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It is known that hyperbolic linear delay difference equations are shadowable on the
half-line. In this article, we prove the converse and hence the equivalence between
hyperbolicity and the positive shadowing property for the following two classes of
linear delay difference equations: (a) for non-autonomous equations with finite delays
and uniformly bounded compact coefficient operators in Banach spaces and (b) for
Volterra difference equations with infinite delay in finite dimensional spaces.
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1. Introduction

Let Z and C denote the set of integers and the set of complex numbers, respectively.
For k ∈ Z, define Z+

k = {n ∈ Z : n ≥ k } and Z−
k = {n ∈ Z : n ≤ k }. Throughout

the article, we shall assume as a standing assumption that (X, |·|) is a Banach space.
The symbol L(X) will denote the space of all bounded linear operators A : X → X
equipped with the operator norm, |A| = sup|x|=1 |Ax| for A ∈ L(X).
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Consider the linear autonomous difference equation

x(n+ 1) = Ax(n), (1.1)

where A ∈ L(X). Given δ ≥ 0, by a δ-pseudosolution of Eq. (1.1) on Z+
0 , we mean

a function y : Z+
0 → X such that

sup
n≥0

|y(n+ 1)−Ay(n)| ≤ δ.

Note that for δ=0, the pseudosolution becomes a true solution of Eq. (1.1) on Z+
0 .

We say that Eq. (1.1) is shadowable on Z+
0 or that it has the positive shadowing

property if, for every ε> 0, there exists δ > 0 such that for every δ-pseudosolution y
of (1.1) on Z+

0 , there exists a true solution x of (1.1) on Z+
0 such that

sup
n≥0

|x(n)− y(n)| ≤ ε.

The shadowing of Eq. (1.1) is closely related to its hyperbolicity. Recall
that Eq. (1.1) is hyperbolic if σ(A) does not intersect the unit circle |λ| = 1 in C,
where σ(A) denotes the spectrum of A.

In a recent article [5], Bernardes et al. have studied various shadowing properties
of Eq. (1.1). Among others, they have shown that if Eq. (1.1) is hyperbolic, then it
is shadowable on Z+

0 (see [5, Theorem 13]). Moreover, if the coefficient A ∈ L(X)
in Eq. (1.1) is a compact operator, then the converse is also true. As usual, an
operator A : X → X is compact if, for every bounded set S ⊂ X, the image A(S )
has compact closure in X. Thus, we have the following theorem:

Theorem 1.1 5, Theorem 15 Let A ∈ L(X) be a compact operator. Then, the
following statements are equivalent.

(i) Eq. (1.1) is shadowable on Z+
0 ;

(ii) Eq. (1.1) is hyperbolic.

Remark 1.2. As noted previously, the implication (ii) ⇒ (i) in Theorem 1.1 is true
if we assume merely that A ∈ L(X). The compactness of A ∈ L(X) is important
only for the validity of the converse implication (i) ⇒ (ii) (see [5, Remark 14]).

Now let us consider the finite dimensional case X = Cd, where d is a positive
integer and Cd denotes the d -dimensional space complex column vectors. Then, the
space L(Cd) can be identified with Cd×d, the space of d × d matrices with complex
entries. Since linear operators between finite dimensional spaces are compact and
the spectrum of a square matrix A ∈ Cd×d consists of the roots of its characteristic
equation

det(λE −A) = 0, (1.2)

where E ∈ Cd×d is the unit matrix, in this case, Theorem 1.1 can be reformulated
as follows:

Theorem 1.3 Let A ∈ Cd×d. Then, the following statements are equivalent:
(i) Eq. (1.1) is shadowable on Z+

0 ;
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(ii) The characteristic Eq. (1.2) has no root on the unit circle |λ| = 1.

Our aim in this article is to extend Theorems 1.1 and 1.3 to more general classes
of linear difference equations with delay.

In §2, we will generalize Theorem 1.1 to the non-autonomous linear difference
equation with finite delays

x(n+ 1) =
r∑

j=0

Aj(n)x(n− j), (1.3)

where r ∈ Z+
0 is the maximum delay and the coefficients Aj(n) ∈ L(X), 0 ≤ j ≤ r,

n ∈ Z+
0 , are compact linear operators that are uniformly bounded, i.e., there exists

K ≥ 1 such that

|Aj(n)| ≤ K, n ∈ Z+
0 , 0 ≤ j ≤ r. (1.4)

The main result of §2 is formulated in Theorem 2.3, which may be viewed
as a discrete analogue of our recent shadowing theorem for delay differential
equations in Rd [2, Theorem 2.2]. It says that, under the above hypotheses, Eq. (1.3)
is shadowable on Z+

0 if and only if it has an exponential dichotomy, which is a non-
autonomous variant of hyperbolicity. To the best of our knowledge, this result is
new even for ordinary difference equations (r =0). We note that in the particular
case when r =0 and X is finite-dimensional, a version of this result was established
in [1] (see [1, Corollary 2] and [1, Proposition 4]).

In §3, we will extend Theorem 1.3 to the linear Volterra difference equation with
infinite delay

x(n+ 1) =
n∑

j=−∞
A(n− j)x(j), (1.5)

where A : Z+
0 → Cd×d satisfies

∞∑
j=0

|A(j)|eγj <∞ for some γ > 0. (1.6)

The characteristic equation of Eq. (1.5) has the form

det∆(λ) = 0, |λ| > e−γ , (1.7)

where

∆(λ) = λE −
∞∑
j=0

λ−jA(j), |λ| > e−γ . (1.8)

The main result of §3, Theorem 3.2, says that in the natural (infinite dimensional)
phase space Bγ defined below Eq. (1.5) is shadowable on Z+

0 if and only if its
characteristic Eq. (1.7) has no root on the unit circle |λ| = 1.

The fact that non-autonomous linear delay difference equations, including (1.3)
and (1.5), are shadowable whenever they are hyperbolic follows from [10,
Theorem 1]. Therefore, in both cases (1.3) and (1.5), we need to prove only the con-
verse result. In the case of the non-autonomous equation with finite delays (1.3), the
proof follows similar lines as the proof our continuous time result [2, Theorem 2.2]
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with non-trivial modifications because, instead of Rd, we consider Eq. (1.3) in a
general infinite dimensional Banach space. It is based on the eventual compact-
ness of the solution operator, combined with an input–output technique [3] and
Schäffer’s result about the existence of regular covariant subspaces of linear differ-
ence equation in a Banach space [27]. A similar argument for the Volterra equation
with infinite delay (1.5) does not apply since its solution operator is not eventually
compact. In this case, the proof will be based on the duality between Eq. (1.5) and
its formal adjoint equation, which has been established by Matsunaga et. al. [18].

2. Shadowing of non-autonomous linear difference equation with finite
delays

In this section, we consider the shadowing of the non-autonomous linear difference
equation with finite delays (1.3), where Aj : Z+

0 → L(X), 0 ≤ j ≤ r, satisfy con-
dition (1.4). The phase space for Eq. (1.3) is (Br, ‖ · ‖), where Br is the set of all
functions φ : [−r, 0] ∩ Z → X and

‖φ‖ = max
−r≤θ≤0

|φ(θ)|, φ ∈ Br.

Eq. (1.3) can be written equivalently in a form of a functional difference equation

x(n+ 1) = Ln(xn), (2.1)

where the solution segment xn ∈ Br is defined by

xn(θ) = x(n+ θ), θ ∈ [−r, 0] ∩ Z,

and Ln : Br → X is a bounded linear functional defined by

Ln(φ) =
r∑

j=0

Aj(n)φ(−j), φ ∈ Br, n ∈ Z+
0 , 0 ≤ j ≤ r.

In view of (1.4), we have that

‖Ln‖ ≤M := (r + 1)K, n ∈ Z+
0 . (2.2)

Given m ∈ Z+
0 and φ ∈ Br, there exists a unique function x : Z+

m−r → X
satisfying Eq. (1.3) and the initial condition x(m + θ) = φ(θ) for θ ∈ [−r, 0] ∩ Z.
We shall call x the solution of Eq. (1.3) with initial value xm = φ. By a solution of
Eq. (1.3) on Z+

m, we mean a solution x with initial value xm = φ for some φ ∈ Br.
For each n,m ∈ Z+

0 with n ≥ m, the solution operator T (n,m) : Br → Br is
defined by T (n,m)φ = xn for φ ∈ Br, where x is the unique solution of Eq. (1.3)
with initial value xm = φ. It is easily seen that for all n, k,m ∈ Z+

0 with n ≥ k ≥ m,

T (m,m) = I, (2.3)

T (n,m) = T (n, k)T (k,m), (2.4)
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‖T (n,m)‖ ≤ eω(n−m), (2.5)

where I denotes the identity operator on Br and ω = log(M(1 + r)).
Now we can introduce the definitions of shadowing and exponential dichotomy

for Eq. (1.3) (equivalently, (2.1)).

Definition 2.1. We say that Eq. (1.3) is shadowable on Z+
0 if, for each ε> 0,

there exists δ > 0 such that for every function y : Z+
−r → X satisfying

sup
n≥0

|y(n+ 1)− Ln(yn)| ≤ δ,

there exists a solution x of (1.3) on Z+
0 such that

sup
n≥0

‖xn − yn‖ ≤ ε.

Definition 2.2. We say that Eq. (1.3) admits an exponential dichotomy (on Z+
0 )

if there exist a sequence of projections (Pn)n∈Z+0
on Br and constants D,λ > 0 with

the following properties:

• for n,m ∈ Z+
0 with n ≥ m,

PnT (n,m) = T (n,m)Pm, (2.6)

and T (n,m)|kerPm : kerPm → kerPn is onto and invertible;
• for n,m ∈ Z+

0 with n ≥ m,

‖T (n,m)Pm‖ ≤ De−λ(n−m); (2.7)

• for n,m ∈ Z+
0 with n ≤ m,

‖T (n,m)Qm‖ ≤ De−λ(m−n), (2.8)

where Qm = I − Pm and T (n,m) := (T (m,n)|kerPn)
−1

.

The main result of this section is the following shadowing theorem for Eq. (1.3).

Theorem 2.3 Suppose that the coefficients Aj(n) ∈ L(X), n ∈ Z+
0 , 0 ≤ j ≤ r,

of Eq. (1.3) are compact operators satisfying condition (1.4). Then, the following
statements are equivalent.

(i) Eq. (1.3) is shadowable on Z+
0 ;

(ii) Eq. (1.3) admits an exponential dichotomy.

Remark 2.4. It is well known that the autonomous linear Eq. (1.1) admits an
exponential dichotomy if and only if the spectrum σ(A) does not intersect the unit
circle |λ| = 1. Therefore, Theorem 2.3 is a generalization of Theorem 1.1 to the
non-autonomous delay difference Eq. (1.3). Its conclusion is new even for ordinary
difference equations (r =0).
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Remark 2.5. The implication (ii) ⇒ (i) in Theorem 2.3 is a consequence of [10,
Theorem 1] with f =0, c=0, and µ=1, which does not require the compactness
of the coefficients. Thus, this implication is true even without the compactness
assumption. However, for the validity of the converse implication (i) ⇒ (ii), the
compactness of the coefficient operators of Eq. (1.3) is essential (see Remark 1.2).

Remark 2.6. It follows from (2.7) and (2.8) that if Eq. (1.3) admits an exponential
dichotomy, then the solution operator T (m,n) of Eq. (1.3) exhibits the (one-sided)
domination property in the sense of [22, p. 2]. In [22, Theorem 1.2], the authors
have formulated sufficient conditions under which the solution operator associated
with a non-autonomous difference equation (without delay)

xn+1 = Anxn, n ∈ Z,

on an arbitrary Banach space X exhibits the domination property. We stress that
no compactness assumptions on the coefficients An, n ∈ Z, are assumed. These
sufficient conditions are expressed in terms of the so-called uniform singular valued
gap property (see [22, (SVG)]). For related results in the case of linear cocycles over
topological dynamical systems, we refer to the works of Bochi and Gourmelon [7]
and Blumenthal and Morris [6], where the connection between this type of results
and the Oseledets multiplicative ergodic theorem is discussed. Our Theorem 2.3
provides a characterization of the more restrictive notion of uniform exponential
dichotomy, which is expressed in terms of the shadowing property instead of the
singular values.

Proof of Theorem 2.3. As noted in Remark 2.5, we need to prove only the implica-
tion (i) ⇒ (ii). Suppose that Eq. (1.3) is shadowable on Z+

0 . We will show that it
admits an exponential dichotomy. We split the proof into several auxiliary results,
which we now briefly describe.

In Claim 1, we show that the shadowing property implies the so-called Perron
property, which guarantees that for each bounded function z : Z+

0 → X, the non-
homogeneous Eq. (2.9) has at least one bounded solution x : Z+

0 → X.
The next four claims are preparatory results for the proof of the crucial Claim 6,

which shows that the subspace S(0) of those initial functions in Br, which generate
bounded solutions, is closed and complemented in Br. Claims 2 and 4 are rather
simple observations, while Claim 3 is a straightforward consequence of Claim 1.
A more involved argument is needed for the proof of Claim 5, which asserts that
the solution operator T (n,m) of Eq. (1.3) is a compact operator on Br whenever
n ≥ m+ r+ 1. The proof of Claim 6 follows directly from Claims 2, 3, 4, and 5 by
applying an abstract result from [27] formulated in Lemma 2.13.

As a consequence of Claim 6, we are able to construct the unstable subspace U at
time n =0 as a topological complement of S(0) (see (2.14)), and we can revisit the
Perron property established in Claim 1. More precisely, in Claim 7, we show that
for each bounded z : Z+

0 → X, there exists a unique bounded solution x : Z+
0 → X

of Eq. (2.9) with x0 ∈ U . Moreover, the supremum norm of x can be controlled by
the supremum norm of z (see (2.15)).

In the next step, we construct the unstable subspace U(n) at each time n ∈ Z+.
In Claims 8 and 9, we prove that T (n,m)|U(m) : U(m) → U(n) is an isomorphism
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whenever n ≥ m and the phase space Br splits into stable and unstable subspaces
at each moment n ∈ Z+. Note that both claims are consequences of Claim 7 we
show that for each bound.

The desired exponential estimates along the stable and unstable directions are
obtained in Claims 11 and 13, respectively. As a preparation for the proofs of these
results, in Claims 10 and 12, we show that the dynamics along the stable and unsta-
ble directions is uniformly bounded forward and backward in time, respectively.
These results also rely on Claim 7.

Finally, in Claim 14, we prove that there is a uniform bound for the norms of
the projections onto the stable subspaces along the unstable ones.

We now proceed with the details. �

Claim 1. Eq. (1.3) has the following Perron-type property : for each bounded
function z : Z+

0 → X, there exists a bounded function x : Z+
−r → X, which satisfies

x(n+ 1) = Ln(xn) + z(n), n ∈ Z+
0 . (2.9)

Proof of claim 1. Let z : Z+
0 → X be an arbitrary bounded function. If z(n) = 0

for every n ∈ Z+
0 , then (2.9) is trivially satisfied with x(n) = 0 for every n ∈ Z+

−r.
Now suppose that z(n) 6= 0 for some n ∈ Z+

0 so that ‖z‖∞ := sup
n∈Z+0

|z(n)| > 0.

Choose a constant δ > 0 corresponding to the choice of ε=1 in Definition 2.1. Take
an arbitrary solution y : Z+

−r → X of the non-homogeneous equation

y(n+ 1) = Ln(yn) +
δ

‖z‖∞
z(n), n ∈ Z+

0 .

(The unique solution y with initial value y0 = 0 is sufficient for our purposes.) Since

sup
n≥0

|y(n+ 1)− Ln(yn)| ≤ δ,

according to Definition 2.1, there exists a solution x̃ of Eq. (2.1) on Z+
0 such that

sup
n≥−r

|x̃(n)− y(n)| = sup
n≥0

‖x̃n − yn‖ ≤ 1.

Define a function x : Z+
−r → X by

x(n) :=
‖z‖∞
δ

( y(n)− x̃(n) ), n ∈ Z+
−r.

It can be easily verified that x satisfies (2.9) and

sup
n∈Z+−r

|x(n)| ≤ ‖z‖∞
δ

<∞.

The proof of the claim is complete. �
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For each m ∈ Z+
0 , define

S(m) =
{
φ ∈ Br : sup

n≥m
‖T (n,m)φ‖ <∞

}
.

Clearly, S(m) is a subspace of Br, which will be called the stable subspace of
Eq. (2.1) at m ∈ Z+

0 .

Claim 2. For each n,m ∈ Z+
0 with n ≥ m, we have that

[T (n,m) ]−1(S(n)) = S(m).

Proof of claim 2. Let n and m be as in the statement. If φ ∈ S(m), then (see (2.4))

sup
k≥n

‖T (k, n)T (n,m)φ‖ = sup
k≥n

‖T (k,m)φ‖ ≤ sup
k≥m

‖T (k,m)φ‖ <∞.

This shows that T (n,m)φ ∈ S(n), and hence, φ ∈ [T (n,m) ]−1(S(n)).
Now suppose that φ ∈ [T (n,m) ]−1(S(n)). Then, T (n,m)φ ∈ S(n), which implies

that

sup
k≥n

‖T (k,m)φ‖ = sup
k≥n

‖T (k, n)T (n,m)φ‖ <∞.

Hence,

sup
k≥m

‖T (k,m)φ‖ ≤ max
m≤k≤n−1

‖T (k,m)φ‖+ sup
k≥n

‖T (k,m)φ‖ <∞.

Thus, φ ∈ S(m). �

Claim 3. For n,m ∈ Z+
0 with n ≥ m, we have the algebraic sum decomposition

Br = T (n,m)Br + S(n). (2.10)

Proof of claim 3. It is sufficient to prove the claim for m =0. Indeed, assuming
that the desired conclusion holds for m=0, we now fix an arbitrary m ≥ 1. Then,
for every n ≥ m and φ ∈ Br, there exist φ1 ∈ Br and φ2 ∈ S(n) such that
φ = T (n, 0)φ1 + φ2. Hence,

φ = T (n, 0)φ1 + φ2 = T (n,m)T (m, 0)φ1 + φ2 ∈ T (n,m)Br + S(n).

Thus, (2.10) holds. Therefore, from now on, we suppose that m =0. Evidently, for
every φ ∈ Br,

φ = T (0, 0)φ+ 0 ∈ T (0, 0)Br + S(0).
Thus, (2.10) holds for n = m = 0. Now suppose that n > 0 and let φ ∈ Br be
arbitrary. Define v : Z+

n−r → X by

v(k) =

φ(k − n) for n− r ≤ k ≤ n,

0 for k ≥ n+ 1
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so that vn = φ and z : Z+
0 → X by

z(k) =

0 for 0 ≤ k ≤ n− 1,

v(k + 1)− Lk(vk) for k ≥ n.

Clearly, v is bounded on Z+
n−r. From this and (2.2), we find that supk≥0 |z(k)| <∞.

By Claim 1, there exists a function x : Z+
−r → X such that supk≥−r |x(k)| < ∞

and (2.9) holds. Moreover, it follows from the definition of z that

v(k + 1) = Lk(vk) + z(k), k ≥ n.

From this and (2.9), we conclude that x − v is a solution of Eq. (2.1) on Z+
n and

thus

xk − vk = T (k, n)(xn − vn) = T (k, n)(xn − φ), k ≥ n. (2)

Since both x and v are bounded on Z+
n−r, this implies that xn − φ ∈ S(n). On

the other hand, since z(k) = 0 for 0 ≤ k < n, we have that xn = T (n, 0)x0. This
implies that

φ = xn + (φ− xn) = T (n, 0)x0 + (φ− xn) ∈ T (n, 0)Br + S(n).

Since φ ∈ Br was arbitrary, we conclude that (2.10) holds for m =0. �

Claim 4. For each m ∈ Z+
0 , S(m) is the image of a Banach space under the action

of a bounded linear operator.

Proof of claim 4. Fix m ∈ Z+
0 and let X denote the Banach space of all bounded

functions x : Z+
m−r → X equipped with the supremum norm,

‖x‖X := sup
k≥m−r

|x(k)| <∞, x ∈ X .

Let X ′ denote the set of all x ∈ X , which are solutions of (2.1) on Z+
0 . We will show

that X ′ is a closed subspace of X . To this end, let (xj)
j∈Z+0

be a sequence in X ′

such that xj → y in X as j → ∞ for some y ∈ X . Then, xj(k) → y(k) as j → ∞
for every k ≥ m − r. Moreover, for each n ≥ m, we have that xjn → yn in Br as
j → ∞. From this, by letting j → ∞ in the equation

xj(n+ 1) = Ln(x
j
n), n ≥ m,

and using the continuity of the coefficients Ln, we conclude that

y(n+ 1) = Ln(yn), n ≥ m.

Thus, y is a solution of Eq. (2.1) on Z+
m and hence y ∈ X ′. This shows that X ′ is a

closed subspace of X , and hence, it is a Banach space. Now define Φ: X ′ → Br by
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Φ(x) = xm for x ∈ X ′. Clearly, Φ is a bounded linear operator with ‖Φ‖ ≤ 1 and
Φ(X ′) = S(m). �

Claim 5. For n,m ∈ Z+
0 with n ≥ m+ r+1, the solution operator T (n,m) : Br →

Br is compact.

Proof of claim 5. Suppose that m ∈ Z+
0 and φ ∈ Br. Let x denote the unique

solution of (2.1) with initial value xm = φ. From (2.1) and (2.2), we obtain for
n ≥ m,

|x(n+ 1)| ≤ ‖Ln‖‖xn‖ ≤M‖xn‖,

and hence,

‖xn+1‖ ≤ |x(n+ 1)|+ ‖xn‖ ≤ (1 +M)‖xn‖.

Since ‖xm‖ = ‖φ‖, this implies by induction on n that

‖xn‖ ≤ (1 +M)n−m‖φ‖ for n ≥ m. (2.11)

Clearly, ι(φ) = (φ(−r), φ(−r + 1), . . . , φ(0)) is an isometric isomorphism between
the phase space Br and the (r + 1)-fold product space Xr+1 endowed with the
maximum norm, ‖x‖ = max1≤j≤r+1 |xj | for x = (x1, x2, . . . , xr+1) ∈ Xr+1. With
this identification, we have that

T (m+ r + 1,m)φ = xm+r+1 = (x(m+ 1), x(m+ 2), . . . , x(m+ r + 1)),

which, together with Eq. (2.1), implies that

T (m+ r + 1,m)φ =
(
Lm(xm), Lm+1(xm+1), . . . , Lm+r(xm+r)

)
. (2.12)

Let S be an arbitrary bounded subset of Br. Then, there exists ρ> 0 such that
‖φ‖ ≤ ρ for all φ ∈ S. From this and (2.11), we obtain that

‖xm+j‖ ≤ (1 +M)rρ whenever φ ∈ S and 0 ≤ j ≤ r.

Therefore, if φ ∈ S, then the segments xm, xm+1, . . . , xm+r of the corresponding
solution x of (2.1) with initial value xm = φ belong to the closed ball of radius
(1 +M)rρ around zero in Br, which will be denoted by D. From this and (2.12),
we conclude that

T (m+ r + 1,m)(S) ⊂ C := Lm(D)× Lm+1(D)× · · · × Lm+r(D). (2.13)

Since Lm, Lm+1, . . . , Lm+r are compact operators and D is a bounded set, the
closures of the image sets Lm(D), Lm+1(D), . . . , Lm+r(D) are compact subsets of X.
Therefore, C is a product of r +1 compact subsets of X, which is a compact subset
of the product space Xr+1. In view of (2.13), T (m+ r+1,m)(S) is a subset of the
compact set C ⊂ Xr+1, and hence, it is relatively compact in Xr+1. Since S was
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an arbitrary bounded subset of Br, this proves that T (m + r + 1,m) : Br → Br is
a compact operator. Finally, if n > m+ r + 1, then

T (n,m) = T (n,m+ r + 1)T (m+ r + 1,m)

is a product of the bounded linear operator T (n,m+r+1) and the compact operator
T (m+ r + 1,m), and hence, it is compact (see, e.g., [28]). �

Claim 6. The stable subspace S(0) of Eq. (2.1) is closed and has finite codimension
in Br.

Before giving a proof of Claim 6, let us recall the following notions [27]. Let B
be a Banach space. A subspace S of B is called subcomplete in B if there exist a
Banach space Z and a bounded linear operator Φ: Z → B such that Φ(Z) = S.

Let A : Z+
0 → L(B) be an operator-valued map. For n,m ∈ Z+

0 with n ≥ m,
define the corresponding transition operator U(n,m) : B → B by

U(n,m) = A(n− 1)A(n− 2) · · · A(m) for n ≥ m

and U(n, n) = I for n ∈ Z+
0 , where I denotes the identity operator on B. A sequence

Y = (Y (n))
n∈Z+0

of subspaces in B is called a covariant sequence for A if

[A(n) ]−1(Y (n+ 1)) = Y (n) for all n ∈ Z+
0 .

A covariant sequence Y = (Y (n))
n∈Z+0

for A is called algebraically regular if

U(n, 0)B + Y (n) = B for each n ∈ Z+
0 .

Finally, a covariant sequence Y = (Y (n))
n∈Z+0

for A is called subcomplete if the

subspace Y (n) is subcomplete in B for all n ∈ Z+
0 .

The proof of Claim 6 will be based on the following result due to Schäffer [27].

Lemma 2.13. ([27, Lemma 3.4]) Let B be a Banach space and A : Z+
0 → L(B).

Suppose that Y = (Y (n))n∈Z+ is a subcomplete algebraically regular covariant
sequence for A. If the transition operator U(n,m) : B → B is compact for some
n,m ∈ Z+

0 with n>m, then the subspaces Y(n),n ∈ Z+
0 , are closed and have

constant finite codimension in B.

Now we can give a proof of Claim 6.

Proof of claim 6. Claims 2, 3, and 4 guarantee that the stable subspaces Y (n) :=
S(n) ⊂ Br of Eq. (2.1) form a subcomplete algebraically regular covariant sequence
for A : Z+ → L(Br) defined by

A(n) := T (n+ r + 1, n), n ∈ Z+
0 .

According to Claim 5, the associated transition operator U(n + 1, n) = A(n) is
compact. By the application of Lemma 2.13, we conclude that Y (0) = S(0) is
closed and has finite codimension in Br. �
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12 L. Backes, D. Dragičević and M. Pituk

By Claim 6, the stable subspace S(0) is closed and has finite codimension in Br.
This implies that S(0) is complemented in Br (see, e.g., [23, Lemma 4.21, p. 106]).
More precisely, there exists a subspace U of Br such that dimU = codimS(0) <∞
and

Br = S(0)⊕ U . (2.14)

Claim 7. For each bounded function z : Z+
0 → X, there exists a unique bounded

function x : Z+
−r → X with x0 ∈ U which satisfies (2.9). Moreover, there exists a

constant C > 0, independent of z, such that

sup
n≥−r

|x(n)| ≤ C sup
n≥0

|z(n)|. (2.15)

Proof of claim 7. By Claim 1, there exists a bounded function x̃ : Z+
−r → X that

satisfies

x̃(n+ 1) = Ln(x̃n) + z(n), n ∈ Z+
0 .

On the other hand, (2.14) implies the existence of φ1 ∈ S(0) and φ2 ∈ U such that

x̃0 = φ1 + φ2.

Define x : Z+
−r → X by

x(n) = x̃(n)− y(n), n ≥ −r,

where y is a solution of Eq. (2.1) with initial value y0 = φ1. Since y0 = φ1 ∈ S(0),
we have that supn≥−r |y(n)| < ∞. Then, x satisfies (2.9), x0 = x̃0 − φ1 = φ2 ∈ U
and supn≥−r |x(n)| < ∞. We claim that x with the desired properties is unique.
Indeed, if x̄ is an arbitrary function with the desired properties, then x0 − x̄0 ∈
U ∩ S(0) = {0}. Thus, x0 = x̄0 and hence x = x̄ identically on Z+

−r.
Finally, we show the existence of a constant C > 0 such that (2.15) holds. Let

X0 and X−r denote the Banach space of all bounded X -valued functions defined on
Z+
0 and Z+

−r, respectively, equipped with the supremum norm. For z ∈ X0, define
F(z) = x, where x is the unique bounded solution of the non-homogeneous Eq. (2.9)
with x0 ∈ U . (The existence and uniqueness of x is guaranteed by the first part of
the proof.) Evidently, F(z) = x ∈ X−r for z ∈ X0 and F : X0 → X−r is a linear
operator. We will now observe that F is a closed operator. Indeed, let (zk)k∈Z+ be
a sequence in X0 such that zk → z for some z ∈ X0 and xk := F(zk) → x for some
x ∈ X−r. Then, letting k → +∞ in

xk(n+ 1) = Ln(x
k
n) + zk(n)

for each fixed n, we get that

x(n+ 1) = Ln(xn) + z(n), n ∈ Z+
0 .

That is, x satisfies (2.9). Now, since xk0 ∈ U for k ∈ Z+
0 and U is a finite-dimensional

and hence a closed subset of Br, we have that x0 = limk→∞ xk0 ∈ U . Therefore,
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x ∈ X−r is a bounded function satisfying (2.9) with x0 ∈ U . Hence F(z) = x,
which shows that F : X0 → X−r is a closed operator. According to the Closed
Graph Theorem (see, e.g., [28, Theorem 4.2-I, p. 181]), F is bounded, which implies
that (2.15) holds with C = ‖F‖, the operator norm of F . �

For n ∈ Z+, define

U(n) = T (n, 0)U

so that U(0) = U . It is easily seen that

T (n,m)S(m) ⊂ S(n) and T (n,m)U(m) = U(n) (2.16)

whenever n,m ∈ Z+
0 with n ≥ m.

Claim 8. For n,m ∈ Z+
0 with n ≥ m, T (n,m)|U(m) : U(m) → U(n) is invertible.

Proof of claim 8. In view of (2.16), we only need to show that the operator above
is injective. Let n,m ∈ Z+

0 with n ≥ m and φ ∈ U(m) be such that T (n,m)φ = 0.
Since φ ∈ U(m), there exists φ̄ ∈ U(0) = U such that φ = T (m, 0)φ̄. Let x : Z+

−r →
X be the solution of (2.1) with initial value x0 = φ̄. Since x(k) = 0 for all sufficiently
large k ∈ Z+, we have that supk≥−r |x(k)| < ∞. It follows from the uniqueness in

Claim 7, applied for z ≡ 0, that x ≡ 0. This implies that φ̄ = φ = 0. �

Claim 9. For each n ∈ Z+
0 , Br can be decomposed into the direct sum

Br = S(n)⊕ U(n). (2.17)

Proof of claim 9. Since U(0) = U , for n =0, the decomposition (2.17) follows
immediately from (2.14). Now suppose that n ≥ 1 and let φ ∈ Br be arbi-
trary. Let v : Z+

n−r → X and z : Z+
0 → X be as in the proof of Claim 3. Since

supk≥0 |z(k)| < ∞, by Claim 7, there exists a unique function x : Z+
−r → X such

that x0 ∈ U , supk≥−r |x(k)| <∞, and (2.9) holds. By the same reasoning as in the
proof of Claim 3, we have that xn − φ ∈ S(n). Moreover, xn = T (n, 0)x0 ∈ U(n).
Consequently,

φ = (φ− xn) + xn ∈ S(n) + U(n).

Suppose now that φ ∈ S(n)∩U(n). Then, there exists φ̄ ∈ U such that φ = T (n, 0)φ̄.
Consider the unique solution x : Z+

−r → X of Eq. (2.1) with x0 = φ̄. Then, x
satisfies (2.9) with z ≡ 0, x0 = φ̄ ∈ U and supk≥−r |x(k)| < ∞. By the uniqueness

in Claim 7, we conclude that x ≡ 0. Therefore, φ̄ = 0, which implies that φ=0.
The proof of the Claim is completed. �

Claim 10. There exists Q > 0 such that

‖T (n,m)φ‖ ≤ Q‖φ‖,

for every n,m ∈ Z+
0 with n ≥ m and φ ∈ S(m).
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14 L. Backes, D. Dragičević and M. Pituk

Proof of claim 10. Fix m ∈ Z+
0 and φ ∈ S(m). Let u : Z+

m−r → X be the solution
of Eq. (2.1) with initial value um = φ. Define x : Z+

−r → X and z : Z+
0 → X by

x(k) =

u(k) for k ≥ m+ 1;

0 for −r ≤ k ≤ m

and

z(k) = x(k + 1)− Lk(xk), k ≥ 0,

respectively. Evidently, (2.9) is satisfied, and since φ ∈ S(m), we have that
supk≥−r |x(k)| < ∞. Moreover, x0 = 0 ∈ U . Furthermore, z(k) = 0 for 0 ≤ k ≤
m− 1 and k ≥ m+ r+1. Thus, using (2.2), (2.5), and the fact that ‖xk‖ ≤ ‖uk‖,
we find that

sup
k≥0

|z(k)| = sup
m≤k≤m+r

|z(k)|

≤ sup
m≤k≤m+r

|x(k + 1)|+ sup
m≤k≤m+r

|Lkxk|

≤ sup
m≤k≤m+r

|u(k + 1)|+M sup
m≤k≤m+r

‖xk‖

≤ sup
m≤k≤m+r

|Lk(uk)|+M sup
m≤k≤m+r

‖uk‖

≤ 2M sup
m≤k≤m+r

‖uk‖

= 2M sup
m≤k≤m+r

‖T (k,m)φ‖

≤ 2Meωr‖φ‖.

From the last inequality and conclusion (2.15) of Claim 7, we conclude that

sup
k≥m+1

|u(k)| ≤ sup
k≥−r

|x(k)| ≤ C sup
k≥0

|z(k)| ≤ 2CMeωr‖φ‖.

Hence,

‖T (n,m)φ‖ = ‖un‖ ≤ 2CMeωr‖φ‖, n ≥ m+ r + 1.

Since (2.2) implies that

‖T (n,m)φ‖ ≤ eωr‖φ‖, m ≤ n ≤ m+ r,

the conclusion of the claim holds with

Q := max{ eωr, 2CMeωr } > 0.

�
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Claim 11. There exist D,λ > 0 such that

‖T (n,m)φ‖ ≤ De−λ(n−m)‖φ‖

for every n,m ∈ Z+
0 with n ≥ m and φ ∈ S(m).

Proof of claim 11. We claim that if

N > eCMQ2(r + 1) + r + 1 (2.18)

with Q as in Claim 10, then for every m ∈ Z+
0 and φ ∈ S(m),

‖T (n,m)φ‖ ≤ 1

e
‖φ‖ for n ≥ m+N. (2.19)

Suppose, for the sake of contradiction, that (2.18) holds and there exist m ∈ Z+
0

and φ ∈ S(m) such that

‖T (n,m)φ‖ > 1

e
‖φ‖ for some n ≥ m+N. (2.20)

Fix n ≥ m +N such that the first inequality in (2.20) holds and let u denote the
solution of the homogeneous equation Eq. (2.1) with initial value um = φ so that
un = T (n,m)φ. Therefore, the first inequality in (2.20) can be written as

‖un‖ >
1

e
‖φ‖. (2.21)

In view of (2.16), φ ∈ S(m) implies that uj = T (j,m)φ ∈ S(j) for j ≥ m. Therefore,
by Claim 10, we have that

‖un‖ = ‖T (n, j)uj‖ ≤ Q‖uj‖ whenever m ≤ j ≤ n.

From the last inequality and (2.21), we find that ‖uj‖ > 0 whenever m ≤ j ≤ n.
This, together with the fact that n ≥ m+N > m+ r+1 and hence, n− r−1 > m,
implies that we can define a function x : Z+

−r → X by

x(k) =

χ(k)u(k) for k ≥ m,

0 for −r ≤ k ≤ m− 1,

where

χ(k) =



0 for −r ≤ k ≤ m,
k−1∑
j=m

‖uj‖−1 for m+ 1 ≤ k ≤ n− r − 1,

n−r−1∑
j=m

‖uj‖−1 for k ≥ n− r.
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16 L. Backes, D. Dragičević and M. Pituk

Evidently, x satisfies the non-homogeneous equation

x(k + 1) = Lk(xk) + z(k), k ∈ Z+
0 , (2.22)

where z : Z+
0 → X is defined by

z(k) = x(k + 1)− Lk(xk), k ∈ Z+
0 .

Since um = φ ∈ S(m) implies that u is bounded on Z+
m−r and 0 ≤ χ(k) ≤ χ(n− r)

for k ≥ −r, it follows that x is bounded on Z+
−r. From this and (2.2), we obtain

that z is also bounded on Z+
0 . Since x0 = 0 ∈ U , by Claim 7, we have that

sup
k≥−r

|x(k)| ≤ C sup
k≥0

|z(k)|. (2.23)

Our objective now is to estimate the norm of z (k). Since x(k) = 0 for −r ≤ k ≤ m,
we have that z(k) = 0 for 0 ≤ k ≤ m − 1. The function χ is constant on Z+

n−r,
therefore x is a constant multiple of the solution u of the homogeneous Eq. (2.1)
on Z+

n−r. Thus, x also satisfies the homogeneous Eq. (2.1) for k ≥ n, and hence,
z(k) = 0 for k ≥ n. It remains to consider the case when m ≤ k ≤ n− 1. Let such
a k be fixed. By definition, we have

z(k) = x(k + 1)− Lk(xk)

= χ(k + 1)u(k + 1)− Lk(χkuk)

= χ(k + 1)Lk(uk)− Lk(χkuk)

= Lk(χ(k + 1)uk − χkuk).

Therefore, using (2.2), it follows that

|z(k)| ≤M‖χ(k + 1)uk − χkuk‖.

Let θ ∈ [−r, 0] ∩ Z. Then,

| (χ(k + 1)uk − χkuk) (θ)| = | (χ(k + 1)− χ(k + θ))u(k + θ)|,

and hence,

| (χ(k + 1)uk − χkuk) (θ)| ≤
k∑

j=m

‖uj‖−1|u(k + θ)| whenever k + θ ≤ m

and

| (χ(k + 1)uk − χkuk) (θ)| ≤
k∑

j=k+θ

‖uj‖−1|u(k + θ)| whenever k + θ > m.

In view of (2.16), um = φ ∈ S(m) implies that uj = T (j,m)φ ∈ S(j) for j ≥ m.
Therefore, by Claim 10, for m ≤ j ≤ k, we have

|u(k + θ)| ≤ ‖uk‖ = ‖T (k, j)uj‖ ≤ Q‖uj‖
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so that ‖uj‖−1|u(k + θ)| ≤ Q. From this, we conclude that if k + θ ≤ m so that
k −m ≤ −θ ≤ r, then

k∑
j=m

‖uj‖−1|u(k + θ)| ≤ Q(k −m+ 1) ≤ Q(r + 1),

while in case k + θ > m, we have

k∑
j=k+θ

‖uj‖−1|u(k + θ)| ≤ Q(−θ + 1) ≤ Q(r + 1).

Therefore, in both cases k + θ ≤ m and k + θ > m, we have that

| (χ(k + 1)uk − χkuk) (θ)| ≤ Q(r + 1).

Since θ ∈ [−r, 0] ∩ Z was arbitrary, this implies that

‖χ(k + 1)uk − χkuk‖ ≤ Q(r + 1),

which, combined with (2.2), yields

|z(k)| ≤MQ(r + 1).

We have shown that the last inequality is valid whenever m ≤ k ≤ n − 1 and
z(k) = 0 otherwise. Hence,

sup
k≥0

|z(k)| ≤MQ(r + 1).

This, together with (2.23), implies that

sup
k≥−r

|x(k)| ≤ CMQ(r + 1). (2.24)

Since n−r ≥ n−N ≥ m and χ is non-decreasing on Z+
−r, we have for θ ∈ [−r, 0]∩Z,

|x(n+ θ)| = χ(n+ θ)|u(n+ θ)| ≥ χ(n− r)|u(n+ θ)| = |u(n+ θ)|
n−r−1∑
j=m

‖uj‖−1.

Hence,

‖xn‖ ≥ ‖un‖
n−r−1∑
j=m

‖uj‖−1.

According to Claim 10, um = φ ∈ S(m) implies that ‖uj‖ = ‖T (j,m)φ‖ ≤ Q‖φ‖
for j ≥ m. This, together with the previous inequality, yields

‖xn‖ ≥ ‖un‖
n−r−1∑
j=m

‖uj‖−1 ≥ ‖un‖
n−m− r

Q‖φ‖
.
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The last inequality, combined with (2.21) and (2.24), implies that

CMQ(r + 1) ≥ ‖xn‖ ≥ ‖un‖
n−m− r

Q‖ϕ‖
>
n−m− r

eQ
.

However, this contradicts the fact that n ≥ m+N with N satisfying (2.18). Thus,
(2.19) holds whenever m ∈ Z+

0 and φ ∈ S(m).
Using (2.19), we can easily complete the proof. Choose an integer N satisfy-

ing (2.18). Let n ≥ m. Then, n−m = kN +h for some k ∈ Z+
0 and 0 ≤ h ≤ N − 1.

From (2.19) and Claim 10, we obtain for φ ∈ S(m),

‖T (n,m)φ‖ = ‖T (m+ kN + h,m)φ‖
= ‖T (m+ kN + h,m+ kN)T (m+ kN,m)φ‖
≤ Q‖T (m+ kN,m)φ‖
≤ Qe−k‖φ‖

≤ eQe−
n−m
N ‖φ‖.

Hence, the conclusion of the claim holds with D = eQ and λ = 1/N . �

Claim 12. There exists Q′ > 0 such that

‖T (n,m)φ‖ ≤ Q′‖φ‖

for every n,m ∈ Z+
0 with n ≤ m and φ ∈ U(m).

Proof of claim 12. Given m ∈ Z+
0 and φ ∈ U(m), there exists φ̄ ∈ U such that

φ = T (m, 0)φ̄. Let u : Z+
−r → X be the solution of Eq. (2.1) such that u0 = φ̄.

Consider x : Z+
−r → X and z : Z+

0 → X given by

x(k) =


u(k) for −r ≤ k ≤ m

0 for k ≥ m+ 1,

and

z(k) = x(k + 1)− Lk(xk), k ∈ Z+
0 ,

so that (2.9) is satisfied. Moreover, since x(k) = 0 for k ≥ m+ 1, it follows that
supk≥−r |x(k)| < ∞. Furthermore, x0 = u0 ∈ U and z(k) = 0 for 0 ≤ k ≤ m − 1
and k ≥ m+ r + 1. Proceeding as in the proof of Claim 10, it can be shown that

sup
k≥0

|z(k)| ≤ 2Meωr‖φ‖.

From conclusion (2.15) of Claim 7, we conclude that

sup
−r≤k≤m

|u(k)| ≤ sup
k≥−r

|x(k)| ≤ C sup
k≥0

|z(k)| ≤ 2CMeωr‖φ‖.
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This implies that the conclusion of the claim holds with

Q′ := 2CMeωr > 0.

�

Claim 13. There exist D′, λ′ > 0 such that

‖T (n,m)φ‖ ≤ D′e−λ′(m−n)‖φ‖

for every n,m ∈ Z+
0 with n ≤ m and φ ∈ U(m).

Proof of Claim 13. We claim that if

N ′ > eCM(Q′)2(r + 1) (2.25)

with Q ′ as in Claim 12, then for every m ≥ N ′ and φ ∈ U(m),

‖T (n,m)φ‖ ≤ 1

e
‖φ‖ whenever 0 ≤ n ≤ m−N ′. (2.26)

Suppose, for the sake of contradiction, that (2.25) holds and there exist m ≥ N ′

and φ ∈ U(m) such that

‖T (n,m)φ‖ > 1

e
‖φ‖ for some n with 0 ≤ n ≤ m−N ′. (2.27)

Fix n with 0 ≤ n ≤ m−N ′ such that the first inequality in (2.27) holds. Evidently,
(2.27) implies that φ ∈ U(m) is non-zero. Therefore, there exists a non-zero φ̄ ∈ U
such that φ = T (m, 0)φ̄. Let u denote the unique solution of Eq. (2.1) with u0 = φ̄
so that um = T (m, 0)u0 = T (m, 0)φ̄ = φ. Since un = T (n,m)um = T (n,m)φ, the
first inequality in (2.27) can be written as

‖un‖ >
1

e
‖φ‖. (2.28)

Choose a sequence ψ : Z+
0 → [0, 1] such that

ψ(j) = 1 for 0 ≤ j ≤ m and ψ(j) = 0 for j ≥ m+ 1. (2.29)

By Claim 8, 0 6= φ̄ ∈ U implies that uj = T (j, 0)φ̄ 6= 0 for j ≥ 0. Therefore, we can
define a function x : Z+

−r → X by

x(k) = χ(k)u(k) for k ≥ −r,

where

χ(k) =



∞∑
j=0

ψ(j)‖uj‖−1 for −r ≤ k ≤ 0,

∞∑
j=k

ψ(j)‖uj‖−1 for k ≥ 1.
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Note that

x0 = cu0 = cφ̄ ∈ U , where c = χ(0) =
m∑
j=0

ψ(j)‖uj‖−1.

Since ψ(k) = 0 and hence x(k) = 0 for k ≥ m+1, we have that supk≥−r |x(k)| <∞.

Moreover, x satisfies (2.9) with z : Z+
0 → X defined by

z(k) = x(k + 1)− Lk(xk), k ≥ 0. (2.30)

Since xk = 0 for k ≥ m + r + 1, it follows that z(k) = 0 for k ≥ m+ r + 1. In
particular, z is bounded on Z+

0 . From (2.30) and Claim 7, we conclude that

sup
k≥−r

|x(k)| ≤ C sup
k≥0

|z(k)|. (2.31)

Let k ≥ 0 be arbitrary. By the same calculations as in the proof of Claim 10, we
have

z(k) = Lk(χ(k + 1)uk − χkuk).

From this and (2.2), we find that

|z(k)| ≤M‖χ(k + 1)uk − χkuk‖. (2.32)

Let θ ∈ [−r, 0] ∩ Z. Then,

| (χ(k + 1)uk − χkuk) (θ)| = | (χ(k + 1)− χ(k + θ))u(k + θ)|.

From this and the definition of χ, taking into account that 0 ≤ ψ ≤ 1 on Z+
0 , we

conclude that

| (χ(k + 1)uk − χkuk) (θ)| ≤
k∑

j=0

‖uj‖−1|u(k + θ)| whenever k + θ ≤ 0. (2.33)

and

| (χ(k + 1)uk − χkuk) (θ)| ≤
k∑

j=k+θ

‖uj‖−1|u(k+θ)| whenever k+θ > 0. (2.34)

By Claim 8, u0 = φ̄ ∈ U implies that uj = T (j, 0)u0 ∈ U(j) for j ≥ 0. Therefore,
according to Claim 12, if k + θ < 0, then

|u(k + θ)| ≤ ‖u0‖ = ‖T (0, j)uj‖ ≤ Q′‖uj‖,

and hence, ‖uj‖−1|u(k + θ)| ≤ Q′ for j ≥ 0. If k + θ ≤ 0 so that k ≤ −θ ≤ r, then
from the last inequality and (2.33), we obtain that

| (χ(k + 1)uk − χkuk) (θ)| ≤ Q′(r + 1) whenever k + θ ≤ 0. (2.35)
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It follows by similar arguments that if k + θ > 0, then

|u(k + θ)| ≤ ‖uk+θ‖ = ‖T (k + θ, j)uj‖ ≤ Q′‖uj‖,

and hence, ‖uj‖−1|u(k + θ)| ≤ Q′ for j ≥ k + θ. This, together with (2.34), yields

| (χ(k + 1)uk − χkuk) (θ)| ≤ Q′(r + 1) whenever k + θ > 0. (2.36)

Since θ ∈ [−r, 0] ∩ Z was arbitrary, (2.35) and (2.36) imply that

‖χ(k + 1)uk − χkuk‖ ≤ Q′(r + 1).

Since k ≥ 0 was arbitrary, the last inequality, combined with (2.32), implies that

sup
k≥0

|z(k)| ≤MQ′(r + 1).

This, together with (2.31), yields

sup
k≥−r

|x(k)| ≤ CMQ′(r + 1). (2.37)

Since χ is non-increasing on Z+
−r, we have for θ ∈ [−r, 0] ∩ Z,

|x(n+ θ)| = χ(n+ θ)|u(n+ θ)| ≥ χ(n)|u(n+ θ)| = |u(n+ θ)|
m∑

j=n

‖uj‖−1,

the last equality being a consequence of (2.29). Hence,

‖xn‖ ≥ ‖un‖
m∑

j=n

‖uj‖−1.

Since um = φ ∈ U(m), by Claim 12, we have that ‖uj‖ = ‖T (j,m)φ‖ ≤ Q′‖φ‖ for
0 ≤ j ≤ m. This, together with the previous inequality, gives

‖xn‖ ≥ ‖un‖
m− n+ 1

Q′‖φ‖
.

This, combined with (2.28) and (2.37), yields

CMQ′(r + 1) ≥ ‖xn‖ ≥ ‖un‖
m− n+ 1

Q′‖φ‖
>
m− n+ 1

eQ′ .

The last inequality contradicts the fact that n−m ≥ N ′ with N
′
satisfying (2.25).

Thus, (2.26) holds whenever m ≥ N ′ and φ ∈ U(m).
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Now, using (2.26), we can easily complete the proof. Let 0 ≤ n ≤ m and φ ∈
U(m). Choose an integer N

′
satisfying (2.25). Then, m − n = kN ′ + h for some

k ∈ Z+
0 and 0 ≤ h ≤ N ′ − 1. From (2.26) and Claim 12, we obtain

‖T (n,m)φ‖ = ‖T (n, n+ kN ′ + h)φ‖
= ‖T (n, n+ kN ′)T (n+ kN ′, n+ kN ′ + h)φ‖
≤ e−k‖T (n+ kN ′, n+ kN ′ + h)φ‖
≤ Q′e−k‖φ‖

≤ eQ′e
−m−n

N ′ ‖φ‖.

Thus, the conclusion of the claim holds with D′ = eQ′ and λ′ = 1/N ′. �

For each n ∈ Z+
0 , let Pn denote the projection of Br onto S(n) along U(n)

associated with the decomposition (2.17).

Claim 14. The projections Pn, n ∈ Z+
0 , are uniformly bounded, i.e.,

sup
n≥0

‖Pn‖ <∞.

Proof of claim 14. Since kerPn = U(n) and imPn = S(n) for n ∈ Z+
0 , Claims 11

and 13 show that the hypotheses of Lemma 3.1 of Huy and Van Minh [13] are
satisfied with X = Br and An = T (n + 1, n). Therefore, the desired conclusion
follows from [13, Lemma 3.1]. �

Now we can complete the proof of Theorem 2.3. Let φ ∈ Br and n,m ∈ Z+
0 with

n ≥ m be fixed. From Pmφ ∈ S(m) and (2.16), we have that T (n,m)Pmφ ∈ S(n).
Hence,

PnT (n,m)Pmφ = T (n,m)Pmφ.

Similarly, considering Qm = I − Pm, Qmφ ∈ U(m) and (2.16) imply that
T (n,m)Qmφ ∈ U(n). Hence,

PnT (n,m)Qmφ = 0.

From the above relations, taking into account that φ = Pmφ +Qmφ, we conclude
that

PnT (n,m)φ = PnT (n,m)Pmφ+ PnT (n,m)Qmφ = T (n,m)Pmφ.

Since φ ∈ Br was arbitrary, this proves (2.6).
Evidently, kerPm = U(m) for m ∈ Z+. Therefore, from Claim 8 and (2.16),

it follows that the restriction T (n,m)|kerP (m) : kerP (m) → kerP (n) is invertible

and onto. Furthermore, by Claim 14, the projections Pn, n ∈ Z+
0 , are uniformly

bounded. Combining this fact with Claims 11 and 13, we conclude that the expo-
nential estimates (2.7) and (2.8) are also satisfied. Thus, (2.1) admits an exponential
dichotomy.
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Remark 2.22. In the proof of Theorem 2.3, we have shown that the Perron prop-
erty (see Claim 1) implies the existence of an exponential dichotomy for Eq. (1.3).
Results of this type have a long history that goes back to the pioneering works
of Perron [21] for ordinary differential equations and Li [15] for difference equa-
tions. Subsequent important contributions are due to Massera and Schäffer [16,
17], Daleckiı and Kreın [9], Coppel [8] and Henry [11], who was the first to con-
sider the case of non-invertible dynamics. For more recent contributions, we refer
to [12–14, 24–26, 29] and the references therein. A comprehensive overview of the
relationship between hyperbolicity and the Perron property is given in [3].

3. Shadowing of linear Volterra difference equations with infinite delay

In this section, we are interested in the shadowing of the Volterra difference equation
with infinite delay (1.5), where the kernel A satisfies condition (1.6). The phase
space for Eq. (1.5) is the Banach space (Bγ , ‖ · ‖) given by

Bγ =

{
φ : Z−

0 → Cd : sup
θ∈Z−0

|φ(θ)|eγθ <∞
}
, ‖φ‖ = sup

θ∈Z−0

|φ(θ)|eγθ, φ ∈ Bγ .

Under condition (1.6), Eq. (1.5) can be written equivalently in the form

x(n+ 1) = L(xn), (3.1)

where xn ∈ Bγ is defined by xn(θ) = x(n + θ) for θ ∈ Z−
0 and L : Bγ → Cd is a

bounded linear functional defined by

L(φ) =
∞∑
j=0

A(j)φ(−j), φ ∈ Bγ .

It is known (see, e.g., [18], [20]) that if (1.6) holds, then for every φ ∈ Bγ , there exists
a unique function x : Z → Cd satisfying Eq. (1.5) (equivalently, Eq. (3.1)) such that
x(θ) = φ(θ) for θ ∈ Z−

0 . We shall call x the solution of Eq. (1.5) (or (3.1)) on Z+
0

with initial value x0 = φ. By a solution of Eq. (1.5) on Z+
0 , we mean a solution x

with initial value x0 = φ for some φ ∈ Bγ .
For Eq. (1.5), the definition of shadowing can be modified as follows.

Definition 3.1. We say that Eq. (1.5) is shadowable on Z+
0 if, for each ε> 0,

there exists δ > 0 such that for every function y : Z → Cd satisfying

sup
n≥0

|y(n+ 1)− L(yn)| ≤ δ,

there exists a solution x of (1.5) on Z+
0 such that

sup
n≥0

‖xn − yn‖ ≤ ε.

The main result of this section is the following theorem, which shows that, under
condition (1.6), Eq. (1.5) is shadowable on Z+

0 if and only if it is hyperbolic.
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Theorem 3.2 Suppose that (1.6) holds. Then, the following statements are
equivalent.

(i) Eq. (1.5) is shadowable on Z+
0 ;

(ii) The characteristic equation (1.7) has no root on the unit circle |λ| = 1.

Before we give a proof of Theorem 3.2, we summarize some facts from the spectral
theory of linear Volterra difference equations with infinite delay ([18], [19], [20]).

For each n ∈ Z+
0 , define T (n) : Bγ → Bγ by T (n)φ = xn(φ) for φ ∈ Bγ , where

x(φ) is the unique solution of Eq. (1.5) on Z+
0 with initial value x0(φ) = φ. It is

well known (see [18, 19]) that T (n) is a bounded linear operator in Bγ which has
the semigroup property T (0) = I, the identity on Bγ , and T (n +m) = T (n)T (m)
for n,m ∈ Z+

0 . As a consequence, we have that

T (n) = Tn, n ∈ Z+
0 , where T := T (1).

From the definition of the solution operator T = T (1) and Eq. (1.5), we have that

[T (φ)](θ) =


∞∑
j=0

A(j)φ(−j) for θ = 0,

φ(θ + 1) for θ ≤ −1.

(3.2)

If (1.6) holds, then the characteristic function ∆ defined by (1.8) is an analytic
function of the complex variable λ in the region |λ| > e−γ . Denote by Σ the set of
characteristic roots of Eq. (1.5),

Σ = {λ ∈ C : |λ| > e−γ , det∆(λ) = 0 },

and define

Σcu = {λ ∈ Σ : |λ| ≥ 1}.

It follows from the analyticity of ∆ that Σcu is a finite spectral set for T. The
corresponding spectral projection Πcu on Bγ is defined by

Πcu =
1

2πi

∫
C

(λI − T )−1 dλ,

where C is any rectifiable Jordan curve, which is disjoint with Σ and contains
Σcu in its interior, but no point of Σs := Σ \ Σcu. The phase space Bγ can be
decomposed into the direct sum

Bγ = Bcu
γ ⊕ Bs

γ
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with Bcu
γ = Πcu(Bγ) and Bs

γ = Πs(Bγ), where Π
s = I − Πcu. The subspaces

Bcu
γ and Bs

γ are called the centre-unstable subspace and the stable subspace of Bγ ,
respectively. The spectra of the restrictions T cu := T |Bcu

γ
and T s := T |Bs

γ
satisfy

σ(T cu) = Σcu and σ(T s) = σ(T ) \Σcu = {λ ∈ σ(T ) : |λ| < 1 }.

If Σcu is non-empty, then it consists of finitely many eigenvalues ofT,

Σcu = {λ1, . . . , λr },

and Bcu
γ can be written as a direct sum of the nullspaces

Bcu
γ = ker((T − λ1I)

p1)⊕ · · · ⊕ ker((T − λrI)
pr ),

where pj is the index (ascent) of λj, j = 1, . . . , r (see [18, Remark 2.1, p. 62]).
An explicit representation of the spectral projection Πcu can be given using the

duality between Eq. (1.5) and its formal adjoint equation

y(n− 1) =
∞∑
j=0

y(n+ j)A(j), n ∈ Z+
0 , (3.3)

where y(n) ∈ Cd∗. Here Cd∗ denotes the d -dimensional space of complex row vectors
with a norm | · |, which is compatible with the given norm on Cd, i.e., |x∗x| ≤ |x∗||x|
for all x ∈ Cd. The superscript ∗ indicates the conjugate transpose. The phase space
for the formal adjoint Eq. (3.3) is the Banach space (B]

γ̃ , ‖ · ‖) defined by

B]
γ̃ =

{
ψ : Z+

0 → Cd∗ : sup
ζ∈Z+0

|ψ(ζ)|e−γ̃ζ <∞
}
, ‖ψ‖ = sup

ζ∈Z+0

|ψ(ζ)|e−γ̃ζ , ψ ∈ B]
γ̃ ,

where γ̃ is a fixed number such that 0 < γ̃ < γ. The solution operator T ] : B]
γ̃ → B]

γ̃

of Eq. (3.3) is given by

[T ](ψ)](ζ) =


∞∑
j=0

ψ(j)A(j) if ζ = 0,

ψ(ζ − 1) if ζ ≥ 1.

(3.4)

Define a bilinear form 〈·, ·〉 : B]
γ̃ × Bγ → C by

〈ψ, φ〉 = ψ(0)φ(0) +
∞∑
j=1

j−1∑
ζ=0

ψ(ζ + 1)A(j)φ(ζ − j), φ ∈ Bγ , ψ ∈ B]
γ̃ .

As shown in [18, In eq. (3.3), p. 64], this bilinear form is bounded, i.e., there exists
K > 0 such that

|〈ψ, φ〉| ≤ K‖ψ‖‖φ‖, φ ∈ Bγ , ψ ∈ B]
γ̃ . (3.5)
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Moreover, between Eqs. (1.5) and (3.3), we have the following duality relation (see
[18, Lemma 3.1])

〈ψ, Tφ〉 = 〈T ]ψ, φ〉, φ ∈ Bγ , ψ ∈ B]
γ̃ . (3.6)

It is known that T and T ] have the same spectrum and the dimension of the
subspace

N ] := ker((T ] − λ1I)
p1)⊕ · · · ⊕ ker((T ] − λrI)

pr )

of B]
γ̃ is the same as the (finite) dimension of the centre-unstable subspace Bcu

γ ,
which will be denoted by s. Let {φ1, . . . , φs } and {ψ1, . . . , ψs } be bases for Bcu

γ

and N ], respectively. Define Φ = (φ1, . . . , φs) and Ψ = col(ψ1, . . . , ψs). Then, the
s × s matrix 〈Ψ, Φ〉 given by 〈Ψ, Φ〉 = (〈ψi, φj〉)i,j=1,...,s is non-singular, therefore,
by replacing Ψ with 〈Ψ, Φ〉−1Ψ , we may (and do) assume that 〈Ψ, Φ〉 = E, the s × s
unit matrix. The projection Πcu : Bγ → Bcu

γ can be given explicitly by (see [18,
Theorem 3.1])

Πcuφ = Φ〈Ψ, φ〉, φ ∈ Bγ , (3.7)

where 〈Ψ, φ〉 denotes the column vector col(〈ψ1, φ〉, . . . , 〈ψs, φ〉).
The subspace Bcu

γ is invariant under the solution operator T. If B denotes the
representation matrix of the linear transformation T |Bcu

γ
with respect to the basis

Φ of Bcu
γ , then

TΦ = ΦB and σ(B) = Σcu. (3.8)

A similar argument yields the existence of a square matrix C such that

T ]Ψ = CΨ and σ(C) = Σcu. (3.9)

Now suppose that x is a solution of the non-homogeneous equation

x(n+ 1) = L(xn) + p(n), n ∈ Z+
0 . (3.10)

with initial value x0 = φ for some φ ∈ Bγ . Then, x satisfies the following repre-
sentation formula in Bγ (see [19, Theorem 2.1]), which is called the variation of
constants formula for Eq. (3.10) in the phase space,

xn = T (n)φ+
n−1∑
j=0

T (n− 1− j)Γp(j), n ∈ Z+
0 , (3.11)

where the operator Γ : Cd → Bγ is defined by

[Γx](θ) =

x if θ = 0,

0 if θ ≤ −1.
(3.12)
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Evidently,

‖Γx‖ = |x|, x ∈ Cd. (3.13)

Finally, let z (n) be the coordinate of the projection Πcuxn with respect to the basis
Φ, i.e., Πcuxn = Φz(n) for n ∈ Z+

0 . In view of (3.7), z (n) is given explicitly by

z(n) = 〈Ψ, xn〉, n ∈ Z+
0 . (3.14)

Moreover, it is known (see [20, Theorem 3]) that z satisfies the following first order
difference equation in Cs,

z(n+ 1) = Bz(n) + 〈Ψ, Γp(n)〉, n ∈ Z+
0 , (3.15)

with B as in (3.8).
Now we are in a position to give a proof of Theorem 2.3.

Proof of Theorem 2.3. (i) ⇒ (ii). Suppose, for the sake of contradiction, that
Eq. (1.5) is shadowable, but (ii) does not hold. The shadowing property of Eq. (1.5)
implies the following Perron-type property.

Claim 15. For every bounded function p : Z+
0 → Cd, there exists a function x : Z →

Cd satisfying the non-homogeneous Eq. (3.10) with

sup
n≥0

|x(n)| <∞. (3.16)

The proof of Claim 15 is almost identical with that of Claim 1 in the proof of
Theorem 2.3, therefore we omit it. Since (ii) does not hold, there exists a charac-
teristic root λ ∈ Σ with |λ| = 1. Evidently, λ ∈ Σcu, therefore the second relation
in (3.8) implies the existence of a non-zero vector v ∈ Cs∗ such that

vB = λv. (3.17)

Define p : Z+
0 → Cd by

p(n) = λn+1(vΨ(0))∗, n ∈ Z+
0 . (3.18)

Since supn≥0 |p(n)| = |(vΨ(0))∗| < ∞, by Claim 15, the non-homogeneous

Eq. (3.10) has at least one solution x on Z+
0 such that (3.16) holds. The

corresponding coordinate function z defined by (3.14) satisfies the difference
Eq. (3.15) From (3.5), (3.13), (3.14), and (3.16), we obtain that z and hence the
function u : Z+

0 → C defined by

u(n) = vz(n), n ∈ Z+
0 , (3.19)

is bounded on Z+
0 . Multiplying Eq. (3.15) from the left by v and using (3.17), we

obtain that

u(n+ 1) = λu(n) + v〈Ψ, Γp(n)〉, n ∈ Z+
0 . (3.20)
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It follows from (3.12), (3.18), and the definition of the bilinear form 〈·, ·〉 that

〈Ψ, Γp(n)〉 = Ψ(0)p(n) = λn+1Ψ(0)(vΨ(0))∗.

This, together with (3.20), implies that

u(n+ 1) = λu(n) + cλn+1, n ∈ Z+
0 , (3.21)

with

c = (vΨ(0))(vΨ(0))∗ = |(vΨ(0))∗|22, (3.22)

where | · |2 denotes the l2-norm on Cd. From Eq. (3.21), it follows by the variation
of constants formula that

u(n) = λn(u(0) + cn), n ∈ Z+
0 . (3.23)

It follows from the duality (3.6) that B =C, where B and C have the meaning
from (3.8) and (3.9), respectively. Indeed, (3.6) implies that

B = 〈Ψ, Φ〉B = 〈Ψ, ΦB〉 = 〈Ψ, TΦ〉 = 〈T ]Ψ, Φ〉 = 〈CΨ,Φ〉 = C〈Ψ, Φ〉 = C.

From (3.2) and the relation TΦ = ΦB (see (3.8)), we find that

Φ(θ) = Φ(0)Bθ, θ ∈ Z−
0 . (3.24)

Similarly, from (3.4) and the relation T ]Ψ = BΨ (see (3.9)), we have that

Ψ(ζ) = B−ζΨ(0), ζ ∈ Z+
0 . (3.25)

Next we will show that

vΨ(0) 6= 0. (3.26)

Suppose, for the sake of contradiction, that vΨ(0) = 0. Then, by (3.17) and (3.25),
we have

vΨ(ζ) = vB−ζΨ(0) = λ−ζvΨ(0) = 0 for all ζ ∈ Z+
0 .

Thus, vΨ is identically zero on Z+
0 . On the other hand, v 6=0 implies that vΨ is a

non-trivial linear combination of the basis elements ψ1, . . . , ψs of N ], and hence, it
cannot be identically zero on Z+

0 . This contradiction proves that (3.26) holds.
From (3.22) and (3.26), we find that c> 0. From this and (3.23), taking into

account that |λ| = 1, we obtain that

|u(n)| = |u(0) + cn| → ∞, n→ ∞,

which contradicts the boundedness of u.
(ii) ⇒ (i). Suppose that the characteristic Eq. (1.7) has no root with |λ| = 1.

Then, the exponential estimates of the solution operator on the stable and unstable
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subspaces of Bγ (see, e.g., [20, Theorem 1]) imply that Eq. (1.5) admits an expo-
nential dichotomy on Z+

0 as defined in [10] with projections Pn = Πs for n ∈ Z+
0 .

By the application of [10, Theorem 1] with fn = 0, c=0 and µ=1, we conclude
that Eq. (1.5) is shadowable on Z+

0 . �

Remark 3.4. It is known that certain solutions of Eq. (1.5) can be continued
backward in the sense that they satisfy Eq. (1.5) for all n ∈ Z. Such solutions are
sometimes called global solutions or entire solutions. In a recent article [4], Barreira
and Valls have considered the Ulam–Hyers stability, a special case of shadowing, of
the global solutions for difference equations with finite delays. In [4, Theorem 5],
they have proved the analogue of a recent shadowing theorem [10, Theorem 1]
for global solutions. Moreover, in the special case of linear autonomous equations
in finite dimensional spaces, they have shown that the Ulam–Hyers stability of the
global solutions is equivalent to the existence of an exponential dichotomy whenever
the coefficients are scalar (see [4, Theorem 8]) or the Jordan blocks associated with
the central directions are diagonal (see [4, Theorem 9]). Using a similar argument
as in the proof of Theorem 3.2, it can be shown that the assumption about the
Jordan blocks in [4, Theorem 9] is superfluous. In this sense, Theorem 3.2 may be
viewed as an improvement of [4, Theorem 9].
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[29] N. Van Minh, F. Räbiger and R. Schnaubelt. Exponential stability, exponential expansive-
ness and exponential dichotomy of evolution equations on the half line. Integral Equations
Operator Theory. 32 (1998), 332–353.

https://doi.org/10.1017/prm.2024.124 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.124

	Shadowing and hyperbolicity for linear delay difference equations
	1. Introduction
	2. Shadowing of non-autonomous linear difference equation with finite delays
	3. Shadowing of linear Volterra difference equations with infinite delay
	Acknowledgements
	References


