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Abstract
Accurate online estimation of the payload parameters benefits robot control. In the existing approaches, however,
on the one hand, only the linear friction model was used for online payload identification, which reduced the online
estimation accuracy. On the other hand, the estimation models contain much noise because of using actual joint tra-
jectory signals. In this article, a new estimation algorithm based on parameter difference for the payload dynamics
is proposed. This method uses a nonlinear friction model for the online payload estimation instead of the tradition-
ally linear one. In addition, it considers the commanded joint trajectory signals as the computation input to reduce
the model noise. The main contribution of this article is to derive a symbolic relationship between the parameter
difference and the payload parameters and then apply it to the online payload estimation. The robot base parameters
without payload were identified offline and regarded as the prior information. The one with payload can be solved
online by the recursive least squares method. The dynamics of the payload can be then solved online based on the
numerical difference of the two parameter sets. Finally, experimental comparisons and a manual guidance appli-
cation experiment are shown. The results confirm that our algorithm can improve the online payload estimation
accuracy (especially the payload mass) and the manual guidance comfort.

1. Introduction
Accurate payload dynamics benefit robot applications [1]. For instance, accurate payload dynamics can
provide strong priors for robot planning control [2, 3], safe interaction [4], and manual guidance [5, 6].

Generally, the payload parameters need to be identified experimentally. In addition, aiming at some
applications in industrial environments such as picking different payload frequently [7], the identifica-
tions have to be provided online [8]. In this area, Abiko et al. [9] proposed two online identification
methods for the payload parameters. One is the vibration motion method, which is to construct the iden-
tification model based on the velocity deviation of the base. However, this method needs to measure
both linear velocity and angular velocity of the base. The other is the reaction force method, which is to
construct the identification model based on the six-dimensional force deviation at the end of the robot.
It should be noted that this method requires the installation of an additional force/torque sensor. Kubus
et al. [10] developed an online method based on the recursive total least squares (RTLS) method [11].
Different from the recursive least squares (RLS) [12, 13], this method can take into account measure-
ment errors to obtain more robust estimation results. In order to cope with the influence of payloads
on the balance control of quadruped robots, Tournois et al. [14] proposed two iterative-based online
identification algorithms. However, neither two algorithms consider the friction model. Farsoni et al.
[15, 16] proposed an identification method based on Kalman filter [17] and RTLS. Firstly, the linear
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acceleration, angular velocity, and angular acceleration of the payload are estimated by the Kalman fil-
ter based on multi-rate quaternion [18]. Then, the inertial parameters of the payload are identified online
and in real time by the RTLS. Later, this team proposed an online payload identification method based
on collision-free path planning and motion decoupling [19]. When generating recognition trajectory, it
regards the operator as an obstacle and uses a mature obstacle avoidance algorithm [20] to avoid the
operator. Additionally, it requires information from visual sensors. Renner et al. [21] proposed an opti-
mization method based on ordinary least squares method for online payload identification. This method
constructs the optimization objective function by minimizing the torque errors [22] and uses the RLS
to solve the payload parameters online.

Another way to obtain payload parameters is by the dynamic identification method. In order to obtain
good dynamic parameter identification, the design of a suitable excitation trajectory [23, 24] is essen-
tial to fulfill the continuous excitation conditions for the observation matrix. A classic trajectory is the
Fourier series excitation trajectory designed by Swevers et al. [25]. Optimal trajectory parameters are
often obtained by optimizing the condition number of the observation matrix [26]. Recently, some
studies have demonstrated that incentive effects can be improved by optimizing the sub-matrix con-
dition number [27, 28]. Additionally, considering measurement noise covariance during optimization
and conducting the process iteratively can better capture the dynamic characteristics of the robot [29].
Furthermore, Scalera et al. [30] proposed an interval arithmetic method to deal with dynamics uncer-
tainties in alternative to the online identification of dynamic parameters. Swevers et al. [31] used a
maximum likelihood method to estimate the payload parameters based on periodic excitation. The lim-
itation of this method is that it introduces recognition errors as it ignores the dynamics of the last step.
To solve this problem, a classical method was proposed in refs. [32, 33]. It distinguished the contribu-
tion of the robot itself and the payload to the joint torques. The robot link parameters without load were
considered as the prior information for the online payload identification. However, the estimation results
in this method are biased. Later, this method was summarized in ref. [34]. Salah et al. [35] reproduced
the online method in refs. [32, 33] for medical applications. Afterward, Gaz et al. [36] proposed a static
method to identify the payload parameters. However, this method cannot obtain the inertia tensor of the
payload because it lacks the dynamic excitation. Rodriguez et al. [37] proposed an algebraic method for
online payload identification. This method assumes that the total mass of both the link and the payload
is concentrated at the end of the link. Then, it transforms the dynamic model to the frequency domain
for calculation and identification. Unfortunately, this method is only suitable for a single-link system. In
order to achieve accurate motion control, Hu et al. [38] proposed an adaptive control algorithm based
on generalized momentum for online payload estimation. However, because it sets physical constraints
and eliminates many unnecessary dynamic parameters, the accuracy of the torque reconstruction for the
robot is insufficient. Thereby, it can increase the cumulative errors of the payload estimation. Recently,
Xu et al. [39] have proposed an accurate offline payload identification method based on double weighting
technique, but this method cannot yet be applied to online payload identification because of its compu-
tation burden. The methods discussed above are all applicable to serial robots. The dynamic modeling,
evaluation, and analysis about parallel robots can be found in refs. [40–42].

The authors presented a table as below to compare the proposed work with similar research and
state-of-the-art studies identified in the literature review. As shown in the Table I, it can be seen that the
payload mass estimation error of the proposed method is the smallest one with respect to other alternative
approaches. Khalil et al. [33] and others [38] used the simple linear friction model. The friction model
was ignored or not used in refs. [36], [15], [12], and [43] because the joint torque sensors or F/T sensors
were used in these literature. To the best of the authors’ knowledge, a nonlinear friction model (2)
is applied to online payload estimation for the first time in this article. The nonlinear friction model
can effectively improve the accuracy of robot dynamic parameter identification, thereby improving the
accuracy of payload identification (especially for the mass). The methods in refs. [15] and [12] need
external sensors (such as IMU, F/T sensor) for payload estimation. However, other methods only use
the proprioceptive sensors to identify payload parameters, which can reduce the cost. Based on the
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Table I. Comparisons between the proposed method and other methods.

Method Payload mass If use nonlinear If use proprioceptive Convergence
source estimation error (%) friction model sensors only times
[33] 4.63% (reproduction

accuracy: 4.11%)
No Yes More than 10 s

[36] 1.29% (reproduction
accuracy: 0.92%)

No Yes More than 20 s

[15] 1.57% No No (IMU, F/T sensor) 6.89 s–12.37 s
[12] 1.00% No No (IMU, F/T sensor

etc.)
10 s

[38] 4.40% No Yes 8 s
[43] 5.48% No Yes 6.6 s–7.8 s
Proposed 0.04% Yes Yes 6.59 s

convergence time data presented in the literature, the proposed method has the least convergence times
which are about 6.59 s.

After the comparisons, the originality, novelty, and the advantage and disadvantage with respect to
alternative approaches are summarized here. The originality and novelty of this article is to derive a
symbolic relationship between the parameter difference and the payload parameters and then apply
it to the online payload estimation. In addition, a nonlinear friction model is used for online payload
estimation for the first time. The main advantage of the proposed method is to achieve higher online
estimation accuracy of the payload mass mL. In order to increase the online estimation accuracy, on
the one hand, a nonlinear friction model (2) was used instead of the linear one. On the other hand, the
commanded joint trajectory signals were introduced as the computation input instead of the actual ones.
The main disadvantage of the proposed method is that it cannot identify the accurate payload inertia
tensor enough online [Ixx,L, Ixy,L, Ixz,L, Iyy,L, Iyz,L, Izz,L], which is consistent with the disadvantage of these
alternatively online approaches by using proprioceptive sensors only.

Finally, based on the comparisons, the main contributions of this work are summarized as follows:
1) An online payload identification method without using external sensors is proposed, which is based

on the symbolic relationship between robot dynamic parameter differences and payload parameters.
2) Compared with other methods, the mass estimation accuracy of a payload can be significantly

improved by using the proposed method.
3) A nonlinear friction model (2) is applied to online payload estimation for the first time to increase

the identification accuracy in the proposed method.
The remainder of this article is organized as follows. Section 2 presents the preliminaries. Section 3

introduces the proposed method. Section 4 provides the experimental results. Finally, Section 5
concludes this article.

2. Preliminaries
The inverse dynamics of the robot with n rigid links by considering the motor dynamics can be written
as follows:

τ = (M(q) + Ia)q̈ + C(q, q̇)q̇ + g(q) + τ f , (1)

where q, q̇, q̈ ∈ �n×1 are joint position, joint velocity, and joint acceleration of robot, respectively. The n
is the degrees of freedom of the robot. M(q) ∈ �n×n and Ia ∈ �n×n are the inertia matrix and the equivalent
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moment of rotor, respectively. The gravity vector is g(q) ∈ �n×1. The centrifugal and Coriolis matrix is
C(q, q̇) ∈ �n×n. The joint torque vector is τ ∈ �n×1. The friction torque vector is τ f ∈ �n×1.

Compared with the classic linear friction model τf ,j = Fc,jsign(q̇j) + Fv,jq̇j + Bj [44], the nonlinear
friction model is more conducive to improving the identification accuracy of the robot dynamics [29,
45]. It is called a linear friction model because the model can be transformed into a linear product of
pure velocity terms and friction parameters, such as τf ,j =

[
sign(q̇j) q̇j 1

] · [Fc,j Fv,j Bj

]T. However, for
a nonlinear friction model, the nonlinear friction parameter will be included in the velocity term. For
example, a nonlinear friction model was used in this article as

τf ,j = (Fc,j + Fv,j|q̇j|αj )sign(q̇j) + Bj

= [
sign(q̇j) |q̇j|αjsign(q̇j) 1

] · [Fc,j Fv,j Bj

]T
,

(2)

where τf ,j is the friction torque of joint j in τ f . αj is the nonlinear friction parameter of joint j in α. Fc,j is
the Coulomb friction parameter of joint j. Fv,j is the viscous friction parameter of joint j. Bj is the friction
torque offset of joint j. Fc,j, Fv,j, and Bj are all the linear friction parameters.

Then (1) can be rewritten by considering (2) as follows:

τ = W(q, q̇, q̈, α)ϕ, (3)

where ϕ ∈ �14n×1 is the completed robot dynamic parameters. For j-th joint, ϕ j is equal to
[lj, mjrj, mj, Ia,j, Fc,j, Fv,j, Bj]T. lj is the inertia tensor vector which is equal to [Ixx,j, Ixy,j, Ixz,j, Iyy,j, Iyz,j, Izz,j].
Ixx,j, Iyy,j, and Izz,j are the moment of inertia of link j. Ixy,j, Ixz,j, and Iyz,j are the products of inertia of link
j. It can form the inertia tensor matrix Ij ∈ �3×3 with respect to frame j. mjrj is the first moment vector
which is equal to

[
mjrx,j, mjry,j, mjrz,j

]
. The link mass is mj. rx,j, ry,j, and rz,j are the position of link center

of mass (CoM) on X axis, Y axis, and Z axis, respectively.
According to Gautier and Khalil and others [46–49], ϕ has some unidentifiable parameters, and

they can be identified by the combined form. After deleting or regrouping these parameters, (3) can be
modified as follows:

τ = Y(q, q̇, q̈, α)π , (4)

where π ∈ �p×1 is the base parameter set and p is the number of base parameters. W(q, q̇, q̈, α) ∈ �n×14n

is the rank-deficient regressor because of the linearly correlated columns. Y(q, q̇, q̈, α) ∈ �n×p is with
full rank after eliminating them. In order to simplify the expression, the regressor can be represented by
the first letter. For example, W(q, q̇, q̈, α) and Y(q, q̇, q̈, α) can be represented as W and Y , respectively.

3. The proposed algorithm
3.1. Algorithm details
Assuming that the payload was rigidly connected to the robot flange, the dynamic equation of robot with
payload can then be written by

τ b = Ybπ b = Ybπ a + WLϕL + W f �ϕf , (5)

where subscript a means the case without payload and subscript b means the case with pay-
load. Therefore, π a and π b mean the base parameters of the robot without payload and that
with payload, respectively. Yb is the regressor matrix corresponding to π b. τ b is the measured
joint torques of the robot with payload. ϕL ∈ �10×1 is the payload parameters, that is, ϕL =
[Ixx,L, Ixy,L, Ixz,L, Iyy,L, Iyz,L, Izz,L, mLrx,L, mLry,L, mLrz,L, mL]T. mL is the payload mass. rx,L, ry,L, and rz,L are the
position of payload CoM on X axis, Y axis, and Z axis, respectively. Ixx,L, Iyy,L, and Izz,L are the moment of
inertia of payload. Ixy,L, Ixz,L, and Iyz,L are the products of inertia of payload. The corresponding payload
regressor matrix is WL ∈ �n×10. �ϕ f ∈ �3n×1 is the linear friction variations due to the payload dynamics,
and the corresponding regressor matrix is W f ∈ �n×3n.
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The difference between the base parameters with payload and the ones without payload can be
calculated by

ε= π b − π a, (6)

where ε ∈ �p×1 is the parameter difference.
The symbolic expressions of π a and π b have been derived in the appendix. Then, the parameter

difference ε can be computed by (6) and the nonzero elements εnz in ε can be then extracted. As shown
in the appendix, it can be found that there is a linear relationship between ϕL and εnz. Therefore, once the
numerical results of εnz were solved, the ϕL could be then solved according to this relationship. In order
to compute ε and εnz, π a and π b need to be identified. In fact, π a can be identified offline in advance by
the least-squares method. Then, the remaining problem is how to solve π b online. In this paper, the RLS
method [10] is used to solve π b online. The specific implementation process of the proposed algorithm
is shown below.

Firstly, the regressor matrix Yb can be computed by the commanded joint data at each sampling
moment, namely

Yb = Yb(qd, q̇d, q̈d, αa), (7)

where qd, q̇d, q̈d ∈ �n×1 is the commanded joint position, commanded joint velocity, and commanded
joint acceleration, respectively. αa is the nonlinear friction parameters of the robot without payload,
which was identified offline in advance with π a together.

Then, the gain matrix K∗ ∈ �p×n at each sampling moment can be computed by

K∗ = P∗YT
b (ξ1 + YbP∗YT

b )−1, (8)

where P∗ ∈ �p×p is the covariance matrix. ξ is the forgetting factor which is a positive scalar. 1 is a
properly sized identity matrix.

The torque residual vector e ∈ �n×1 at each sampling moment can be computed by

e = τ b − Ybπ b. (9)

Afterward, the base parameters π b can be updated by

π b = π b + K∗e, (10)

where the initial value of π b is π a.
The covariance matrix P∗ can be updated by

P∗ = P∗ − K∗YbP∗, (11)

where the initial value of P∗ is an identity matrix.
The final solution of the iterative process is the base parameters of the robot with payload, namely, π b.

Since the base parameters of the robot without payload π a can be obtained in advance through offline
identification, the RLS iteration is mainly to solve π b. Once π b converges and is solved, the above
iterative calculation process can end. Then, the payload parameters can be estimated by the derived
symbolic relationship between the base parameter difference and payload parameters in the appendix.
The numerical results of ε can be solved by (6), and the nonzero elements εnz can be extracted from ε.
According to the symbolic expressions of εnz in the appendix, the following six payload parameters can
be directly calculated by

Ixy,L = εnz,17, Ixz,L = εnz,18, Iyz,L = εnz,19,

Izz,L = εnz,20, mLrx,L = εnz,21, mLry,L = εnz,22.
(12)

where εnz,17, εnz,18, εnz,19, εnz,20, εnz,21, and εnz,22 are the 17-th, 18-th, 19-th, 20-th, 21-th, and 22-th ele-
ments in εnz, respectively. As explained above, εnz is the non-zero element vector of ε and its symbolic
expressions have been shown in the appendix.

Then, the payload mass mL can be calculated by the following relationship:[
a3, a4, d5

] · mL = [
εnz,5, εnz,9, εnz,12

]
, (13)
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where a3 and a4 are the link lengths of link 2 and link 3, respectively. d5 is the joint distance between
joint coordinate 4 and joint coordinate 5. They are all the kinematic parameters of the UR10 robot. εnz,5,
εnz,9, and εnz,12 are the 5-th, 9-th, and 12-th elements in εnz, respectively.

When mL was solved, the mLrz,L can be solved by

mLrz,L = −d6mL − εnz,15, (14)

where d6 is the joint distance between joint coordinate 5 and joint coordinate 6. εnz,15 is 15-th element
in εnz.

Once mLrx,L, mLry,L, mLrz,L, and mL were solved, the CoM (rx,L, ry,L, rz,L) can be obtained by the ratios
of them, such as rx,L = mLrx,L

mL
.

After that, Iyy,L can be solved by the linear equation as follows:
[
1, 1

] · Iyy,L = [
εnz,13 − 2d6mLrz,L − d2

6mL, εnz,14 − 2d6mLrz,L − d2
6mL

]
, (15)

where εnz,13 and εnz,14 are the 13-th and 14-th elements in εnz, respectively.
Finally, Ixx,L can be solved by

Ixx,L = εnz,16 + Iyy,L, (16)

where εnz,16 is the 16-th element in εnz.

3.2. The overall algorithm
In order to explain the proposed algorithm better, the pseudo-code of the proposed algorithm was shown
below. The input of the algorithm include two parts. One part is the base parameters π a and the nonlinear
friction parameters αa of the robot without payload, which have been identified offline in advance. The
other is the measured joint torques τ b, the commanded joint position qd, the commanded joint velocity
q̇d, and the commanded joint acceleration q̈d of the robot with payload at each sampling moment. The
output of the algorithm is the inertial parameters of the payload ϕL. The proposed algorithm mainly
includes three steps. The first step is initialization. The forgetting factor ξ , the covariance matrix P∗, and
the base parameters π b of the robot with payload should be initialized. The initial value of forgetting fac-
tor ξ is set to 100. The initial value of covariance matrix P∗ is set to 10 times p × p identity matrix. The
initial value of base parameters with payload π b is set to the one without payload π a. The second step is
the RLS iteration to solve π b. When the robot tracks an excitation trajectory, π b can be computed online
in real time by the RLS method (namely, the while loop) until it converges. If π b has not converged, the
regression matrix Yb can be first computed according to (7). Then the gain matrix K∗ can be computed
by (8). Afterward, the joint torque residual vector e can be computed by (9). Finally, the base parameters
π b and covariance matrix P∗ can be updated through (10) and (11), respectively. Once π b has reached
the convergence condition, the iteration process ends. The convergence condition is that the consecutive
times for �πb,max < 0.005 are more than 300. �πb,max is the maximum absolute difference of the esti-
mated inertial base parameters such as πb,31 ∼ πb,36 at adjacent sampling moments. At the k-th sampling,
�πb,maxk can be computed by �πb,maxk = max(�πb,31k, �πb,32k, �πb,33k, �πb,34k, �πb,35k, �πb,36k). max( · )
is a function to find the maximum value among the input. For example, �πb,31k can be computed by
�πb,31k = |πb,31k − πb,31k−1|, where πb,31k represents the estimated πb,31 at k-th sampling. The third step
is to solve the payload parameters online by using the symbolic relationship between the parameter dif-
ference and the payload parameters. Once π b was solved, the numerical results of parameter difference
ε can be solved by (6). According to the derivation in the appendix, it can be found that there exists a
linear relationship between parameter difference and the inertial parameters of the payload. Based on
this algebraic relationship, the inertial parameters of the load can be quickly solved. After extracting
the nonzero elements εnz from the parameter difference, the payload parameters ϕL can be calculated by
(12)–(16). For example, according to the symbolic expressions of the nonzero elements of parameter
difference in the appendix, Ixy,L, Ixz,L, Iyz,L, Izz,L, mLrx,L, and mLry,L can be first solved by (12). The payload
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Algorithm 1. The proposed online payload identification algorithm
Require:

τ b, qd, q̇d, q̈d, π a, αa

Ensure:
ϕL

1: Initialize ξ = 100;
2: Initialize P∗ = 10 · eye(p, p);
3: Initialize π b = π a;
4: while π b not converge do
5: Solve Yb by (7);
6: Solve K∗ by (8);
7: Solve e by (9);
8: Update π b by (10);
9: Update P∗ by (11);

10: end while
11: Solve ε by (6) and then extract εnz;
12: Solve Ixy,L, Ixz,L, Iyz,L, Izz,L, mLrx,L, and mLry,L by (12);
13: Solve mL by (13) and solve mLrz,L by (14);
14: Solve Iyy,L by (15) and solve Ixx,L by (16).
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Figure 1. Actual acceleration and command acceleration.

mass mL can be then solved by (13). Afterward, mLrz,L can be solved by (14). After that, Iyy,L can be solved
by (15). Finally, Ixx,L can be solved by (16).

The proposed algorithm considers the nonlinear friction coefficient αa when calculating the regres-
sion matrix. In fact, the nonlinear friction model (2) is beneficial to improve the identification accuracy
of π a [29, 39]. In addition, the proposed algorithm uses commanded joint trajectory data (qd, q̇d, q̈d) as
computational input rather than the actual joint trajectory data. This is because the commanded joint
acceleration signal has low noise. But the actual joint acceleration signals are obtained by performing
two differentials on the actual joint position, which will introduce too much noise as shown in Fig. 1
and reduce the identification accuracy of the payload. In fact, the commanded trajectory signals can
replace the actual ones as the calculation input because the commercial robots usually have a good tra-
jectory tracking accuracy. In this article, the command acceleration signals can be acquired from the
UR10 robot’s controller. The joint clearances and compliance of links might affect the accuracy of the
proposed method when applying the proposed method to other robot platforms with significant joint
flexibility (e.g., robots equipped with both harmonic drives and joint torque sensors) because they have
effects on the accuracy of dynamic modeling and identification. However, in this article, due to the high
stiffness of joints and links of UR10 robot, the effects of joint clearance and link compliance can be
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Joint torque prediction using identified dynamics of UR10 robot.

usually ignored in dynamic modeling [50]. For example, in this article, the identified dynamics can be
used to predict the measured torques accurately as shown in Fig. 2, and the root mean square errors
(RMSE) are shown in Table II.

4. Experiments
4.1. Experiment platform
The platform used in this paper is UR10 robot. The kinematic frames of the robot is shown in Fig. 3
and the modified DH (MDH) parameters are listed in Table III. The UR10 robot is controlled by a C++
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Table II. RMSE of torque errors between predicted torques and measured torques.

Index Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Unit
RMSE 3.7817 4.1789 3.0339 1.7334 1.0670 0.9896 Nm

Figure 3. The kinematic frames of UR10 robot (n = 6 and p = 58).

and Python interface ur_rtde [51]. It can receive data and control the robot by using the real-time data
exchange in the robot controller. In this article, the authors use the Python programming language to
code the robot. The host computer that controls the robot is a laptop with a Linux operating system. Its
CPU is i5-8250U-1.6 Ghz and the memory is 16 GB.

4.2. Data acquisition and data processing
The excitation trajectory for identification was based on Fourier series [25]. For the j-th joint, the
excitation trajectory equation of joint position qj is as follows:

qj(t) = qj,0 +
5∑

l=1

[
aj,l

ωf l
sin(ωf lt) − bj,l

ωf l
cos(ωf lt)] (17)

where both aj,l and bj,l are the excitation trajectory coefficients to be optimized, which are shown in
Table IV. ωf

2π
is the trajectory fundamental frequency, which is set to 0.1 Hz. The trajectory period is 10

s in this article. qj,0 is the offset constant of joint position, which is set to [0, −π/2, 0 − π/2, 0, 0].
As mentioned in the introduction, incentive effects can be improved by optimizing the sub-matrix

condition number of regressor [27, 28]. Additionally, considering measurement noise covariance during
optimization and conducting the process iteratively can better capture the dynamic characteristics of the
robot [29]. Therefore, the objective function is to minimize the condition numbers of the regressor and
its subregressors in this article.
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Table III. UR10 MDH parameters.

Joint j θ j(rad) dj(m) aj(m) αj(rad)

1 0 0.1273 0 0
2 −1.5708 0 0 −1.5708
3 0 0 0.6120 0
4 −1.5708 0.163941 0.5723 0
5 0 0.1157 0 −1.5708
6 0 0.0922 0 1.5708

Table IV. Trajectory parameters for online payload identification trajectories.

j 1 2 3 4 5 6
aj,1 0.0141 0.5953 0.3104 0.2154 0.1756 −0.9952
bj,1 −0.0380 0.1214 0.2227 −0.1627 0.2637 −0.3488
aj,2 −0.9433 −0.6218 0.1947 0.2919 0.6207 1.0164
bj,2 0.0870 −0.3031 −0.5874 0.7448 −0.5349 0.8982
aj,3 0.0123 0.0122 0.3561 −0.3335 −0.0351 0.0161
bj,3 0.0007 0.0144 0.3178 −0.5967 −0.0797 −0.1894
aj,4 0.0011 0.0253 −0.6303 0.1840 0.1186 −0.0023
bj,4 −0.0020 0.0854 −0.3873 −0.3257 −0.1270 −0.0219
aj,5 0.9158 −0.0109 −0.2308 −0.3578 −0.8798 −0.0349
bj,5 −0.0260 0.0200 0.3096 0.3532 0.3107 −0.1583

min
γ

‖10 · cond(Y∗
(γ )) + 5 · cond(Y∗

i (γ )) + cond(Y∗
g(γ )) + cond(Y∗

f (γ ))‖2

s.t.
[∑5

l=1
−bj,l

ωf l
,
∑5

l=1 aj,l,
∑5

l=1 ωf lbj,l

]
= 0

5∑
l=1

√
a2

j,l + b2
j,l

ωf l
≤ qj,max

5∑
l=1

√
a2

j,l + b2
j,l ≤ q̇j,max

5∑
l=1

ωf l
√

a2
j,l + b2

j,l ≤ q̈j,max

(18)

where γ is the optimization variable. Y∗
is the weighted regressor stacked by N joint trajectory data with

Y∗ =	
− 1

2
0 Y . Y is the stacked version of Y .	0 is the initial value of initial covariance matrix, which can

be computed by 	0 = R0·RT
0

N−p
. R0 is the initial torque residual which can be computed by R0 = τ − Yπ ols.

τ is the stacked version of τ . π ols is the ordinary least squares solution of π . Y∗
i , Y∗

g, and Y∗
f are the

inertia tensor sub-regressor, first moment vector sub-regressor, and linear friction sub-regressor of Y∗
,

respectively. qj,max, q̇j,max, and q̈j,max are the limit of joint position, limit of joint velocity, and limit of joint
acceleration, respectively. cond( · ) is a function to solve the condition number of the input.

One can refer to refs. [25, 29] for more details about the excitation trajectory optimization. The opti-
mized excitation trajectory with joint position, joint velocity, joint acceleration, and joint torque are
shown in Fig. 4, which can give the condition number of the stacked regressor matrix 79.67. As described
in ref. [34], the dynamic characteristics of a robot can be well excited if the condition number of regres-
sor is less than 100. Therefore, the optimized excitation trajectory in this article is well conditioned and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026357472400105X
Downloaded from https://www.cambridge.org/core. IP address: 3.145.16.20, on 14 Nov 2024 at 10:08:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026357472400105X
https://www.cambridge.org/core


2700 Tian Xu et al.

(a) (b)

(c) (d)

Figure 4. The optimized excitation trajectory for online payload identification.

adequate for exciting the whole dynamics of the robot. The rate of the real-time interface can be set to
125 Hz for CB-Series UR robot. For the online payload identification, no filtering is used for the sampled
joint trajectory data.

Because the UR10 robot has no joint torque sensors, the joint torques can be calculated by τ = Ki, in
which K is the joint drive gains and i is the motor currents. The K of UR10 robot has been identified by
the method in [52]. One can refer to our previous work [52] for more details because the identification
process of K is not the main contribution in this paper. The identified results of joint drive gains are
shown in Table V. In fact, the joint drive gains K refer to the product of the motor torque constant k, gear
ratio η, and current amplification factor ψ , namely, K = k · η ·ψ [53]. The identified joint drive gains
directly establish the relationship between joint torques and motor currents; therefore, the identified
results in Table V include the reduction ratio. For the offline identification of π a, the Butterworth filter
was used for the estimated joint torques, and the frequency filtering was used for estimating the joint
velocities and joint accelerations. The Butterworth filter order is set to 4, and the cutoff frequency is set
to 40 Hz.

4.3. Identification results
The π a and the αa of UR10 robot without payload have been identified offline in ref. [39]. Since the
identification process of both π a and αa is not the main contribution in this paper, only the identification
results of them are shown in Table VI, and the identification process is omitted. One can refer to our
previous work [39] for more identification details. When the π a and αa are ready, the online payload
identification can start. Firstly, we make the UR10 robot track the designed trajectory with a concen-
tric payload as shown in Fig. 5. The true values of the payload parameters are measured by the CAD
software. Then, the proposed algorithm starts running at the same time. Since the identification process
is performed online, no filtering is used to improve calculation efficiency. In addition, since the com-
manded trajectory signal has less noise, the commanded positions, the commanded velocities, and the
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Table V. Joint drive gains of UR10 robot.

K1 K2 K3 K4 K5 K6 Unit
14.73 14.33 11.55 11.25 11.50 11.50 Nm/A

Table VI. π a and αa of UR10 robot by offline identification1.

π a Value π a Value π a Value π a Value
πa,1 8.9808 πa,17 0.0395 πa,33 −0.0028 πa,49 15.1400
πa,2 −4.6873 πa,18 0.0314 πa,34 0.0096 πa,50 2.7746
πa,3 −0.0131 πa,19 0.0253 πa,35 −0.0048 πa,51 3.4578
πa,4 −1.0510 πa,20 0.0435 πa,36 −0.0048 πa,52 3.5335
πa,5 0.1458 πa,21 0.0118 πa,37 0.2141 πa,53 −0.3426
πa,6 6.4621 πa,22 0.2863 πa,38 −0.3865 πa,54 0.0582
πa,7 8.1662 πa,23 −0.0047 πa,39 −0.3508 πa,55 0.1780
πa,8 −0.0811 πa,24 0.0016 πa,40 −0.2697 πa,56 0.6453
πa,9 −2.1302 πa,25 −0.0008 πa,41 10.0037 πa,57 0.6725
πa,10 −0.0096 πa,26 −0.0142 πa,42 −0.1240 πa,58 0.5685
πa,11 −0.5125 πa,27 −0.0057 πa,43 5.1803 αa,1 0.5758
πa,12 −0.0379 πa,28 0.0017 πa,44 2.7800 αa,2 0.2723
πa,13 2.1103 πa,29 −0.0587 πa,45 2.0115 αa,3 0.6093
πa,14 3.8882 πa,30 0.0012 πa,46 1.7533 αa,4 0.9995
πa,15 −0.0026 πa,31 −0.0002 πa,47 21.6084 αa,5 0.8031
πa,16 0.0596 πa,32 −0.0013 πa,48 26.4096 αa,6 0.7209
1All the units are SI unit.

Figure 5. Concentric payload for online identification.

commanded accelerations are used to compute Yb. After online iteration calculation by RLS method,
the π b converged. In order to save space, the convergence process of part of π b is shown in Fig. 6. From
the figure, it can be seen that the base parameters πb,31 ∼ πb,36 converged at about 6.59 s because the con-
secutive times for �πb,max < 0.005 have exceeded 300 at that moment. Once π b converged, the payload
parameters can be estimated by using the symbolic relationship between the parameter difference and
the payload parameters, namely, (12)–(16). Since the calculation of (12)–(16) is simple and very fast,
therefore, the computation times for the online payload identification by using the proposed method are
about 6.59 s.

Once π b is solved online, the numerical results of ε can be computed by (6). Then, the nonzero
elements εnz can be extracted from ε according to the appendix. Afterward, the payload parameters can
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Convergence process of the part of π b during online payload identification.

be calculated online by (12)–(16). The identified results of ϕL by the proposed algorithm are shown in
Table VII. In addition, the identified results of ϕL by another two classical algorithms are also shown in
Table VII as comparison. The algorithm in ref. [33] is named as Algorithm 1 and the other one in ref. [36]
is named as Algorithm 2. The principle of Algorithm 1 is to use the changes between the joint torques
before and after loading the robot on the same trajectory. It distinguished the contribution of the robot
itself and the payload to the joint torques. The robot link parameters without load were considered as the
prior information for the online payload identification. However, the estimation results in this method
are biased. The principle of Algorithm 2 is based on the relationship between robot static coefficients
and inertial parameters of payload. However, this method cannot obtain the inertia tensor of the payload
because it lacks the dynamic excitation.

According to these data, it can be found that the identification error of the proposed algorithm is
0.04% for the payload mass, and the ones of Algorithm 1 and Algorithm 2 are 4.11% and 0.92%, respec-
tively. The proposed algorithm can improve the online identification accuracy of the payload mass by
about 103 times and 23 times compared with Algorithm 1 and Algorithm 2, respectively. Therefore, the
identification accuracy of the proposed algorithm is higher than that of Algorithm 1 and Algorithm 2
for the payload mass. For the CoM in Y axis of the payload, the proposed algorithm has the highest
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Table VII. Online identification results of the payload by three methods.

ϕ1
L Truth2 Algorithm 1 [33] Algorithm 2 [36] Proposed

mL 3.5256 3.3807 3.5581 3.5242
rx,L 0 −0.0145 −0.0069 −0.0213
ry,L 0 0.0082 −0.0068 0.0016
rz,L 0.0296 0.0577 0.0449 0.0516
Ixx,L 0.0064 0.1122 - 0.0023
Ixy,L 0 0.0077 - −0.0289
Ixz,L 0 −0.0012 - −0.0480
Iyy,L 0.0064 0.0557 - −0.0958
Iyz,L 0 0.0126 - 0.0265
Izz,L 0.0045 −0.1545 - −0.0501
1The units of mass, CoM, and inertia tensor are kg, m, and kg · m2, respectively.
2The true values were measured by the CAD software, which are relative to the frame x6y6z6 in Fig. 3.

identification accuracy. For the CoM in Z axis of the payload, the identification error of the proposed
algorithm (74.32%) is smaller than Algorithm 1 (94.93%) and higher than Algorithm 2 (51.69%). It can
be found that all the three algorithms cannot accurately identify the CoM of the payload online. This is
because the online payload identification uses a small amount of data to improve the computation effi-
ciency. Therefore, it is difficult to obtain the same identification accuracy of CoM with that of the offline
payload identification. For the inertia tensor of payload, both the proposed algorithm and Algorithm 1
are not accurate enough. Usually, it is not easy to accurately identify the inertia tensor of the payload
neither online payload identification nor offline payload identification, especially when the payload mass
is lighter than the robot mass [2, 39].

According to the experimental results, it can be found that the proposed algorithm has the high-
est online identification accuracy for the payload mass. The CoM online identification accuracy of the
proposed algorithm is better than Algorithm 1. Although the CoM online identification accuracy of
Algorithm 2 is higher than the proposed algorithm, the Algorithm 2 cannot identify the inertia tensor of
the payload online. Consistent with existing algorithms, both the proposed algorithm and Algorithm 1
have deficiencies in the online identification accuracy of payload inertia tensor.

As mentioned above, the nonlinear friction model is beneficial to improve the identification accuracy
of π a. And then π a affects the online identification accuracy of payload. As shown in Fig. 7, the nonlin-
ear friction model fits the estimated friction torque better than the linear one in both unloaded and loaded
conditions. The used linear friction model (green circle) is τf ,j = Fc,jsign(q̇j) + Fv,jq̇j + Bj [44]. The
parameters of this model for joint 2 is Fc,2 = 15.07, Fv,2 = 10.73, and B2 = 8.77 × 10−3 at the case without
payload. The parameters of this model for joint 2 is Fc,2 = 15.87, Fv,2 = 10.77, and B2 = 6.47 × 10−8 at
the case with payload. The used nonlinear friction model (red dot) is τf ,j = (Fc,j + Fv,j|q̇j|αj )sign(q̇j) + Bj,
namely, (2) [29, 45]. The parameters of this model for joint 2 is α2 = 0.2723, Fc,2 = −0.1240, Fv,2 =
26.4096, and B2 = 0.0582 at the case without payload. The parameters of this model for joint 2 is
α2 = 0.2603, Fc,2 = −0.5500, Fv,2 = 27.7899, and B2 = −0.1836 at the case with payload. Especially
when the joint velocity is close to zero, the linear friction model will introduce more fitting errors. As
shown in Table VIII, it can be found that the RMSE of the nonlinear friction model is smaller than that
of the linear one. Therefore, it benefits to improving the accuracy of online payload identification by
using a nonlinear friction model. In addition, it is worth explaining that αa was used as the input for
online payload identification. On the one hand, it is difficult to identify the nonlinear friction coefficient
αb with payload in each iteration online. On the other hand, the payload has little effect on the nonlinear
friction coefficients except for joint 3 as shown in Table IX. In order to compute the estimated friction
torques, the identified friction parameters in π are firstly set to zero, then the torques related to the
inertial component in π can be subtracted from the measured torques [54]. For example, the estimated
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(a) (b)

(c) (d)

Figure 7. Comparison between linear friction and nonlinear friction in joint 2 of UR10 robot without
and with payload.

friction torques τ̂f = τ − Y ·
[
π̂ i

T, 0T
]T

, in which τ̂f is the estimated friction torques, τ is the measured
joint torques, π̂ i is the identified inertial parameter component in π .

The temperature range of the robot joints at which the experiments are performed is shown in Fig. 8.
The authors make the robot to execute the online identification excitation trajectory 10 times and collect
the dataset from the robot controller. There was an approximate 10 s interval between each movement.
Typically, before the online payload identification experiment, the authors first let the robot run 3 times
to ensure the robot’s status and the code being functioning properly. Therefore, the 10 datasets could
fully cover the temperature range of the experiment at that time. From the data in the graph, it can be
observed that the mean temperature range of all joints is between 25.5 ◦C and 30 ◦C.

4.4. An application of online payload identification
In this subsection, an application experiment of online payload identification is shown. Firstly, one uses
the proposed algorithm to identify the inertial parameters of a new payload online. Then, the identified
inertia parameters of the payload are compensated to the robot controller. Afterward, the teaching mode
of UR10 robot can be activated. In this mode, the user can drag the robot to move freely, and the guidance
forces can be recorded by a force/torque sensor. The force/torque sensor used in this work is the ATI
MINI45-E. The sensor has a diameter of 45 mm, a height of 15.7 mm, and a mass of 0.0917 kg. The
maximum force range is ±580 N in X-axis and Y -axis, ±1160 N in Z-axis. The maximum torque range is
±20 Nm in X-axis, Y -axis, and Z-axis. The force resolution of the sensor is 1/4 N. The torque resolution
of the sensor is 1/188 Nm in X-axis and Y -axis and 1/376 Nm in Z-axis. Since the force/torque sensor has
a non-detachable connecting wire, it is inconvenient to identify it together with the payload. Therefore,
the payload is first identified online to prevent the connecting wire from being torn off when the robot
executes the excitation trajectory. Then, the force/torque sensor and the guidance handle are fixed to the
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Table VIII. RMSE1 of different friction models without and with payload.

Payload Friction Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
Without Linear 1.7499 3.0599 1.4170 0.3913 0.2965 0.3726

Nonlinear 1.3102 2.5186 1.1437 0.3914 0.2793 0.3325
With Linear 1.6726 4.7629 2.3821 0.4182 0.3712 0.3782

Nonlinear 1.1982 4.2579 1.8470 0.4176 0.3603 0.3333
1The unit of RMSE is Nm.

Table IX. The nonlinear friction coefficients α of UR10 robot without and with payload.

Payload α1 α2 α3 α4 α5 α6

Without 0.5758 0.2723 0.6093 0.9995 0.8031 0.7209
With 0.5430 0.2603 0.3984 0.9568 0.8151 0.6969

Figure 8. The mean temperature of each joint of UR10 robot during excitation motions.

end of the payload. After that, the manual guidance experiment can be carried out. In this application
experiment, the designed payload and the assembly scheme are shown in Fig. 9. The mass of both
new payload and the bolts is 3.223 kg after measurement. By using the proposed algorithm, the inertial
parameters of the payload are identified online. The identified mass is 3.237 kg and the error is 0.43%.
The identified CoM of the payload is [−0.024, −0.006, 0.045] m. The identified inertia tensor of the
payload is [0.006, −0.012, −0.069, −0.106, 0.031, −0.014] kg · m2. Since the UR10 robot does not
provide a compensation interface for the inertia tensor of payload, the user can only compensate the
mass and the CoM of the payload. In fact, the mass of the payload fixed at the end of the robot is usually
much smaller than the mass of the robot itself. On the one hand, this will lead to inaccurate estimation of
the inertia tensor of the payload. On the other hand, compared with the inertia tensor of the robot itself,
the inertia tensor of the payload has little contribution on the dynamics of the robot. It can be speculated
that UR robot manufacturer may not provide the compensation interface for payload inertia tensor due
to the above reasons.
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(a) (b)

Figure 9. New payload for the application experiment. (a) Payload. (b) Connection diagram.

(a) (b)

Figure 10. The rectangular guidance path for the UR10 robot.

After completing the online identification of the payload, the force/torque sensor and the guidance
handle are fixed to the end of the payload. Then, the user can drag the robot to move along the rectangle
path as shown in Fig. 10. Figure 10(b) depicts the position of the robot’s Tool Center Point (TCP) on
the XY plane of the experimental platform as shown in Fig. 10(a) when the author manually dragged the
robot end effector. The TCP position of robot is sampled from the robot controller. At the same time,
the guidance forces/torques and motor currents of robot are recorded as shown in Fig. 11. The mean
and variance of the guidance forces without/with payload compensation are plotted in Fig. 12. From the
figure, it can be seen that, compared with the ones without payload compensation, the mean of guid-
ance forces with payload compensation can be reduced by 12.99%, 25.75%, and 44.24% in X-, Y-, and
Z-axis, respectively. Similarly, after compensating for the payload, the variance of guidance forces can
be reduced by 51.84%, 56.83%, and 64.58% in X-, Y-, and Z-axis, respectively. The variance of force

in Fig. 12(b) is defined by σ 2 = 1
M

M∑
i=1

(xi − μ)
2, in which M is the data number, xi is the measured force
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(a) (b)

(c) (d)

Figure 11. Measured TCP forces/torques and motor currents of UR10 robot without and with payload
compensation during the rectangular guidance path. (a) Measured joint currents without payload com-
pensation. (b) Measured forces/torques without payload compensation. (c) Measured joint currents with
payload compensation. (d) Measured forces/torques with payload compensation.

(a) (b)

Figure 12. Measured TCP force in manual guidance application experiments along rectangular path.
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vector, and μ is the mean value of measured force vector. It can be found that the guidance forces (espe-
cially in Z-axis) are significantly reduced with payload compensation. It is because additional forces
are needed to balance the payload gravity if the payload parameters are not compensated. However, the
robot controller can increase currents to counteract the payload gravity once the payload parameters are
compensated. Therefore, the user will feel that the robot becomes light during the guidance process.
The experimental results show that the proposed algorithm can identify accurate payload parameters
online (especially the payload mass), and the guidance comfort can be improved by compensating the
identified payload parameters.

Based on our experience, it is not easy to drag the UR10 robot in teaching mode to make its end-
effector track the rectangle in Fig. 10(b). This difficulty is unrelated to compensating for the dynamic
of the load. One possible reason is that the UR10 robot lacks joint torque sensors, which makes it less
smooth and easy to drag its end effector to track the rectangle in Fig. 10(b). In fact, whether compensating
for load dynamics only affects the amount of force applied by the user during the dragging process. For
instance, when load dynamics are not compensated for, more force is required for dragging, whereas
when load dynamics are compensated for, less force is needed, as indicated by the data in Fig. 12. It is
worth noting that the force/torque sensor used in this work was solely employed for quantitative analysis
of dragging forces and was not utilized for any algorithm design and integration. In the teaching mode
of the UR10 robot, the force/torque sensor was merely employed to record the forces applied by the user
while dragging the robot’s end effector.

5. Conclusions
In this paper, a symbolic relationship between the parameter difference and the payload parameters was
derived. Based on the symbolic relationship, an online method is proposed to identify the payload param-
eters. In order to increase the online estimation accuracy, on the one hand, a nonlinear friction model
(2) was used instead of the linear one. On the other hand, the commanded joint trajectory signals were
introduced as the computation input instead of the actual ones. Compared with other methods, the online
estimation accuracy of the payload mass mL can be significantly improved by the proposed method. For
example, the accuracy of payload mass estimated by the proposed method can be improved by 103
times and 23 times with respect to Algorithm 1 [33] and Algorithm 2 [36], respectively. According to
the experimental results, the computation times by using the proposed method are about 6.59 s. When
the identified dynamics of the payload were compensated, the manual guidance forces from the user
can be significantly reduced and the guidance comfort can be improved. In this paper, the mean of
guidance forces in Z axis was reduced by 44.24% compared with the case without payload dynamics
compensation.

How to accurately identify the inertia tensor of a payload online by using proprioceptive sensors only
is still a challenge that needs to be solved. One potential avenue for the future research is to reduce the
computational complexity of the online identification model. More joint data can be included for online
calculation, and then complex online filtering processing can be performed on the joint data. In the
future, the authors will continue to develop new online payload estimation methods and further verify
the new methods and the proposed one in this article on a domestic robot.
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Appendix
The symbolic expressions of π a of UR10 robot without payload are shown as follows:

πa,1 = Ia,1 + Izz,1 +
4∑

j=2

Iyy,j + 2d4m4rz,4 + a2
3m3 + (a2

3 + a2
4 + d2

4)
6∑

j=4

mj,

πa,2 = Ixx,2 − Iyy,2 − a2
3

6∑
j=3

mj, πa,3 = Ixy,2,

πa,4 = Ixz,2 − a3[m3rz,3 + m4rz,4 + d4

6∑
j=4

mj], πa,5 = Iyz,2,

πa,6 = Ia,2 + Izz,2 + a2
3

6∑
j=3

mj, πa,7 = m2rx,2 + a3

6∑
j=3

mj, πa,8 = m2ry,2,

πa,9 = Ixx,3 − Iyy,3 − a2
4

6∑
j=4

mj, πa,10 = Ixy,3,

πa,11 = Ixz,3 − a4m4rz,4 − a4d4

6∑
j=4

mj, πa,12 = Iyz,3,

πa,13 = Izz,3 + a2
4

6∑
j=4

mj, πa,14 = m3rx,3 + a4

6∑
j=4

mj, πa,15 = m3ry,3,

πa,16 = Ixx,4 − Iyy,4 + Iyy,5 + 2d5m5rz,5 + d2
5

6∑
j=5

mj, πa,17 = Ixy,4,

πa,18 = Ixz,4, πa,19 = Iyz,4, πa,20 = Izz,4 + Iyy,5 + 2d5m5rz,5 + d2
5

6∑
j=5

mj,

πa,21 = m4rx,4, πa,22 = m4ry,4 + m5rz,5 + d5

6∑
j=5

mj,

πa,23 = Ixx,5 − Iyy,5 + Iyy,6 + 2d6m6rz,6 + d2
6m6, πa,24 = Ixy,5,

πa,25 = Ixz,5, πa,26 = Iyz,5, πa,27 = Izz,5 + Iyy,6 + 2d6m6rz,6 + d2
6m6,

πa,28 = m5rx,5, πa,29 = m5ry,5 − m6rz,6 − d6m6, πa,30 = Ixx,6 − Iyy,6,

πa,31 = Ixy,6, πa,32 = Ixz,6, πa,33 = Iyz,6, πa,34 = Izz,6, πa,35 = m6rx,6,

πa,36 = m6ry,6, πa,37 = Ia,3, πa,38 = Ia,4, πa,39 = Ia,5, πa,40 = Ia,6,

πa,41 = Fc,1, πa,42 = Fc,2, πa,43 = Fc,3, πa,44 = Fc,4, πa,45 = Fc,5,

πa,46 = Fc,6, πa,47 = Fv,1, πa,48 = Fv,2, πa,49 = Fv,3, πa,50 = Fv,4,

πa,51 = Fv,5, πa,52 = Fv,6, πa,53 = B1, πa,54 = B2, πa,55 = B3,

πa,56 = B4, πa,57 = B5, πa,58 = B6.
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Assuming that the payload is rigidly connected to robot flange, the payload parameters are then
regarded as a part of the inertia parameters of the link n. Therefore, the inertial parameters of link n
with considering the payload can be expressed as follows:

m′
n = mn + mL, mnr′

n = mnrn + mLrL, l′n = ln + lL,

where ln, mnrn, and mn are the inertial parameters of link n without payload. lL, mLrL, and mL are the
payload parameters. l′n, mnr′

n, and m′
n are the inertial parameters of link n with payload. These parameters

are all expressed relative to the coordinate xnynzn.
Therefore, when the payload is fixed at the end of the UR10 robot, m6 can be substituted by m′

6 = m6 +
mL, m6rx,6 can be substituted by m6r′

x,6 = m6rx,6 + mLrx,L, m6ry,6 can be substituted by m6r′
y,6 = m6ry,6 +

mLry,L, m6rz,6 can be substituted by m6r′
z,6 = m6rz,6 + mLrz,L, Ixx,6 can be substituted by I ′

xx,6 = Ixx,6 + Ixx,L, Ixy,6

can be substituted by I ′
xy,6 = Ixy,6 + Ixy,L, Ixz,6 can be substituted by I ′

xz,6 = Ixz,6 + Ixz,L, Iyy,6 can be substituted
by I ′

yy,6 = Iyy,6 + Iyy,L, Iyz,6 can be substituted by I ′
yz,6 = Iyz,6 + Iyz,L, and Izz,6 can be substituted by I ′

zz,6 =
Izz,6 + Izz,L. Moreover, the linear friction variations caused by the payload need to be also considered.
Then, the symbolic expressions of π b of UR10 robot with payload can be obtained. In order to save
space, the equations of π b are omitted. According to the symbolic expressions of both π a and π b, the
difference between them can be easily computed by (6). Then, the nonzero elements εnz in ε can be
extracted as follows:

εnz,1 = (d2
4 + a2

4 + a2
3)mL, εnz,2 = −a2

3mL, εnz,3 = −a3d4mL, εnz,4 = a2
3mL,

εnz,5 = a3mL, εnz,6 = −a2
4mL, εnz,7 = −a4d4mL, εnz,8 = a2

4mL,

εnz,9 = a4mL, εnz,10 = d2
5mL, εnz,11 = d2

5mL, εnz,12 = d5mL,

εnz,13 = Iyy,L + 2d6mLrz,L + d2
6mL, εnz,14 = Iyy,L + 2d6mLrz,L + d2

6mL,

εnz,15 = −mLrz,L − d6mL, εnz,16 = Ixx,L − Iyy,L, εnz,17 = Ixy,L,

εnz,18 = Ixz,L, εnz,19 = Iyz,L, εnz,20 = Izz,L, εnz,21 = mLrx,L, εnz,22 = mLry,L,

εnz,23 = �Fc,1, εnz,24 = �Fc,2, εnz,25 = �Fc,3, εnz,26 = �Fc,4, εnz,27 = �Fc,5,

εnz,28 = �Fc,6, εnz,29 = �Fv,1, εnz,30 = �Fv,2, εnz,31 = �Fv,3, εnz,32 = �Fv,4,

εnz,33 = �Fv,5, εnz,34 = �Fv,6, εnz,35 = �B1, εnz,36 = �B2, εnz,37 = �B3,

εnz,38 = �B4, εnz,39 = �B5, εnz,40 = �B6.

In above, aj and dj are the MDH parameters in Table III. From the above derivation, it can be seen
that εnz is made up of ε1, ε2, ε4, ε6, ε7, ε9, ε11, ε13, ε14, ε16, ε20, ε22, ε23, ε27, ε29 ∼ ε36, and ε41 ∼ ε58.
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