions in Corollary 7.

8.1. Double-saddlepoint inversions

To approximate P{R(n) ≥ x} for x > 0 by inverting Rc0(r, z) in (9), the double-saddlepoint
Skovgaard approximation PC in (54) of the Supplementary Material is used as described
in Section 3.3. The expression ln Rc0(r, es) is used as the CGF for the conditional joint
distribution of {R(T), T} given R(T) > 0. Inversion in (r, s) � (x, n) gives

P{R(n) ≥ x} ≈ cnPC{R(T) ≥ x | T = n, R(T) > 0}, x > 0,

where cn = P{R(T) > 0 | T > 0} = P{F ≤ n}.
Double-saddlepoint inversion of Pc(r, z) in (25) inverts the other way round. Associate

(r, z = es) � (x, n) and treat K(r, s) = ln Pc(−r, es) as the joint CGF of {T, PT}. Here, PT |
T = x has the discrete distribution of Px and marginally T has improper Lebesgue measure on
(0, ∞). This joint distributional structure is reflected in the joint MGF

Pc(−r, es) =
∫ ∞

0
E{esPx}erx dx. (29)

Then, P{Px ≥ n} = P{PT ≥ n | T = x}, with (x, n) � (r, s). This uses either of the two
continuity-corrected Skovgaard approximations PD1 or PD2 in the Supplementary Material.

8.2. Residue-saddlepoint inversions

To compute the distribution of R(n), a residue approximation first inverts Rc0(r, z) in (9) in
the variable z � n as described in Section 3.3. This gives R̂cn(r) in (10) as an approximation to
the MGF Rn(r) =E{erR(n)). Now, R̂cn(r) is used as a surrogate for Rn(r) in a single-saddlepoint
approximation of the Lugannani–Rice [15] type for a continuous distribution to compute an
approximation to P{R(n) > x}. See Example 13.

When inverting Pc(r, z) in (25) instead of Rc0(r, z), the residue-saddlepoint approximation
first inverts Pc(r, z) in the other continuous variable r � x and not in the discrete variable
z � n. From (29), the PGF for Px is

Px(z) = [e−xr]
∫ ∞

0
E{zPx}e−rx dx = [e−xr]Pc(r, z).

Residue expansions which invert LTs and MGFs in this continuous context were developed in
[6] and involve more conditions than those for inverting GFs as in Lemma 1. The derivation
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of the next theorem is given in the Supplementary Material. Define r̂(z) to be the largest real
root of 0 = 1 −Hc(−r, z) in r. Note that −r̂(z) and ẑ(r) are both roots of the same equation and
are, in fact, inverse functions. Implicit differentiation shows that r̂(z) is a strictly increasing
function of z. Since r̂(1) = 0, then r̂(z) ≷ 0 for z ≷ 1.

Theorem 5. (Residue approximation for Px(z).) Suppose Hc(r, z) =E{erRzF} has a maximal
convergence region which is an open neighbourhood of (r, z) = (0, 1). Let F(z) have conver-
gence radius r≤ ∞, and suppose condition Z below holds. Then, a residue approximation for
Px(z) is

P̂x(z) = er̂(z)x 1 −F(z)

−r̂(z)H′
cr{−r̂(z), z} , z < r. (30)

(Z) For each z < r, there exist η > 0 and ε > 0 such that |H′
cr{−r̂(z) − η + iw, z}| =

o(|w|−ε) as |w| → ∞.
Note that −{1 −F(z)}/r̂(z) > 0 for all z and has a removable singularity at z = 1; thus

P̂x(z) > 0 for all z. As z → 1, then r̂′(z) → μ/ρ and, by l’Hôpital’s rule, P̂x(z) → 1. The con-
dition Z placed on Hc(r, z) is extremely weak and holds for all the practical joint distributions
found in [9].

Example 12. (Reward as an interarrival random walk.) Suppose each tick of the clock returns
a continuous reward that has MGF G0(r) and which is awarded at the end of the interarrival.
The mixed MGF-PGF for (R, F) is Hc(r, z) =F{zG0(r)}, and is defined over {(r, z) ∈R×
[0, ∞) : zG0(r) < r, r < b0}, where b0 > 0 is the convergence bound of G0.

The residue approximation for Rn(r), the MGF of reward at time n, is

R̂cn(r) = G0(r)nFS{1/G0(r)}
μ

, G−1
0 (1/r) < r < b0. (31)

This follows from the fact that ẑc(r) = 1/G0(r) and H′
cz{r, ẑc(r)} =F ′(1)G0(r).

The residue approximation for Px(z), the PGF of the first-passage time to reward x, is

P̂x(z) = er̂(z)x 1 −F(z)

−r̂(z)μzG′
0{−r̂(z)} , z < r,

where −r̂(z) = G−1
0 (1/z) and H′

cr{−r̂(z), z} =F ′(1)zG′
0{−r̂(z)} has been used.

Example 13. (Reward as an interarrival random walk.) Suppose each tick of the clock
returns an inverse Gaussian(2, 4) reward with mean 2, variance 2, and MGF G0(r) =
exp (2 − 2

√
1 − 2r). Then, R given F = n is inverse Gaussian(2n, 4n2) with MGF G0(r)n.

Taking

F(z) = z/3

(1 − 2z/3)

with μ = 3 and V{F} = 6, then

Hc(r, z) = (z/3)e2−2
√

1−2r

1 − (2z/3)e2−2
√

1−2r
, (32)
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FIGURE 7. Left: Approximations for the survival function of R(10) using single-saddlepoint inversion of
R10+(r) (solid black line), single-saddlepoint inversion of R̂c,10(r) (dashed red line), and a Normal(16,
20) approximation (dotted line). Right: Plot of percentage relative errors respecting the tails for inversion

using R̂c,10(r) as compared with inversion using R10+(r).

and ρ =E{R} = 6, V{R} = 30. The residue approximation for the MGF of R(n), the reward at
time n, has ẑ(r) = 1/G0(r) so that (31) is

R̂cn(r) = G0(r)n+1 1

3G0(r) − 2
, −0.223 < r <

1

2
.

For n = 10 we are able to compute the exact MGF of R(10) as R10(r) = [z10]Rc(r, z), which
is obtained by symbolically computing

(
∂10Rc(r, z)/∂z10

∣∣
z=0

)
/10!. From this, we compute

the exact mean and variance as 16.07 and 37.15. We remove the point mass of
( 2

3

)−10 at 0 and
work with the conditional MGF of R(10) given R(10) > 0 of the form R10+(r) = {R10(r) −( 2

3

)−10}
/
{
1 − ( 2

3

)−10}.
Figure 7 compares three strategies for approximating the survival function of R(10). The

solid line is
{
1 − ( 2

3

)−10} times the single-saddlepoint approximation applied using the CGF

ln R10+(r). The red dashed line is the single-saddlepoint approximation applied to ln R̂c,10(r).
The dotted line is a Normal(16,20) approximation based on the moment approximations of
Corollary 2. The normal approximation performs badly since the variance expansion value
of 20 is quite far from the true variance, 37.15. The right panel plots the percentage relative
error of the saddlepoint approximation using R̂c,10(r) and taking the saddlepoint approxima-
tion based on R10+(r) as the standard. What this plot shows is that little is lost in applying a
saddlepoint approximation to the residue approximation as opposed to the exact MGF R10+(r).

Example 14. (Reward as an interarrival random walk.) In the context of Example 13, we
assess the approximation to the PGF for the first-passage time Px given in Theorem 5. With a
threshold of x = 15, the moments of Px are approximated as in Corollary 9 as E{P15} = 10.25
and V{P15} = 3.75. The dominant pole for P̂x(z) in (30) is the real solution in r to

1 = zG0(r) = z exp (2 − 2
√

(1 + 2r)) (33)
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FIGURE 8. Two continuity-corrected single-saddlepoint approximations (solid red and dashed blue
lines) for the survival function of P15 are compared with a continuity-corrected Normal(10.25, 3.75)

approximation (dotted line).

or r̂(z) = 1
2 ln z + 1

8 (ln z)2. Since the exponential is a multi-function, there are also pairs of
complex-conjugate solutions to (33) given as

r̂±k(z) =
{

1

2
ln z + 1

8
( ln z)2 − π2k2

2

}
± iπk

(
1 + ln z

2

)
, k ≥ 1. (34)

These roots form additional simple poles which are ignored when using the approximation
P̂x(z) but could be added to the expansion for greater accuracy, as described in [2, Section
2.3]. The dominant pole leads to the approximation

P̂x(er) = ex(r/2+r2/8) (er − 1)
(
1 + 1

2 r
)

(1 − 2/3er)(3r)
(
1 + 1

4 r
) , −2 < r < ln 2

3 = 0.405.

The value P̂x(1) = 1 holds by l’Hôpital’s rule. Moment computations from this expression give
an approximate mean of 10.25 and variance of 9.646, with the variance quite different from
the expansion value of 3.75.

Figure 8 shows smooth plots for the two continuity-corrected single-saddlepoint sur-
vival approximations depicted in solid red and dashed blue which are visually coincident. A
continuity-corrected Normal(10.25, 3.75) is shown as a dotted line.

For P̂x(er) to be a valid approximation to Px(er), the conditions of Theorem 5 must hold
for this example. Condition Z is shown to hold in the Supplementary Material.

To assess the accuracy of the approximations in Figure 8, we consider the exact MGF
Px(er). When the additional residue expansion terms from all the poles given in (34) are added
up to approximate Px(er), then we show in the Supplementary Material using a non-trivial
argument that this infinite sum converges pointwise to the exact MGF Px(er). This develop-
ment is based on [2, Corollary 2.2], which specifies when such infinite residue expansions are
pointwise convergent to the exact values they approximate.

The order of the various residue terms which contribute in this infinite expansion reveal
that P̂x(er) and Px(er) are computationally in agreement to 16-significant-digit accuracy or the
accuracy capable when using 64-bit floating-point arithmetic. As a consequence, saddlepoint
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approximation using P̂x(er) is indistinguishable from the same computations using the exact
MGF Px(er). Let Êk(er) denote the additive contribution to the infinite residue expansion from
the complex conjugate pair of poles r̂k(z) and r̂−k(z). Figure 9 in the Supplementary Material
plots 1032Ê1(er)/P̂x(er) against r, and we see that over the range of saddlepoints (−1.9, 0.36)
used in the approximation,

max−1.9≤r≤0.36

|Ê1(er)|
P̂x(er)

< 5.7 × 10−32.

Likewise, the two derivatives of this ratio have similar size. This means that saddlepoint com-
putations based on P̂x(er) and P̂x(er) + Ê1(er) are computationally indistinguishable using
64-bit arithmetic. This is explained by the asymptotic orders of the various terms. For example,
in the left tail where the error is the greatest at r = −1.9, the ratio of exponential factors in the
residue terms for poles at r̂±k versus the dominant pole r/2 + r2/8 are

exp
[
x Re{r̂±1(er)} − x(r/2 + r2/8)

]
r=−1.9 = 7.1 × 10−33,

exp
[
x Re{r̂±2(er)} − x(r/2 + r2/8)

]
r=−1.9 = 2.6 × 10−129.

The contributions from Ê3(er), etc. are even smaller. Thus we see that P̂x(er) and Px(er) are
indistinguishable in floating-point computation and the errors in the saddlepoint approxima-
tions of Figure 8 are only due to the saddlepoint methods themselves and not due to using an
approximation for Px(er).

In Example 14, there are multiple poles involved in the residue expansion. However, the
pole at r̂(z) is dominant enough that its single-term residue expansion P̂x(z) is computationally
indistinguishable from the exact PGF Px(z). This is not always the case. Examples 15 and 16
in the Supplementary Material replace the inverse Gaussian reward distribution for G0(r) with
a Gamma(2,1) distribution. For the first passage in Example 16, there are two real solutions to
1 = zG0(r) in r which result in two poles. Using P̂x(z) based on only the dominant pole does
not provide adequate approximation to the exact PGF, and in fact P̂x(z) is not even analytic at
z = 0 as it needs to be if it is to be a PGF.

Examples 14 and 16 suggest that residue expansions such as P̂x(z) should not be used
blindly as a surrogate for Px(z). The degree of dominance shown by the dominant pole depends
on the spacing of the various poles for Pc(r, z), and without adequate dominance, additional
residue terms may be required.
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