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1 Introduction

Thomas Bayes was an eighteenth-century minister and mathematician who passed

his life in relative obscurity. Upon his death in 1761, his friend Richard Price found

among his papers a document entitled “AnEssay Towards Solving a Problem in the

Doctrine of Chances.” Price, recognizing the essay’s immense significance, saw to

its posthumous publication (Bayes, 1763). Bayes’s insights gave birth to what is

now known as Bayesian decision theory: a mathematical framework that models

reasoning and decision-making under uncertain conditions. Named after Bayes due

to his founding insights, the framework was first systematically articulated by

Pierre-Simon Laplace (1814/1902). Despite frequent vicissitudes in development,

reception, and application, the framework attracted increasingly many adherents

beginning in the early twentieth century and accelerating as the century progressed

(McGrayne, 2011). It currently enjoys great popularity, finding widespread use

within statistics (Berger, 1985; Gelman et al., 2014), philosophy (Earman, 1992),

machine learning (Murphy, 2023), robotics (Thrun, Burgard & Fox, 2005), physics

(Trotta, 2008), medical science (Ashby, 2006), and myriad other disciplines.

Bayesian decision theory originated as a theory of how people should oper-

ate, not a theory of how they actually operate. Nevertheless, cognitive scientists

increasingly use it to describe the actual workings of the human mind. Over the

past few decades, cognitive science has produced impressive Bayesian models

of mental activity. The models postulate that certain mental processes conform,

or approximately conform, to Bayesian norms. Bayesian models offered within

cognitive science have illuminated numerous mental phenomena, such as

perception, motor control, and navigation.

This Element has a two-fold purpose. First, it provides a self-contained intro-

duction to the foundations of Bayesian cognitive science. Second, it explores

what we can learn about the mind from Bayesian models offered by cognitive

scientists.

On the second front, my main concern is how Bayesian cognitive science

relates to mental representation. Just as the heart serves to pump blood and the

stomach serves to digest food, one of the mind’s principal functions is to

represent the world. For instance, I have various beliefs about Napoleon: that

he was born in Corsica, that he was an emperor, and so on. Thus, the mind

somehow reaches beyond itself to represent external reality. In that sense, the

mind is a representational organ. Historically, most philosophers have agreed

that the mind’s representational capacity is among its key features. However,

prominent scientists and philosophers throughout the past century have ques-

tioned whether representation deserves any place in the science of the mind. As

a result, controversy continues to fester over the explanatory value of mental

1Bayesian Models of the Mind
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representation. Representationalists such as Burge (2010; 2022), Fodor (1975;

1987; 2008), Peacocke (1994; 1999), Pylyshyn (1984), and Shea (2018) insist

that mental representation plays a vital role within the scientific explanation of

various core mental phenomena. Anti-representationalists as varied as Chemero

(2009), Churchland (1981), Field (2001), Quine (1960), Ramsey (2007), Stich

(1983), and van Gelder (1992) reject this position.

I will argue that Bayesian cognitive science assigns mental representation

a central explanatory role. Bayesian models of perception, motor control,

navigation, and other core mental activities posit representational mental states.

Explanations supplied by the models characterize both explananda and explan-

antia in thoroughly representational terms. So Bayesian cognitive science

presupposes the traditional picture of the mind as a representational organ. It

invests that picture with unprecedented empirical substance through well-

confirmed, mathematically rigorous models.

Sections 2 and 3 present key elements of Bayesian decision theory. Section 4

surveys how cognitive scientists use the Bayesian framework to model mental

activity. Section 5 articulates a realist stance towards Bayesian models of the

mind: when a Bayesianmodel is explanatorily successful, we have good reason to

believe that the model describes actual mental states and processes with at least

approximate accuracy. Sections 6 and 7 argue that representational properties of

mental states figure crucially in explanations provided by Bayesian cognitive

science. My conclusion: Bayesian modeling supports a representationalist

perspective on the mind.

My exposition contains more mathematics than most writings on philosophy

of mind. The technical content reflects my conviction that fully understanding

mental representation requires familiarity with the mathematical language used

by scientists to study mental representation. I hope that this Element will help

some readers achieve the requisite familiarity and will promote greater appre-

ciation for the benefits that such familiarity affords. To keep the text as access-

ible as possible, I have confined many technical details to the Appendix.

2 The Probability Calculus

The core notion of Bayesian decision theory is credence, or subjective

probability—a quantitative measure of the degree to which an agent believes

a hypothesis. I may have low credence that a meteor shower occurred five days

ago, higher credence that Seabiscuit will win the race tomorrow, and even higher

credence that Napoleon was born in Corsica. An agent’s credence in hypothesis

H is notated as P(H). Credences are psychological facets of the individual agent,

not objective chances or frequencies out in the world. The agent’s credences need

2 Philosophy of Mind
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not track any objective probabilities that inhere in mind-independent reality. To

illustrate, suppose that a biased coin has objective chance 0.3 of landing heads.

I may mistakenly believe that the coin is fair and therefore assign subjective

probability 0.5 to the hypothesis that it will land heads. Thenmy credence departs

dramatically from the objective chance of heads.

What is it to attach a credence to a hypothesis? What does it mean for an

agent to set P(H) = x as opposed to P(H) = y 6¼ x? Beginning with Ramsey

(1931) and de Finetti (1937/1980), many authors have tried to answer these

questions (Erikkson & Hájek, 2007). In practice, contemporary Bayesians

usually leave the questions unanswered. They take the notion of credence

as primitive, without providing noncircular necessary and sufficient condi-

tions for an agent to attach a credence to a hypothesis. This is the strategy

pursued within Bayesian cognitive science, and it is the strategy I will

pursue.

Bayesian decision theory was given a secure mathematical grounding

by Kolmogorov (1933/1956), who articulated axioms for probability in his

landmark Foundations of the Theory of Probability. The axioms are not

specific to subjective probability; they apply equally to objective probability.

Section 2 expounds basic aspects of Kolmogorov’s axiomatization, which is

sometimes called the probability calculus. Section 3 discusses how Bayesians

use the probability calculus to model uncertainty.1

2.1 Sets of Outcomes

Kolmogorov’s axiomatization uses set theory as a basis for probability theory.

The central notion of set theory is membership:

ω 2 A;

meaning that ω is a member of set A. We also say that ω belongs to A.

In Kolmogorov’s axiomatization, probabilities attach to sets of outcomes

drawn from an outcome space Ω. To illustrate, suppose we want to model

probabilities over the result of a player rolling a six-sided die. We may take

the outcome space to be

Ω ¼ 1; 2; 3; 4; 5; 6g;f

1 Readers seeking a more leisurely introduction to Bayesian decision theory have many options
pitched at varying levels of difficulty. Hacking (2001) is aimed at philosophers and makes
relatively modest mathematical demands. Stone (2013) occupies an intermediate level of diffi-
culty. Berger (1985) and Gelman et al. (2014) are standard statistical references and are more
mathematically demanding.

3Bayesian Models of the Mind
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that is, the set containing elements 1, 2, 3, 4, 5, and 6. The hypothesis that the

player rolls an even number corresponds to the set

2; 4; 6g:f

Similarly, suppose we seek to define probabilities over possible results of

a horse race. We can specify an outcome by describing the order in which the

horses finish. Ω contains each such outcome. The hypothesis that Seabiscuit

wins the race corresponds to the set

ω : Seabiscuit finishes before every other horse in ωg;f

that is, the set of outcomes in which Seabiscuit finishes before every other horse.

Philosophers commonly assume that probabilities attach to propositions. In

the scientific and mathematical literature, one rarely finds any appeal to proposi-

tions. Instead, researchers follow Kolmogorov in attaching probabilities to sets.

Under certain assumptions, one can recapture talk about “propositions” within

Kolmogorov’s setting. One can treat Ω as containing possible worlds, and one

can analyze propositions as sets of possible worlds (Stalnaker, 1984). These

assumptions are not mandated by Kolmogorov’s axiomatization. For example,

the simple outcome space 1; 2; 3; 4; 5; 6gf is allowed by Kolmogorov’s axio-

matization, even though its elements are not possible worlds.

When probabilities attach to sets of outcomes, elementary set-theoretic oper-

ations mimic the propositional operations negation, conjunction, and disjunction:

• Negation corresponds to complementation. The complement of set A is

the set Ac containing all elements that are in Ω but not in A. See Figure 1.

The hypothesis that the player rolls 1 is the set

1g;f

Figure 1 Ω is the rectangle. A is the ellipse. Ac is shaded gray.

4 Philosophy of Mind
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while the hypothesis that the player does not roll 1 is its complement

1gc ¼ 2; 3; 4; 5; 6g:ff

• Conjunction corresponds to intersection. The intersection of A and B is the

set containing all elements that are in both A and B. The intersection is written

as A∩B. See Figure 2. The hypothesis that the player rolls an even number

and the player rolls a number greater than 3 is the intersection

2; 4; 6g∩ 4; 5; 6g ¼ 4; 6g:fff

If we intersect together disjoint sets (i.e. sets that share no members), then the

result is the empty set ∅ containing no members. The hypothesis that the

player rolls an even number and the player rolls an odd number is

2; 4; 6g∩ 1; 3; 5g ¼ ∅ :ff

• Disjunction corresponds to union. The union of A and B is the set containing

all elements that are in A or B. The union is written as A∪B. See Figure 3. The

hypothesis that the player rolls 1 or the player rolls 4 is the union

1g∪ 4g ¼ 1; 4g:fff

By iteratively applying set-theoretic operations, Kolmogorov replicates the

formation of logically complex sentences or propositions.

In simple applications, such as a die roll or horse race, the outcome spaceΩ is

finite. Many applications require Ω to be infinite. For example, consider an

asteroid’s speed as it enters our solar system. There are infinitely many possible

Figure 2 A and B are overlapping sets. Their intersection A∩B is

shaded gray.

5Bayesian Models of the Mind
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asteroid speeds. If we want to model probabilities over possible asteroid speeds,

we need an infinite outcome space.

2.2 Axioms of the Probability Calculus

In probability theory, sets of outcomes are called events. The probability

calculus contains three axioms that govern the assignment of probabilities to

events:

Axiom 1: Probabilities are real numbers between 0 and 1,

where a real number is any number that can be expressed as a decimal. As

applied to subjective probability, Axiom 1 sets a scale for degrees of belief. 1 is

the maximal possible degree of belief. 0 is the minimum.When an agent assigns

probability 1 to an event, we say that the agent is certain of the event.

Axiom 2: PðΩÞ ¼ 1:

Intuitively: Ω exhausts all relevant possibilities, so it must receive maximal

degree of belief.

Axiom 3: Additivity.

To elucidate additivity, suppose thatH1 andH2 are disjoint events. For example,

letH1 be the hypothesis that Seabiscuit wins the race andH2 the hypothesis that

War Admiral wins the race. Consider the union H1 ∪H2: the hypothesis that

Seabiscuit wins the race or War Admiral wins the race. Additivity requires that:

PðH1 ∪H2Þ ¼ PðH1Þ þ PðH2Þ:

Figure 3 A and B are overlapping sets. Their union A∪B is shaded gray.

6 Philosophy of Mind
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In general, the probability that either of two disjoint events occurs is found by

adding together the probabilities assigned to the individual events. See Figure 4.

As discussed in Section A2, Kolmogorov ultimately uses a somewhat stronger

version of additivity than I have articulated here.

Axioms 1–3 can be applied to objective probabilities or to subjective prob-

abilities. Applied to objective probabilities, they are construed as constraints

that probabilities do in fact satisfy. Applied to subjective probabilities, they are

construed as constraints that probabilities should satisfy: an agent is rational to

the extent that her credences satisfy the axioms.2

The core tenet of Bayesian decision theory is that credences should conform

to the probability calculus axioms. Since Bayesians advance the probability

calculus axioms as normative constraints, we may ask why these particular

axioms are supposed to be rationally privileged.Why is someone who conforms

Figure 4 H1 and H2 are disjoint events. Additivity requires that their union (the

total shaded area) receive a probability equal to the sum of the probabilities

assigned to them individually.

2 An alternative formulation of the probability calculus centers on sentences rather than sets.
Whereas Kolmogorov assigns probabilities to sets of outcomes, the alternative formulation
assigns them to sentences drawn from a suitable language. One can develop probability theory
on this alternative sentential basis (e.g. Gaifman & Snir, 1982). Some Bayesian models found in
cognitive science, especially models of high-level cognition, use sentential rather than set-
theoretic axiomatization (Piantadosi & Jacobs, 2016). For example, sentential models have
been successfully applied to causality (Goodman, Ullman, & Tenenbaum, 2011), kinship (Katz
et al., 2008), and analogical reasoning (Cheyette & Piantadosi, 2017). However, set-theoretic
axiomatization underlies the vast bulk of research in Bayesian cognitive science, including all or
virtually all research into relatively low-level processes such as perception, motor control, and
navigation. This Element focuses exclusively on models that use Kolmogorov’s set-theoretic
axiomatization. Much of what I say about those models would apply, in suitably modified form, to
models that use sentential axiomatization.

7Bayesian Models of the Mind
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to the axioms rationally superior to someone who violates them? A large

literature, stretching back to Ramsey (1931) and de Finetti (1937/1980), seeks

to answer this question by providing a foundational justification for the prob-

ability calculus axioms (Easwaran, 2011a; Pettigrew, 2019; Pettigrew, 2020;

Weisberg, 2009). For present purposes, I simply assume that the probability

calculus axioms are rational constraints on credence.

From a mathematical perspective, we regard Axioms 1–3 as constraints on

a function P that maps each eventH to a real number PðHÞ. When P satisfies all

three constraints, it is called a probability distribution or a probability measure.3

2.3 Random Variables

Probability theory assigns a central role to random variables. Intuitively, a

random variable uses real numbers to model a specific aspect of a probabilistic

situation. To illustrate, suppose that the outcome space Ω contains possible

worlds in which an asteroid is hurtling towards Earth. Let X be a function that

carries each possible world to the asteroid’s speed in that world as the asteroid

enters our solar system (where speed is measured using canonical units, such as

meters/sec). So

X ðωÞ ¼ x

means that the asteroid has speed x in world ω as it enters our solar system. X is

a function fromΩ (a set of possible worlds) toℝ (the set of real numbers). More

generally, suppose we have an outcome space Ω. A random variable is

a function that carries each outcome ω to a real number x:

X ðωÞ ¼ x :

A rigorous definition of “random variable” is given in Section A3, but for

present purposes we may operate at a more intuitive level.

We can use a random variable X to define various events of interest.

Continuing the asteroid example, take the hypothesis that the asteroid’s speed

falls between a and b. To codify the hypothesis more formally, our first step is to

consider the interval ½a; b�. See Figure 5. Our second step is to collect together

all the possible worlds mapped by X into that interval. In other words, we

consider the set of possible worlds ω such that a ≤X ðωÞ ≤ b:

ω : a ≤X ðωÞ ≤ bg:f

3 These locutions are extensionally equivalent, although they have somewhat different connota-
tions. See Fristedt & Gray (1997, p. 12) for helpful discussion.

8 Philosophy of Mind
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This set is notated as X�1½a; b�. It contains those possible worlds where the

asteroid’s speed falls between a and b, so it codifies the hypothesis that

the asteroid’s speed falls between a and b. More generally, given a random

variable X defined on outcome space Ω, X�1½a; b� codifies the hypothesis that
X’s value falls between a and b. See Figure 6.

As a second illustration, consider the asteroid’s position when it hits

the earth’s surface. We can describe asteroid position using an ordered

pair ðx; yÞ drawn from a canonical coordinate system (e.g. longitude and

latitude). We now want a function X that maps each possible world ω to

an x-coordinate and a second function Y that maps ω to a y-coordinate.

The conjunction

X ðωÞ ¼ x& YðωÞ ¼ y

means that the asteroid lands at location ðx; yÞ in possible world ω. Taken

together, X and Y map Ω (a set of possible worlds) into ℝ2 (the set of ordered

pairs of real numbers). We may use X and Y to define various events of interest.

For example, consider the rectangle depicted in Figure 7. Call this rectangle

REC. We would like to codify the hypothesis that the asteroid lands within

REC. To do so, we collect together all the possible worlds where the asteroid

Figure 5 An interval ½a; b� lying in ℝ.

Figure 6 Ω is the rectangle. X�1½a; b� contains the outcomes mapped by X into

the interval ½a; b�.

9Bayesian Models of the Mind
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lands within REC. In other words, we consider the set of possible worldsω such

that ðX ðωÞ; YðωÞÞ belongs to REC:

ω : ðX ðωÞ; YðωÞÞ 2 RECg:f

This set contains exactly those possible worlds where the asteroid lands within

REC, so it codifies the hypothesis that the asteroid lands within REC. See

Figure 8.

Random variables are tremendously useful in probability theory. The under-

lying outcome space Ω is often hard to describe or otherwise resistant to direct

mathematical analysis. In particular, it is not easy to define probabilities directly

over sets of possible worlds. A random variable shifts attention from Ω to

a friendlier outcome space, such as ℝ orℝ2, greatly augmenting our expressive

and analytic power. I will illustrate in the next section.

2.4 Probability Density

Suppose we take ℝ as the outcome space, so that probabilities attach to sets of

real numbers. ℝ is a natural choice when we are modeling a variable that takes

real numbers as values. For example, if X is a random variable that models

asteroid speed, then the probability assigned to ½a; b� is the probability that the

asteroid’s speed falls between a and b.

It is often possible to specify a probability distribution over sets of real numbers

using a probability density function. A probability density function (pdf) is

a nonnegative function over ℝ such that the total area under the curve is 1.

Figure 9 illustrates with a sample pdf pðxÞ. When you see an image like

Figure 7 Rectangle REC contains ordered pairs ðx; yÞ.
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Figure 9, it is vital to remember that the numbers on the vertical axis are not

probabilities. They are probability densities. Probabilities are determined by

probability densities as follows: the probability assigned to an interval ½a; b� is
the area under pðxÞ stretching from a to b. In this manner, the pdf (a function

Figure 8 ω : ðX ðωÞ; YðωÞÞ 2 RECgf contains the outcomes mapped by

X and Y into REC.

Figure 9 The curve is the pdf. The area under the curve between a and b is the

probability assigned to ½a; b�.
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from real numbers to probability densities) determines a probability distribu-

tion (a function from sets of real numbers to probabilities).

The most famous example of probability density is the class of Gaussian

distributions, also known as Normal distributions. The pdf for a Gaussian distri-

bution has the familiar shape of a “bell curve.” A Gaussian pdf is completely

described by two parameters: itsmean and its variance (a measure of how “spread

out” the curve is from the mean). See Figures 10 and 11. Many variables encoun-

tered in nature are well-described, at least approximately, using a Gaussian pdf.

Bayesian cognitive scientists tend to be cavalier about the distinction

between probability and probability density. My own previous writings have

also treated the distinction quite sloppily. Nevertheless, the distinction is an

important one:

• Probabilities are assigned to sets whose members belong to an outcome space

Ω. Probability densities are assigned to real numbers.

• The probability assigned to an event is at most 1. In contrast, probability

density may be much greater than 1. A pdf can attain very high values, so long

as total area under the curve is 1.

As is customary in the literature, I notate probability using an upper case P and

probability density using a lower case p.

To see the distinction between probability and probability density in action,

consider a probability distribution P with a Gaussian pdf pðxÞ. pðxÞ assigns

densities to individual real numbers. P assigns probabilities to sets of real

numbers: the probability assigned to interval ½a; b� is the area under pðxÞ
stretching from a to b. For every real number s, we have

pðsÞ > 0:

Figure 10 A Gaussian pdf with mean m and variance σ2.
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What about the probability assigned to sgf , that is, the set whose sole member is

s? It is not hard to show that

Pð sgÞ ¼ 0:f

Intuitively: the probability assigned to sgf is the area under pðxÞ stretching from
s to s, and that area is simply 0. Thus, the probability density pðsÞ assigned to an
individual point s differs from the probability Pð sgÞf assigned to the event sgf .

Note that, even though each individual event sgf receives probability 0, we

nevertheless have

P ½a; b�ð Þ > 0

when a 6¼ b. This may at first seem surprising, but it does not violate the

probability calculus axioms. The axioms allow each event sgf to receive

probability 0 even while ½a; b� receives positive probability.
The notion of pdf generalizes to ℝ2. In the two-dimensional case,

a probability distribution assigns probabilities to sets containing ordered pairs

ðx; yÞ. For example, suppose we are modeling the asteroid’s position ðx; yÞwhen
it hits the earth’s surface. The probability distribution assigns a probability to

each rectangle: this is the probability that the asteroid’s position falls within that

rectangle. In the two-dimensional case, a pdf is a nonnegative function pðx; yÞ

Figure 11 Three Gaussian pdfs. The orange pdf has mean a. The blue and green

pdfs have mean b. The blue pdf has smaller variance than the green pdf. The

orange pdf has intermediate variance.
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overℝ2 such that the total volume under the curve is 1. The probability assigned

to a region is the volume under the curve in that region. See Figures 12, 13, and

14. A famous example is the class of two-dimensional Gaussian distributions,

which generalize one-dimensional Gaussians to ℝ2. See Figures 15 and 16.

Once again, it is crucial to distinguish between probability and probability

density. Probability densities attach to ordered pairs (x, y). Probabilities attach

to sets of ordered pairs.

Figure 12 A two-dimensional pdf. The pdf assigns a nonnegative value to each

ordered pair ðx; yÞ. Total volume under the curve is 1.

Figure 13 An alternative depiction of the pdf from Figure 12. Lighter shading

signifies higher probability density assigned to point ðx; yÞ.
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2.5 Conditional Probability

Conditional probabilities are fundamental to probability theory. Intuitively, the

conditional probability PðAjBÞ is the probability of A given B. For example, we

can consider the probability that Seabiscuit wins the race given that he is sick. In

elementary applications, conditional probability is defined through the ratio

formula:

PðAjBÞ¼df
PðA∩BÞ
PðBÞ :

See Figure 17. As Figure 17 illustrates, the unconditional probability of A may

differ significantly from the probability of A given B.

The ratio formula is only well-defined when PðBÞ > 0. Yet scientific practice

frequently requires conditional probabilities when PðBÞ ¼ 0. For example, we

might want conditional probabilities regarding how long an asteroid will take to

Figure 14 The pdf from Figure 12, restricted to the portion lying over

a rectangle in the ðx; yÞ plane. The volume under this portion of the pdf is the

probability assigned to the rectangle.

Figure 15 A two-dimensional Gaussian pdf.
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Figure 16 An alternative depiction of the pdf from Figure 15. Lighter shading

signifies higher probability density assigned to point ðx; yÞ.

Figure 17 To compute PðAjBÞ using the ratio formula, divide PðA∩BÞ by PðBÞ.
For heuristic purposes, assume that the probability assigned to a region is

proportional to the region’s area. Then Figure 17 depicts a case where PðAÞ is
much smaller than PðAjBÞ.
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reach Earth given that the asteroid has speed s when it enters the solar system.

Suppose that our probability distribution P over asteroid speed has a pdf p(x).

As indicated in Section 2.4, the probability assigned to the event sgf is 0:

Pð sgÞ ¼ 0:f

Thus, we cannot use the ratio formula to define probabilities conditional

on sgf . As this example illustrates, an adequate treatment must move beyond

the ratio formula, delineating conditional probabilities PðAjBÞ for cases where
PðBÞ ¼ 0.

When P is given by a two-dimensional pdf, a fairly straightforward notion

of conditional probability is available. Consider a two-dimensional pdf pðx; yÞ,
such as in Figure 12 or Figure 15. We can use pðx; yÞ to define a conditional

density pðyjxÞ. Intuitively, pðyjxÞ is a density over y conditional on X having

value x. For each possible value x of the random variable X, the conditional

pdf yields a one-dimensional pdf over y alone. Basically, pðyjxÞ is defined by

holding x fixed in pðx; yÞwhile allowing y to vary. The only hitch is that the area
under the resulting curve may not be 1, while the definition of pdf requires the

area under the curve to be 1. Hence, one must also divide by a normalization

constant to ensure that probabilities sum to 1. Figures 18 and 19 illustrate using

the pdf from Figure 12. To compute pðyjaÞ, we hold X fixed at value a while

allowing y to vary. The result is the cross-section curve depicted in Figure 18. To

convert the cross-section curve into a pdf over y, we must divide by

a normalization constant to ensure that area under the curve is 1. The normalized

curve is depicted in Figure 19. Figures 18 and 19 also depict the same procedure

a

x
y

b
c

Figure 18 Conditional densities for the pdf from Figure 12. To compute pðyjaÞ,
we fix X’s value at a and consider the resulting cross-section curve. Area under

the cross-section curve may not be 1. Thus, we divide by a normalization

constant to ensure that area under curve is 1. The result of dividing by the

normalization constant is depicted in Figure 19. Similarly for pðyjbÞ and pðyjcÞ.
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for two other possible values b and c of X. Figures 20 and 21 depict the same

procedure, this time applied to the pdf from Figure 15. See Section A6 for full

mathematical details.

3 Bayesian Decision Theory

Bayesian decision theory studies an idealized agent who assigns credences to

hypotheses. Bayesians claim that the agent’s credences should conform to the

probability calculus axioms. Thus, the axioms figure as norms. Bayesians

supplement the probability calculus axioms with two additional norms:

Conditionalization, which governs how credences change in response to new

a

b

c

Figure 19 Three one-dimensional pdfs over Y induced by Figure 18. The blue

pdf is pðyjaÞ, the orange pdf is pðyjbÞ, and the green pdf is pðyjcÞ. These three
curves are normalized versions of the three cross-section curves from Figure 18.

a

x
y

b
c

Figure 20 Conditional densities for the Gaussian pdf from Figure 15. This

figure depicts the unnormalized cross-section curves. To convert the cross-

section curves into pdfs, we divide by a normalization constant. The normalized

curves are depicted in Figure 21.

18 Philosophy of Mind

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108955973
Downloaded from https://www.cambridge.org/core. IP address: 3.145.157.51, on 31 Jan 2025 at 03:31:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108955973
https://www.cambridge.org/core


evidence; and expected utility maximization, which governs how credences

guide decision-making. I discuss Conditionalization in Sections 3.1–3.2 and

expected utility maximization in Section 3.3.

3.1 Conditionalization

Credences evolve. If I learn that Seabiscuit is sick, then I should lower my

credence that he will win the race. Intuitively, this is because I have a relatively

low credence that Seabiscuit will win the race given that he is sick. More

generally, suppose that I begin with credence PðHÞ and then learn E. To

conditionalize on E is to replace my former credence PðHÞ with PðH jEÞ. My

old conditional credence PðHjEÞ becomes my new unconditional credence in

H. PðHÞ is called the prior probability and PðHjEÞ is called the posterior

probability. We may write

PnewðHÞ ¼ PðHjEÞ;

to signify that my new credence in H is equal to my old conditional credence in

H given E.

The intuitive idea behind the rational norm Conditionalization is that, when I

receive new evidence E, I should form new credences given by

PnewðHÞ ¼ PðHjEÞ:

There is considerable variation in how philosophers formulate Conditionalization,

depending partly upon how they gloss “new evidence.” In Rescorla (2021b),

I review some options and give my own preferred formulation. For present

purposes, I remain as neutral as possible among alternative formulations.

a

b

c

Figure 21 The one-dimensional pdfs over Y induced by Figure 20. The blue pdf

is pðyjaÞ, the orange pdf is pðyjbÞ, and the green pdf is pðyjcÞ.
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However exactly we formulate Conditionalization, it is a diachronic norm: it

governs the evolution of credences over time. In contrast, the probability

calculus axioms are purely synchronic: they govern credences at a moment

of time. Note also that we must sharply distinguish between conditionaliza-

tion the operation and Conditionalization the rational norm. The former is

something an agent does: revise her credences a certain way. The latter is

a rational norm that requires an agent to perform the operation in certain

circumstances.

Aswith the probability calculus axioms, there is a large literature onwhy agents

should conform to Conditionalization (Greaves & Wallace, 2006; Lewis, 1999;

Rescorla, 2022; Skyrms, 1987; Weisberg, 2009). Why is someone who conforms

to Conditionalization rationally superior to someone who violates it? Obviously,

the answer may depend on how exactly one formulates Conditionalization. In

what follows, I will simply assume that Conditionalization as formulated some

way is a rational constraint upon credal evolution.

I have focused thus far on Conditionalization in cases where PðEÞ > 0, so that

the ratio formula applies. When PðEÞ ¼ 0, the ratio formula is not well-defined.

An agent who wants to conditionalize in such cases must look beyond the ratio

formula for the needed conditional probabilities. For many applications, the theory

of conditional densities suffices. To illustrate, suppose the agent begins with

credences given by a pdf pðx; yÞ. If she receives evidence that random variable

X has value x, then she can conditionalize using the conditional density pðyjxÞ. Her
new credences over random variable Yare then determined by pðyjxÞ. For example,

suppose the agent begins with credences given by the pdf from Figure 12 and

subsequently learns X’s value. If she learns that X has value a, then conditionaliza-

tion leads her to new credences overY depicted by the blue curve fromFigure 19. If

she instead learns thatX has value b, then her new credences overYare given by the

orange curve. If she learns that X has value c, then her credences over Y are given

by the green curve. In this manner, the theory of conditional densities helps us

generalize Conditionalization beyond cases where PðEÞ > 0.

3.2 Bayes’s Theorem

Bayesian decision theory is so-called because it assigns a central role to

a theorem first proved by Bayes. The theorem states that

PðHjEÞ ¼ PðHÞPðEjHÞ
PðEÞ : ð1Þ

Equation (1) expresses the posterior probability PðH jEÞ in terms of the prior

probability PðHÞ and the prior likelihood PðEjHÞ. The denominator PðEÞ
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serves mainly as a normalization constant to ensure that probabilities sum to 1,

so it is common to write the theorem as

PðHjEÞ ¼ k PðHÞPðEjHÞ; ð2Þ

where k ¼ 1=PðEÞ. One can also write the theorem as:

PðHjEÞ∝PðHÞPðEjHÞ;

which highlights that the posterior is proportional to the prior times the prior

likelihood:

posterior∝ prior � prior likelihood:

Bayes’s theorem is extraordinarily useful. Inmany situations, there is a natural prior

probability and a natural prior likelihood. The theorem then tells us how to compute

the posterior from the priors. See Section A7 for a proof of Bayes’s Theorem.

Bayes’s theorem must be sharply distinguished from Conditionalization.

Bayes’s theorem is a direct consequence of the probability calculus axioms and

the ratio formula. As such, it is purely synchronic: it governs the relation between

an agent’s current conditional and unconditional credences. In contrast,

Conditionalization is a diachronic norm. It governs how the agent’s credences at

an earlier time relate to her credences at a later time. Any agent who conforms to

the probability calculus axioms also conforms to Bayes’s theorem, but an agent

who conforms to the probability calculus axioms at each moment may violate

Conditionalization. Thus, one cannot derive Conditionalization from Bayes’s

theorem or from the probability calculus axioms. One must articulate

Conditionalization as an additional constraint upon credal evolution.

That being said, Conditionalization and Bayes’s theorem work together beau-

tifully. An agent whowants to conditionalize can use Bayes’s theorem to compute

the posterior PðH jEÞ and then adopt PðHjEÞ as her new credence in H. Her new

credence inHwill be higher to the extent that she already assigned high credence

to H and to the extent that H renders her new evidence E more likely.4

When PðEÞ ¼ 0, (1) is not well-defined because the denominator is 0.

Sometimes, though, a generalized analogue to (1) prevails. When a two-

dimensional pdf pðx; yÞ exists, one can prove:

pðxjyÞ ¼ k pðxÞpðyjxÞ; ð3Þ

4 In the scientific literature, the phrase “Bayes’s Rule” is used sometimes to denote
Conditionalization, sometimes to denote Bayes’s theorem, and sometime to denote an admixture
of the two.
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where k is again a normalization constant. pðxÞ serves as a prior density: it

codifies an agent’s initial credences over random variable X. pðyjxÞ is a density
for random variable Y conditional on X having value x. pðxjyÞ is a density for

X conditional on Y having value y: it serves as a posterior density. We may

rewrite (3) as:

pðxjyÞ∝ pðxÞpðyjxÞ: ð4Þ

This is the form of Bayes’s theorem most commonly used in scientific applica-

tions, including within Bayesian cognitive science.

We obtain a helpful visualization of (4) by holding y fixed and regarding

pðyjxÞ as a function solely of x. Viewed in this way, pðyjxÞ is called the

likelihood function or sometimes just the likelihood. Intuitively, the likeli-

hood is an initial attempt at forming a probability density over x. The initial

attempt takes into account evidence y but not the prior information encoded

by pðxÞ.5 Bayes’s theorem tells us how to combine the initial attempt pðyjxÞ
with the prior pðxÞ, yielding the posterior density pðxjyÞ. Figures 22 and 23

illustrate. In both figures, the posterior is a compromise between the prior

and the likelihood. In Figure 22, the likelihood is wide, so the posterior

remains fairly close to the prior. In Figure 23, the likelihood is narrow, so

it pulls the posterior far from the prior. For example, suppose that pðyjxÞ is
the conditional density of measuring speed y given that the asteroid has

speed x. Assuming noisy but unbiased measurement, the likelihood peaks

at y. If measurements are very noisy, then the likelihood is wide

(Figure 22), and the prior over asteroid speed exerts more influence on

the posterior. If measurements are less noisy, then the likelihood is narrow

(Figure 23), and the prior exerts less influence.

3.3 Expected Utility Maximization

The final key notion of Bayesian decision theory is utility: a numerical

measure of how much an agent desires an outcome. According to

Bayesians, agents should choose actions that maximize expected utility.

The expected utility of action a is a weighted average of utilities assigned

to possible outcomes, where the weights are probabilities contingent upon

performance of a. There are protracted debates about how to formulate

expected utility maximization more rigorously (Steele & Stefánsson,

5 The likelihood is not generally a pdf because the area under the curve need not be 1. However, one
can always normalize and convert the likelihood into a pdf, so we can regard the likelihood as an
“unnormalized” pdf.
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2016). We may leave it at an intuitive level. Scientific applications often

deal not with utility but instead with cost or loss. The goal is then not to

maximize expected utility but to minimize expected cost. For most purposes,

there is no substantive difference between a utility-based formulation and

a cost-based formulation: one converts a utility function into a loss function

by adding a minus sign, and vice-versa.

Figure 22 The likelihood peaks at the measured value y. The posterior mean is

intermediate between the prior mean and y. Intuitively, the posterior is

a compromise between the likelihood and the prior.

Figure 23 The prior is the same as in Figure 22. The likelihood once again peaks

at y but is narrower. As a result, the posterior is narrower and is pulled closer to

the likelihood. In the asteroid example, a narrower likelihood corresponds to

a case where speed measurements are less noisy. It makes intuitive sense that

less noisy measurements would exert more influence.
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In many statistical applications, the “action” is to estimate the value of

a random variable. The standard procedure is to choose a utility function that

favors selection of the true value and penalizes selection of other values. Often,

selecting a best estimate will amount to selecting the mode of the posterior

density, i.e. the value of x that maximizes the posterior density. There are also

cases where the best estimate differs from the mode. If the utility function

rewards estimates that are close to the true value but distinct from it, then the

best estimate may be quite distant from the mode if enough probability mass lies

away from the mode. Figure 24 illustrates: the mode is located in a region of

relatively small probability mass; an estimator that values being close to the

right answer will choose an estimate from the region of higher probability mass.

3.4 Implementation

Suppose we want a physical system (such as a computer or a robot) to implement

Bayesian inference. Our first task is to decide how the system will encode cre-

dences. A major hurdle is that infinitely many distinct probabilities must often be

encoded. For example, a pdf determines the probability assigned to each interval

½a; b�. There are infinitely many such intervals. A finite physical system cannot

explicitly enumerate the credence assigned to each interval. In other words, it

cannot explicitly list each individual probabilityP ½a; b�ð Þ. After all, a finite physical
system cannot explicitly list infinitely many distinct pieces of information. When

credences cannot be explicitly enumerated, theymust instead be implicitly encoded.

To illustrate implicit encoding, consider the class of Gaussian distributions.

Look again at Figure 10. As noted in Section 2.4, a Gaussian distribution is

completely described by two numbers: its mean and its variance. For that

Figure 24 A pdf where most probability mass lies far from the mode.
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reason, a physical system can encode a Gaussian distribution by recording its

mean m and its variance σ2. This is an example of parametric encoding: the

physical system encodes parameters that determine a probability distribution.

The system does not explicitly enumerate the credence attaching to each

interval ½a; b�—that would be impossible. Instead, the system records two

numbers (m and σ2) that determine the credence attached to each interval ½a; b�.
Parametric encoding is an option when the probability distribution is finitely

parametrizable, which is often but not always. A more generally applicable

encoding strategy features sampling. To illustrate, consider a physical system

that draws samples stochastically from the outcome space Ω. There is an

objective chance that the sampled outcome belongs to event A. We may

summarize objective chances through a function:

ChðAÞ;

where ChðAÞ is the objective chance that the physical system draws an outcome

belonging to A. The key idea behind sampling encoding is that these objective

chances can encode subjective probabilities (Icard, 2016). The subjective prob-

ability assigned to A is simply the objective chance that a sample belongs to A:

PðAÞ ¼ ChðAÞ:

The system encodes subjective probabilities via the objective probabilities

governing its sampling activity.

Parametric and sampling encoding are widely used in statistics (Gelman

et al., 2014), machine learning (Murphy, 2023), and other fields that employ

the Bayesian framework.

The next crucial task is to address computation of the posterior. In some special

cases, it is easy to compute the posterior from the priors. For example, when the

prior probability and the likelihood are Gaussian, the posterior is also Gaussian,

and its mean and variance are easily computable from those of the prior and the

likelihood. Special cases aside, computing the posterior may require resources of

time and memory beyond those available to a realistic agent (Kwisthout et al.,

2011). Look again at Bayes’s theorem (2). Multiplying PðHÞ and PðEjHÞ is easy.
The normalization constant k is another matter. It is possible in principle to

compute k from the prior probability and the prior likelihood, but the computation

requires evaluating a (potentially very long) sum of numbers.6 In practice, it may

be impossible to compute k exactly. A similar point applies to (3). Although k is in

6 Let H1;…;Hn be a collection of disjoint events whose union is Ω. The law of total probability, a
theorem of the probability calculus, states that PðEÞ ¼

X
n

PðEjHnÞPðHnÞ.
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principle computable from pðxÞ and pðyjxÞ, the computation may be impossible

in practice.

A computation is tractable when it can be executed by a physical system

with limited time and memory at its disposal. A computation is intractable

when it is not tractable. These definitions can be made mathematically precise,

but the present level of precision suffices for our purposes. The previous

paragraph may be summarized as follows: computation of the posterior is

not always tractable.7

The standard solution in Bayesian statistics is to find tractable algorithms that

approximately implement Bayesian inference. Even when we cannot exactly

compute the posterior, we can often come quite close—close enough for

practical purposes. Even when we cannot conform to the normative ideal

enshrined by Bayesian decision theory, we can often tractably approximate

the normative ideal.

One popular approximation strategy is called Markov chain Monte Carlo

(Murphy, 2023, pp. 493–536). MCMC algorithms use sampling to encode

a credal assignment that approximates the posterior. An MCMC algorithm for

approximating the posterior proceeds in discrete time stages:

t1; t2; t3; . . . ; tn; . . .

At each stage, a single sample is drawn. Sampling behavior at each stage is

governed by an objective chance distribution. Thus, we have a sequence of

objective chance distributions:

Ch1ðAÞ; Ch2ðAÞ; Ch3ðAÞ; . . . ; ChnðAÞ; . . .

Ch1ðAÞ is the objective chance at time t1 of sampling an outcome that belongs to

A.Ch2ðAÞ is the objective chance at time t2 of sampling an outcome that belongs

to A. ChnðAÞ is the objective chance at time tn of sampling an outcome that

belongs to A. Objective chances evolve as the algorithm proceeds, converging

asymptotically to the posterior: as the algorithm proceeds, ChnðAÞ grows ever
closer to the posterior probability assigned to A. After enough time has passed,

the system’s sampling behavior approximates the posterior quite well. See

Figures 25 and 26. There are general convergence results ensuring that, in

a wide range of cases, objective chances fairly quickly approach posterior

probabilities (Brooks et al., 2011).

7 Computational complexity theory studies the distinction between tractable and intractable com-
putation. See van Rooij et al. (2019) for general discussion of computational complexity theory in
relation to cognitive science.
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4 Bayesian Cognitive Science

Bayesian decision theory studies how agents should reason and make deci-

sions. Over the past few decades, cognitive scientists have increasingly used

the Bayesian framework to describe actual mental activity (usually human,

sometimes nonhuman). The core conjecture is that the mind copes with

uncertainty by allocating credence over a hypothesis space. Credences

evolve in response to sensory input, and they underwrite such tasks as

estimation and decision-making. Credal activity conforms, at least approxi-

mately, to Bayesian norms.

Some Bayesian models posit exact Bayesian inference. Other models posit

tractable approximations to the Bayesian ideal. I will discuss models of both

kinds. I emphasize three domains where the Bayesian research program strikes

Figure 25An illustration of MCMC approximation, for the pdf from Figure 12.

The orange dots are samples in the ðx; yÞ plane. Samples cluster in regions of

high probability.

Figure 26 An illustration of MCMC approximation, for the Gaussian

pdf from Figure 15.
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me as particularly noteworthy: perception (Section 4.1), motor control

(Section 4.2), and navigation (Section 4.3).8

4.1 Perception

How does the perceptual system estimate distal conditions based upon proximal

sensory input? For example, how does it estimate the shapes, sizes, and loca-

tions of nearby objects based upon retinal stimulations? Proximal sensory

stimulations underdetermine distal conditions: numerous possible distal condi-

tions can cause the same proximal stimulations. Moreover, sensory input is

corrupted by noise during both transduction and transmission to the brain.

Despite ambiguous and noisy sensory input, the perceptual system typically

forms highly accurate estimates of distal conditions.

Helmholtz (1867/1925) proposed that the perceptual system estimates distal

conditions through an unconscious inference. Bayesian perceptual psychology

develops Helmholtz’s proposal, postulating unconscious Bayesian inferences

executed by the perceptual system (Knill & Richards, 1996; Vilares & Kording,

2011; Rescorla, 2015a). A typical Bayesian model estimates a specific variable

(e.g. shape) based on one or more proximal sensory cues (e.g. shading). The

perceptual system starts with a prior probability over the distal variable and

a prior likelihood that relates the distal variable to proximal sensory input. Upon

receiving sensory input, the perceptual system computes the posterior (or an

approximation to the posterior) over the distal variable. On that basis, the

perceptual system forms a privileged estimate of distal conditions. In most

Bayesian models, the estimate is chosen through expected utility maximization.

In other models, the privileged estimate is chosen not deterministically but

stochastically. For example, the model from (Mamassian, Landy & Maloney,

2002) implements probability matching: estimates are chosen stochastically,

with objective probability matching the posterior.

A simple example of the Bayesian approach concerns perceptual estimation

of shape from shading. As Figure 27 illustrates, shading is an ambiguous cue to

shape. In principle, the stimulus on the left could result from a convex object lit

from overhead or a concave object lit from below. Despite the ambiguity, we

perceive the stimulus on the left as convex and the stimulus on the right as

concave. How does the perceptual system estimate shape based upon the

ambiguous evidence provided by shading? The dominant theory in perceptual

psychology has long been that the perceptual system somehow “assumes” that

8 Readers seeking a more comprehensive overview of the empirical literature might consult
(Griffiths, Kemp & Tenenbaum, 2008), (Chater & Oaksford, 2008), or (Ma, Kording &
Goldreich, 2023).
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light comes from overhead rather than below (Rittenhouse, 1786). This

theory translates naturally into a Bayesian setting. On a Bayesian approach,

the perceptual system estimates shape based on a prior over shapes, a prior

over lighting directions, and a prior likelihood that assigns a probability to

a given shading pattern conditional on the stimulus having a given shape

and the light coming from a given direction (Stone, 2011). The prior over

lighting directions favors overhead lighting directions. Consequently, the

posterior favors the convex interpretation of the left-hand stimulus from

Figure 27.

Bayesian models often posit that, when the perceptual system estimates the

value of distal variable X, the prior over X has a pdf pðxÞ. Models often also posit

that the prior likelihood for sensory variable Y given X has a conditional density

pðyjxÞ. Upon receiving sensory input y, the perceptual system forms new

credences determined by a density pnewðxÞ. In some models, new credences

are given by the posterior density:

pnewðxÞ ¼ pðxjyÞ:

Figure 27 Shading is an ambiguous cue to shape. The stimulus on the left could

result from a convex object lit from overhead or a concave object lit from below.

The perceptual system “assumes” that light comes from overhead, so we

perceive the stimulus on the left as convex and the stimulus on the right as

concave. Reprinted from https://commons.wikimedia.org/wiki/File:%27Light-

from-above%27_prior.jpg, under Creative Commons Attribution-Share Alike

4.0 International license.
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In other models, new credences only approximate the posterior:

pnewðxÞ ≈ pðxjyÞ :

Based on pnewðxÞ, the perceptual system selects an estimate x* of X’s value.

See Figure 28.

The motion estimation model given by Weiss, Simoncelli, and Adelson

(2002) is a good example of Bayesian perceptual psychology’s explanatory

power. Themodel estimates the velocity of a moving stimulus. Themodel posits

a prior density pðvÞ over velocities. Crucially, the prior favors slow speeds. This

reflects the environmental regularity that objects usually move fairly slowly.

The model also posits a likelihood pðIjvÞ, where Imeasures light intensity over

the retina. Upon receiving input I, the perceptual system computes the posterior

pðvjIÞ and on that basis forms a privileged velocity estimate v*. The model

explains an array of illusions that had previously resisted unified explanation.

For example, it explains why low contrast stimuli seem to move slower than

high contrast stimuli: low contrast stimuli yield a wide likelihood, so the “slow

speed” prior exerts more influence over the posterior. See Figure 29. As this

example illustrates, Bayesian perceptual models can often explain perceptual

phenomena that otherwise elude satisfying explanation.

Subsequent research has further illuminated the “slow speed” prior and its

crucial role in motion perception (e.g. Stocker & Simoncelli, 2006). In

a particularly notable contribution, Kwon, Tadin, and Knill (2015) generalized

the “slow speed” prior to construct a highly successful model of object-tracking.

For further discussion of the motion estimation model, see Rescorla (2015a);

Rescorla (2018b). For further discussion of the object-tracking model, see

Rescorla (2020c).

Another successful application of Bayesian perceptual modeling is cue

combination. The perceptual system typically estimates a single distal variable

based on multiple cues, such as visual and haptic cues to size. Due to sensory

Figure 28 Approximate Bayesian inference in the perceptual system. When

pnewðxÞ ¼ pðxjyÞ, inference is exact rather than approximate.
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noise, estimates based on distinct sensory cues will typically differ at least to

a small degree. The perceptual system must combine distinct sensory cues into

a single unified estimate of the distal variable. Ernst and Banks (2002) showed

that the Bayesian framework can successfully model combination of visual and

haptic cues to size. Researchers have subsequently generalized this finding to

numerous other cases of cue combination within and across modalities

(Trommershäuser, Kording & Landy, 2011). See Rescorla (2020b) for further

discussion of cue combination in a Bayesian setting.

Bayesian perceptual inference is subpersonal and inaccessible to conscious

introspection or control. These inferences are executed by the perceptual

system, not by the perceiver. A typical perceiver is not aware that her perceptual

system uses a “slow speed” prior. The perceptual system, not the perceiver,

encodes and deploys the prior. The perceiver is not consciously aware of any

inference based on the prior.

Perceptual priors are highly mutable, changing rapidly in response to altered

environmental statistics. Adams, Graf, and Ernst (2004) exposed subjects to

deviant visual-haptic input indicating an altered lighting direction. In response,

shape perception and lightness perception rapidly changed, reflecting a change

in the “light from overhead” prior. Similarly, the “slow speed” prior rapidly

changes in response to fast-moving stimuli (Sotiroupolous, Seitz & Seriès, 2011).

Figure 29 Illustrates how the “slow speed” prior influences motion estimation.

When the stimulus has high contrast, the likelihood is narrow and the “slow

speed” prior exerts relatively little influence on the posterior. When the stimulus

has low contrast, the likelihood is wide and the prior exerts relatively more

influence on the posterior. v̂, the posterior mean, is smaller in the low contrast

condition (b) than in the high contrast condition (a). Reprinted with permission

from Springer Nature Customer Service Center GmbH: Springer Nature,

Nature, “Noise Characteristics and Prior Expectations in Human Visual

Perception” (Stocker & Simoncelli, 2006).
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There is also evidence that prior likelihoods are mutable (Sato & Kording, 2014;

Sato, Toyoizumi & Aihara, 2007; Seydell, Knill & Trommershäuser, 2010).

Changing priors can themselves be modeled in Bayesian terms (Kwon & Knill,

2013).

As final illustration of Bayesian perceptual psychology’s explanatory power,

consider central tendency bias: perceptual estimates of a magnitude are biased

towards the mean of the sample distribution (Hollingworth, 1910). Relatively large

magnitudes tend to be underestimated, while relatively small magnitudes tend to be

overestimated. Depending on the case, the sample distribution may arise naturally

or may be experimentally imposed. Central tendency bias is a ubiquitous effect,

arising when subjects estimate line length (Duffy et al., 2010), interval duration

(Jazayeri & Shadlen, 2010), color (Olkkonen, McCarthy & Allred, 2014), and

many other magnitudes. It is readily explicable from a Bayesian perspective. The

key posit is that the prior adapts to match environmental statistics. For example,

when the subject encounters stimuli drawn from an experimentally imposed sample

distribution, the prior shifts to match that distribution. The shifted prior pulls

estimates towards the prior mean. See Figure 30. Researchers have elaborated

this intuitive idea into models that successfully explain central tendency bias for

a number of perceptual tasks (Glasauer, 2019; Glasauer & Shi, 2022; Petzschner,

Glasauer & Stephan, 2015). The models achieve a close fit with psychophysical

data, including detailed patterns governing the extent towhich central tendency bias

occurs in different situations.

Figure 30 Heuristic Bayesian explanation of central tendency bias. Two

possible likelihoods are depicted: the first peaks below the prior mean, and

the second peaks above the prior mean. In both cases, the posterior mean is

pulled towards the prior mean. Assuming that the prior is adapted to the sample

distribution, the posterior mean exhibits central tendency bias.
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In summary, Bayesian modeling has proved remarkably successful across

a range of perceptual tasks. It amply deserves its orthodox status within

contemporary perceptual psychology.

4.2 Motor Control

Suppose I form an intention to perform an action, such as lifting a coffee cup

without spillage. My motor system must convert my intention into motor

commands that promote fulfillment of my intention. As Bernstein (1967)

emphasized, the motor system has multiple degrees of freedom when

converting intentions into motor commands. For example, there are infinitely

many possible hand trajectories through which I can lift the coffee cup

without spillage. The motor system must select among these infinitely

many options.

Sensorimotor psychology studies how the motor system selects motor com-

mands that promote the agent’s goals. Over the past few decades, Bayesian

models have achieved great explanatory success within sensorimotor psych-

ology (Haith & Krakauer, 2013; Shadmehr & Mussa-Ivaldi, 2012). Optimal

feedback control (OFC) models have proved especially successful (Todorov

2004; Todorov & Jordan, 2002). OFC models have two core elements: an

estimator, which uses conditionalization to estimate current environmental

conditions (including bodily state); and a controller, which uses expected cost

minimization to select suitable motor commands.

When the controller issues a motor command u, it sends an efference copy of

the motor command back to the estimator. The efference copy serves as input to

a forward model (Wolpert & Flanagan, 2009). Intuitively, the forward model

reflects how bodily state will change due to motor commands. More rigorously,

it encodes conditional densities pðxtþ1jxt; uÞ, where xt is bodily state at time t,

u is a motor command, and xtþ1 is bodily state at time t þ 1. Using efference

copy and the forward model, the estimator forms an initial probabilistic estimate

of bodily state. Since motor execution is noisy, the initial estimate requires

sensory correction. For example, an initial probabilistic estimate of hand

position can be revised based upon visual and proprioceptive feedback regard-

ing hand position. The estimator sequentially updates credences over environ-

mental conditions based upon sequentially received efference copy and sensory

feedback.

Throughout performance of the motor task, the controller uses updated

credences to compute expected costs of possible motor commands. A cost

function cðh; uÞ reflects the cost of motor command u assuming that outcome

h is the true outcome. During a reaching task, h might specify hand position,
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hand velocity, and the target location. Typically, the cost function has two

components. The first component, which is task-dependent, rewards achieve-

ment of the task goal (e.g. reaching the target). The second component, which is

task-independent, penalizes energetic expenditure. At every stage, the control-

ler selects a motor command that minimizes expected costs. See Figure 31.

OFC models of motor control have achieved great empirical success

(McNamee & Wolpert, 2019). Most notably, OFC explains patterns in

repeated performance of a task. When a subject repeatedly executes a task,

the movement details vary across trials. As Bernstein (1967) first showed,

and as subsequent research has amply confirmed, movement details vary

more along task-irrelevant dimensions than task-relevant dimensions. The

discrepancy between task-relevant variation and task-irrelevant variation is

Figure 31 A template for Bayesian models of sensorimotor control. Some

models vary the template somewhat. For example, the Saunders & Knill (2004)

model handles sensory delay by transmitting the initial state estimate rather than

the corrected state estimate to the controller. Modified from Rescorla (2016)

with permission from John Wiley & Sons.
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one of the most robust findings in sensorimotor psychology, surfacing in

a huge range of motor tasks. The discrepancy is readily explicable within the

OFC framework (Todorov & Jordan, 2002). Whenever bodily trajectory is

perturbed (e.g. by noise or by an external influence), the controller must

choose whether to correct the perturbation or leave it uncorrected. Correcting

the perturbation expends energy, so an optimal controller will only correct

perturbations that are task-relevant. As a result, deviations from the average

trajectory accumulate along task-irrelevant dimensions but not task-relevant

dimensions.

An experiment conducted by Nashed, Crevecoeur, and Scott (2012) nicely

illustrates the contrasting response to task-relevant and task-irrelevant perturba-

tions. Subjects reached quickly to a target: either a relatively small circle or else

a relatively wide rectangle. In some trials, an external force disrupted the

reaching motion. When the target was the circle, the external disruption was

task-relevant, so the motor system corrected for it. When the target was the

rectangle, the external disruption was task-irrelevant, so the motor system did

not correct for it. See Figure 32.9

Priors deployed duringmotor control are mutable (Berniker, Voss &Kording,

2010; Fernandes et al., 2014). Consider a study conducted by Kording and

Figure 32 Subjects reached either to a circle or a rectangle. Unperturbed hand

paths are shown in black. In some trials, hand trajectories were perturbed to the

right. How the motor system responded depended upon the task goal: the

motor system corrected trajectories when reaching for the circle but not when

reaching for the rectangle. In other words, it corrected task-relevant

perturbations but not task-irrelevant perturbations. Reprinted from Scott (2012)

with permission from Elsevier.

9 For further discussion of Bayesian sensorimotor psychology, with an emphasis on OFC, see
Rescorla (2016); Rescorla (2019). See also Burge (2022, pp. 502–530).
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Wolpert (2004). Subjects reached to a visible target in a virtual reality setup.

Finger position was hidden during the reaching motion, except that subjects

received visual feedback on finger position midway through the motion.

Apparent finger position was shifted from actual finger position, with the shift

drawn randomly from a prior distribution (a Gaussian distribution for some

subjects, a bimodal distribution for other subjects). The motor system learned

the experimentally imposed prior (either the Gaussian prior or the bimodal

prior) and used it to adjust finger trajectories based on visual feedback.

4.3 Navigation

Animal navigation has been intensively studied for many decades across several

disciplines, including psychology, ethology, and neuroscience. At present,

Bayesian modeling does not figure as prominently in the study of navigation

as it does in perceptual psychology and sensorimotor psychology. Nevertheless,

recent studies provide strong evidence that Bayesian inference plays a crucial

role in human navigation.

I focus on a navigational strategy called dead reckoning. During dead reckon-

ing, the navigator exploits self-motion cues to maintain a running estimate of her

own position. Self-motion cues include optic flow, efference copy, vestibular

signals, and so on. Dead reckoning is sometimes called “path integration,”

because position is the integral of velocity. Dead reckoning pervades the animal

kingdom (Gallistel, 1990, pp. 57–102), from the desert ant to humans.

A key fact about human dead reckoning is that, in many experimental condi-

tions, subjects overshoot the target destination. Traditionally, overshooting was

explained through a “leaky integrator”model (Lappe et al., 2011). The basic idea

is that subjects imperfectly integrate velocity to compute position: rather than

computing the true integral, subjects compute a slightly smaller quantity. As the

distance traveled increases, “leaks” accumulate and the discrepancy between

estimated position and true position increases. Lakshminarasimhan et al. (2018)

offer an alternative Bayesian explanation. They posit a “slow speed” prior over

self-motion. The “slow speed” prior biases estimated velocity below the true

velocity, which leads the subject to underestimate distance traveled. See

Figure 33.

The “slow speed”model explains several phenomena that the “leaky integra-

tor” model does not. For example, Lakshminarasimhan et al. (2018) studied

dead reckoning in a virtual reality setup. They manipulated the optic flow cue by

altering the density of plane elements: greater density entails a more reliable

cue. Decreased cue reliability corresponds to a relatively wide likelihood. The

“slow speed”model predicts that, when the likelihood is wide, the posterior will
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be more strongly affected by the “slow speed” prior, causing even more

overshooting. In contrast, the “leaky integrator” model does not predict that

a degraded optic flow cue causes increased overshooting. See Figure 34. The

human data exhibited more overshooting in response to the degraded optic flow

cue, conforming closely to the “slow speed” model’s predictions.

Another striking phenomenon explained by the model: when the target is

relatively distant, overshooting gives way to undershooting. The farther the

subject travels, the greater the uncertainty regarding her position, so the wider

her pdf over possible positions. When the pdf becomes quite wide, its area of

overlap with the target decreases. As a result, expected utility peaks before the

target when the target is relatively far away. For sufficiently large distances, this

bias towards undershooting swamps the bias induced by the “slow speed” prior.

The Bayesian model, by analyzing how these two biases interact with each other

and with optic flow reliability, achieves a good match with actual human

performance.

Figure 33Comparison of the “slow speed” prior model and a “leaky integrator”

model. (For heuristic purposes, the comparison only depicts one-dimensional

linear velocity. The actual model also considers angular velocity.) The panel on

the left shows the subject’s true velocity over time. The top row schematizes the

“slow speed” prior model. At a given moment, the “slow speed” prior (in green)

combines with the likelihood to yield a posterior over possible velocities. The

resulting velocity estimates are consistently smaller than actual velocity, due to

the influence of the “slow speed” prior. When velocity estimates are integrated

to form position estimates, the position estimates are biased. The bottom panel

shows a Bayesian version of the “leaky integrator” approach. (One can also

develop the “leaky integrator” approach in a non-Bayesian setting.) The prior is

uniform. As a result, velocity estimates are not biased towards smaller

velocities. The bias in position estimates stems from leaky integration, not from

biased velocity estimates. Reprinted from (Lakshminarasimhan et al., 2018)

with permission from Elsevier.
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Central tendency bias provides additional evidence for a Bayesian approach

to dead reckoning. Petszchner and Glasauer (2011) studied a virtual reality task

in which subjects traversed an experimentally imposed linear path and then tried

to reproduce their displacement. Subjects performed the task in multiple trials

during each session. Distances during a session were drawn from one of

three distinct sample distributions: small, medium, or large. Subjects exhibited

significant central tendency bias: their distance estimates during a session (as

gauged by reproduced distance) were biased towards the mean of the session

sample distribution. To explain the bias, Petszchner and Glasauer (2011) offer

an iterative Bayesian model. After each trial, the Bayesian estimator updates its

prior over distance traveled. The prior gravitates towards the mean of the

session sample distribution, biasing distance estimates towards that mean.

The model thereby explains observed central tendency bias, further confirming

the hypothesis that human dead reckoning relies upon Bayesian estimation.

Figure 34 Differing predictions of the “slow speed” model and the “leaky

integrator” model. The red likelihood function is narrow, corresponding to

a reliable optic flow cue. The blue likelihood function is wide, corresponding to

a degraded optic flow cue. In the “slow speed” prior model, the prior exerts

more influence in degraded cases, causing a more biased position estimate. The

“leaky integrator”model predicts that a change in cue reliability does not affect

the position estimate. The “leaky integrator” approach is illustrated here in

a Bayesian format, but the same prediction prevails for non-Bayesian versions.

Reprinted from (Lakshminarasimhan et al., 2018) with

permission from Elsevier.
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Dead reckoning is only one navigation strategy found in the animal kingdom.

Equally important is piloting, during which the creature uses landmarks to

estimate its own position (Gallistel, 1990, p. 41, pp. 88–93, pp. 120–123).

Even relatively primitive creatures, such as rats and bats, engage in piloting.

Of course, humans routinely do so. There is strong evidence that human piloting

relies on Bayesian inference (Jetzschke et al., 2017), as does human combin-

ation of self-motion cues and landmark cues (Chen et al., 2017).

Dead reckoning and piloting are key to navigation, but they are just the

beginning. Piloting presupposes mapping: estimation of landmark locations.

Mapping also figures prominently in robotics, where the standard solution centers

upon approximate Bayesian inference (Thrun, Burgard & Fox, 2005). Several

researchers have conjectured that some mammals likewise implement Bayesian

mapping (Gallistel, 2008; Rescorla, 2009). The conjecture fits well with every-

thing we know about mammalian navigation (Savelli & Knierim, 2019;

Shikauchi et al., 2021). Moreover, it can explain within a single theoretical

framework disparate navigational phenomena that otherwise resist unified

explanation (Kessler, Frankenstein & Rothkopf, 2024). The topic merits, and

will surely receive, further investigation.

4.4 Other Psychological Domains

Researchers have applied the Bayesian perspective to numerous domains, such

as causal reasoning (Griffiths & Tenenbaum, 2009; Oaksford & Chater, 2020),

social cognition (Baker & Tenenbaum, 2014), intuitive physics (Battaglia,

Hamrock & Tenenbaum, 2013; Sanborn, Masinghka & Griffiths, 2013), lan-

guage acquisition (Abend et al., 2017), syntactic parsing (Narayanan &

Jurafsky, 1998), concept acquisition (Goodman et al., 2008), music cognition

(Temperley, 2007), reading (Norris, 2006), memory (Hemmer & Steyvers,

2009), categorization (Sanborn, Griffiths & Navarro, 2010), and so on.

Applications vary in their predictive and explanatory power. Few achieve the

astonishing explanatory successes found in perception and motor control. Still,

they are often more successful than competing non-Bayesian approaches, as

readers can confirm for themselves by accessing the above-cited texts.

4.5 Anti-Bayesian Phenomena?

Like every prominent cognitive science research program, Bayesian modeling

has attracted lots of criticism (Bowers & Davis, 2012; Eberhardt & Danks,

2011; Jones & Love, 2011; Mandelbaum, 2019). Perhaps the most basic criti-

cism is that many mental phenomena appear radically anti-Bayesian. This

criticism traces back to Kahneman and Tversky, who discovered intriguing
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cognitive phenomena that apparently violate Bayesian norms (e.g. Kahneman

& Tversky, 1979; Tversky & Kahneman, 1983). A good example is anchoring

bias (Tversky & Kahneman, 1974): when asked to estimate a quantity (such as

the distance between Los Angeles and San Francisco), people are biased

towards a randomly selected number provided to them. In effect, the randomly

selected number serves as an “anchor” that pulls judgment away from a more

accurate estimate. Anchoring bias is irrational and hence suggests that people

violate the norms of Bayesian decision theory. Beyond the cognitive-level

irrationalities discovered by Kahneman and Tversky, researchers have docu-

mented seemingly anti-Bayesian phenomena in other domains, including per-

ception (Gardner, 2019; Mandelbaum et al., 2020; Rahnev & Denison, 2018).

Proponents of Bayesian modeling reply that many apparently anti-Bayesian

phenomena can in fact be modeled in Bayesian terms (Stocker, 2018). Consider

the size‒weight illusion: when you lift two objects of equal weight but different

size, the smaller object feels heavier. At first, the illusion looks anti-Bayesian

because it flouts a prior expectation that larger objects are heavier. However, the

illusion turns out to be explicable by a Bayesian model that estimates relative

densities (Peters et al., 2016).

Even when a phenomenon cannot be modeled in Bayesian terms, it can often

be modeled in terms of approximately Bayesian inference (Chater et al., 2020).

In this spirit, Lieder et al. (2018) show that anchoring bias arises naturally from

a sampling approximation to idealized Bayesian inference. They assume that,

when subjects are provided with a randomly selected number, this number

serves as the initial sample for an MCMC algorithm. (See Section 3.4 to review

MCMC algorithms.) Samples are biased towards the initial sample, which may

be quite far from an optimal Bayesian estimate. As the algorithm proceeds, it

draws samples closer to the optimal Bayesian estimate. The extent of anchoring

bias depends upon how long the algorithm runs (i.e. how many samples it

draws). When computation is costly (e.g. because computational resources are

needed for another task), anchoring bias increases because the system draws

fewer samples and does not get as far from the initial sample. On this approach,

anchoring bias arises from “rational” use of limited computational resources:

the system balances accurate estimation against the cost of computation. The

sampling model explains a range of effects, such as increased anchoring bias

due to cognitive load or time pressure. Many other seemingly anti-Bayesian

cognitive phenomena can be similarly explained in terms of sampling approxi-

mation to idealized Bayesian inference (Chater et al., 2020; Dasgupta, Schulz &

Gershman, 2017).

Obviously, there is no guarantee that all psychological processes will turn out

to be Bayesian or approximately Bayesian. Sub-systems may conform to
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Bayesian norms to a greater or lesser degree. For example, it could be that

perception conforms quite closely to Bayesian norms while high-level decision-

making does not. It could be that certain perceptual processes conform closely

to Bayesian norms while other perceptual processes do not, or that certain

perceptual processes conform to Bayesian norms under certain circumstances

but not other circumstances—e.g. that perceptual processes conform to

Bayesian norms only when the perceiver is paying attention (Morales et al.,

2015). These possibilities require investigation. We must build and test detailed

Bayesian models of specific phenomena, evaluating afresh how well each

model fits the data. That is exactly what Bayesian cognitive scientists do on

a daily basis. Underlying this research program is a key methodological

commitment: enough mental processes are at least approximately Bayesian

that constructing and testing Bayesian models of specific mental processes is

a worthwhile endeavor. So far, the methodological commitment has been amply

vindicated.10

4.6 Where do the Priors Come From?

A natural question posed by Bayesian modeling is how the prior probability and

prior likelihood arise. For example, the Bayesian dead reckoning model

assumes a “slow speed” prior but says nothing about the prior’s etiology.

A similar point applies to other Bayesian models found in the literature. The

models postulate priors that underlie Bayesian inference, without explaining

how the priors arise. Given that priors are highly mutable, a good explanation

will surely cite a complex mixture of evolutionary and developmental factors.

So far, though, no such explanation is available.

Some critics complain that Bayesian models are unexplanatory due to their

reliance on postulated priors (Hutto & Myin, 2017, pp. 67–74, pp. 154–155;

Orlandi, 2014, p. 91). The worry is that Bayesian models rest upon unexplained

explainers. How much can a Bayesian model explain when it posits priors but

offers no explanation for the priors?

10 Many supposedly anti-Bayesian phenomena documented by Kahneman and Tversky (such as
the conjunction fallacy) involve explicit probability judgments: researchers ask subjects to judge
relative probabilities of various possibilities; elicited judgments violate the probability calculus
axioms. Poor performance in an explicit probabilistic task is hardly evidence that the subject
does not execute Bayesian inference, any more than poor performance in a symbolic logic class
is evidence that a student does not execute deductive inference. Bayesian cognitive science does
not claim that ordinary people are good at probability theory. It claims that ordinary people (or
their psychological subsystems) assign subjective probabilities and execute Bayesian operations
over the assigned probabilities. Typically, the probability assignments are not explicit but are
instead implicitly encoded.
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In my opinion, this complaint has no force. We must distinguish between

incomplete theories and unexplanatory theories. Every scientific theory con-

tains unexplained explainers: postulates that serve as explanantia. For example,

Newtonian physics postulates that objects have mass, but it does not explain

how objects come to have the masses that they have. No one should complain on

that basis that Newtonian physics is unexplanatory. In many cases, a successful

scientific theory contains huge explanatory gaps. A famous example is the

theory of natural selection as formulated in On The Origin of Species. Darwin

postulated suitable hereditary mechanisms but had no clue what those mechan-

isms were. No one should complain on that basis that the theory of natural

selection as formulated by Darwin was unexplanatory. A scientific theory can

offer powerful explanations even though it includes unexplained explainers.

Of course, it is always good to eliminate unexplained explainers. Modern

biology achieved a decisive advance when it discovered the genetic basis of

heredity. Bayesian cognitive science will likewise achieve a major advance

when it illuminates the etiology of priors. Until that advance, Bayesian cogni-

tive science will be incomplete in a significant way. Even in its present incom-

plete state, it offers powerful explanations for many psychological phenomena.

5 Realism and Instrumentalism

AnyBayesianmodel posits credal states (assignments of credences to hypotheses)

and credal transitions (transitions among credal states). At a bare minimum, a

Bayesian model posits a prior probability, a prior likelihood, and a transition to

a posterior or approximate posterior. The Bayesian model may posit a succession

of credal states, as in sensorimotor psychology.

Suppose that a Bayesian model is explanatorily successful, in the sense that it

supplies compelling explanations for observed phenomena. Let us distinguish two

opposing viewpoints one might adopt towards the model: realism and instrumen-

talism. Realists hold that we have good reason to deem themodel an approximately

true description of mental activity (Rescorla, 2020c). From a realist perspective, the

mind instantiates credal states and transitions at least roughly like those posited by

the model. The model describes actual mental states and processes that mediate

between inputs (e.g. retinal inputs) and outputs (e.g. perceptual estimates; motor

commands). Instrumentalists, on the other hand, regard the model as nothing but

a useful predictive device (Block, 2018; Colombo & Seriès, 2012; Orlandi, 2014).

The model helps us summarize the mapping (possibly stochastic) from inputs to

outputs, but it does not describe actual mental states and processes with even

approximate accuracy. From an instrumentalist perspective, we have no reason to

believe that the mind instantiates credal states or that it executes anything
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resembling (approximate) Bayesian inference. We should conclude only that the

mind operates as if it executes (approximate) Bayesian inference. Whereas realists

attribute psychological reality to credal states and transitions postulated by explana-

torily successful Bayesian models, instrumentalists do not.

To illustrate how realism and instrumentalism differ, consider Figure 28. The

figure depicts how the perceptual system converts proximal sensory input y into

a perceptual estimate x*. It posits two mental states (the prior probability and the

prior likelihood) that along with y cause a third mental state (the approximate

posterior), which in turn causes perceptual estimate x*. From a realist perspective,

we should take this causal structure seriously as a guide to underlying psycho-

logical reality. There really do exist priors, they really do interact with input y to

cause an approximate posterior, and this approximate posterior really does cause

a perceptual estimate x*. In contrast, instrumentalists do not take Figure 28 as

a guide to underlying psychological reality. All that we should take seriously

about Figure 28, they say, is the induced mapping from input y to estimate x*.

I have defended realism at length in previous writings (Rescorla, 2015a;

Rescorla, 2015b; Rescorla, 2020c). Here, I will briefly adduce a few consider-

ations in its favor.

5.1 Scientific Realism

My realist perspective on Bayesian cognitive science is grounded in a general

commitment to scientific realism. Scientific realism traces back to Putnam

(1975) and has been elaborated by many subsequent philosophers. The basic

idea is that explanatory success is a prima facie indication of approximate truth.

When a scientific theory is explanatorily successful, we have prima facie reason

to believe that it is at least approximately true. For example, the explanatory

success of modern physics provides reason to believe in subatomic particles.

My realist perspective on Bayesian cognitive science results from straight-

forward application of scientific realism to Bayesian modeling. Many Bayesian

models, although not all, are explanatorily successful. From a scientific realist

perspective, we have reason to regard these models as at least approximately

true. We have reason to accept that there exist credal states and transitions

roughly like those posited by the model. Just as the explanatory success of

modern physics provides reason to believe in subatomic particles, the explana-

tory success of a Bayesian model provides reason to believe in credal states and

transitions.

Not all philosophers accept scientific realism. Some authors favor an instru-

mentalist perspective on scientific theorizing (van Fraassen, 1980). According

to instrumentalism, a scientific theory is just a useful tool for making
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predictions. When a scientific theory is explanatorily successful, we have no

reason to believe that the theory is even approximately true. For example, the

explanatory success of modern physics provides no reason to believe that there

are subatomic particles. Philosophers who favor an instrumentalist perspective

more generally will surely want to apply it specifically to Bayesian cognitive

science. If you do not believe in a subatomic particles, then you probably do not

believe in credal states and transitions!

Typically, researchers who favor instrumentalism about Bayesian cognitive

science do not evince a more general commitment to instrumentalism about

scientific theorizing. They do not hold that we should be instrumentalists about

scientific theories in general. Instead, they argue that we should be instrumen-

talists for the special case of Bayesian cognitive science. In my opinion, their

arguments for that differential stance have little force. I see no compelling

reason why philosophers inclined towards scientific realism in general should

favor instrumentalism for the special case of Bayesian modeling. I will illustrate

my viewpoint by critiquing an instrumentalist argument advanced by Block

(2023) and tailored to the special case of Bayesian cognitive science.

5.2 Simulation or Implementation?

According to Block, we seldom if ever have reason to believe that a psychological

system implements approximate Bayesian inference as opposed to merely simu-

lating approximate Bayesian inference. To support his assessment, Block cites

evolutionary considerations (2023, p. 208):

Evolution is a pro-instrumentalist mechanism. There is no doubt that behav-
ing according to Bayesian norms is enormously valuable for an organism and
we can expect strong evolutionary pressure toward behavior that fits the
norms of Bayesian rationality. But Bayesian rational behavior does not
have to be implemented using the conceptual apparatus that is best suited to
describing Bayesian rational processes by the theorist. The problem with
Rescorla’s argument is that it is not clear that the way evolution chose to
produce behavior that adheres roughly to Bayesian norms involves the
representation of probabilities in the perceptual system.

Block develops his position by citing an experiment on pea plants conducted by

Dener, Kacelnik, and Shemesh (2016). Each plant’s roots were divided between

two pots. The two pots received equal mean levels of nutrients. Nutrient levels

were constant in one pot and variable in the other. More roots developed in the

constant pot if the mean nutrient level was high, andmore roots developed in the

variable pot if the mean nutrient level was low. This growth pattern comports

with expected utility theory, which (assuming a suitably shaped utility function)

44 Philosophy of Mind

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108955973
Downloaded from https://www.cambridge.org/core. IP address: 3.145.157.51, on 31 Jan 2025 at 03:31:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108955973
https://www.cambridge.org/core


mandates risk aversion in rich conditions and risk proneness in poor conditions.

Block writes (2023, pp. 209–210):

[T]he pea plant behaves as if it represented mean levels of nutrients and their
degree of uncertainty. Since the pea plant lacks a nervous system, we can be
pretty sure that there are no such representations. Somehow, natural selection
has found a way for plants to behave according to some of the norms of
Bayesian rationality without those representations. The challenge to
Rescorla’s reasoning is that we have to allow for the possibility that the
same is true of our perceptual systems.

Block concludes that, even if we favor a realist stance towards scientific

theorizing in general, we should adopt an instrumentalist stance towards

Bayesian perceptual psychology. Presumably he would extend the conclusion

to other branches of Bayesian cognitive science.

In evaluating Block’s argument, we must carefully distinguish between

subjective and objective probability. Due to the experimental protocols, there

are objective probabilities that govern the nutrient level in each pot. We might

gloss these either as frequencies or as chances. Either way, they are objective

features of the world, lacking any subjective element. Given a pot’s objective

probability distribution, we can describe the mean and the variance. The

experiment shows that root growth is sensitive to both the mean and the

variance. Thus, root growth is sensitive to objective probabilities (or to proper-

ties that supervene upon objective probabilities).

One might try to explain that sensitivity by attributing credal states to the

pea plants. One might posit subjective probabilities, instantiated by each

plant, that track the objective probabilities governing each pot. One might

postulate that root growth is influenced by an expected utility computation

based upon the posited subjective probabilities. I agree with Block that the

proposed explanation is both implausible and unmotivated. It is implausible

because plant physiology does not seem able to support expected utility

computations. It is unmotivated because nothing about the pea plant study

indicates that credal states or utility functions mediate the causal influence

of objective probabilities upon root growth. The mere fact that a system is

sensitive to the mean and variance of an objective probability distribution

does not suggest that the system instantiates credal states. For example, we

can construct a machine whose outputs are sensitive to the frequency with

which a biased coin lands heads; there is no reason why the machine must

instantiate credal states. Mere sensitivity to objective probabilities (or

properties that supervene on objective probabilities) is not a prima facie

indicator of Bayesian computation. This remains so even when the mapping
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from objective probabilities to outputs happens to mirror the dictates of

expected utility theory.

One can describe any system using Bayesian decision theory. Adapting an

example of Dennett’s (1987, p. 23), one can “explain” why a lectern does not

move by saying that the lectern assigns high utility to occupying the optimal

location in the universe and assigns high credence to the hypothesis that it

currently occupies the optimal location in the universe. Clearly, though, we

should not accept the purported “explanation.” It contributes no value to our

theorizing. It does not improve upon a non-Bayesian explanation couched

wholly in terms of physics (e.g. an explanation that cites the law of inertia).

A similar diagnosis applies to the pea plant study. The two cases are not totally

analogous, because we know why the lectern does not move (inertia) but do not

yet know the physiological mechanisms through which objective probabilities

causally influence root growth. Still, as Dener, Kacelnik, and Shemesh (2016)

themselves emphasize, nothing about the pea plant study suggests that the

mechanisms involve credal states or utility functions. We have no reason to

think that Bayesian modeling would add any explanatory force to an eventual

physiological explanation couched in non-Bayesian terms.

A very different diagnosis applies to numerous Bayesian models offered in

cognitive science, including but not limited to perceptual psychology. In many

cases, the Bayesian model adds considerable explanatory value to our theorizing.

For example, the (Lakshminarasimhan et al., 2018) dead reckoning model explains

why more overshooting occurs when the optic flow cue is degraded, and it also

explainswhy undershooting occurs for relatively distant targets. Themodel thereby

achieves the unity characteristic of good explanation. Similarly, the (Weiss,

Simoncelli &Adelson, 2002) motion estimation model offers a unified explanation

for diversemotion illusions. In these cases, and inmany others, the Bayesianmodel

makes a substantial explanatory contribution that looks otherwise unachievable.

The explanatory contribution includes qualitative predictions for disparate phe-

nomenon coupled with quantitative predictions that closely match experimental

data. From a scientific realist perspective, these explanatory achievements provide

reason to believe that the model is approximately true.

The contrast with the pea plant study is glaring. Dener, Kacelnik, and Shemesh

(2016) do not provide a Bayesian model of root growth. Indeed, they do not so

much as hint which prior probability or prior likelihood such a model might

include. They do not suggest, let alone argue, that a Bayesian model could offer

a unified explanation for disparate phenomena or that it could yield quantitative

predictions that closely match experimental data. There is not even a Bayesian

model here that we can evaluate, much less a model that achieves anything

approaching the explanatory success of the Bayesian dead reckoning model, the
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Bayesian motion estimation model, or numerous other Bayesian cognitive sci-

ence models. That is why Bayesian cognitive science supports the existence of

credal states but the pea plant study, for all its interest, does not.

I agree with Block that a system can simulate (approximate) Bayesian infer-

ence. For example, a system might convert inputs into outputs by consulting

a look-up table. More realistically, a system might acquire an input‒output

mapping through reinforcement learning. In reinforcement learning, the system

receives rewards for how it responds to inputs, and it adjusts its responses to

obtain optimal or near-optimal rewards. Systems trained through reinforcement

learning can mimic certain kinds of approximate Bayesian inference

(Weisswange et al., 2011). In principle, then, evolution might produce a system

that operates as if it executes approximate Bayesian inference even though it does

not actually execute approximate Bayesian inference. Nevertheless, I think it

misleading to describe evolution as a “pro-instrumentalist mechanism.” I see no

reasonwhy evolution should favor simulation of approximate Bayesian inference

over implementation of approximate Bayesian inference.

When a scientific theory accurately predicts the behavior of a system, there is

always a possibility that the theory is utterly false and that the system merely

behaves as if the theory is true. For example, it is in principle possible that

subatomic particles do not exist and that the physical universe merely behaves as

if they exist. Physicists would only regard that in principle possibility as worth

taking seriously if it were developed into a rival theory that matched modern

physics in explanatory power. Similarly, we should only take seriously the sugges-

tion that mental activity simulates rather than implements approximate Bayesian

inference once it is developed into detailed models that rival current Bayesian

models in explanatory power. So far, that has not happened. The scientific literature

does not offer non-Bayesian models comparable in explanatory power to the

Bayesian dead reckoning model, the Bayesian motion estimation model, or numer-

ous other Bayesian models found in contemporary cognitive science. Perhaps

impressive non-Bayesian models will eventually emerge. In their absence, the

mere possibility that they might emerge should not worry realists about Bayesian

cognitive science anymore than themere possibility of a successful physical theory

that eschews subatomic particles should worry realists about subatomic particles.

5.3 The Argument From Altered Priors

I now rehearse an additional argument for realism regarding Bayesian cognitive

science. My argument rests upon a crucial fact: input‒output mappings rapidly

change in response to changing environmental conditions.We have seen several

examples:
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• Shape and lightness perception change in response to stimuli that indicate

a deviant lighting direction (Adams, Graf & Ernst, 2004).

• Motion perception changes in response to fast-moving stimuli (Sotiropoulos,

Seitz & Seriès, 2011).

• The mapping from sensory inputs to motor commands changes in response to

shifts in apparent finger position (Kording & Wolpert, 2004).

• Central tendency bias occurs in a wide range of domains, including percep-

tual estimation (Section 4.1) and dead reckoning (Section 4.3).

These experimental phenomena, and numerous others, conclusively demon-

strate that the mapping from inputs to outputs is highly mutable.

Realists can easily explain in each case why the mapping changes as it

does. They can say that the priors change so as to match changing environ-

mental statistics. For example, suppose that a subject exhibits central ten-

dency bias towards the mean of an experimentally imposed sample

distribution, as in the (Petzschner & Glasauer, 2011) dead reckoning experi-

ment. Realists explain the bias as follows: the prior shifts to match the

sample distribution, which causes estimates to shift towards the mean of

the distribution. Instrumentalists can acknowledge that the input‒output

mapping shifts, but they offer no principled explanation for why it shifts

as it does. From an instrumentalist perspective, there is no principled reason

why estimates should shift to match recent stimuli. The mere fact that

a system simulates approximate Bayesian inference using certain priors

provides no reason to expect that the system will change any particular

way in response to changing environmental statistics. Hence, realism offers

a major explanatory advantage over instrumentalism.

Call this the argument from altered priors. Although I have formulated the

argument as applied to prior probabilities, similar argumentation applies to prior

likelihoods and to posteriors (Rescorla, 2020c).

Block rejects the argument from altered priors: “I find this argument uncon-

vincing because whatever it is about the computations of a system that simulates

the effect of represented priors . . . might also be able to simulate the effect of

change of priors” (2018, p. 8).

I agree that, in principle, a system that simulates approximate Bayesian

inference given certain priorsmight respond to changing environmental condi-

tions by simulating approximate Bayesian inference given another set of priors.

I question whether instrumentalists can develop that possibility into compelling

models. The argument from altered priors is abductive: realism provides the

best explanation for why input‒output mappings change as they do. One does

not undermine an abductive argument by noting that an alternative explanation
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may emerge. To undermine the argument from altered priors, one must provide

a specific alternative explanation and show that it is at least as satisfying as the

realist explanation.

In this connection, consider a system trained through reinforcement learning

to simulate Bayesian inference given certain priors. By varying the rewards, we

can train the system to simulate Bayesian inference given another set of priors.

Accordingly, instrumentalists might hope that reinforcement learning can

explain changes to the input‒output mapping. In many cases, though, subjects

receive either no feedback or extremely limited feedback on their performance.

To illustrate, consider the (Petzschner & Glasauer, 2011) dead reckoning study.

Participants received no feedback on their performance during each session,

aside from a few initial training trials to ensure familiarity with the virtual

reality setup. How, then, can reinforcement learning explain why subjects

displayed central tendency bias? There was no “reward” to drive the ongoing

change in learned responses. This study provides evidence that subjects itera-

tively update a distance prior in response to accumulated evidence.

Perhaps instrumentalist theories will eventually emerge that explain chan-

ging input‒output mappings without an appeal to changing priors. We would

then need to compare those instrumentalist theories with realist Bayesian

theories. Until that time, we do well to develop the realist perspective and see

where it leads.11

5.4 Neural Implementation

To gain more insight into the dialectic between realism and instrumentalism, let

us consider the neural implementation of approximate Bayesian inference. How

are credal states physically realized in the brain? Which neural operations

implement computation of the (approximate) posterior from the priors? These

questions do not arise for instrumentalists because instrumentalists do not

regard credal states and transitions as psychologically real. For realists, the

questions are pressing.

Computational neuroscientists have proposed several theories of how the

brain might implement credal states and transitions (Fiser et al., 2010; Pouget

et al., 2013; Rescorla, 2024). The proposed theories are biologically plausible

and fit well with what we know about the brain, although no single theory has

yet emerged as well-confirmed.

The credal states considered in Bayesian cognitive science are usually given

by pdfs. Recall that a pdf determines probabilities assigned to intervals ½a; b�.

11 See Rescorla (2020c) for more on the argument from altered priors and for general defense of
realism.
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There are infinitely many of these intervals. The brain is a finite physical system

and hence, as discussed in Section 3.4, cannot explicitly list each individual

probability P ½a; b�ð Þ. Since the brain cannot enumerate the probability assigned

to each interval, probabilities must be implicitly encoded by neural activity. The

two main implicit encoding schemes under active consideration were men-

tioned in Section 3.4:

• Parametric encoding: the brain encodes parameters for the pdf. One possibility

is that parameters are encoded by spike counts in a neural population (Ma et al.,

2006). Each neuron is associated with a preferred stimulus value, and each

neuron’s spike count is interpreted as the strength of its “vote” for that stimulus

value. “Votes” across the neural population determine parameters of a pdf, e.g.,

the mean and variance of a Gaussian. See Figures 35 and 36.

• Sampling encoding: the brain encodes a probability distribution via sampling

propensities. For example, a neuron’smembrane potentialmight encode a sample

(Orbán et al., 2016). The objective chance distribution governing membrane

potentials encodes the subjective probability distribution for the variable.

Computational neuroscientists have produced detailed neural network models

that enshrine these encoding schemes. The models show how, in principle,

Figure 35 The tuning curve for a neuron summarizes the neuron’s average

response to a stimulus value. Figure 35 depicts tuning curves for a hypothetical

neural population tuned to a one-dimensional continuous distal stimulus. The

horizontal axis contains possible stimulus values. Each tuning curve depicts the

average response (measured in spikes per second) of the corresponding neuron

to possible stimulus values. Each tuning curve peaks at a preferred value of the

stimulus. The black tuning curve has preferred stimulus value a.
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a population of neurons could implement approximate Bayesian inference.

Neuroscientists want to discover which implementation scheme(s) the brain

actually uses.

Research into neural implementation of approximate Bayesian inference presup-

poses a broadly realist perspective on credal states and transitions (Ma, 2019;

Rescorla, 2021a). If there are no priors, investigating how priors are realized in

the brain is a waste of time. If the brain does not execute approximate Bayesian

inference, investigating the neural operations that implement approximate Bayesian

inference is a bad use of scientific resources. Thus, a major strand in current

computational neuroscience presupposes a realist stance towards at least some

Bayesian models.

Figure 36 Heuristic illustration of how a neural population can implicitly

encode parameters of a probability distribution. The top left panel depicts how

a hypothetical neural population responds to a stimulus on a given occasion.

The horizontal axis groups neurons according to preferred stimulus value. The

vertical axis gives the spike count for each neuron during a fixed time interval.

Spike counts encode a Gaussian distribution, depicted in the top right panel. The

parametric encoding scheme used here is discussed in Beck et al. (2007): the

mean of the Gaussian is a weighted average of stimulus values, where the

weights are the individual spike counts; the variance is inversely proportional to

the total spike count. The bottom left panel depicts a different neural response.

The bottom right panel depicts the encoded Gaussian distribution, using the

same encoding scheme.
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Research into neural implementation also helps clarify realism’s commitments.

The core realist thesis is that priors and posteriors are genuine mental states that

mediate between inputs and outputs. As genuine mental states, they must be

neurally realized in some way or other. Realism is neutral about how exactly they

are realized. In particular, realists do not claim that credal assignments are explicitly

enumerated in the brain. On the contrary, realists recognize that explicit enumer-

ation is impossible for most cases. They instead appeal to implicit encoding. They

hold that credal states posited by Bayesian models are implicitly encoded by the

brain. The implicit encoding scheme might be parametric, sampling, or something

else entirely (e.g. Ganguli and Simoncelli, 2014). The brain may also use multiple

encoding schemes simultaneously. Realism does not enshrine a commitment to any

particular encoding scheme or class of encoding schemes.

6 Mental Representation

The previous section advanced a realist perspective on the credal states posited

by Bayesian models. I now want to probe more deeply into the nature of the

posited credal states. I will explore how they relate to the mind’s representa-

tional nature.

The phrase “mental representation” is used many different ways in contem-

porary philosophy and psychology. My own usage reflects a tradition that traces

back to Frege (1892/1997) and continues through contemporary figures such as

Burge (2010) and Fodor (1975; 1987; 2008). According to this tradition, mental

representation is connected with veridicality-conditions: conditions for veridi-

cally representing the world. Examples:

• Beliefs are the sorts of things that can be true or false. My belief that Napoleon

was born in Corsica is true if Napoleonwas born in Corsica, false if hewas not.

• Intentions are the sorts of things that can be fulfilled or thwarted.My intention

to eat lentils for lunch is fulfilled if I eat lentils for lunch, thwarted if I do not.

• Perceptual states are the sorts of things than can be accurate or inaccurate.

Suppose I perceive object o as being a green cube. Thenmy perceptual state is

accurate only if o is green and cubical.

Beliefs have truth-conditions, intentions have fulfillment-conditions, and per-

ceptual states have accuracy conditions. Truth, fulfillment, and accuracy are

species of veridicality.

Representational properties are properties that contribute or potentially con-

tribute to veridicality-conditions. For example, suppose I have a belief about

Napoleon. The mere fact that my belief is about Napoleon does not determine

whether my belief is true or false. Nevertheless, my belief depends for its truth or
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falsity on how things are with Napoleon (rather than some other person). That

my belief is about Napoleon helps determine the belief’s truth-condition. So

being about Napoleon is a representational property of my belief. Similarly,

suppose I perceive some object as a green cube. The mere fact that my percep-

tual state represents green cubicality does not determine whether the state is

accurate—accuracy also depends on which cube I am perceptually representing.

Nevertheless, my perceptual state depends for its accuracy on whether the

perceptually represented object is a green cube. That my perceptual state repre-

sents green cubicality helps determine the state’s accuracy-condition. So repre-

senting green cubicality is a representational property of my perceptual state.

I will argue that credal states posited within Bayesian cognitive science have

representational properties, and I will elucidate the explanatory role played by

these representational properties.

6.1 Representational Explanation

Bayesian cognitive science seeks to explain mental and behavioral outcomes. It

frequently characterizes the outcomes in representational terms. Examples:

• Perceptual psychology seeks to explain illusions. An illusion is a perceptual

state that inaccurately represents the distal environment. So the science

presupposes that perceptual states have accuracy-conditions.

• Sensorimotor psychology seeks to explain how the motor system chooses

motor commands that promote the agent’s goals. A goal may be fulfilled or

thwarted. So the science presupposes mental states with fulfillment-

conditions. These are conative states, i.e., mental states whose role is to

initiate and sustain action. Often, the conative state is an intention (e.g. an

intention to reach to a target). Burge (2022, pp. 502–530) argues that there

also exist relatively low-level conative states lacking various features of

intention, such as intention’s characteristic ties to theoretical and practical

reasoning, and that these low-level conative states set goals for motor control.

For present purposes, the key point is that sensorimotor psychology presup-

poses goal-setting by mental states with fulfillment-conditions.

• Sensorimotor psychology seeks to explain why movement details vary more

along task-irrelevant dimensions than task-relevant dimensions. The distinc-

tion between task-relevant and task-irrelevant dimensions presupposes a goal

that may be fulfilled or thwarted.

• Research on human dead reckoning seeks to explain overshooting. To over-

shoot a location, the subject must have that location as a goal. So the science

presupposes a conative mental state with a fulfillment-condition. Since

human dead reckoning typically interfaces with fairly sophisticated planning
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and decision-making, it seems likely that the conative state is typically an

intention or something much like an intention. In some special cases, though,

it may be a relatively low-level conative state more along the lines discussed

by Burge.

As these examples illustrate, Bayesian cognitive science often characterizes

explananda in representational terms.

The science also frequently characterizes explanantia, including credal states,

in representational terms. Examples:

• The Bayesian dead reckoning model explains overshooting by positing

a “slow speed” prior over self-motion. The prior causes the navigation system

to underestimate displacement. To encode a prior that favors slow speeds, the

navigation system must be able to represent speed. So the explanation of

overshooting presupposes that the navigation system can represent speed.

The explanation hinges upon a credal allocation over possible speeds, leading

to an inaccurate displacement estimate.

• Bayesian perceptual psychology assumes that the perceptual system represents

distal properties. It posits a prior regarding represented distal conditions (e.g.

a prior that favors overhead lighting directions). When the prior is poorly

calibrated to the perceiver’s environment, the resulting perceptual estimates

tend to be inaccurate. For example, the “light from overhead” prior produces

inaccurate shape estimates in deviant conditions where light comes from below.

• To explain how the motor system promotes the agent’s goals, Bayesian

sensorimotor psychology posits sequential updating of credal assignments

regarding the distal environment and the subject’s own body. Credal assign-

ments influence which motor commands are chosen. When credal assign-

ments are poorly calibrated to the environment (e.g. the prior over shifts in

finger position does not match actual finger shifts), the task goal tends to be

thwarted.

Generally speaking, Bayesian cognitive science posits credal states regarding

environmental conditions, including both distal properties (e.g. size, shape,

color, location, density, etc.) and bodily properties (e.g. hand position). In

describing credal states, researchers presuppose that the mind can represent

the relevant environmental properties. Researchers characterize credal states

by invoking representational relations to the environment. They cite these

representationally-characterized credal states as explanantia.

Researchers in Bayesian cognitive science do not use the phrase “veridicality-

condition.” The speak instead of random variables, probability distributions, pdfs,

and other entities drawn from probability theory. Nevertheless, their theorizing
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assigns a central role to veridicality-conditions. They identify both explananda and

explanantia by citing representational properties: either veridicality-conditions or

properties that potentially contribute to veridicality-conditions.

Take the Bayesian dead reckoning model. The model seeks to explain

overshooting, which presupposes a conative state with a fulfillment-

condition. To explain overshooting, the model posits that the navigation

system underestimates displacement—in other words, that the displacement

estimate is inaccurate. So the model explains overshooting by positing

a mental state (the displacement estimate) that is evaluable as veridical or

nonveridical. To explain why the navigation system underestimates displace-

ment, the model posits a prior that favors slow speeds. The prior assigns

credences to hypotheses regarding the creature’s speed. For example, it

assigns a credence to the hypothesis that the creature’s speed lies in the

interval ½a; b�. This hypothesis is individuated through representational rela-

tions to possible speeds (namely, speeds lying between a and b). By citing

credal assignments to representationally-individuated hypotheses, the model

depicts the navigation system as favoring slow speeds. It thereby explains

overshooting. Explanation is laced at every stage with appeals to representa-

tional properties.

Similarly, consider Bayesian modeling of size perception (Ernst & Banks,

2002; Helbig & Ernst, 2008). Here we posit a prior over possible distal sizes.

The prior combines with sensory input (e.g. haptic or visual input) and a prior

likelihood, yielding a posterior over possible distal sizes. On that basis, the

perceptual system chooses a privileged size estimate, which goes into the final

percept. The percept is veridical only if the perceived object has the estimated

size. Thus, the final size estimate is individuated representationally—through

its contribution to the percept’s veridicality-condition. The prior and posterior

are also characterized representationally. These are credal states that allocate

credences over hypotheses regarding distal size. Hypotheses are individuated

through their representational properties—through the distal sizes that they

represent. So the model posits mental states with representational properties,

mediating between proximal sensory input and the (representationally-

characterized) perceptual size estimate.

One could offer a similar analysis for virtually every other explanation

found within Bayesian cognitive science. Bayesian researchers frequently

characterize explananda in representational terms. They almost invariably

characterize credal states in representational terms. For that reason, their

research fits well with the representationalist paradigm espoused by Burge

(2010; 2022), Fodor (1975; 1987; 2008), Peacocke (1994; 1999), Pylyshyn

(1984), Shea (2018), and many others.
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6.2 Credal States Versus Mathematical Tools

I now develop my analysis by examining more closely the formal apparatus

used by Bayesian modelers. The key point I wish to highlight is the distinction

between credal states versus the mathematical tools used to specify credal

states.

Look again at Figures 33 and 34. The green downward-sloping curve is a pdf:

a function from ℝ to ℝ. The pdf induces a probability distribution over sets of

real numbers. The pdf and the induced probability distribution are mathematical

tools that theorists use to specify the “slow speed” prior. The “slow speed” prior

is a credal state: an assignment of credences to hypotheses. We must sharply

distinguish the credal state from the pdf and also from the induced probability

distribution. Nothing about the pdf taken on its own suggests we are modeling

a credal state that concerns speed. The same pdf could just as well specify a prior

over possible sizes, or possible distances, or any other one-dimensional con-

tinuous physical magnitude. The pdf in itself does not indicate that we are

modeling a “slow speed” prior as opposed to a “small size” prior, a “short

distance” prior, or numerous other possible priors. The same goes for the

induced probability distribution.

Similar remarks apply to most other Bayesian models. The modeler typically

specifies credal states through a probability distribution over sets of real num-

bers, which in turn is typically specified through a pdf. The probability distri-

bution taken on its own does not even begin to dictate the underlying credal

state. The credal state is defined over hypotheses that are individuated through

their representational relations to the environment. The probability distribution

is a mathematical function individuated without regard to any such representa-

tional relations. The same probability distribution could just as well specify

many different credal states.

To identify the credal state specified by a pdf, we must look beyond math-

ematical formalism and consider the broader enterprise to which the formalism

contributes. We must first ask which psychological domain is being modeled:

perception, or motor control, or navigation, and so on. We must also ask which

aspects of the environment are represented by the credal state: shape, or size, or

color, or speed, and so on. Usually, we can answer these questions by studying

the text that accompanies the formalism. For example, Lakshminarasimhan

et al. (2018, p. 195) write that overshooting “can be explained by a model in

which subjects maximized their expected reward under the influence of a slow-

speed prior rather than by leaky integration of unbiased velocity estimates.”

This passage and kindred passages show that the pdf from Figures 33 and 34 is

intended to specify a credal state that favors slow speeds and that is deployed
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during dead reckoning. Analogous passages abound throughout Bayesian cog-

nitive science. These passages are not idle prattle or disposable heuristic. They

play a crucial theoretical role: they point us towards the credal states specified

by Bayesian models.

Pdfs are indispensable mathematical tools. They allow us to specify

credal states with mathematical precision, and they allow us to bring the

calculus of real numbers to bear. Ultimately, though, they omit something

crucial. They omit the representational properties that help individuate

credal states.

To bring the distinction between credal states versus mathematical tools into

sharper relief, it helps to reflect upon measurement units. Using measurement

units, we can describe a physical magnitude (such as a speed) with a real

number. For example, we can say that an object’s speed is 10 meters/sec. The

physical magnitude is quite distinct from the number 10 that we use to measure

it, as evidenced by the fact that a change in measurement units necessitates

a change in the number used to specify the same physical magnitude. If we

switch from meters/sec to feet/sec, we must now say that the object travels at

3:28084� 10 ¼ 32:8084

feet/sec. We cite a different number to specify the same speed. Speeds are

distinct from the numbers through which we measure speeds.12

When we specify a credal state through a pdf, our choice of pdf depends upon

a canonical choice of measurement units. A change in measurement units neces-

sitates a change in the pdf we use to specify the credal state. Figure 37 illustrates.

The blue pdf corresponds to meters/sec. The orange pdf corresponds to feet/sec.

The pdfs are different, but they specify the same underlying probability assign-

ment over possible speeds. They specify the same “slow speed” prior. Full

technical details are given in Section A5, but the point should be intuitively

clear even absent any technical details. A pdf is defined over real numbers, so it

can describe a credal allocation over possible speeds only relative tomeasurement

units that map speeds to real numbers. If we change the measurement units, then

we must use a different pdf to model the same credal allocation over speeds. The

different pdf will induce a different probability distribution over sets of real

numbers, even while the underlying credal allocation remains fixed.

Our choice of measurement units reflects our societal conventions, not

inherent features of the credal state itself. There is no reason to suspect that pre-

theoretic human navigation employs our conventional measurement units.

12 See Peacocke (2019) for a general account of physical magnitudes, including argumentation that
we should add these items to our ontology.
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Indeed, it may not use any measurement units at all. (Cf. Peacocke, 2019, p. 48.)

The same credal state could just as well be specified by a different pdf. For

example, there is no reason to regard the blue pdf from Figure 37 as privileged

over the orange pdf. Neither pdf has more psychological reality than the other.

Psychological reality resides in the underlying credal state—a credal allocation

over hypotheses regarding possible speeds—rather than the pdf.

The “slow speed” prior is a credal state that allocates credences over hypoth-

eses, where the hypotheses are individuated through the specific speeds that

they represent. The pdf is a purely mathematical function that reflects

a conventional choice of measurement units. The prior does not reflect any

such conventional choice. The pdf is a useful tool for specifying the under-

lying credal state, but its mathematical elegance should not dazzle us into

ascribing psychological reality to it. The credal state is psychologically real.

The pdf is not psychologically real, and neither is the induced probability

distribution over sets of real numbers.

6.3 Random Variables Revisited

We can clarify the distinction between credal states and mathematical tools by

revisiting the notion of random variable.

Figure 37A change in measurement units necessitates a change in pdf. The blue

pdf corresponds to meters/sec. The orange pdf corresponds to feet/sec. To

convert from meters/sec to feet/sec, multiply by 3.28084. In Figure 37,

b ¼ 3:28084� a. The area under the blue curve over ½0; a� equals the area under
the orange curve over ½0; b�. The same equality holds for all other points a and

b such that b ¼ 3:28084� a. Thus, the two pdfs model the same probability

assignment over possible speeds.
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Recall from Section 2.3 that a random variable Xmaps an outcome spaceΩ to

the real numbers ℝ. For example, suppose the outcome space Ω contains

possible speeds of an asteroid. Each outcome ω in Ω is a speed that the asteroid

might have. Speeds are physical magnitudes, not real numbers. Assuming

a canonical choice of measurement units, we can measure magnitudes using

real numbers. Let X be a random variable that maps each speed to the corres-

ponding real number, using meters/sec as canonical units. Thus,

X ðωÞ ¼ x

when x specifies speed ω in meters/sec. X is a function from Ω (the set of

possible speeds) to ℝ.

Given a random variable and an underlying outcome space Ω, we can use

a probability distribution over sets of real numbers to specify a probability

distribution over sets of outcomes. Continuing with the asteroid example,

suppose we are given a probability distribution μ that assigns probabilities to

sets of real numbers. Then we can use X and μ to assign probabilities to sets of

speeds. For example, what probability should we assign to the event X�1½a; b�?
This event codifies the hypothesis that the asteroid’s speed falls between a and

b. If we are taking μ as a guide, we should assign the same probability to

X�1½a; b� that μ assigns to ½a; b�. In other words, if P X�1½a; b�� �
is the probabil-

ity assigned to X�1½a; b�, then we should have

P X�1½a; b�� � ¼ μ ½a; b�ð Þ;

As Figure 38 illustrates, we can use X to transfer the probability distribution μ

defined over sets of real numbers into a probability distribution P defined over

Figure 38 Illustrates the relation between P and μ. μ maps ½a; b� to the same

probability as that to which P maps X�1½a; b�.
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sets of speeds. More generally, and as discussed more rigorously in Section A3,

we can always use a random variable to transfer a probability distribution over

sets of real numbers into a probability distribution over sets with members

drawn from the underlying outcome space.

Now consider a different random variable Y that maps each magnitude to the

corresponding real number using feet/sec. Thus,

YðωÞ ¼ y

when real number y specifies speedω in feet/sec. Using the standard conversion

from meters/sec to feet/sec, we obtain the following relation between X and Y:

YðωÞ ¼ 3:28084X ðωÞ:

The same magnitude ω is mapped to a different real number, depending on

whether we are using meters/sec (corresponding to X ) or feet/sec (correspond-

ing to Y ).

If we want to specify a fixed probability distribution P over sets whose

members come from Ω itself, then X and Y mandate different probability

distributions over sets of real numbers. Figure 37 illustrates. The pdf in blue

generates one probability distribution over sets of real numbers. The pdf in

orange generates a second probability distribution over sets of real numbers.

Transferring the first probability distribution via X yields the same result as

transferring the second probability distribution via Y. The very same probability

distribution P over sets of speeds results if we use the blue pdf and X or if we use

the orange pdf and Y.

These observations complement my diagnosis from Section 6.2. Our choice

of pdf reflects our choice of a random variable, which reflects our choice of

measurement units. Different measurement units mandate a different pdf in

order to specify the same probability distribution over sets with members drawn

from the underlying outcome space. These facts, which are basic to probability

theory, reflect the inherently arbitrary nature of measurement using real num-

bers. Many different measurement units are equally legitimate. Different units

yield different pdfs and different probability distributions over sets of real

numbers, but the underlying probability distribution over sets of outcomes

remains fixed.

In the special case of Bayesian cognitive science, we seek to model credal

allocations by an agent or an agent’s psychological subsystems (such as the

perceptual system). The most convenient way to specify a credal allocation is

usually through a pdf, as in Figures 33 and 34. The pdf is merely a tool for

specifying a credal allocation over an underlying outcome space Ω. More
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precisely: the credal allocation assigns credences to sets whose members are

drawn fromΩ. The pdf depends upon an arbitrary choice of measurement units.

The credal allocation does not. Psychological reality resides in the credal

allocation, not the pdf.

6.4 The Objects of Credence

In Sections 6.2 and 6.3, I argued that the pdfs invoked by Bayesian cognitive

scientists are mathematical tools for specifying credal states. A credal state

assigns credences to sets of outcomes, where outcomes are drawn from an

outcome spaceΩ. What are the outcomes? In other words, what are the elements

of Ω? Answering this question is a large undertaking. I will broach a few

preliminary considerations that should inform a more complete treatment.

Note first that Kolmogorov’s axiomatization does not tell us what outcomes are.

Kolmogorov assigns probabilities to events: sets whose members belong to an

outcome space Ω. He places no constraints whatsoever upon Ω’s members. Thus,

the mathematical formalism of probability theory does not answer our question.

Explanatory practice within Bayesian cognitive science places some con-

straints upon Ω, but it does not dictate a unique answer. For example, the

Bayesian dead reckoning model posits a prior over possible speeds, so out-

comes must intimately relate somehow to speed. However, this constraint leaves

room for various interpretations.

One interpretation is that Ω contains possible worlds. We would then con-

strue events as sets of possible worlds. In the Bayesian dead reckoning model,

the hypothesis that the creature moves with speed between a and b would be

codified as the set of possible worlds where the creature moves with speed

between a and b. In a Bayesian model of size perception, the hypothesis that the

perceived object has size between a and b would be codified as the set of

possible worlds where the perceived object has size between a and b. These

codifications fit well with contemporary philosophical work, which often

assigns credences to sets of possible worlds. More generally, they fit well

with the longstanding philosophical tradition, mentioned in Section 2.1, of

glossing propositions as sets of possible worlds.

A second interpretation is that Ω contains physical magnitudes. In the

Bayesian dead reckoning model, the hypothesis that the creature moves with

speed between a and bwould be codified as the set of speeds between a and b. In

a Bayesian model of size perception, the hypothesis that the perceived object

has size between a and b would be codified as the set of sizes between a and b.

A third interpretation is that Ω contains mental representations. A mental

representation is a mental item with representational properties. Mental
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representations are similar in key respects to the communal representations

employed by human society, such as pictures, maps, or natural language

sentences, but they are housed in the mind rather than the external world.

They can be stored in memory, manipulated during mental activity, and com-

bined to form complex representations. Appeal to mental representations is

widespread in cognitive science theorizing (Carey, 2009; Fodor, 1975; Fodor,

2008; Gallistel &King, 2009; Pylyshyn, 1984; Rescorla, 2020d). If we takeΩ to

contain mental representations, then we will construe events as sets of mental

representations. In the Bayesian dead reckoning model, the hypothesis that the

creature moves with speed between a and bwould be codified as something like

the set of mental representations that attribute speed between a and b. In

a Bayesian model of size perception, the hypothesis that the perceived object

has size between a and b would be codified as something like the set of mental

representations that attribute size between a and b. Although these codifications

may look odd to philosophers reared on the possible worlds interpretation,

they fit nicely with the widespread cognitive science commitment to mental

representations.

Each of the three interpretations is compatible with a realist perspective on

Bayesian cognitive science. Moreover, each interpretation codifies hypoth-

eses in representational terms. The first interpretation collects together those

possible worlds where the hypothesis is veridical. The second interpretation

collects together those physical magnitudes that are consistent with the

veridicality of the hypothesis. The third interpretation collects together

mental representations according to which the hypothesis is veridical.

Thus, all three interpretations analyze credal states representationally—in

terms of veridicality-conditions or representational properties that contribute

to veridicality-conditions.

All three interpretations deserve detailed consideration, as no doubt do

other interpretations. My own sympathies lie with the third interpretation,

but I will not attempt to defend it here. My goal instead is to highlight the need

for some interpretation. To understand the credal states posited by Bayesian

cognitive science, we must identify the entities to which credences attach. We

must identify the objects of credence. Assuming that credences attach to sets,

our task is to identify which elements belong to the sets. By making progress

on this task, we may hope to illuminate the representational nature of credal

states.13

13 Mahtani (2024) conducts a detailed investigation into the objects of credence, focused primarily
on the intersection of formal epistemology with philosophy of language rather than on Bayesian
cognitive science.
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6.5 How Many Outcomes?

In addition to studying what outcomes are, we must also consider how many

outcomes there are. A set is countablewhen we can count its members using the

numbers 0, 1, 2, 3, . . . . A set is uncountable when we cannot so count its

members. A random variable is discrete when it has countably many possible

values, nondiscrete when it has uncountably many possible values. The

Bayesian dead reckoning model features a random variable whose possible

values correspond to possible speeds of the navigator (specified through canon-

ical measurement units). Even if we stipulate a maximum possible speed s, there

are still uncountably many real numbers lying in the interval ½0; s� and hence

uncountably many possible speeds. So the random variable is nondiscrete, and

the underlying outcome space Ω is uncountable. Similarly for Bayesian model-

ing of motion estimation (Weiss, Simoncelli & Adelson, 2002), size estimation

(Ernst & Banks, 2002), motor control (Todorov & Jordan, 2002), and numerous

other tasks. In general, whenever cognitive scientists model Bayesian estimation

of a physical magnitude that has uncountably many possible values (e.g. time,

distance, speed, orientation, size), the resulting Bayesian model invokes a non-

discrete random variable X defined over an uncountable outcome space.

Taken literally, such a model attributes highly infinitary representational

capacities. More specifically:

(i) The model posits credal states (a prior and a posterior) that assign

probabilities to events X�1½a; b�. There are uncountably many events

X�1½a; b�, so the model posits a credal assignment over uncountably

many events.

(ii) Themodel posits credal states drawn from among uncountablymany possible

options. This remains so even if we demand that credal assignments belong to

a fixed parametric family, such as the family of Gaussian distributions.

(iii) The model posits a privileged estimate x* of X’s value, as in Figure 28.

There are uncountably many possible values x*, so the model posits

a privileged estimate selected from among uncountably many options.

Hence, the model attributes highly infinitary representational capacities when

specifying both credal states and privileged estimates.

Some philosophers will bristle at these infinitary attributions. The attributions

may look incompatible with obvious finitary limits on our representational or

computational capacities. It might seem that we should dismiss (i)‒(iii) as mere

idealizations, eventually to be obviated by a more plausible model that honors

the finitary limits on human mental activity. Shouldn’t a plausible model restrict

itself to a finite outcome space?
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I agree that there are finitary limits of some sort on human representational and

computational capacities. For example, we do not have infinite memory storage

capacity: the mind cannot explicitly list infinitely many distinct pieces of infor-

mation. Yet I wonder whether (i)‒(iii) flout any genuine finitary limits on human

mental activity. As discussed in Section 5.4, computational neuroscience offers

various theories of how the brain could, in principle, implement or approximately

implement Bayesian inference. The theories are biologically plausible, and they

fit well with diverse neurophysiological data. Several theories describe the brain

as implementing a Bayesian model that satisfies (i)‒(iii). Those theories feature

nondiscrete neural variables (e.g. membrane potential), which are taken to pro-

vide a substrate for credal states. Thus, (i)‒(iii) look compatible with lots of work

in contemporary computational neuroscience.

The classical computational theory of mind (CTM) holds that mental activity

is digital computation (Fodor, 1975; 1987; 2008; Gallistel & King, 2009;

Pylyshyn, 1984; Rescorla, 2020). A digital computing system has at most

countably many possible computational states. Hence, CTM is incompatible

with (ii) and (iii). However, CTM is compatible with (i). There is a well-

developed framework—computable probability theory—that studies how digi-

tal computing systems can encode and compute over probability distributions

(Ackerman, Freer & Roy, 2019). In this framework, the computing system often

satisfies (i) but not (ii) or (iii). The system encodes a credal assignment over

uncountably many events, but there are only countably many possible credal

assignments and privileged estimates x* available to the system. For example,

the system may encode a Gaussian distribution, but there are only countably

many distinct Gaussian distributions that it could have instead encoded (it can

only encode a Gaussian whose mean and variance are drawn from a fixed

countable set). In more practical terms, computer scientists and roboticists

frequently program digital systems to compute over nondiscrete random vari-

ables (e.g. Thrun, Burgard & Fox, 2005). These systems encode a wide range of

probability distributions, including Gaussian distributions and many others

besides. Their computations satisfy (i) though not (ii) and (iii). Thus, propon-

ents of CTM can happily allow that the mind assigns credences to uncountably

many events.

Infinitary Bayesian models raise thorny questions at the intersection of phil-

osophy, psychology, computation theory, and neuroscience.14 I cannot hope to

settle these questions here. For present purposes, the key point is that a realist

representationalist perspective on Bayesian cognitive science admits several

14 In particular, they engage longstanding debates over whether the mind executes digital versus
analog computation. See Rescorla (2020a) for an introductory discussion.
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divergent reactions to an explanatorily successful Bayesian model defined over

a nondiscrete random variable, including the following three reactions:

• Accept the model at face value; embrace (i)‒(iii).

• Guided by computable probability theory, emend the model by allowing only

countably many of the credal states and estimates posited by the model;

embrace (i) but not (ii) and (iii).

• Try to replace the model with a purely finitary approximation; reject (i)‒(iii).

Each position is compatible with realism, which commits to credal states and

transitions approximately like the ones posited by the model but does not insist

that the model is literally true. Each position is compatible with representation-

alism, which champions the representational nature of credal states but does not

mandate infinitary representational capacities.

7 Anti-representationalism

Anti-representationalists hold that we should expungemental representation from

rigorous scientific theorizing. They seek to explain mental and behavioral phe-

nomena in strictly nonrepresentational terms. Different anti-representationalists

favor different nonrepresentational paradigms:

• Quine (1960) favors Skinnerian stimulus-response psychology.

• Churchland (1981) favors a neurophysiological paradigm.

• Field (2001) and Stich (1983) favor nonrepresentational computational

description.

• van Gelder (1992) favors dynamical system theory.

Despite these differences, anti-representationalists agree that mental repre-

sentation makes no useful contribution to scientific theorizing about the

mind.

Anti-representationalism conflicts with Bayesian cognitive science. As we

have seen, Bayesian researchers routinely characterize explananda in represen-

tational terms. If we abjure representational discourse, then we cannot acknow-

ledge those explananda. For example, anti-representationalists cannot replicate

how the Bayesian dead reckoning model explains overshooting: overshooting

is a representationally-characterized explanandum, because a subject can

overshoot a location only when she has that location as a goal. Nor can

anti-representationalists characterize a perceptual state as illusory: an illusion

requires perceptual states with accuracy-conditions. Nonrepresentational theoriz-

ing ignores representational properties and hence cannotmention, let alone explain,

representationally-characterized explananda. Since anti-representationalists cannot
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explain representationally-characterized explananda, they cannot replicate the

explanatory benefits secured by Bayesian cognitive science.

Neither can anti-representationalists accept successful Bayesian explanations

for nonrepresentational explananda. Suppose we characterize the results of

dead reckoning in purely nonrepresentational terms. For example, we can

identify the creature’s final position across various trials, without mentioning

whether the position overshoots any target location. The Bayesian dead reckon-

ing model explains the nonrepresentationally characterized explanandum. It

does so by isolating causally relevant factors (including the “slow speed” prior)

that influence position. This is a representational explanation: it explains a

nonrepresentational explanandum (position) by citing a credal allocation over

representationally-characterized hypotheses. Anti-representationalists cannot

accept the explanation. Their anti-representationalist scruples forbid explan-

ations that cite representational properties of mental states.

Anti-representationalists claim that we can replicate any purported benefits

of representational explanation through alternative explanations couched in

purely nonrepresentational terms. They claim that we can jettison mental

representation while preserving the explanatory achievements enabled by

representationally-characterized explanantia. The long, dismal history of

anti-representationalist theorizing provides little basis for that claim. Anti-

representationalists have consistently failed to match even the most elemen-

tary explanatory achievements of representationalist cognitive science. For

example, Gibson’s (1979) direct perception framework seeks to analyze

perception in nonrepresentational terms, but it cannot explain a huge range

of perceptual illusions and constancies (Fodor & Pylyshyn, 1981). Similar

remarks apply to numerous other anti-representationalist theories that have

flitted in and out of fashion over the past century.

In the present dialectical context, the key question is whether anti-

representationalists can preserve the explanatory benefits of Bayesian models

without invoking representational mental states. I doubt it. One cannot usually

strip a scientific theory of its main theoretical concepts while retaining its

explanatory benefits. For example, renouncing talk about subatomic particles

would severely limit the explanatory power of physics. I see no reason to think

that we can renounce talk about representational credal states while retaining

the explanatory benefits provided by such talk. Consider the Bayesian dead

reckoning model. It relies in an essential way upon the “slow speed” prior. By

invoking this prior, the model achieves a much better fit with experimental data

than the hitherto dominant “leaky integrator” model. The “slow speed” prior is

characterized in representational terms. How, then, can we replicate its explana-

tory contribution while eschewing representational discourse? The principal
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explanatory advance made by the model was a posit of representational mental

states.

To support my viewpoint, I will now critique two anti-representationalist

interpretations of Bayesian cognitive science. The interpretations differ in

various ways. They agree that, contrary to what I suggested in Section 6,

Bayesian models of the mind do not postulate representational mental states.

I will explain why I think both interpretations are mistaken.

7.1 Function-theoretic Computation

Egan (2010; 2020) advocates a function-theoretic approach to mental computation:

“The input of a computationally characterizedmechanism represents the arguments

and the outputs the values of a mathematical function that canonically specifies the

task executed by the mechanism” (2020, p. 33, fn. 7). A computational theory of

a mechanism “comprises a specification of the function (in the mathematical sense)

computed by the mechanism” (2020, p. 33). Thus, computational psychology

provides “an abstract mathematical description” that prescinds from representa-

tional properties of mental states (Egan, 2010, p. 256). She admits that cognitive

scientists frequently mention representational properties when describing mental

states. She maintains that representational discourse “is best construed as a kind of

gloss—an intentional gloss—on the computational theory” (2020, p. 33). The

intentional gloss plays a useful heuristic role in our theorizing: it helps us connect

our computational description with representationally-characterized explananda; it

helps us track how the computationalmechanism responds to environmental events;

and it can serve as a temporary placeholder until we discover an underlying

computational mechanism. Representational properties do not figure in genuinely

computational theories and are not necessary for good cognitive science explan-

ations: “the computational theory proper can fully explain the interaction between

organism and environment . . .without adverting to cognitive content” (2020, p. 34).

Egan’s function-theoretic approach encompasses the following three doc-

trines, each of which I reject:

(a) Computational models of the mind mention inputs and outputs, but they do

not mention internal states that mediate between inputs and outputs.

(b) Computational models describe inputs and outputs in purely mathematical

terms, without mentioning any representational properties of the inputs or

outputs.

(c) Representational discourse plays a purely heuristic role in cognitive science

theorizing. It makes no genuine explanatory contribution.

I will critique doctrines (a)‒(c) in turn.
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Doctrine (a) conflicts with huge amounts of cognitive science theorizing.

Computational modeling by cognitive scientists routinely posits internal states

that mediate between inputs and outputs. All the Bayesian models I have

discussed above are examples. For example, Bayesian models of perception

as encapsulated by Figure 28 posit three internal credal states: a prior probabil-

ity, a prior likelihood, and a posterior (or approximate posterior). These credal

states mediate between the input (proximal sensory stimulation) and the output

(a privileged perceptual estimate of a distal property). More complex models,

such as models of motor control, posit a sequence of credal states mediating

between inputs and outputs. Evidently, Bayesian models commit to far more

internal computational detail than (a) allows. The models do not merely

describe a function from inputs to outputs. They say something informative

about the internal states and transitions through which the system converts

inputs into outputs.

Egan disagrees. She asserts that Bayesian models carry “no commitment to

internal states or structures and causal processes defined on them” (2020, p. 48)

and that “Bayesian models, to the extent that they say anything about how the

brain actually works, give . . . a function-theoretic characterization; they specify

the function, in the mathematical sense, computed by the mechanism” (2020,

p. 50). She does not justify her analysis by adducing a single Bayesian model

found in cognitive science. She does not attempt to reconcile her analysis with

the commitment, apparently ubiquitous throughout Bayesian cognitive science,

to credal states and transitions. She simply states, without evidence or argument,

that Bayesian models are not committed to any internal states or processes.

Egan professes neutrality in the debate between realist versus instrumentalist

perspectives on Bayesian modeling (2020, p. 49, fn. 22). Yet her analysis seems

irreconcilable with the most faintly realist perspective. On anything resembling

realism, we should accept the existence of credal states and transitions mediat-

ing between inputs and outputs. Only if we adopt a strongly instrumentalist

perspective may we regard a Bayesian model as specifying a mere function

from inputs to outputs. I indicated in Section 5 why I favor realism over

instrumentalism.

Doctrine (b) is also problematic, at least as applied to Bayesian modeling of

the mind. Bayesian models routinely specify either inputs or outputs in repre-

sentational terms:

• Bayesian sensorimotor models specify a task goal as input to sensorimotor

processing. The goal is set by a conative state with a fulfillment-condition.

Hence, the Bayesian model presupposes a representationally-specified

mental state.
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• Bayesian perceptual models usually yield as output a perceptual estimate of

some distal property. Estimates can be accurate or inaccurate. An estimate

that an object has a certain size is accurate only if the object has that size; an

estimate that an object moves with a certain speed is accurate only if the

object moves with that speed; and so on.

These representational descriptions are inherent to the computational model.

They are all we have to go on when identifying the relevant inputs or outputs.

For example, suppose a Bayesian model outputs an estimate of an object’s size.

The model individuates the estimate through its representational relation to a

specific distal size. If we abandon any reference to represented size, we abandon

our only way of identifying the model’s outputs.

Doctrine (c) is similarly problematic. As I documented in Section 6, Bayesian

models routinely individuate credal states in representational terms. Abandoning

representational discourse leaves us with no way to identify the credal states

postulated by the model and hence no way to replicate an explanation that cites

those credal states. For example, suppose a Bayesian perceptual model posits

a prior over distal size. If we refuse tomention sizes represented by the perceptual

system, then we cannot identify the hypotheses to which the prior assigns

credences, so we cannot cite the prior to explain anything. Accordingly,

I disagree with Egan’s claim that “Bayesian models are typically not developed

at a level of description that allows us to assess their representational commit-

ments, in the relevant sense. They have no representational commitments, in the

relevant sense” (2020, p. 48). Once again, Egan does not provide any concrete

examples to validate her assessment. She does not indicate, for even a single case,

how we are to individuate credal states in nonrepresentational terms. The lack of

detail is not surprising, since a nonrepresentational individuative scheme looks

fundamentally incompatible with the core methodology of Bayesian cognitive

science.

Egan is certainly correct that Bayesian cognitive science uses mathematical

tools to characterize inputs, outputs, and mediating credal states. Inputs and

outputs are typically described using real numbers. Mediating credal states are

usually described using pdfs. So Bayesian modeling includes “abstract math-

ematical descriptions” somewhat along the lines favored by Egan. As explained

in Sections 6.2 and 6.3, these mathematical descriptions reflect our arbitrary,

conventional choice of measurement units. Psychological reality and explana-

tory power reside in the representational states specified by our mathematical

descriptions, not in the mathematical descriptions themselves. For example, if

we describe the perceptual system as estimating that an object has size s, the

specific real number s reflects our arbitrary choice of units for measuring size.
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The number has no psychological reality. It explains nothing. What is psycho-

logically real is that the perceptual estimate represents a specific size—

a physical magnitude, not a real number. Similarly, if we describe a credal

state using a pdf, the pdf reflects our arbitrary choice of measurement units. It

has no psychological reality. It explains nothing. The credal state is what does

the explaining.

The mathematical descriptions emphasized by Egan are artifacts of our meas-

urement conventions. Different measurement units would yield a different math-

ematical description, including a different function from inputs to outputs, while

leaving representational description the same. Representational description, not

mathematical description, is the locus of psychological reality and explanatory

power. For example, suppose we learn that a Bayesian dead reckoner estimates

speed 5. Does that knowledge in itself help us explain overshooting? No.We need

to specify measurement units! 5 meters/sec, or 5 feet/sec, or something else? The

number 5 by itself is explanatorily irrelevant. What matters is the physical

magnitude measured by 5—that is, the speed represented by the dead reckoner.

The represented magnitude, not the number, is explanatorily important. Similar

remarks apply to other mathematical descriptions found in Bayesian cognitive

science, including specification of pdfs.

I critiqued Egan along these lines in previous work (Rescorla, 2015a). Egan

deems my critique “very puzzling” (2020, p. 48) and retorts (2020, p. 50):

To think that commitment to Bayes’ theorem—a function defined on prob-
ability distributions—reflects an arbitrary choice of conventions is analogous
to thinking that a claim that a device computes the addition function reflects
a commitment to represent addends and sums in base 10. Contra Rescorla, to
the extent that Bayesian models are to be construed realistically . . . such
proposals should be construed as hypotheses about underlying psychological
reality, committed, in particular, to the claim that the system is computing an
approximation to Bayes’ theorem.

I respond as follows:

• Bayes’s theorem is not “a function defined on probability distributions.” It is

a theorem.

• I agree with Egan that “commitment to Bayes’s theorem” does not “reflect an

arbitrary choice of conventions.” Bayes’s theorem does not in any way

depend for its truth upon our conventions.

• As a realist about Bayesian cognitive science, I do indeed hold that the mind

often computes an approximation to the posterior. I hold that at least some

Bayesian models describe mental processes with at least approximate

accuracy.
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• When we describe a device as computing the addition function, we are not

committed to using base 10 notation. Nor are we committed to saying that the

device uses base 10 notation. There are many possible numerical notations

that a device might use to compute arithmetical functions.

• When we describe a credal state using a pdf, our choice of pdf reflects our

arbitrary measurement units for the represented environmental variable. Our

description does not commit us to saying that the mind uses those particular

measurement units. For example, it is highly unlikely that the human naviga-

tion system measures speed using meters/sec.

• Egan claims that abstract mathematical description of mental computation

has explanatory priority over representational description. This position is

implausible because the mathematical description typically reflects an arbi-

trary choice of measurement units.

My conclusion: Egan’s response gives no reason to attribute any psychological

reality to abstract mathematical descriptions or to question the explanatory

centrality that I attribute to representational descriptions.

In summary, Egan’s function-theoretic conception does not fit well with

Bayesian cognitive science because it neglects the crucial role that Bayesian

modeling assigns to representational descriptions of explananda and explanan-

tia. In place of representational descriptions, Egan commends abstract mathem-

atical descriptions. Yet abstract mathematical descriptions reflect our own

arbitrary measurement units and lack any psychological reality. Egan’s

nonrepresentational approach cannot preserve the most basic explanatory

achievements of Bayesian cognitive science.

7.2 Radical Enactivism

Hutto and Myin (2017) espouse a radical enactivist approach to cognitive science.

They view cognition as a dynamic interaction between an embodied brain and

a changing environment. They “conceive of the basis of cognition in terms of

extensive and dynamically loopy processes that are responsive to information in the

form of environmental variables spanning multiple spatial and temporal scales”

(p. 9). They also reject representationalism: they “construe cognition as unfolding,

world-relating processes rather than as a series of content-bearing states and their

interactions” (p. 9). They acknowledge that talk about veridicality-conditions is

illuminating when applied to sophisticated symbolic communication (p. 90). They

deny that it usefully contributes to theorizing about perception, motor control, or

other relatively low-level psychological domains (pp. 12–13).

Hutto and Myin apply their radical enactivist approach to Bayesian cognitive

science. FollowingClark (2015) andHohwy (2014), they focus almost exclusively
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upon a neural implementation framework called predictive coding. The basic

idea behind predictive coding is that the brain generates a prediction regarding

the sensory input it will receive. The brain compares its prediction with actual

sensory input, computing a prediction error term. Prediction error informs

subsequent computation, shaping future expectations so as to minimize future

prediction error. Many predictive coding models have a hierarchical structure:

higher levels of the network compute predictions about lower-level activity, and

the lower level computes a prediction error term that is transmitted back to the

higher level. There is nothing inherently Bayesian about predictive coding

models, but when set up in the right way they can implement an approximation

to Bayesian inference. This can be done either through parametric encoding

(Friston, 2010) or through sampling encoding (Lee & Mumford, 2003). Hutto

and Myin use the label the Predictive Processing account of Cognition (PPC) to

describe theories that implement approximate Bayesian inference through pre-

dictive coding.

Hutto and Myin offer a radical enactivist interpretation of PPC. Their core

interpretive claim is that we need not gloss talk about “prediction” and “expect-

ation” in representational terms. They write: “Having expectations about what

we will experience sensorily need not be thought of as involving the making of

any kind of contentful claim about the state of the world. Nor need we think of

sensory perturbations that are involved in such matches and mismatches as

supplying rich contentful messages that contradict the content of our expect-

ation” (pp. 70–71). Accordingly, we need not interpret PPC models representa-

tionally: “our expectations can fail to match incoming sensory experience

without this activity being construed as a content-based operation” (p. 71).

They conclude that PPC provides no support for representationalism.

I agree with Hutto and Myin that, in many cases, we should not interpret PPC

talk about “prediction” and “expectation” in representational terms. I agree that,

in many cases, we should not describe the mind as “representing” expected

experiences. As Burge (2010, pp. 367–463) notes, there is no evidence that the

perceptual system represents proximal sensory stimulations. The perceptual

system converts nonrepresentational sensory stimulations into perceptual rep-

resentations, without representing the stimulations. There is no explanatory

benefit to saying that the perceptual system represents its own sensory input.

When a PPC neural network compares predicted sensory input with actual

sensory input, we usually should not describe the comparison in representa-

tional terms. We should instead say that the network compares an input signal

with a feedback signal generated by a higher level of the network. We may

describe both signals in neural terms, e.g., as firing rates, and we may describe

the “prediction error” computation as a neurophysiological operation on those
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signals. Representational properties play no role in characterizing the “predic-

tion error” computation.

A similar diagnosis applies to higher levels in hierarchical PPC models, such

as the celebrated (Rao & Ballard, 1999) model. Each level compares neural

activity with a feedback “prediction” signal received from a higher level,

computing an “error” term subsequently transmitted to the higher level. The

feedback signal and the “error” computation can again be described in non-

representational, neurophysiological terms.

Typically, then, we should not describe a PPC neural network as representing

its inputs or its own neural activity. The network receives but does represent

proximal sensory inputs. It instantiates but does not represent neural activity.

Talk about “prediction” and “expectation” may be harmless enough for some

purposes, but I agree with Hutto and Myin that we achieve no explanatory gain

by glossing this talk in representational terms.15

However, the nonrepresentational interpretation of prediction talk is doubly

irrelevant to representationalism about Bayesian cognitive science.

First, we should not focus exclusively on PPC models. Most Bayesian

modeling is not tied to the PPC research program. Most Bayesian models

found in cognitive science are neutral about neural implementation mechan-

isms. Many promising implementation schemes, such as the schemes discussed

in Ma et al. (2006) and Orbán et al. (2016), do not feature anything like

predictive coding (Rescorla, 2017; Rescorla, 2024). Thus, the interpretation

of PPC modeling is distinct from the interpretation of Bayesian modeling more

generally. Hutto and Myin give no reason for focusing narrowly on PPC to the

exclusion of generic Bayesian modeling. Indeed, their exposition tends to elide

the difference between PPC and Bayesian cognitive science (e.g. pp. 150–151).

Although predictive coding has received considerable recent attention in the

philosophical community, empirical support for it remains equivocal (Aitchison

& Lengyel, 2017). In my opinion, we currently have no reason to suspect that

approximate Bayesian inference is typically implemented in PPC fashion.

Second, and more importantly, representationalists about Bayesian cognitive

science do not claim that the mind represents either sensory input or neural

activity. Representationalists claim that the mind represents environmental

conditions, including both distal conditions and bodily state. Assume for the

sake of argument that a neural system implements approximate Bayesian

inference through a predictive coding implementation mechanism. We will

describe the system using a Bayesian model, which posits credal states and

15 See also Cao (2020) for critical discussion of talk about “prediction” in the context of predictive
coding models. See Burge (2022, pp. 631–632) for more general cautionary remarks regarding
talk about “prediction” and “expectation” in psychological theorizing.
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transitions, and a PPC model, which specifies how the Bayesian model is

neurally implemented by a predictive coding mechanism. I agree with Hutto

and Myin that there is no reason to think that the system represents its own

inputs or own neural activity. Nevertheless, we have strong reason to think that

the system represents the environment. We have strong reason to describe the

system’s credal states in representational terms, as allocating credences over

representationally-individuated hypotheses. Only then can we preserve explan-

ations that rely on representationally-characterized credal states. For example,

how can we explain overshooting in dead reckoning unless we posit a prior that

favors slower speeds? I have no idea how enactivists would interpret the “slow

speed” prior in nonrepresentational terms, let alone how the ensuing explan-

ations would work.

Hutto and Myin (pp. 151–155) express skepticism about my representation-

alist interpretation of Bayesian models. They do not provide a developed

alternative interpretation. They do not indicate how to gloss credal states and

transitions in nonrepresentationalist enactivist terms. In fact, they barely discuss

credal states: they mention priors a mere handful of times, and they do not

mention posteriors at all. They do not analyze a single specific Bayesian model

of mental activity, even in the most schematic way. Their treatment gives no hint

how enactivists might eschew representational vocabulary while preserving the

explanatory power of Bayesian modeling.

7.3 Interpreting Bayesian Cognitive Science

When philosophers interpret a scientific theory, they often employ theoretical

notions (such as veridicality-condition) that play no explicit role in scientific

discourse. Inevitably, there is a gap between philosophical interpretation and

scientific texts. Still, some interpretations usually fit much better with scientific

practice than others.

In the present case, a representationalist interpretation fits much better with

Bayesian cognitive science than the function-theoretic interpretation offered by

Egan or the enactivist interpretation offered by Hutto and Myin. The represen-

tationalist interpretation describes how to interpret the priors and posteriors that

figure so prominently in Bayesian theorizing. The function-theoretic and enac-

tivist conceptions say virtually nothing about how to interpret priors and

posteriors, save perhaps to dismiss them in instrumentalist fashion as useful

fictions. The representationalist interpretation analyzes in quite precise detail

the explanations offered by Bayesian cognitive scientists, such as the explan-

ations embodied by Figures 33 and 34. The function-theoretic and enactivist

interpretations have little if anything to say about those explanations. Absent
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more compelling anti-representationalist interpretations, the representationalist

interpretation looks secure.

8 Conclusion

The mind operates amid constant uncertainty stemming from multiple sources,

including noise, ambiguous input, and conflicting sensory cues. Bayesian

cognitive science postulates that the mind grapples with uncertainty by impli-

citly encoding credal assignments over hypotheses. The encoded credences

influence inference and decision-making, roughly in accord with Bayesian

norms. The Bayesian program draws support from strong empirical evidence

across a range of psychological domains.

I have analyzed Bayesian modeling from a realist representationalist per-

spective that takes seriously the postulation of credal states and transitions.

Realists hold that, when a Bayesian model is explanatorily successful, we have

good reason to accept the existence of credal states and transitions roughly like

those posited by the model. Representationalists hold that the posited credal

states assign credences to hypotheses individuated through their representa-

tional properties. The realist representationalist interpretation fits much better

with scientific practice than do rival instrumentalist or anti-representationalist

interpretations.

Throughout my discussion, I have highlighted foundational questions raised

by the Bayesian paradigm. Which mental processes approximately conform to

Bayesian norms, and which do not? How do nature and nurture jointly influence

priors employed by the mind? How are credal states neurally implemented?

How does the brain transition from one credal state to another? What computa-

tional strategies does it use to approximate intractable Bayesian inferences?

What is it to attach a credence to a hypothesis? Given that hypotheses are sets of

outcomes, what exactly are the outcomes? How literally should we construe an

infinitary Bayesian model built atop an uncountable outcome space? Ongoing

research into these and other foundational questions promises to illuminate

how the representational mind, by approximating rational norms, copes with

perpetual uncertainty.
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Appendix: Foundations of Probability
Theory

This appendix presents some key probabilistic concepts as they relate to

Bayesian modeling. It serves as a more mathematically rigorous complement

to the informal exposition from Sections 2 and 3.

A few preliminary definitions are in order. Let A and B be sets. A function

f from A to B is an injection iff f ðaÞ and f ðbÞ are distinct whenever a and b are

distinct. A function f from A to B is a surjection iff, for each b 2 B, there exists

a 2 A such that f ðaÞ ¼ b. A bijection is a function that is an injection and

a surjection. N is the set of natural numbers: 0; 1; 2; 3; . . .gf . A is infinite iff

there exists an injection from N to A. A is countably infinite iff there exists

a bijection from N to A. A is countable iff it is finite or countably infinite. A is

uncountable iff it is infinite but not countably infinite.R is the set of real numbers.

½a; b� is x 2 R : a ≤ x ≤ bgf . Rn is the set of n-tuples drawn from R , that is,

x1; x2; . . . ; xnð Þ: xi 2 R ; for all ig:f

Recall that R is uncountable, as is Rn, and that ½a; b� is uncountable whenever
a 6¼ b.

A1 Measurable Spaces

In Kolmogorov’s axiomatization, probabilities attach to sets whose members

are drawn from an outcome spaceΩ. The powerset ofΩ is the set containing all

subsets ofΩ. We notate it asPðΩÞ. WhenΩ is finite, we can assign probabilities

to all members ofPðΩÞ. WhenΩ is uncountable, it is often impossible to assign

intuitively plausible probabilities to all members of the powerset (Proschan &

Shaw, 2016, pp. 17–35). Instead, probability theorists assign probabilities to

certain privileged members of PðΩÞ. The privileged members, called events,

form a σ-field over Ω. A σ-field over Ω is a subset F of PðΩÞ such that:

Ω belongs to F .

If H belongs to F , then Hc belongs to F .

If H1;H2; . . . ;Hn; . . . belong to F , then their union ∪
n
Hn also belongs to F .

The union ∪
n
Hn is the set containing all elements that belong to at least one of

the sets Hn. There may be a countable infinity of sets Hn.

We typically choose a σ-field that arises organically from our interests. For

example, suppose we are modeling an asteroid’s speed using outcome space R .
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A natural question is whether the asteroid’s speed x falls in the interval ½a; b�.
We would like to assign probabilities to all these intervals. At the very least,

then, our σ-field should contain every interval ½a; b�. Consider the minimal

σ-field containing all intervals ½a; b�. Call itB. Intuitively: we throw just enough

sets into B to ensure that B contains each interval ½a; b� and is closed under

complementation and countable union. B’s members are called the Borel sets.

B usually serves as the most natural σ-field when the outcome space is R .

Similarly, suppose that the outcome space is R2, i.e., the set of ordered pairs of

real numbers. Consider the minimal σ-field containing all rectangles. Elements

of this σ-field are again called Borel sets. The same construction generalizes to

R
n, for arbitrary n.

An outcome space Ω along with a σ-field F form a measurable space,

typically notated as (Ω, F ).

A2 Probability Measures

We now consider a function P that assigns probabilities to events belonging to

F . For each H 2 F , PðHÞ is the probability assigned to H. As indicated in

Section 2.2, Kolmogorov places three axiomatic constraints on P. Here are the

first two axioms:

0 ≤PðHÞ ≤ 1:

PðΩÞ ¼ 1:

As for the third axiom (additivity), recall my formulation from Section 2.2:

PðH1 ∪H2Þ ¼ PðH1Þ þ PðH2Þ

when H1 and H2 are disjoint. This formulation is called finite additivity.

Assuming finite additivity, one can easily prove:

PðH1 ∪H2 ∪ . . . ∪HnÞ ¼ PðH1Þ þ PðH2Þ þ . . .þ PðHnÞ ð5Þ

when H1; H2; . . . ;Hn is a finite list of pairwise disjoint events. See Figure 39.

Kolmogorov assumes a stronger axiomatic constraint that generalizes (5) to

a potentially infinite list of pairwise disjoint events H1; H2; . . . ;Hn; . . . The

stronger constraint, called countable additivity, demands that:

P
�
∪
n
Hn

�
¼

X
n

PðHnÞ;

where ∪
n
Hn is the countable union of the Hn. Kolmogorov’s axiomatization

employs countable additivity as opposed to mere finite additivity.
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Countable additivity offers an important advantage over mere finite additivity:

it constrains the probabilities assigned to many more events. Using countable

additivity, we can extrapolate probability assignments from elementary events

(e.g. intervals of real numbers) to numerous complex events left unaddressed by

mere finite additivity (e.g. countable unions of disjoint intervals). Accordingly,

countable additivity is widely assumed within probability theory (Billingsley,

1995). Some versions of Bayesian decision theory employ only finite additivity

(e.g. de Finetti, 1972; Savage, 1972), but most versions assume countable

additivity (e.g. DeGroot, 1970; Easwaran, 2013; Ghosal & van der Vaart, 2017;

Gelman et al., 2014). In a Bayesian context, the dispute between finite and

countable additivity is a normative one. It concerns the norms governing rational

allocation of credence over a hypothesis space. Proponents of countable additiv-

ity claim that rational credences should be countably additive, while opponents

maintain that rational credences need only be finitely additive. For discussion of

finite versus countable additivity in the Bayesian context, see Liu (2020).

When a probability assignment P satisfies all three axioms (including count-

able additivity), it is called a probability measure (or a probability distribution),

and (Ω, F , P) is called a probability space.

A3 Random Variables Defined Rigorously

Let X be a function fromΩ to R . To assign probabilities to hypotheses regarding

X’s possible values, we must ensure that our σ-field F contains all the hypoth-

eses. For each B 2 B, let

Figure 39 H1; H2; . . . ;H10 are pairwise disjoint events. Finite additivity

requires that their union (the total shaded area) receive a probability equal to the

sums of the probabilities assigned to them individually.
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X�1ðBÞ¼df ω 2 Ω : X ðωÞ 2 Bg:f

X is a random variable on the probability space (Ω, F , P) iff

X�1ðBÞ 2 F , for every B 2 B.

This condition ensures that, for each Borel set B, F contains the hypothesis that

X’s value falls within B. For example, F includes each event X�1½a; b�. For any
real number x, the event

ω 2 Ω : X ðωÞ ¼ xgf

is typically notated as

X ¼ x:

Wemay write PðX ¼ xÞ for the probability that X has value x (e.g. the probabil-

ity that the asteroid has speed x). Similarly, the event

ω 2 Ω : X ðωÞ 6¼ xgf

is typically notated as

X 6¼ x:

We may write PðX 6¼ xÞ for the probability that X does not have value x.

Given a probability space (Ω, F , P) and a random variable X, we can define

a probability measure μ over the measurable space ðℝ;BÞ:
μðBÞ¼df P X�1ðBÞ

� �
, for every B 2 B.

Figure 38 illustrates, for the special case where B ¼ ½a; b�. μ is called X’s

distribution. It is often easier to work with probability measures over ðℝ;BÞ
than with probability measures over (Ω, F ), especially when Ω is complicated.

These definitions generalize from R to R
n. The definitions are the same,

except that we consider Borel sets over Rn rather than R .

Given a function X from Ω to R and a probability measure μ over ðℝ;BÞ, we
can use X and μ to define a probability space with Ω as the outcome space.

Define σðX Þ, the σ-field generated by X, by

σðX Þ¼df X�1ðBÞ : B 2 Bg:�

Define a probability measure P over σðX Þ by
P X�1ðBÞ
� �

¼df μðBÞ, for every B 2 B.
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Then (Ω, σðX Þ, P) is a probability space, and X is a random variable defined on

(Ω, σðX Þ, P). This procedure generalizes from R to R
n.

A4 Discrete and Nondiscrete Random Variables

A discrete random variable has countably many possible values. Many random

variables encountered in scientific applications are nondiscrete, that is, they

have uncountably many possible values.

Here is a fundamental constraint on random variables: at most countably

values x of random variable X can receive positive probability. In other words,

there are at most countably many real numbers x such that

PðX ¼ xÞ > 0:

To prove this statement, let us for each natural number n > 0 defineDn as follows:

Dn ¼ df x 2 R : P X ¼ xð Þ > 1
n

� �
:

Suppose for purposes of reductio that Dn has at least n members x1; x2; . . . ; xn.

The events X ¼ xi and X ¼ xj are disjoint when i 6¼ j. By finite additivity,

PðX ¼ x1 ∪X ¼ x2 ∪ . . . ∪X ¼ xnÞ ¼
PðX ¼ x1Þ þ PðX ¼ x2Þ þ . . .þ PðX ¼ xnÞ:

Each individual term PðX ¼ xiÞ is greater than 1=n, so the sum on the right is

greater than

n
n
¼ 1;

which contradicts our axiomatic assumption that 1 is the maximal probability. By

reductio, each set Dn contains fewer than n members. See Figure 40. Using set

theory, one can then show that ∪
n
Dn is at most countably infinite. Every x such

that PðX ¼ xÞ > 0 must belong to some set Dn and hence must belong to ∪
n
Dn.

Therefore, there are at most countably many x such that PðX ¼ xÞ > 0. Note that

our proof uses only finite additivity, with no need for countable additivity.

Many philosophers endorse the doctrine, sometimes called Regularity, that

agents should assign credence 0 only to impossible hypotheses (Kemeny, 1955;

Skyrms, 1995; Stalnaker, 1970). The idea is that, if H is in some sense possible,

then a rational agent will acknowledge its possibility by allocating it at least some

nonzero credence. The foregoing proof shows that Regularity dramatically con-

flicts with the probability calculus axioms, no matter how exactly we gloss

“possibility.” The axioms demand that at most countably many values of

a random variable receive nonzero probability. When a random variable is
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nondiscrete, uncountably many of its possible values must receive probability 0.

This remains so even if one favors finite additivity over countable additivity. In

response, Skyrms (1980) recommends that we preserve Regularity by revising

the probability calculus axioms. The recommendation has not found much uptake

within probability theory or its scientific applications, including Bayesian appli-

cations. Scientific practitioners of the Bayesian framework routinely set

PðX ¼ xÞ ¼ 0 for uncountably many possible values x. So Regularity conflicts

not just with orthodox probability theory but also with scientific practice.

These observations prompt us to reflect upon the meaning of extremal

credences 0 and 1. Let X be a nondiscrete random variable, such as asteroid

speed, and suppose that an agent sets PðX ¼ xÞ ¼ 0. The probability calculus

axioms demand that the agent also set PðX 6¼ xÞ ¼ 1. Certainty in the event

X 6¼ x does not entail that the agent regards value x as impossible. The agent

fully realizes that the asteroid may have speed x. By assigning probability 0 to

speed x, the agent does not completely reject the possibility of speed x. She

merely regards this possibility as so negligible that it merits no positive cre-

dence. Assuming the agent’s credences conform to the probability calculus

axioms, she must similarly regard uncountably many other values of X as

negligible possibilities.

A random variable is said to be continuous when PðX ¼ xÞ ¼ 0 for all x.

A continuous random variable violates Regularity in a very extreme way: every

event X ¼ x receives probability 0. Note that some random variables are neither

discrete nor continuous (Billingsley, 1995, pp. 257–258): such a variable has

uncountably many possible values x, and certain values receive positive

probability.

Figure 40 D5 contains at most four members x1; x2; x3, and x4. Figure 40

depicts a case where it has exactly four members. Similarly, each set Dn

contains at most n� 1 members.
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A5 Probability Density Functions

A probability density function (pdf) is a nonnegative function pðxÞ from R to R

such that the area under the curve is 1:

ð∞

�∞

pðxÞdx ¼ 1:

A pdf induces a probability measure μ over ðℝ;BÞ. The probability assigned by
μ to ½a; b� is the area under pðxÞ stretching from a to b:

μ ½a; b�ð Þ ¼
ðb

a

pðxÞdx:

Probability assignments to the intervals ½a; b� determine unique probability

assignments to all Borel sets. Thus, each pdf induces a unique probability

measure μ.

Because probability density determines probability via integration, changes

to the pdf do not affect probabilities when they do not affect integration.

Compare Figure 9 with Figure 41. These are two different pdfs: they assign

different densities to c. Nevertheless, they induce the same probabilities,

because a change in density at a single point does not affect integration. More

Figure 41 This pdf alters the pdf from Figure 9 at a single point c. The alteration

does not affect the area under the curve, so the two pdfs determine the same

probability distribution.
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generally: when pdf pðxÞ induces probability measure μ, there are infinitely

many distinct pdfs that induce the same measure μ.

Suppose random variable X is defined on probability space (Ω, F , P) with

distribution μ. Suppose μ is induced by a pdf pðxÞ. It is not hard to show that X is

a continuous random variable: PðX ¼ xÞ ¼ 0 for all x (Billingsley, 1995,

p. 212). Equivalently, μ xgf Þ ¼ 0ð for all x. The converse is not true: in some

cases, the distribution of a continuous random variable is not induced by any pdf

(Proschan & Shaw, 2016, pp. 94–95). See Figure 42.

Given a random variable X defined on probability space (Ω, F , P), define

a new random variable Y resulting from multiplication by a constant k:

YðωÞ ¼ kX ðωÞ:

Suppose that X’s distribution has a pdf pðxÞ. One can show that Y’s distribution

has a pdf qðyÞ given by

qðyÞ ¼ pðy=kÞ
k

: ð6Þ

See Ma, Kording & Goldreich (2023, pp. 333–336). The change in variable

(from X to Y) necessitates a change in pdf.

Figure 42Typology of random variables. A random variable is either discrete or

nondiscrete. A continuous random variable is nondiscrete; the converse is not

true. A random variable is continuous if its distribution is induced by a pdf; the

converse is not true.
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To illustrate, letΩ contain possible speeds for an object. Each outcome ω is

a particular speed that the object might have. Assume that Ω is endowed with

an appropriate σ-field F . Assume also an underlying probability measure

P defined on F . Speeds are physical magnitudes and hence are distinct from

real numbers (Peacocke, 2019). We can describe physical magnitudes with

real numbers by choosing measurement units, such as meters/sec or feet/sec.

The first choice of measurement unit corresponds to one random variable

X from Ω to R . The second choice corresponds to a second random variable

Y from Ω to R , where

YðωÞ ¼ 3:28084 X ðωÞ:

The underlying probability measure P induces different distributions for X and

Y. If the pdf for X is given by pðxÞ, then the pdf for Y is given by (6), taking

k ¼ 3:28084. Figure 37 illustrates. The blue pdf corresponds to meters/sec. The

orange pdf corresponds to feet/sec. The two pdfs are associated with the same

underlying probability measure over possible speeds.

A6 Conditional Density and Beyond

Using conditional densities, we can extend the notion of conditional probability

well beyond the elementary case where the ratio formula prevails.

Suppose we are given a two-dimensional pdf pðx; yÞ. We want to define

a new pdf over y conditional on X having value a. So we want to define a one-

dimensional conditional density over y, which we may notate as:

pðy jX ¼ aÞ:

Intuitively: this is a density over y given that X has value a. To define

pðy jX ¼ aÞ, we confine attention to points such that X ¼ a. We consider p’s

values on those points alone:

pða; yÞ:

One might hope to set the conditional density pðy jX ¼ aÞ equal to pða; yÞ,
where we hold a fixed and allow y to vary. The only hitch is that pða; yÞ, viewed
as a function of y, may not be a pdf: the area under the curve may not be 1. We

must settle for proportionality rather than equality:

pðy jX ¼ aÞ∝ pða; yÞ:

Intuitively, pðy jX ¼ aÞ confines attention to outcomes where X ¼ a and then

allocates probability density in proportion to the original density function

pða; yÞ. To obtain pðy jX ¼ aÞ from pða; yÞ, we need merely divide pða; yÞ by
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a constant to ensure that the area under the curve is 1. This constant is called

a normalization constant.

More formally, we may define conditional density as follows. Take pðx; yÞ as
given and define pðxÞ, the marginal pdf for X:

pðxÞ¼df

ð∞

�∞

pðx; yÞdy:

pðxÞ is computed by holding x fixed and integrating pðx; yÞ over all possible
values of y. Assuming that pðxÞ > 0, we may define the conditional density of

Y given X ¼ x by the equation

pðy jX ¼ xÞ¼df
pðx; yÞ
pðxÞ : ð7Þ

pðxÞ is the normalization constant: it ensures that probabilities sum to 1. When it is

clear which random variable X is at issue, we may notate (7) more compactly as

pðy j xÞ ¼ pðx; yÞ
pðxÞ : ð8Þ

pðy j xÞ results from pðx; yÞ by holding x fixed and then normalizing. See

Figures 18, 19, 20, and 21. These definitions generalize to higher dimensions.16

It is often most natural to regard pðxÞ and pðy j xÞ as primitive rather than

defined. For example, pðxÞmight be a pdf for asteroid speed and pðy j xÞmight

be the conditional density of measuring speed y given that the asteroid has

speed x. Taken together, pðxÞ and pðy j xÞ determine a joint density pðx; yÞ: we
simply view equation (8) as a definition of pðx; yÞ rather than of pðy j xÞ. In
practice, we need not usually consider the joint density. It lies in the back-

ground of our theorizing, but we only explicitly consider pðxÞ, pðy j xÞ, and
pðx j yÞ.

The ratio formula and the theory of conditional densities suffice for most

applications of Bayesian decision theory. However, there are situations where

we would like to define conditional probabilities yet neither the ratio formula

nor the theory of conditional densities applies. To illustrate with a cognitive

16 This paragraph glosses over some major philosophical and mathematical complications. Due to
a phenomenon known as the Borel‒Kolmogorov paradox, we cannot condition directly on X ¼ x
when PðX ¼ xÞ ¼ 0 (Kolmogorov, 1933/1956). We instead condition on X ¼ x considered as
embedded within the σ-field σðXÞ. If we were to consider X ¼ x as embedded within a different
σ-field, then different conditional probabilities might result. The notation pðy jX ¼ xÞ is rather
misleading because it elides this relativity to an embedding σ-field. Similarly for the notation
pðy j xÞ. See Rescorla (2015c) for discussion of the Borel‒Kolmogorov paradox and its
ramifications.
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science example, consider the Bayesian causal inference model given by

Kording et al. (2007). The model evaluates whether visual input eV and auditory

input eA derive from a single distal source. C is a binary random variable that

registers the number of sources: C ¼ 1 registers a single source, and C ¼ 2

registers two distinct sources. Upon receiving inputs eV and eA, the model

computes the posterior probability PðC ¼ 1 j eV ; eAÞ that those inputs derive

from a single distal source. Assume that there are uncountably many possible

inputs, as Kording et al. (2007) do and as is standard in Bayesian perceptual

psychology. Then we cannot define conditional probabilities PðC ¼ 1 j eV ; eAÞ
using either the ratio formula or conditional densities. The ratio formula does

not apply because there is probability zero of any given input pair ðeV ; eAÞ,
except perhaps for countably many such pairs. Nor does the theory of condi-

tional densities apply: C is discrete, so no joint density exists. As this example

illustrates, a general theory of conditional probability must look beyond both

the ratio formula and conditional densities.

The most successful general theory traces back to the same treatise where

Kolmogorov (1933/1956) codified the probability calculus axioms. The

ratio formula and the theory of conditional densities are special cases

of Kolmogorov’s theory (Billingsley, 1995, p. 432; Rescorla, 2015c).

Kolmogorov’s theory is general enough to handle the Bayesian causal infer-

ence model, along with countless other applications. Perhaps because

Kolmogorov’s theory is forbiddingly technical, it was long neglected by the

philosophical community. Recently, it has begun to receive sympathetic atten-

tion from philosophers (Easwaran, 2011b; Huttegger, 2015; Meehan & Zhang,

2020; Nielsen, 2021; Rescorla, 2018a; Rescorla, forthcoming). Easwaran

(2019) gives a detailed introduction, with comparisons to alternative theories

of conditional probability.

A7 Proof of Bayes’s Theorem

Suppose that PðHÞ > 0 and PðEÞ > 0. The ratio formula determines condi-

tional probabilities PðH jEÞ and PðE jHÞ:

PðH jEÞ ¼ PðH ∩EÞ
PðEÞ

PðE jHÞ ¼ PðE∩HÞ
PðHÞ :

Algebraic manipulation yields

PðH jEÞPðEÞ ¼ PðH ∩EÞ ¼ PðE∩HÞ ¼ PðE jHÞPðHÞ;
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which immediately entails Bayes’s Theorem:

PðH jEÞ ¼ PðHÞPðE jHÞ
PðEÞ : ð9Þ

It is remarkable that this theorem follows almost trivially from the ratio formula

yet offers such profound insight into rational inference.

Now consider the case where we have a two-dimensional pdf pðx; yÞ. Define
conditional densities and marginals as in Section A6:

pðxÞ¼df

ð∞

�∞

pðx; yÞdy

pðyÞ¼df

ð∞

�∞

pðx; yÞdx

pðy j xÞ¼df
pðx; yÞ
pðxÞ

pðx j yÞ¼df
pðx; yÞ
pðyÞ ;

where the third definition presupposes pðxÞ > 0 and the fourth presupposes

pðyÞ > 0. From these latter two definitions,

pðx j yÞpðyÞ ¼ pðx; yÞ ¼ pðy j xÞpðxÞ:

By algebra,

pðx j yÞ ¼ pðy j xÞpðxÞ
pðyÞ ; ð10Þ

which is Bayes’s theorem for pdfs. Note that 1=pðyÞ does not depend upon x. It
figures solely as a normalization constant. Although (9) and (10) look similar

and have similar proofs, they are distinct: (9) concerns conditional probabilities,

while (10) concerns conditional densities.

Bayes’s theorem generalizes beyond the formulations given here, using

Kolmogorov’s theory of conditional probability (Ghosal & van der Vaart, 2017,

p. 7). There are also some situations where no analogue to Bayes’s theorem is

available (Ghosal& van derVaart, 2017, pp. 7–8). In those situations, one can still

conform to Conditionalization: one can respond to new evidence by replacing the

prior with the posterior. Unfortunately, one can no longer use anything like (9) or

(10) to compute the posterior.
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