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1. Introduction
In this paper, we answer a question asked by Gaboriau in his ICM survey in a slightly
different language (see [G10, Question 5.6]). The question concerns factor of i.i.d.
processes (FIIDs from now on), which are random elements of S� where � is a countable
group and S is some measurable space which we will call the label set, and arises by
applying an equivariant measurable map f : [0, 1]� → S� to an i.i.d. family {ωγ }γ∈�

where ωγ is uniform on [0, 1]. In our work, the label set S will be [0, 1] or {0, 1}n.
To make the definition of being an FIID precise, we need to say what are the group

actions on [0, 1]� and S� . A group action H � � of a group H on � naturally extends into
a group action of H on M� for any set M: for x ∈ M� and h ∈ H , the action h · x is defined
as (h · x)(γ ) = x(h−1 · γ ) for γ ∈ �. Then we will call f equivariant with respect to this
action if it commutes with it. Although it is with respect to the group action itself, not only
with respect to H, if in the context it is clear which action we mean, we may say simply that
f is H-equivariant. For us, there are two natural group actions on �. One is when H = �

and it acts on itself by left multiplication. For the other one, we assume that a Cayley graph
of � is given considered here as a simple graph on the vertex set V (G) = �, forgetting the
orientations and labels on the edges by the group generators), so that the full graph auto-
morphism group Aut(G) also acts on �. As Aut(G) also acts on the edge set E(G) of G,
it makes sense to talk about equivariant measurable maps f : [0, 1]� → {0, 1}E(G) which
we will call FIID subgraphs of G. Note that � < Aut(G) naturally, so for any f, the property
of being Aut(G)-equivariant is stronger than just being �-equivariant. The process
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we will construct will be Aut(G)-equivariant, and consequently also �-equivariant. For
us, the group itself is relevant as the vertex set of the graph G which, in our work, will be
the 3-regular tree T3. For example, we can consider it to be the Cayley graph of the free
product of either Z with Z2 or that of the threefold free product of Z2 with itself.

An S�-valued FIID process also belongs to the larger class of invariant processes which
means that the distribution is invariant under the group action in the following sense: if A
is any event (in this case, some measurable subset of S�), h ∈ H , then P(A) = P(h · A).
This is again a notion relative to some group action and while our process will be Aut(G)

invariant, some important properties (where we use the mass-transport principle) will
already follow from the weaker fact that the process is �-invariant.

If � = f (ω) is an FIID and γ ∈ �, then �(γ ) is a random variable whose distribution
does not depend on γ by the transitivity of the group action with respect to which f is
equivariant, and this distribution will be called the marginal of �. Note that the marginal
is also well defined for any invariant process when the underlying group action is transitive
as well.

If L ∈ SV is a labeling of the vertex set V of a graph, then let clust(L) be the subgraph
obtained by deleting any edge whose endpoints got different labels by L. The connected
components of clust(L) will be called the clusters of the labeling.

Gaboriau asked if assuming that the marginals of an FIID on a Cayley graph are uniform
on [0, 1] implies that the corresponding clusters are finite. We will show by an example on
the 3-regular tree T3 that the answer is no.

THEOREM 1.1. There is an FIID labeling � of T3 whose marginals are uniform on [0, 1]
for which clust(�) contains infinite clusters. Moreover, it is possible to modify � into a new
labeling �∞ whose marginals are still uniform on [0, 1] and every cluster in clust(�∞)

is infinite.

Actually, T3 can be replaced by any non-amenable Cayley graph as [GL09] has shown
that they always contain an FIID spanning forest whose components have furcation vertices
(defined in §4), and that is the only thing our construction needs.

It is natural to think of FIIDs as the class of random labelings of the vertex set which can
be obtained by applying a relabeling algorithm (f in the definition) which does not use any
further randomness beyond its input (ω in the definition). For this reason, we sometimes
will refer to f as the code of the FIID and to ω as its source. The measurability of f implies
that we can approximate the label f (ω)(v) from local data with high probability. That is,
for any ε1, ε2 > 0, there is an r ∈ N and a g : [0, 1]B(v,r) → [0, 1] which ‘guesses’ the
value of f (ω)(v) from the restriction of ω to B(v, r) such that

P{ω : |f (ω)(v) − g(ω �B(v,r))| < ε1} > 1 − ε2.

We will not use this locality property explicitly (we sketch its proof in Remark 1.2).
For example, if f (ω)(v) is the indicator of v being in an infinite cluster of a labeling
obtained from ω, then of course f is measurable and f (ω)(v) could be approximated in
the above sense, but we will not need that detour (a similar remark holds for furcation
vertices introduced later).
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The reason we still emphasize this locality is twofold. First, it provides a fundamental
intuition which also helps to appreciate the difficulties in constructing a process as an FIID.
In particular, for far away vertices, these approximations are independent and this makes
some properties hard to satisfy. Second, there are stronger notions of locality which do not
follow from measurability alone, one of them is being finitary (which holds if there is a
random but finite neighborhood of any vertex so that it is enough to see the source in that
neighborhood to determine the label of the vertex), and we will see in §6 that no finitary
process can be a counterexample to Gaboriau’s question.

Remark 1.2. This locality property is a simple consequence of the fact that the product
σ -algebra on [0, 1]V (T3) is generated by the algebra of local events (those determined
by finitely many coordinates). If (�, B, P) is a probability space and A is an algebra
generating the σ -algebra B, then for any E ∈ B and ε > 0, there is an F ∈ A such that
P(E�F) < ε (to prove this, notice that the collection of sets which can be approximated
by elements of A in this sense forms a σ -algebra).

Thus, for any event E ⊂ [0, 1]V (T3) and ε > 0, there is a local event F such that
P(E�F) < ε. That is, one can guess whether or not E holds based on whether or not
F holds with a probability of error less than ε. We can use this to approximate the value
f (ω)(v) with high probability if we apply it for events in the form a < f (ω)(v) < b for
a, b ∈ [0, 1] (this is where the measurability of f is used). That is, we can figure out with
high probability which subinterval of a finite subdivision of [0, 1] contains f (ω)(v).

FIID processes are the closest to i.i.d. processes, hence there is an obvious interest in
deciding if a given naturally defined process is FIID, and what properties FIID processes
can or must have. These problems have a rich history in ergodic theory, probability, statisti-
cal physics, and theoretical computer science; see, e.g., [B18, L17, NSZ20, OW87, RV17,
S10, S20, vdBS99] and the references therein. On amenable groups, Ornstein–Weiss
theory [OW87] says that every FIID process is actually isomorphic to an i.i.d. process
of the same entropy. Moreover, hyperfiniteness easily implies that every process is a weak
limit of FIID processes. However, on non-amenable groups, these tools break down.

In general, it seems hard to decide whether or not an FIID process with a given property
exists. The locality mentioned above suggests that the answer to Gaboriau’s question
should be affirmative since the conditions imply that the vertices build a label whose
specific values have probability zero, through a process governed by local data, so it
seems surprising that vertices arbitrarily far away can agree on the same value, yielding
infinite clusters with the same label. There is, in particular, a strong correlation decay
found by [BSzV15] which states that if u, v are vertices of Td at distance k, then the
absolute value of the correlation between their labels given by an FIID process is at most
(k + 1 − 2k/d)(1/

√
d − 1)k . This can be an obstruction for some processes to be FIID

which might be seen as a quantitative version of this locality. While we will show that
the condition of having uniform marginals does not exclude infinite clusters, there is an
intuition that the condition should imply that at least the clusters are small in some sense.
And indeed, [ChI10, Theorem 1.1] implies that the clusters under the condition that the
marginals are uniform on [0, 1] must be hyperfinite. In our context, hyperfiniteness of
the forest clust(�) means that there is a sequence of random invariant forests {Fi}i∈N

https://doi.org/10.1017/etds.2022.14 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.14


3710 P. Mester

such that every component of Fi is finite almost surely, and (using the notation F(v) for
the component of F containing the vertex v in a forest F) Fi(v) ⊂ Fj (v) for i ≤ j and
clust(�)(v) = ⋃

i∈N Fi(v) for each vertex v. While it is true for any countable set that it
is an increasing union of finite sets, the extra requirement of achieving this with random
invariant processes makes hyperfiniteness a strong property. It implies that the clusters of
clust(�) must be finite or must have 1 or 2 ends (see [BLPS99]), where the number of
ends of a graph is the supremum of the number of infinite components when an arbitrary
finite set of vertices (together with the incident edges) is deleted. It is well known that if
F is an invariant random subforest of a Cayley graph, then an infinite component of F can
only have 1, 2, or infinitely many ends.

The problem mentioned in the following example will not be pursued in this paper,
but the simple construction shown there serves as a quick illustration of this locality
phenomenon of FIIDs contrasted with invariant processes in general. It also helps to see
through a natural optimization problem that being an FIID is a serious restriction among
invariant processes since the optimum when we allow to use any invariant process is 1/2
on Td while if we only allow FIIDs, the optimum is going to zero as d is going to ∞.

Example 1.3. Assume we want an invariant random vertex set S of Td which is
independent in the graph theoretic sense (that is, S does not contain neighbors). We want
the marginal probability pS of being in S to be high. The optimal pS = 1

2 is achieved by
the following random invariant process: let v1, v2 ∈ V (Td) be equivalent if their distance
is even, and pick one of the classes with probability 1

2 to be S. If we want S to be a FIID
(that is, its indicator 1S to be FIID), then a possible solution is the following code: at a
vertex v, let f (v) := 1 if and only if for each neighbor w of v, ω(v) > ω(w) (where ω was
the original source) and let f (v) = 0 otherwise, then S = {f (v) = 1 : v ∈ V (Td)} is an
independent set. In this case, pS = 1/(d + 1).

While this simple construction can be improved, its basic features are known to hold
even for a near-optimal independent set arising as an FIID. Namely, the marginal of any
FIID independent vertex set of V (Td) is bounded away from 1

2 for any d ≥ 3 and it goes to
zero as d → ∞. This follows easily from [B81], although, its focus is on finite graphs. For
the connection with FIIDs and references to further research in this direction, see [RV17].

An example similar to the above will be used in our construction.

Example 1.4. Let r be a positive integer and let S be the FIID vertex set defined by the
following code (which will be the indicator of S): let 1S(v) = 1 if and only if the label
ω(v) of v is maximal of all the labels within the ball of radius r around v (otherwise
1S(v) = 0). Then, S has the property that any two vertices of it have distance at least r.

We will need this construction not only directly on T3 but also on some locally finite
forests associated to it. Then, ‘distance’ will refer to the distance within the forest, which
is infinite between vertices of different components. These forests will be random, and S
can be sampled independently of it. In this way, S is guaranteed to intersect all infinite
component of these forests, as there are only countably many components.

We close this section by an important elementary observation and some remarks on the
organization of the paper.
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By a un[0, 1] random variable, we mean one which is uniform on [0, 1]. By x
d∼ y, we

mean that the random variable x and y has the same distribution, but with some abuse of

notation, we will also denote by x
d∼ ν if x has distribution ν. From a single x

d∼ un[0, 1],

we can obtain an i.i.d. family of infinitely many xj
d∼ un[0, 1] by reorganizing the bits of

x. Using this, when we describe the code f, we can assume that it can always reach out
for an additional un[0, 1] random variable independent of any other step of the algorithm.
However, importantly, every single random variable the algorithm uses is local in the sense
that it must belong to some vertex.

In §2, we develop some tools whose purpose will be to imitate a large degree tree within
a small degree one by collecting the vertices into finite connected ‘bags’ (which we will
call ‘cells’), whose neighbors will be the other bags. With these tools ready, we will give a
high level overview of the whole construction in §3. The first point is that Bernoulli (1/2)

percolation on a rooted tree with large degrees will leave the root in an infinite cluster with
high probability. This will reduce the degrees of the tree, but this can be counterbalanced
by using larger and larger bags—the tools coming from §2. To make this work, we will need
special sorts of vertices called furcations, and we have to make sure that we get enough
of them using our process—this will be the main content of §4. In §5, we put together
everything to prove our main theorem. We also explain directly why the clusters of our
labelings are hyperfinite. Finally, in §6, which is largely independent from the rest of the
paper, we show that no counterexample to Gaboriau’s question can be finitary. Because it
turns out that we could prove our theorem from quite basic results, we made an effort to
stay self-contained.

2. Voronoi partitions and other forests
In this section, we define some FIID subgraphs which will always be forests since we are
working on T3. We have already defined the forest clust(L) corresponding to a labeling L.

We now define Voronoi partitions. If S is a vertex set, we want to partition all the
other vertices into classes according to the closest element of S. We have to deal with
the potential ambiguity if a vertex v is at an equal distance from several elements of S,
moreover, we want to make the partition classes connected.

Definition 2.1. Let F be any locally finite forest and let S ⊂ V (F) and a collection
of distinct real numbers {α(v)}v∈S be given. If v ∈ V (F), and the F-component which
contains v also contains some element from S, then let Sv ⊂ S be the set of those elements
of S which are closest to v, that is, Sv := {s : dF (v, s) = dF (v, S)}. Let φ(S,α)(v) := s0 be
that element of Sv for which α(s0) is minimal (by the local finiteness of F, Sv is finite). Let
two vertices v1, v2 be equivalent if φ(S,α)(v1) = φ(S,α)(v2). If the F-component of v does
not contain any element from S, then let the equivalence class of v be the singleton {v}. Let
Vor(S, α) be the partition corresponding to this equivalence.

The role of the α is to handle the ambiguity if |Sv| > 1 and in this way, the partition
classes are indeed connected. Note that one can break the tie in many other ways, but it is
not automatically true that the partition classes are connected. For example, if each vertex
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v chose to be equivalent with a uniform random element from Sv and different vertices did
it independently of each other, then the partition classes do not have to be connected.

When we use Voronoi partitions, the forest will be in the form of clust(L) or something
closely related, the S will be an FIID set and the α will be extracted from the source. We
will suppress α in the notation and just denote the partition by Vor(S). We always assume
that the hidden α is independent of any other steps of the construction. We will refer to
partition classes as cells and we will use this terminology in general where we have a forest
where every component is finite almost surely. We will see that our Voronoi partitions have
this property. When we consider a Voronoi partition as a forest, we mean that we delete
edges between vertices of different cells and forget the distinguished vertex; in this way,
they are FIID forests.

If we want to produce an FIID labeling with a un[0, 1] marginal whose clusters are
finite but arbitrarily large, that is easy. We can even sample an arbitrary random forest
whose components are almost surely finite, and label the vertices independently afterward.

LEMMA 2.2. Let � be an FIID forest whose components are almost surely finite. There is
an FIID labeling θ with a un[0, 1] marginal which is constant over each component of �

(in fact, almost surely clust(θ) = �), and the θ -labels of different components of � form
an independent family.

Proof. Let (α(v), β(v))v∈V (T ) be a collection of two independent un[0, 1] label over each
vertex. For a vertex v, let �(v) be the component of � containing v. Since almost surely
|�(v)| < ∞ and the β(v) labels are all distinct, there will be a unique v0 ∈ �(v) for which
β(v0) is minimal within �(v) (that is, β(v0) = min{β(w); w ∈ �(v)}). Then let v ‘copy’
the α label from v0, meaning that θ(v) := α(v0).

The finiteness of the components above was crucial; when we construct the infinite
clusters with uniform labels, then the labels and the clusters will be built together
step-by-step and not by selecting the infinite clusters first and labeling them afterward.

We will call a random forest whose components are almost surely finite a cell-partition
and the components will be called cells or �-cells where the forest is denoted by �. If
� is an FIID cell-partition, then let Ber(�) be the FIID{0, 1}-labeling λ of the vertex set
with the properties that: its marginals are fair bits (P(λ(v) = 1) = P(λ(v) = 0) = 1

2 ), the
labels are constant over a �-cell (�(v1) = �(v2) implies λ(v1) = λ(v2)), and the labels
over different cells are independent. By the notation λ ∼ Ber(�), we will mean that first
� is sampled, and then we sample λ given �. We will use Ber(�) to imitate a Bernoulli
percolation on a graph whose vertices are the cells of �. The fact that a labeling with this
distribution can be realized as an FIID labeling is a consequence of the previous lemma:
the fair bits needed for Ber(�) can be obtained from the un[0, 1]θ -label guaranteed by the
lemma, for example, by defining the bit to be 1 if θ > 1

2 and 0 if θ ≤ 1
2 .

One may notice that for a Voronoi-type partition Vor(S), we do not need to know the
finiteness of the cells to label them as claimed in the lemma, since each cell already comes
with a single distinguished vertex (the one from S), and the whole cell can copy labels
from this distinguished vertex just as in the proof.
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So, if a Voronoi partition had non-zero chance of producing infinite clusters, then that
already would witness the truth of our Theorem 1.1. However, a simple application of the
mass-transport principle shows that every Voronoi cell must be finite. See [LP16, Ch. 8]
for more on the mass-transport principle and note that the application we need here is also
covered there directly as Example 8.6. For completeness, we also explain this here.

We will show that an invariant process on a Cayley graph cannot determine infinite
components with a single distinguished vertex; the precise statement is Lemma 2.3 below.
Note that this immediately implies that this is also true if the word ‘single’ is replaced by
‘finitely many’, as from the finitely many vertices we can select a uniform one and this still
will be an invariant process if the original one was.

Let G be a Cayley graph of a countable group �, we will use � := {0, 1}V (G)∪E(G) to
represent various vertex and edge configurations of G. Note that � acts on �. We interpret
the edges with label zero as deleted, the edges with label 1 as kept, and vertices with label
1 as distinguished (and the vertices of label 0 are not), and thus when we talk about a
component, we mean that the underlying graph has all the original vertices (distinguished
or not), but only the edges which are kept. Thus, we can represent the event that ‘in every
component, there is at most one distinguished vertex and there is an infinite component
which does contain a distinguished vertex’ as a measurable subset E ⊂ �.

We have not specified a probability measure on �, but now we will say something about
all �-invariant ones.

LEMMA 2.3. If P is any �-invariant probability measure on �, then the event E cannot
happen, that is

P(E) = 0.

To prove this, we will need the mass-transport principle for countable groups, which is
the following.

PROPOSITION 2.4. Let � be a countable group and o be its identity. If f : � × � −→
[0, 1] is diagonally invariant (meaning that f (γ x, γy) = f (x, y) for all γ , x, y ∈ �),
then ∑

x∈�

f (o, x) =
∑
x∈�

f (x, o).

Proof. By f being diagonally invariant, f (o, x) = f (x−1o, x−1x) = f (x−1, o), so∑
x∈� f (o, x) = ∑

x∈� f (x−1, o). However, inversion is a bijection, so the summation∑
x∈� f (x−1, o) runs over the same non-negative terms as

∑
x∈� f (x−1, o).

Proof of Lemma 2.3. Assume that there exists a �-invariant P probability measure on
� for which P(E) > 0. Define the measurable function F : � × � × � → [0, ∞] by:
F(x, y, ω) := 1 if x and y are within the same component and x is the distinguished vertex
of that component in the configuration ω, F(x, y, ω) := 0 otherwise. This function is
invariant under Aut(G), consequently also under �, in the sense that F(α · x, α · y, α · ω)

for any α from either of Aut(G) or �. Here, F(x, y, ω) is called the mass sent by x to y or
the mass received by y from x in the configuration ω. The �-invariance of P and F implies

https://doi.org/10.1017/etds.2022.14 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.14


3714 P. Mester

that f (x, y) := EPF(x, y, ∗) is diagonally invariant, so Proposition 2.4 implies that for
o ∈ �, the expected overall mass it receives is the same as the expected overall mass it
sends out.

The expected mass the origin receives is no more than 1 (this is true even pointwise),
but the expected mass it sends out is infinite if P(E) > 0; the origin would actually send
out infinite mass with positive probability, not just in expectation. This contradiction shows
that such invariant measure P is not possible.

Recall that if � is a forest, then for a vertex v, we denoted by �(v) the component of v.
If two forests P , F are related in a way that P(v) ⊂ F(v) for all v, then we denote this
relationship by P ≺ F or F � P . To such a pair, we associate a new forest.

Definition 2.5. If F , P are forests on the same vertex set and P ≺ F , then we associate to
this pair a new forest F/P , called the large-scale forest (or when F is a tree, the large-scale
tree). The vertices of F/P are the components of P, and two P-components t1, t2 are
connected in F/P if their distance is 1 in F. For a vertex v, let F/P (v) be the subtree of
F/P which contains P(v).

When we use this large scale forest construction, the P-components will be finite (so
P is a cell-partition). If there is a further cell-partition � on F/P , then there is a natural
corresponding cell-partition glue�(P ) on F so that P ≺ glue�(P ) ≺ F . We just glue
together the cells of P according to �, meaning that if C is a �-cell consisting of the
P-cells C1, . . . , Cl , then

⋃{Ci : Ci ∈ C} will be a glue�(P )-cell and, as these cells
already partition all the vertices of F, defines glue�(P ).

When F , P are FIID subforests of T3 and P ≺ F and P is a cell-partition, then by
Lemma 2.2, we can assume that the vertices of F/P are equipped with a family of

i.i.d. random variables x(v)v∈V (F/P )
d∼ un[0, 1] which we can use to build Voronoi-type

partitions on F/P as an FIID-forest on the original T3 (corresponding to each other via
our glue operation).

3. High level overview
We will use the basic theory of Bernoulli percolation on trees, see [LP16] or [P19]. In fact,
we will only need some very basic result from which we can directly obtain everything that
we need so we made some effort to stay self-contained. In addition to this, we will need at
the end the fact that an FIID is ergodic, thus, when we prove that a vertex is contained in
an infinite cluster with positive probability, we can conclude that there are infinite clusters
with probability one.

A Bernoulli-p site percolation on a graph is the {0, 1}-labeling where a vertex gets
label 1 with probability p and 0 with probability 1 − p, independently of the others. We
will denote this labeling by Ber(p).

Remark 3.1. In percolation theory, the interpretation is that with probability p, we keep
a vertex (or site) open and they become closed with probability (1 − p), independently
from each other. There is a very useful notion called the branching number br(T ) of a
locally finite infinite tree T with the property that br(Td) = d − 1 and a Ber(p) labeling
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on T almost surely has infinite open clusters exactly if p > 1/br(T ). Moreover, when
this condition holds and if T is homogeneous enough, for example, Td , then the infinite
open clusters will have branching number exactly pbr(T ). So the big picture is that what
guarantees infinite clusters in a Bernoulli percolation is a high enough branching number
and the Bernoulli percolation will push down the branching number of the resulting
clusters and this pattern continues if we keep applying independent Bernoulli percolations
until there are no more infinite clusters.

We will need the following proposition.

PROPOSITION 3.2. On the 4-regular tree T4, a Ber( 1
2 ) labeling almost surely has infinite

clusters.

Although we will work on more general trees, the above will be sufficient, through the
fact that if a tree T has minimal degree δ := dmin(T ), then T contains Tδ as a subgraph.

The above result has the easy consequence, which we will prove as Lemma 4.4, that for
any ε > 0, there exists a D(ε) ∈ N such that if a tree T with a distinguished root r ∈ V (T )

has minimal degree at least D(ε), then a Ber( 1
2 ) labeling on T will have an infinite cluster

containing r with probability at least (1 − ε). In fact, we will need a property which is
stronger than being infinite: we need forking clusters. In the process that we are going
to define, the infinite clusters will automatically be forking; however, we will not prove
this, since for our construction to work, it will be enough to know that forking clusters
exists with positive probability, and thus some of the infinite clusters will be forking by
ergodicity. We will prove forking clusters exists with positive probability through Lemma
4.5 directly from Proposition 3.2.

To highlight the ideas of the construction, we first show the modest claim that for any
positive integer n, there is an FIID labeling θn on T3 whose marginal is uniform on the
label set {0, 1}n and clust(θn) contains infinite clusters.

On the d-regular tree Td , a Ber(p) labeling almost surely has infinite clusters spanned
by vertices of label 1 exactly when p > 1/(d − 1). This implies that if a tree T has minimal
degree at least δ and if p(δ − 1) > 1, then the clusters of a Ber(p)-labeling on T will
contain infinite ones labeled with 1.

If L0, . . . , Ln−1 are independent Ber( 1
2 )-labelings, and we concatenate them to get

the {0, 1}n-labeling Ln := (L0, . . . , Ln−1), then for any s ∈ {0, 1}n, the distribution of
vertices whose Ln-label is s will be the same as the distribution of vertices whose label is
1 in a single Ber(1/2n)-labeling. In particular, there will be infinite clusters in clust(Ln)

on Td if d > 2n + 1.
This is not yet the θn we promised, as we want to label T3 instead of Td where d depends

on n. However, we can imitate a tree whose minimal degree is at least d within T3 using
Voronoi partitions and the large scale tree construction. As in Example 1.4, let S be an
FIID vertex set in T3 for which any two v1, v2 ∈ S have distance at least 2r + 1, then let
�0 := Vor(S). Each �0-cell C contains the ball BT3(v, r) around v ∈ S ∩ C. This implies
that the large-scale tree T3/�0 has minimal degree at least |BT3(v, r)| + 2.

For large enough r, the random tree T3/�0 has minimal degree at least 2n + 2, so using
the FIID labeling Ber(�0) guaranteed by Lemma 2.2 and concatenating n independent
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versions λi ∼ Ber(�0) to form θn, we get an FIID{0, 1}n-labeling which has infinite
clusters and marginals uniform on {0, 1}n.

This proves the claim, but how do we get a labeling which has uniform marginals on
[0, 1] but still with infinite clusters?

Instead of the ‘static’ sequence �0, . . . , �0, . . . , with the i.i.d. labels λi ∼ Ber(�0),
we use a dynamically changing sequence of cell-partitions �0 ≺ · · · ≺ �n ≺ · · · , and
the corresponding sequence of labelings �0 ∼ Ber(�0), . . . , �n ∼ Ber(�n), . . .. This
way, we will be able to use infinitely many bits and thus get un[0, 1] marginals, while also
having infinite clusters. The essence of how this sequence is constructed and what issues
need to be taken care of is already visible in the step from �0 to �1.

There will be ‘target degrees’ D0 and D1 which, for now, are just large integers.
A target degree was also present in the previous θn construction in the fact that T3/�0

had minimal degree at least 2n + 2 and �0 in the final construction is defined just as
before; this time, we want T3/�0 to have minimal degree at least D0. To �0, we associate
the labeling �0 ∼ Ber(�0) and we get the random forest F0 := clust(�0), where of course
�0 ≺ F0.

We want to build �1 in such a way that �0 ≺ �1 ≺ F0 and, ‘whenever possible’, the
components of the large-scale forest F0/�1 should have minimal degree at least D1. So
the goal in this second step is similar to that in the first step, when we wanted T3/�0 to
have minimal degree at least D0.

A key difference is that in the first step, we worked with the deterministic tree T3,
while now we have to deal with the random forest F0. We can immediately see that the
target degree goal cannot be reached for all components of F0/�1, as F0/�1 contains
finite clusters, whose minimal degree is always 1, because a finite tree always has leaves.
What about the infinite clusters? If there was a bi-infinite path among them, then for that
component, the target degree goal cannot be achieved for D1 > 2.

A key concept is a furcation vertex discussed in more detail in the next section. These
are the vertices whose removal splits their component into a forest containing at least
three infinite components. For example, a bi-infinite path contains no furcations at all. We
will see that simply because F0 is defined by an invariant random process, as soon as a
component contains a furcation at all, it contains enough to reach our target degree goal.
Invariance alone does not guarantee that the infinite clusters have furcations, as an invariant
process could split T3 into bi-infinite paths. Our process imitates Bernoulli percolations,
and we will see that the existence of furcations is guaranteed. These concerns will be taken
care of in the next section.

Now we can clarify for which components of the F0/�1 we can achieve the target
degree goal: those containing furcations, which will be called forking components. We
sketch what we do within a forking component. Of course, we need to do something with
the other components as well, but that is rather arbitrary.

If v is a furcation of F0(v), then by the finiteness of the �0 cells, �0(v) will also be
a furcation of F0/�0(v). Conversely, if �0(v) is a furcation of F0/�0(v), then there is
a vertex v0 ∈ �0(v) which is a furcation of F0(v). Let S be the collection of furcations
of F0/�0 and take the associated Voronoi partition Vor(S). This partition lives on the
large-scale forest F0/�0, but it gives a natural way to glue together the corresponding
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FIGURE 1. First, a forking tree F (v), together with a cell-partition �. Arrows represent infinite parts of
the tree, furcation vertices are denoted by solid dots. Furcation �-cells are shaded. Second, the partition

� there exists furc � � is also shown. Third, the large-scale tree F (v)/� there exists furc.

�0 cells into � there exists furc := glueVor(S)(�0). In � there exists furc, every cell within
a forking component contains some furcation, and the cells of � there exists furc remain
finite by the mass-transport principle. See Figure 1. This finiteness implies that in the
component F0/� there exists furc(v), every degree will be at least 3 (see what could go
wrong if the cells were not finite in Example 4.2). Now that all the degrees are at least 3,
we can repeat the same idea that we used in T3 to achieve an arbitrarily high target degree,
and this is how we get the new partition �1 with the properties that �0 ≺ �1 ≺ F0 and
that the forking components of the large-scale forest F0/�1 have minimal degree at least
D1. After this, we can proceed to the labeling �1 ∼ Ber(�1), define F1 = clust(�0, �1),
and continue in the same way. The sequence of labelings �0, . . . , �n, . . . has the property
that when we take their concatenation as the binary representation of a real � from [0, 1],
then � has un[0, 1] marginal.

To show that this labeling has infinite clusters, we need to prove that for any given
vertex r, the probability that r is in an infinite cluster is positive, say at least c > 0. To do
so, we will use Lemma 4.4 mentioned in the beginning of this section. Choose a sequence
ε0, ε1, . . . , εn, . . . such that

∏
i∈N(1 − εi) > c, and choose the target degree sequence

as D0 := D(ε0), D1 := D(ε1), . . . and so on. Then in the first step, we imitate a Ber( 1
2 )

labeling on a tree whose minimal degree is at least D(ε0), so the probability that the cell
�0(r) of r will end up within a forking cluster is at least (1 − ε0) and if that happens,
we can achieve our next target degree of D(ε1) for the component F0(r). Then for this
component, we will imitate a Ber( 1

2 ) labeling on the tree F0/�1(r) whose minimal degree
is at least D(ε1) so the cell �1(r) of r will stay within a forking cluster with probability at
least (1 − ε1) conditioned on the event that it stayed within an forking cluster after the first
labeling. Thus, the probability that r is within a forking cluster after the first two labelings
is at least (1 − ε0)(1 − ε1). Continuing in this way, the probability that r is within an
infinite cluster in each stage will be at least c and since the cells will increase, it implies
that r will be within an infinite cluster even when each label is taken into account.
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Why is this construction an FIID? By Lemma 2.2, if the forest �i is FIID, then the
labeling �i ∼ Ber(�i) is FIID as well. Moreover, as soon as a labeling L is FIID, the
indicator function whether or not a vertex v is a furcation of its component in clust(L) is
FIID itself (see the note on measurability related to furcations in the next section right after
Definition 4.1). Because of this, when we glue together some of the ‘old’ cells of �i to
build new cells so that each new cell will contain furcation. This gluing process again can
be realized as an FIID. The way we described the process, we need fresh randomness at
every stage, but as we already explained at the end of §1, the bits of a single real number
can be reorganized to obtain an infinite collection of infinitely many independent bits.
So, in fact, the measurable map corresponding to the intuitive description we give can be
constructed by using the i.i.d. labels provided originally.

4. Furcations
Furcation vertices will let us reach our target degree goal through Lemma 4.3, and we will
find trees containing them in Bernoulli clusters through Lemma 4.5.

Definition 4.1. If T is a tree, we say that v ∈ V (T ) is a furcation if after deleting v from
T, among the remaining components, there are at least 3 infinite ones. If a tree T has a
furcation, we will say that T is forking. When F is a forest and v ∈ V (F), then we will
also say that v is a furcation of F if it is a furcation of the subtree F(v) containing it.

This terminology follows [LP16] and is similar but not identical to the encounter points
of the landmark Burton–Keane argument which are known as trifurcations since.

Note that in a bounded degree tree, a vertex v is a furcation if and only if for any n ∈ N

there exist three paths, P1, P2, and P3, of length at least n which are all emanating from
v and are edge and (except for v) vertex disjoint. Thus, the indicator of a vertex being a
furcation is measurable, being the infimum of countably many measurable functions.

An infinite example for a tree without furcation is the bi-infinite path. The next example
shows trees whose furcations are arranged in an adversarial fashion and if S is the set of
their furcations, then the cells of Vor(S) are not finite. These examples are also worth
keeping in mind, as they would be obstacles to our target degree goals. However, they
simply cannot occur in an invariant process on a Cayley graph (as we have seen in the
application of the mass-transport principle).

Example 4.2. A ray emanating from v is a half-infinite path starting from v. Let T⊥ be a
tree (defined up to isomorphism) which has a unique vertex of degree 3 and all the other
degrees are 2 (that is, three disjoint rays emanating from a single vertex). As a further
example, consider the tree T⊥⊥ obtained from a bi-infinite path P by attaching to each
vertex v a ray Rv (which are not intersecting outside of P).

The following lemma can be proven by induction on r.

LEMMA 4.3. If C is a finite, connected subset of a tree and contains at least r furcations,
then after deleting C from the tree, among the remaining components, there will be at least
r + 2 which are infinite.
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Recall Theorem 3.2 which said that a Ber( 1
2 ) labeling of T4 has infinite clusters. This

implies that for a specific vertex v of T4, the probability that v will be in an infinite
cluster in a Ber( 1

2 )-labeling is positive. We, however, need forking clusters. We can get
their existence from Theorem 3.2 as follows.

LEMMA 4.4. For all ε > 0, there exists a D(ε) ∈ N such that if T is a tree whose
minimal degree is at least D(ε) and r is a distinguished vertex (the ‘root’) of T, then
in a Ber( 1

2 )-labeling of T, the cluster of the root r will be a forking one with probability at
least 1 − ε.

To see this, consider first the rooted tree (T , r) built from rooted copies (T1, r1), . . . ,
(TD , rD) of T4 (so Ti is a 4-regular tree and ri is one of its vertices and D will be fixed
later) by adding a new vertex r to this collection and make it into a tree by connecting r to
ri for all i (no other edges are added). For r to be in a forking cluster in a Ber( 1

2 )-labeling
of T, it is enough if there are at least three such (Ti , ri) so that ri in an infinite cluster of
the labeling restricted to Ti and r is connected to ri . The probability of this clearly goes to
1 as D → ∞. If D := D(ε) is chosen so that this probability is at least 1 − ε, then in a
tree whose minimal degree is at least D, we can take any vertex to be the root and embed
this (T , r) graph into it.

Choose a sequence ε0, ε1, . . . , εn, . . . ⊂ (0, 1) tending to 0 fast enough so that∏∞
n=1(1 − εn) > 0. Define Dn := D(εn) and use this sequence as the target degree in our

construction. We got immediately from Lemma 4.4 the following lemma.

LEMMA 4.5. If, as given above, a sequence (T1, r1), . . . , (Tn, rn), . . . of a rooted trees
is given, where the minimal degree of Tn is at least Dn, and each of these trees are
independently Ber( 1

2 )-labeled, then with positive probability, the roots of all of these trees
will be in a forking cluster simultaneously.

We add a more process-oriented corollary to this, which involves random rooted trees
(Tn, rn) which contains the previous (Tn, rn) trees as subgraphs by the constraint on their
minimal degree. At this point, the distribution of these random trees can be arbitrary as
soon as they satisfy the degree constraints. Assume that we start with a random rooted
tree (T0, r0) which has minimal degree at least D0, and we run the following process.
Label the vertices of T0 by a Ber( 1

2 )-labeling L0, and if the cluster of r0 in clust(L0)

is not forking, then stop; otherwise, generate a new random rooted tree (T1, r1) whose
minimal degree is at least D1, take a Ber(1/2)-labeling L1 of its vertices, and so on. Then,
with positive probability, the above process never stops and the generated sequence of
bits L0(r0), . . . , Ln(rn), . . . will be i.i.d., so the random real number whose bits are this
sequence has distribution un[0, 1].

Remark 4.6. For us, the distinction between an infinite and a forking tree is very important.
However, it is known from [LS99] that if λ is any Bernoulli percolation on any Cayley
graph, then its infinite clusters are indistinguishable by any invariant Borel property (which
includes that of being forking). Thus, as soon as there are forking clusters with positive
probability, we know that in fact all infinite clusters are forking. Our labelings are not
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immediately Bernoulli ones, but cooked up from them in a way that this theorem would
likely go through. However, we did not try to use this direction as what we need can be
obtained directly from the very basics of percolation theory on a tree.

In our construction, Bernoulli processes on large-scale forests (from Definition 2.5) will
be used, and with the aid of Lemma 4.5, we will find forking ones among its clusters. We
will put those clusters into use through the following lemma.

LEMMA 4.7. If � is an FIID cell-partition of T3 and F is an FIID subforest of T3 in such
a way that � ≺ F , and D is a positive integer, then there is cell partition furcD(�)

such that � ≺ furcD(�) ≺ F also holds, and whenever for a vertex v the tree F (v) is
forking, then the furcD(�)(v)-cell contains at least D furcations of F (v).

Proof. We first show that there exists a partition � there exists furc for which � ≺
� there exists furc ≺ F and whenever F (v) is forking, then � there exists furc(v) contains
at least one furcation of F (v). Let F� be the set of those �-cells which contain at least
one furcation of F . Our goal is achieved if we manage to glue �-cells within a forking
component to form bigger (but still finite) cells in such a way that every new cell contains
at least one ‘old’ �-cell from F�.

Voronoi cells on the large-scale forest are just right for this purpose. Move to the
large-scale forest F/� and build Vor(F�). This Vor(F�) is ‘almost’ the partition
� there exists furc we seek, except that it lives in F/� instead of F . We bring it back
to F in the obvious way as � there exists furc := glueVor(F�)(�). See Figure 1.

Note that the finiteness of the new cells are guaranteed by induction, as every new cell
either contains the distinguished finite subset which was an old cell from F�, or (in case
the F -component of a cell does not contain any furcation) the new cell is just equal to the
old one.

Now that we have � there exists furc, we can define furcD(�). Since every
� there exists furc- cell within a forking F -cluster contains at least one furcation, it
is enough if we manage to glue together � there exists furc-cells in such a way that
every new cell of a forking cluster contains at least D ‘old’ � there exists furc-cells. To
achieve this, we can use the same idea as in the very first step described in the high
level overview in constructing �0 and the associated large-scale tree T3/�0, but this
time, we work within the forking components of F/� there exists furc. In the large-scale
forest F/� there exists furc, every forking component has minimal degree at least 3. In
F/� there exists furc, select an FIID vertex set S where the minimal distance between
distinct vertices is at least 2D + 1 and S has at least one element in every forking
component of F/� there exists furc. In the corresponding Voronoi partition Vor(S), every
cell C belonging to a forking component of F/� there exists furc will contain at least
|BT3(o, D)| ≥ D many vertices of F/� there exists furc (o denotes an arbitrarily fixed
vertex of T3). Thus, we can define furcD(�) := glueVor(S)(�

there exists furc). The new
cells are finite again by induction.

An important property of the cell partition furcD(�) follows from Lemma 4.3 and
from the finiteness of the furcD(�)-cells: the minimal degree of any forking component
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of F/furcD(�) is at least D + 2. So Lemma 4.7 is a natural tool to achieve the
previously described target degree goals.

5. The main construction
This section is largely devoted to the proof of our main theorem.

First we define the FIID labeling � witnessing the truth of our theorem. We define
the sequence of cell-partitions �0 ≺ �1 ≺ · · · ≺ �n ≺ · · · ; this will give us also the
sequence of �i ∼ Ber(�i) labels, where, conditioned on �i , the label �i will be
independent from the previous labels. Of course, �i itself depends on {(�j , �j)}j<i .

Here, �0 and �0 are as defined before in §3. Assume that �0 ≺ · · · ≺ �n and
�0, . . . , �n are defined. Let Fn := clust(�0, . . . , �n), where (�0, . . . , �n) is the
{0, 1}n+1-label obtained by concatenating the �i terms.

We want to define �n+1 in such a way that �n ≺ �n+1 ≺ Fn, and if for a vertex v the
tree Fn(v) is forking, then the �n+1(v)-cell should contain at least Dn+1 furcations of
Fn. We use Lemma 4.7 for the pair �n ≺ Fn and define �n+1 := furcDn+1(�n). As we
mentioned at end of the previous section, we know by Lemma 4.3 that the minimal degree
of a forking component of Fn+1/�n+1 is at least Dn+1 + 2.

This concludes the construction of �0 ≺ · · · ≺ �n ≺ · · · and thus also that of �i ∼
Ber(�i), with the specification that, conditioned on �i , the �i must be independent of
the previous steps. This implies that for a any vertex o fixed in advance, the sequence
�0(o), �1(o), . . . of fair bits is i.i.d., and thus if we define �(o) to be the real number from
[0, 1] whose consecutive bits are �0, . . . , �n, . . ., then �(o) has distribution un[0, 1].
Thus, � has un[0, 1] marginals.

Now we turn to the proof of our main theorem.

Proof of Theorem 1.1. Because �n+1 ≺ Fn := clust(�0, . . . , �n), if we define
�∞(o) := ⋃

i∈N �i(o), then for any v1, v2 ∈ �∞(o) and m ∈ N, we have �m(v1) =
�m(v2). Thus, v1, v2 ∈ �∞(o) also implies �(v1) = �(v2), and thus �∞(o) will be
contained within a single cluster of clust(�). Moreover, if Fn(o) is a forking cluster,
then |�n+1(o)| ≥ Dn+1 as it contains at least Dn+1 furcation of Fn(o). So if Fi (o) is
forking for every i, then �∞(o) ⊃ �m(o) contains at least Dm element for any m, and
as Dm → ∞, this implies the part of Theorem 1.1 which claims the existence of an FIID
labeling �, for which clust(�) contains infinite clusters.

It indeed happens with positive probability that Fn(o) is forking for all n, because of the
corollary to Lemma 4.5 using the process of generating rooted trees. The correspondence is
as follows. Start with the rooted tree (T0, r0) := (T3/�0(o), �(o)) whose minimal degree
is greater than D0. Use our �0 ∼ Ber(�0) which is a Ber( 1

2 )-labeling of T0. Stop the
process if the cluster F0(o) of �0(o) is not forking, otherwise continue by creating the
next random rooted tree (F0/�1(o), �1(o)), whose minimal degree is greater than D1

(the way we use Lemmas 4.3 and 4.7, this minimal degree actually is at least D1 + 2).
In general, if the process has not stopped, then the rooted tree (Tn, rn) is constructed
as the random rooted tree (Fn/�n+1(o), �n+1(o)). Notice that—by the finiteness of the
cells—moving from the tree Fn(o) to its large-scale version Fn/�n+1(o) does not change
its being forking or not (while it increases its minimal degree), so the correspondence
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between our construction and the process oriented corollary to Lemma 4.5 is complete.
This finishes the proof that clust� contains infinite clusters with positive probability, and
thus by ergodicity, it contains them almost surely.

It is easy to modify the construction so that every cluster will be infinite. Let us define
a new �∞ labeling from � as follows: if T is a finite � cluster which is at distance 1
from at least one infinite � cluster, then, since T is finite, the collection C of such clusters
is finite, and thus T can randomly choose one of these infinite clusters choice(T ) ∈ C
(we say a few words about this at the end). Then we define a new FIID labeling �1 by
replacing the labels of the vertices of every such T by the �-label of choice(T ). Then
we can progressively do the same thing with �1 and obtain the new FIID labeling �2 and
so on. Thus, we get a sequence of FIID labelings �, �1, . . . with the property that for
any given vertex v, the sequence of labels �(v), �1(v), . . . is constant from one index (in
fact, it changes at most once), and thus its limit �∞(v) is well defined. If a finite cluster
is at distance r from an infinite one under the original � labeling, then the vertices of that
cluster will be in an infinite cluster of �r at the latest. So in �∞, there are only infinite
clusters. In our original � labeling, knowing whether or not the cluster of a vertex is finite
or infinite does not change the distribution of its �-label, the conditional distribution is
still un[0, 1], so �∞ still has uniform marginals.

Now we explain how a finite cluster T can choose one of its infinite neighbors. As we
can always access to new fresh randomness, we can obtain a random variable vote(u) ∼
un[0, 1] at every vertex u (independently from each other). Since T is finite, there are only
finitely many vertices of the whole tree which are at distance 1 from T and which are
themselves contained in an infinite cluster, so one of those, say w, had maximal vote(w).
Then let choice(T ) be the infinite cluster containing w.

We mentioned in §1 that [ChI10, Theorem 1.1] implies that the clusters in � and �∞
must be hyperfinite. Here we show their hyperfiniteness directly.

To see this for the �-clusters, notice that not only �∞(o) ⊂ clust(�) for any o, which
already means �∞ ≺ clust(�), but actually �∞ = clust(�) and �∞(o) is an increasing
union of the finite �n(o)s. To see this, consider an edge e connecting a vertex vin ∈
�∞(o) with vout �∈ �∞(o). Notice that for any i, the labels �i(vin) and �i(vout) are
independent, so they cannot be all equal. So e is deleted from clust(�).

To see the hyperfiniteness of the �∞-clusters, we reorganize the way we build them
using some new sequence of cell-partitions �•

n. For a finite �-cluster K, it is well defined
which is the infinite �-cluster goal(K) to which it finally will be attached, by �∞(K) =
�∞(goal(K)) = �(goal(K)); by being inside a tree, it is also well defined what is the
vertex m(K) of goal(K) which is closest to K. Moreover, K will be attached to an infinite
cluster at a certain stage indexed by the smallest i =: I (K) for which �i(K) = �∞(K).

We will reorganize the original �n partitions into a new one using these two parameters
I (K) and m(K). Extend these parameters to vertices in a natural way: for a vertex v
within a finite �-cluster K, let I (v) := I (K), m(v) := m(K), while if v is within an infinite
�-cluster, then let I (v) := 0, m(v) := v. The I index has the following property: if P is a
one-sided infinite path which stays completely within an infinite �∞-cluster and starts at
a vertex v whose �-cluster is already infinite, then I can only increase along P as we start
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from its starting point and move away from it. Moreover, if u1, u2 are vertices of P with
I (u1) = I (u2), then u1 and u2 are in the same �-cluster.

The cells of the new partition �•
n are built as follows: the vertices of an infinite �-cluster

K are partitioned into �n-cells. For a given �n-cell C within K, we collect together those
finite �-clusters K whose m(K) is in C and whose index I (K) is at most n to form a single
�•

n-cell. The finite �-clusters K for which I (K) > n will be individual �•
n-cells.

To define �•
n formally, introduce an auxiliary partitioning �◦

n so that for a vertex
�◦

n(o) := �n(o) if �∞(o) is infinite and �◦
n(o) := �∞(o) if �∞(o) is finite. Finally,

let us define

�•
n(v) :=

{
�◦

n(v) if I (v) > n,⋃{�◦
n(x)|I (x) ≤ n, �◦

n(m(x)) = �◦
n(m(v))} if I (v) ≤ n.

Then every �•
m(v)-class is finite because if it was infinite, then by Kőnig’s lemma,

we could find an infinite path P within �•
m(v) for which m(u) =: u0 would be the same

for every vertex u of P and this u0 would be the starting point of P. By definition of
the m(u) parameter, as we walk away from u0, we get out from the infinite �-cluster of u0

immediately, so I (u) > 0 for any vertex u �= u0 of P. However, by the definition of �•
m(v),

the index I (u) is at most m within it, so from one vertex w on, I is constant on P. However,
that would mean that the full infinite part of P after w is contained in a single �-cluster, so
that cluster would be infinite in the first place.

However, the increasing union of
⋃

m∈N �•
m(v) is exactly the �∞-cluster of v. To

see this, note that if u is in the �∞-cluster of v, then there will be some n such that
�n(m (u)) = �n(m(v)), so if j ≥ max{n, I (u), I (v)}, then u ∈ �•

j (v).

6. The case of finitary FIIDs
An FIID process is finitary if it can be defined with a code f : [0, 1]V → [0, 1]V which
determines the label of any vertex based on the source in a finite neighborhood of that
vertex. That is, for almost all ω ∈ [0, 1]V and each vertex v, there exists a random radius
r = r(ω, v) ∈ N, such that if ω1 has the same restriction to Br(v) as ω, then the label of v
is the same using either sources of randomness, that is, f (ω)(v) = f (ω1)(v). We will call
the smallest such r(ω, v) the level of v, and denote it by levf (v). If f has this property,
then we will call it finitary as well. To show that a given FIID is not finitary, it is not
enough to point out that a particular code used in its definition is not finitary as different
codes could determine the same process.

We will show that an FIID process which witnesses the truth of Theorem 1.1 cannot be
finitary. It was raised as an open question if there exists an FIID process on a non-amenable
group which is not finitary during the discussion of a talk by Ray and Spinka (to access the
talk, see [RS22], the talk is based on the paper [ARS21]), and our construction thus gives
an affirmative answer to this question. The label set in our process is the interval [0, 1],
and to our knowledge, the question if there exists a non-finitary FIID with a finite label set
on a non-amenable group is still open.

Let L be a finitary FIID labeling with un[0, 1] marginals. We will show that every cluster
of L is finite almost surely.
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Let us fix a finitary code f for L and assume that L is obtained using this f. If C is a
cluster of L, then we will call the set of its vertices whose level is minimal the base of C.
Let clust1(L) be the collection of those infinite clusters whose base is finite, and clust∞(L)

be the collection of those infinite clusters whose base is infinite. We will show that both
clust1(L) and clust∞(L) must be empty almost surely.

If clust1(L) was not empty, then we would get a contradiction with Lemma 2.3, since
the clusters of clust1(L) are infinite with finitely many distinguished vertices, from which
a single distinguished vertex can be picked uniformly.

To show that clust∞(L) is empty almost surely, let us partition it further, and for m ∈ N,
let clustm∞(L) be the collection of those clusters within clust∞(L) whose base consists
of vertices of level exactly m. Since this is a countable partition, it is enough to show
that clustm∞(L) is empty almost surely for any fixed m. If clustm∞(L) was not empty, then
infinitely many vertices had level m and the same label (the base of any cluster in clustm∞(L)

would be such a collection of vertices). In particular, there existed a pair of vertices whose
distance is at least 2m + 1, their level is m, and they had the same label. Since the possible
pairs of vertices form a countable set, it is enough to show that this has zero probability for
any fixed pair. Pick two vertices v1 and v2 whose distance is at least 2m + 1, conditioned
on levf (v1) = levf (v2) = m, their labels are independent, since Bm(v1) and Bm(v2)

are disjoint. If the event levf (v) = m has positive probability, then conditioned on it, the
distribution of the label of v still must be atomless, otherwise the unconditional distribution
could not be un[0, 1]. However, independent samples from an atomless distribution are
different almost surely.

Being finitary is a locality condition, and for other natural notions of locality, we
refer the reader to [MS22] (in their more refined framework, what we called finitary
above is called stop-finitary). Note also that the classic example of isomporhism between
Bernoulli shifts by Meshalkin ([M59]) is also a finitary one and that in [KS79], Keane
and Smorodinsky proved the existence of finitary isomorphisms between Bernoulli shifts
of the same entropy over Z, and thus strengthening Ornstein’s landmark theorem (for a
survey of finitary codings in this direction, see [S06]).
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