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Abstract

The material removal rate (MRR) serves as a crucial indicator in the chemical mechanical
polishing (CMP) process of semiconductor wafers. Currently, the mainstream method to
ascertain the MRR through offline measurements proves time inefficient and struggles to
represent process variability accurately. An efficient MRR prediction model based on stacking
ensemble learning that integrates models with disparate architectures was proposed in this
study. First, the processing signals collected during wafer polishing, as available in the PHM2016
dataset, were analyzed and preprocessed to extract statistical and neighbor domain features.
Subsequently, Pearson correlation coefficient analysis (PCCA) and principal component ana-
lysis (PCA) were employed to fuse the extracted features. Ultimately, random forest (RF), light
gradient boosting machine (LightGBM), and backpropagation neural network (BPNN) with
hyperparameters optimized by the Bayesian Optimization Algorithm were integrated to estab-
lish an MRR prediction model based on stacking ensemble learning. The developed model was
verified on the PHM2016 benchmark test set, and a Mean Square Error (MSE) of 7.72 and a
coefficient of determination (R2) of 95.82% were achieved. This indicates that the stacking
ensemble learning based model, integrated with base models of disparate architectures, offers
considerable potential for real-time MRR prediction in the CMP process of semiconductor
wafers.

Introduction

Chemical mechanical polishing (CMP) is the predominant method for semiconductor wafer
processing. A representative process schematic is depicted in Figure 1. Material removal during
CMPpredominantly occurs via the synergistic actions of chemistry andmachinery among thewafer,
polishing slurry, and polishing pad (Zhang et al., 2021). Real-time monitoring of the Material
Removal Rate (MRR) during the polishing phase provides immediate insights into the processing
status, delivering crucial information for subsequt applications, including electrical characterization
and layout design. However, offline measurement using precision instruments is currently the main
method to obtainMRR (Lee, 2019),which falls short of facilitating real-timemonitoring. In addition,
measurement precision may be compromised by operator-induced variability. Consequently, there
is a pressing need for a precise and efficient MRR prediction model.

The Preston equation (Evans et al., 2003): MRR¼KpPαVβ is often used to construct theMRR
model, where P denotes the downward pressure applied to the wafer, V denotes the relative
rotating speed between the wafer and the polishing pad, Kp is the Preston coefficient, and α and β
are the parameters depending on the operating conditions. However, due to the complexity of the
CMP process, the model construction method based on the Preston equation is difficult to
consider various process variables more comprehensively to accurately predict the MRR. Coin-
ciding with advancements in machine learning and deep learning, data-driven regression models
for MRR prediction have emerged (Wang et al., 2017; Li et al., 2018; Xu et al., 2021). The relative
studies show that the integrated model performs better than the individual models therein
(Di et al., 2021; Li et al., 2019), which focused on crafting MRR prediction models through
ensemble learning and sought to integrate models of similar architectures or principles. Yet, the
distinctive strength of data-drivenmodel integration lies in its aptitude to assimilate samples from
varied perspectives when the base models exhibit substantial divergence in structure or principle
(Wolpert David, 1992).

The main contribution of our work is that an MRR prediction model with high precision for
CMP process has been built. Bymeans of feature extraction first and then feature fusion, enabling
the model to learn rich data features on the foundation of maintaining a low number of
parameters, so as to be able to achieve high-precision real-time prediction. Specifically, it’s the
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first attempt to construct the MRR prediction model by integrating
base models with substantial disparities, and the effectiveness of
which was corroborated on the public 2016th Prognostics and
Health Management dataset (Jia et al., 2021) (PHM2016).

Related work

ExistingMRR predictive models for CMP principally bifurcate into
two categories: those grounded in mechanical and chemical prin-
ciples, and those deriving from data-driven methodologies. Zhao
and Chang (2002) developed a closed-loop MRR prediction model
by studying elastoplastic microcontact mechanics and polishing
pad wear theory. Experimental results underscore the correlation
between MRR and factors such as abrasive concentration and
abrasive radius in the polishing slurry. Xu et al. (2020) constructed
a CMP analytical model predicated on the governing equation of
plate theory, chemical reaction kinetics, and wear theory, and the
influence of variables including pad elastic modulus, temperature
distribution, carrier rotation speed, and so forth onMRR have been
explored. These scholarly endeavors invested in unraveling the
relationships between diverse process parameters and MRR, aimed
at formulating a theoretical model bridging process parameters and
MRR. Despite the variety of wafer and slurry materials, the numer-
ous related process parameters, and the complex conditions found
in the CMP process, finding a comprehensive theory that clearly
explains the inherent material removal mechanisms is still a chal-
lenge. Consequently, approaches relying on physical and chemical
principles for MRR prediction are inherently constrained.

A machine learning model, in theory, retains the capability to
approximate an arbitrarily complex mathematical landscape
(Hanin and Rolnick, 2019). Through successive refinements in
the course of optimization, the model can autonomously deduce
the inherent relationships between process parameters and MRR,
bypassing the requirement for strenuous theoretical analysis and
computational complexities. Xu et al. (2021) proposed a data-
driven neural network (NN) model based on CMP experiments
to predict MRR and investigated the influence of the oxidizer
concentration and the inhibitor concentration, as well as the che-
lating agent concentration and the surfactant concentration on the
prediction of MRR. Li et al. (2018) utilized random forest (RF) to
predict MRR through discriminating between fine and coarse
polishing. Wang et al. (2017) devised an optimized Deep Belief
Network (DBN) to investigate the relationship between MRR and
polishing operation parameters such as pressure and rotational

speeds of the wafer and pad. Furthermore, the strength of the
data-driven approach in constructing MRR prediction models
resides in the potential enhancement of prediction precision
through integration of multiple models trained with identical sam-
ples. Di et al. (2021) put forth an ensemble learning based model,
incorporating k-nearest neighbor (KNN), support vector machine
(SVM) and logistic regression (LR) to predict theMRR, and proved
the validity of ensemble learning through experiments.

High-quality polishing process datasets like PHM2016 are difficult
to obtain, which has prompted many scholars to conduct research
using this data. For instance, Li et al. (2019) employed a stacking
ensemble learningmethod based on classification and regression trees
(CART) and the extreme learning machine (ELM). This method had
a RootMean Squared Error (RMSE) of 4.64 on the test dataset, which
far exceeds the accuracy of models based solely on the Preston
equation, or single models like RF, GBT, and ERT. Zhang et al.
(2021) used the residual convolutional neural network (ResCNN)
to build anMRR predictionmodel for the CMPprocess and achieved
aMean Square Error (MSE) of 6.72 on the test set. Their experimental
results highlight the impact that the usage quantity of each consum-
able in the CMP process has on MRR. However, utilizing convolu-
tional neural networks (CNNs) demands the conversion of input
attributes into two or three-dimensional matrices, putting certain
requirements on the length of the input features. Additionally, the
sequential computation process of CNN models could impact real-
time online predictions. Thus, the use of CNN-based prediction
models may be limited due to these factors.

Therefore, the goal of this study is to construct an MRR predic-
tion model of CMP based on ensemble learning, which fuses the
neural network models and tree models with significantly different
structures and principles, and ultimately obtains higher prediction
accuracy on the test set compared to other methods based on
ensemble learning.

Stacking ensemble learning based predictive modeling

Algorithm framework

The framework of the proposed algorithm is depicted in Figure 2.
Initially, the dataset was partitioned into training and testing sub-
sets, each serving the dual purposes of model training and perform-
ance evaluation, respectively. In the training phase, noise samples
within the training set were preemptively discarded. Subsequently,
feature engineering techniques were employed to transform the raw
input data into representative features. Finally, a stacking ensemble

Figure 1. Schematic diagram of a typical CMP process.
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approach (Tang et al., 2022) integrating RF (Breiman, 2001), light
gradient boosting machine (LightGBM) (Ke et al., 2017), and back-
propagation neural network (BPNN) (Rumelhart et al., 1986) was
executed to build the MRR prediction model. In the prediction
phase, the test samples were subjected to identical feature engin-
eering procedures as in the training process, and the trained model
was then harnessed to forecast the MRR.

Feature fusion

Potential correlations might exist among the monitored attributes
during the CMP process, leading to feature redundancy. This
unnecessary repetition interferes with model training by adding
extra information, which takes attention away from key features
and reduces accuracy (Batista et al., 2004). Moreover, this increases
the input dimensionality, substantially escalating computational
demands and prediction latency, consequently restricting the feasi-
bility of real-time prediction.

Pearson correlation coefficient analysis (PCCA) (Malik et al.,
2021) was utilized to analyze the correlations among features.
Features with strong correlation were considered as a singular
group. Principal component analysis (PCA) (Pearson and Karl,
2010) was subsequently implemented to fuse features within the
same group and diminish dimensionality. Ultimately, to assess
the efficacy of feature fusion, a comparison was made between the
accuracy and efficiency of MRR prediction prior to and subsequent
to feature fusion.

Pearson correlation coefficient analysis
PCC quantifies the linear correlation between variables X and Y,
ranging from �1 to 1. Equation (1) details the PCC calculation:

ρX,Y ¼
N
P

XY�P
X
P

Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
P

X2� P
Xð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
P

Y2� P
Yð Þ2

qr (1)

where N represents the sample size, X and Y denote two distinct
features of the sample. While covariance does indicate correlations
between random variables (positive when covariance >0, negative
when covariance <0), its magnitude is heavily influenced by the
variances of X and Y, hence prohibiting the deduction of correl-
ations between variables solely from covariance. Nevertheless, the
PCC provides a precise portrayal of correlations between variables,
independent of dimensional disparities between X and Y.

Principal component analysis
The core principle of PCApertains to the transformation of original
multi-dimensional features into orthogonal principal components.
These components primarily hold the valuable information from
the original features, while lessening repetition, therefore simplify-
ing the complexity of the original feature space. Given a dataset X
comprising n samples withm features each, shown by equation (2),
Xm(n) represents them-th eigenvalue of the n-th sample. The PCA
process can be outlined as follows:

Xn∗m ¼

x1 1ð Þ x2 1ð Þ ⋯ xm 1ð Þ
x1 2ð Þ x2 2ð Þ ⋯ xm 2ð Þ
⋮ ⋮ ⋱ ⋮

x1 nð Þ x2 nð Þ ⋯ xm nð Þ

2
6664

3
7775 (2)

(1) Calculating the covariance matrix P of normalized X, which
can be employed to describe the correlations amongm variables in
the dataset, according to equation (3), and getting the eigenvalue λ
and eigenvector E of P in line with equation (4), D represents the
diagonal matrix.

P¼ cov Xð Þ¼ 1
m�1

XTX (3)

P¼ EDET (4)

Figure 2. Schematic diagram of algorithm framework.
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(2) The cumulative contribution of the initial k principal com-
ponents, symbolized as ak, is calculated as equation (5). When ak
surpasses the pre-established cumulative contribution threshold T,
the k principal components become viable replacements for the
original m features. In other words, the PCA process contracts the
feature dimensionality from m to k.

ak ¼ λkPm
i¼1

λi

(5)

Prediction model

RF, LightGBM, and BPNN models were integrated to construct the
MRR prediction model. In terms of model architectures, RF and
LightGBM can be conceptualized as tree-based statistical models,
whereas BPNN is a neural networkmodel. Owing to the discrepancies
in their model structures, they are capable of extracting distinct
information from the same set of samples (Pearson and Karl, 2010).

Random forest
RF, a bagging-based regression prediction model, trains each deci-
sion tree on independently sampled subsets, as depicted in Figure 3,
subsequently aggregating the outputs of all trees to procure the final
model output.

In practical applications, the accuracy of individual decision
trees within an RF can vary. Relying on simple averaging may lead
to a drop in the overall accuracy of the RF model due to the
influence of lower-accuracy decision trees. Consequently, a
weighted ensemble method was utilized during RF training,
wherein the significance of each decision tree was determined based
on its MSE. The outputs of the decision trees were subsequently
weighted to compute the final output of the RF model, as depicted
in equation (6).

f xð Þ¼
Xn
i¼1

αi∗Ti xð Þ (6)

where αi and Ti represents the significance and predicted value of
the i-th decision tree.

LightGBM
LightGBM is an enhanced algorithm based on gradient boosting
decision trees (GBDT) (Friedman, 2001), boasting superior com-
putational efficiency and lower memory demands, thus making it

Figure 3. Schematic diagram of random forest.

Figure 4. Schematic diagram of LightGBM.

Figure 5. Schematic diagram of BPNN.

4 Zhilong Song et al.

https://doi.org/10.1017/S0890060424000167 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000167


ideal for high-performance prediction applications. Much like RF,
GBDT also constitutes a tree-based statistical model, but its trees
predict the residual or difference between the estimated and actual
values from all preceding trees. Figure 4 depicts the LightGBM
training process.

For a sample x, the prediction process can be described by
equation (7):

f xð Þ¼ f 0 xð Þþ
XT
t¼1

XJ

j¼1

ctjI x∈Rtj
� �

(7)

where T denotes the number of CART decision trees (Zounemat-
Kermani et al., 2020), J signifies the number of leaf node regions in
each tree, and ctj stands for the predicted value of the j-th leaf node
region on the t-th CART tree. When x falls within the set Rtj, I
equals to 1; otherwise, it equals to 0.

BP neural network
The BPNN (Ruan, 2021) is a foundational deep learning model. Its
robust nonlinear function approximation ability can theoretically
fit any complex mathematical function. Figure 5 illustrates a three-
layer BPNN architecture consisting of input, hidden, and output
layers. The neurons in the input layer correspond to independent
variables, such as the rotation speed of the polishing pad or tem-
perature. Meanwhile, the neurons in the output layer represent
dependent variables, for instance, the MRR. The neuron count in
the hidden layer, which determines the model complexity, is user-
defined. Typically, this range is approximately estimated using
empirical equation (8) (Yu et al., 2022), which is based on practical
observations and experiences in the field of neural network

Figure 6. Schematic diagram of stacking ensemble learning.

Table 1. Experimental environment

Software/package Version Description

Pycharm 2020.2.3_x64 IDE for Python

Python 3.6.6 Programming language

Sklearn 0.24.2 Machine learning lib

Numpy 1.19.5 Numerical computing lib

Pandas 1.1.5 Data manipulation lib

Matplotlib 3.3.4 Data visualization lib

Table 2. Process variables during the CMP process

Number Signal Description

x1 MACHINE_ID Machine ID

x2 MACHINE_DATA Wafer ring location ID

x3 TIMESTAMP Time

x4 WAFER_ID Wafer ID

x5 STAGE Stage ID

x6 CHAMBER Chamber ID

x7 USAGE_OF_BACKING_FILM The polish-pad backing
film usage

x8 USAGE_OF_DRESSER The dresser usage

x9 USAGE_OF_POLISHING_TABLE The polishing table usage

x10 USAGE_OF_DRESSER_TABLE The dresser table usage

x11 PRESSURIZED_CHAMBER_PRESSURE The pressure of chamber

x12 MAIN_OUTER_AIR_BAG_PRESSURE The pressure ofmain outer
air bag

x13 CENTER_AIR_BAG_PRESSURE The pressure of center air
bag

x14 RETAINER_RING_PRESSURE The pressure of retainer
ring

x15 RIPPLE_AIR_BAG_PRESSURE The pressure of ripple
airbag

x16 EDGE_AIR_BAG_PRESSURE The pressure of edge air
bag

x17 USAGE_OF_MEMBRANE The polishing membrane
usage

x18 USAGE_OF_PRESSURIZED_SHEET The wafer carrier sheet
usage

x19 SLURRY_FLOW_LINE_A Flow rate of slurry type A

x20 SLURRY_FLOW_LINE_B Flow rate of slurry type B

x21 SLURRY_FLOW_LINE_C Flow rate of slurry type C

x22 WAFER_ROTATION Wafer rotating rate

x23 STAGE_ROTATION Stage rotating rate

x24 HEAD_ROTATION Head rotating rate

x25 DRESSING_WATER_STATUS The dressing water status

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5
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training. Where h, r, and e denote the number of neurons in the
input layer, hidden layer, and output layer, respectively, and 5 is a
constant between 2 and 10.

h¼ ffiffiffiffiffiffiffiffiffi
rþ e

p þ s (8)

Stacking ensemble learning
Since the models fused here have distinct architectures,
stacking ensemble learning was selected to take advantage of
their complementary strengths, thereby improving prediction

accuracy, robustness, and generalizability. Figure 6 illustrates
the stacking procedure. The secondary model plays a key role in
stacking, as it determines the optimal way to integrate and
assign weights to the predictions of each base model based on
their performance.

Prediction evaluation indicators

Mean square error (MSE) (Köksoy, 2006) and correlation coeffi-
cient (R2) (Zhou et al., 2022) were utilized as evaluation metrics for
the accuracy ofMRR predictionmodel. As depicted in equation (9),
MSE quantifies the discrepancy between the actual and predicted
values ofMRR. A smaller MSE value implies higher accuracy. R2, as
shown in equation (10), represents the correlation between the
actual and predicted values of the MRR on the test dataset. A larger
R2 value signifies greater accuracy.

MSE¼ 1
N

XN
i¼1

MRRpi�MRRti
� �2

(9)

R2 ¼ 1�
PN
i¼1

MRRpi�MRRti
� �2

PN
i¼1

1
N

PN
i¼1

MRRpi
� ��MRRti

� �2 (10)

where MRRpi and MRRti represent the predicted and actual values
of MRR for the test samples, respectively, and N signifies the total
number of test samples.

(a) (b)

0

Figure 7. MRR distribution of origin data and denoised data.

Table 3. Number of training and test set samples before and after denoise

Datasets Origin Denoised

Train Dataset 1981 1777

Test Dataset 424 391

Table 4. Result of dataset group

Dataset
Group ID

Process
Stage

Chamber
number MRR

Train
samples

Test
samples

I A 1,2,3 140 ~ 160 164 34

II A 4,5,6 50 ~ 90 798 185

III B 4,5,6 50 ~ 100 815 172

(a) Group I (b) Group II (c) Group III

Figure 8. MRR distribution of each dataset group samples.
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(a) Group I (b) Group II (c) Group III

Figure 9. Correlation between time domain features and MRR.

(a) Group I (b) Group II (c) Group III

Figure 10. Correlation between usage domain features and MRR.

(a) Group I (b) Group II (c) Group III

Figure 11. Correlation between pressure domain features and MRR.
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(a)

(b)

Figure 12. PCCA heatmap of (a) slurry flow rate, (b) speed, and (c) pressure.
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Case study

Data analysis and preprocess

Dataset introduction
To validate the proposedMRR predictionmodel, experiments were
conducted using the PHM Society’s 2016 open dataset for CMP
MRR prediction on silicon wafers (Zhang et al., 2021). The dataset
was divided into a training set (1981 samples) and a test set
(424 samples). Each sample includes CMP processing signals and
MRRmeasurements for a wafer at a given time point. Table l shows
the main experimental environment and the corresponding soft-
ware versions. Table 2 briefly outlines each signal variable.

Data denoise
In the wafer polishing experiments, each process variable was
obtained from sensormeasurements, which could potentially prod-
uce outlier values. Incorporating such anomalous samples into
model training might undermine accuracy due to skewed data
distributional (Sun et al., 2022). As depicted in Figure 7(a), the
MRR of certain samples was significantly higher than that for
others, indicating the presence of outliers. Figure 7(b) displays
the MRR distribution following the exclusion of these abnormal
samples.

In addition to outliers, samples with missing values, potentially
due to sensor failures, cannot serve as valid training samples.

Table 3 presents a comparison of the total number of training
and test set samples before and after noise removal.

Data split
As depicted in Figure 7, the MRR significantly ranges from 50 nm/
min to 160 nm/min in the dataset. This large variability in MRR
values can typically be attributed to changes in processing stages or
chambers, thus complicating the model learning process. There-
fore, variables x5 and x6 were employed for data stratification to
ensure minimal variation in MRR within each group. Prediction
models were individually trained for each group to alleviate the
learning complexity of the model. Table 4 illustrates the results of
the data grouping. During MRR prediction, the appropriate model
can be selected based on the source of process signals. Figure 8
presents the MRR distribution for each group, demonstrating a
stable range.

Feature engineering

Feature extract
The aim of feature extraction is to generate features from the
continuous process signal that can capture the time-dependent
characteristics of the MRR. Thus, for signals such as pressure
(X11 ~ X16), flow rate (X19 ~ X21) and speed (X22 ~ X25),
elementary statistical features can be initially extracted. These

(c)

Figure 12. Continued

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9
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include Max, Mean, Median, root mean square (RMS), PEAK-TO-
Peak (PP) and standard deviation (STD)—6 fundamental features
in the time domain. For instance, each sample’s MRR value repre-
sents the average MRR over a period of processing time, during
which multiple samplings will provide N groups of signal features.
Take feature X11 as an example, its Max feature is the maximum
value of the N groups of X11 features, and so forth. Subsequently,
the temporal length of non-zero pressure values, indicative of
normal polishing periods, can be extracted as Effective Polishing
Time. Finally, given the time-series nature of the dataset, temporal
neighborhood features can be employed to characterize the variation
in MRR with processing time across adjacent intervals. Similarly,
consumable usage neighborhood features illustrate the change in
MRR with varying consumable usage. Pressure neighborhood fea-
tures depict the fluctuation in MRR with altering pressure. For
instance, during the process of extracting usage-based neighborhood
features, the average consumables usage feature for each wafer is
initially calculated during the manufacturing process. Subsequently,
wafer process signals with similar usage are grouped together using
the KNN clustering algorithm. Lastly, the MRR results of the wafers
obtained through KNN clustering are added to the current wafer’s
features as usage-based neighborhood features. As illustrated in
Figures 9, 10, and 11, time, consumable usage, and pressure neigh-
borhood features are positively correlated with MRR, respectively.

Table 6. Example of PCA analysis result

Principal Component G1 (PCV) CCR/% G2 (PCV) CCR/% G3 (PCV) CCR/% G4 (PCV) CCR/% G5 (PCV) CCR/%

λ1 8.96 74.85 3.21 78.38 2.61 72.62 0.95 98.72 3.3 99.99

λ2 2.53 92.97 3.95 88.53 2.80 93.36 0.46 100 3.29 100

λ3 4.47 95.74 3.58 94.13 2.41 95.93 — — — —

λ4 12.46 96.74 4.60 97.22 2.42 97.72 — — — —

λ5 13.06 97.47 5.62 98.55 2.62 98.68 — — — —

Figure 13. Groupt first 5 principal component values.

Table 5. High correlation feature grouping results

Feature
Group ID Features

G1 PRESSURIZED_CHAMBER_PRESSURE(mean, median, rms, std,
max, pp)

MAIN_OUTER_AIR_BAG_PRESSURE(mean, median, rms, std,
max, pp)

CENTER_AIR_BAG_PRESSURE(mean, median, rms, std, max, pp)
RIPPLE_AIR_BAG_PRESSURE(mean, median, rms, std, max, pp)
RETAINER_RING_PRESSURE(mean, median, rms, std, max, pp)
EDGE_AIR_BAG_PRESSURE(mean, median, rms, std, max, pp)

G2 SLURRY_FLOW_LINE_A(max, median, pp, std, rms, mean)
SLURRY_FLOW_LINE _C(median, std, rms, mean)
SLURRY_FLOW_LINE_B(median, rms, mean)

G3 WAFER_ROTATION(max, rms, pp, std, mean)
STAGE_ROTATION(max, rms, pp, std, mean)

G4 HEAD_ROTATION(max, rms, pp, std, mean)
SLURRY_FLOW_LINE_B(max, pp)

G5 SLURRY_FLOW_LINE_C(max, pp)

Ungrouped
features

SLURRY_FLOW_LINE_B(std)
WAFER_ROTATION(median)

STAGE_ROTATION(median)
HEAD_ROTATION(median)
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Feature fusion
Following the mentioned feature extraction procedure above, the
dimensionality of the samples increased from 26 to 112. To avoid
feature redundancy and the curse of dimensionality, PCCA was
applied to the extracted features of slurry flow rate, rotational speed,
and pressure. As depicted in Figure 12, the correlation thresholdwas
set at 0.8, suggesting that features with correlations exceeding 0.8
could be consolidated into a single feature group. Taking the features
rms_fea_SLURRY_FLOW_LINE_A and mean_fea_SLURRY_
FLOW_LINE_A in Figure 12(a) as an example, they respectively
represent the RMS and Mean features of the SLURRY_
FLOW_LINE_A signal. Their PCCA value is 0.96, which exceeds
the threshold of 0.8. This suggests that they can be grouped into a
feature group.

Table 5 presents the results of feature grouping achieved
through PCCA. Notably, Slurry B and C flow rates, which represent
the flow rates of the conditioning disk and polishing pad, respect-
ively, show weak correlations with other temporal features. There-
fore, their Max and PP values form a distinct feature group.
Furthermore, the STD of SLURRY_FLOW_LINE_B and the
Median of each rotation feature display weak correlations with
other features overall, and therefore, they were not included in
any group.

PCA was employed to extract the principal components within
groups G1 to G5. The Cumulative Contribution Rate(CCR) thresh-
old was set at 80%. As exemplified in Table 6 with the first sample,
the CCRs of the initial 2, 2, 2, 1, and 1 principal components of
groups G1 to G5 reached the predefined CCR threshold,

Figure 15. Visualization of the first five principal component values of consumable usage features.

Figure 14. The final selected principal components.
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respectively. The term “PCV” denotes the value of each principal
component. Figure 13 shows the first 5 PCVs of G1, λ1 to λ5, for
each training sample. In summary, the results of principal compo-
nent selection for G1 to G5 for each sample are depicted in
Figure 14.

Employing a similar methodology, PCA was performed on the
Consumable Usage Features (X7, X8, X9, X10, X17, X18). As
illustrated in Figure 15, the first 5 PCVs are obtained for each
training sample. As exemplified in Table 7 with the first sample,
the CCR of the first two principal components exceeded the CCR
threshold. Consequently, the principal component features derived
from the Consumable Usage Features were reduced to a two-
dimensional representation.

Ultimately, upon conducting feature extraction and dimension-
ality reduction, 18 features are acquired to serve as inputs for the
prediction model, as outlined in Table 8.

Model training and optimization

Initially, preliminary models were trained to validate the effect-
iveness of feature fusion. Following this, the Bayesian hyperpara-
meter optimization algorithm (Sicard et al., 2022) was employed
to refine the accuracy of the preliminary models. Ultimately, by
stacking these preliminary models, the MRR prediction model
was constructed, thus further enhancing the prediction accuracy
of MRR.

Preliminary model prediction
On each of the three datasets partitioned in Table 3, the RF,
LightGBM, and BPNN models are individually trained for MRR
prediction. The accuracy of each model was denoted by the mean
value of prediction precision across the three test sets. As demon-
strated in Figure 16, the fused features presented lower input
dimensions, at 19 compared to the original 112, while maintaining
nearly the same prediction accuracy as the original features. This
proves the validity of feature fusion. Low-dimensional features will

Figure 16. Indicator comparison between origin and fusion feature.

Table 7. Example of the first five principal component values of consumable
usage features

Principal component PCV of consumable usage features CCR/%

λ1 12.08 53.52

λ2 9.97 81.20

λ3 4.10 92.60

λ4 3.94 96.74

λ5 3.84 97.47

Table 8. Features after features extraction and fusion

Types of features Feature dimension

Effective process time 1

Neighboring feature 3

Temporal feature 8

Ungrouped temporal feature 4

Consumable usage features 2
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bring lower computational effort, thus achieving a faster inference
speed without loss of accuracy.

Hyperparameter optimization
The precision upper limit for the stacking ensemble learning model
largely depends on the accuracy of the preliminary models. Hence,
optimization of these preliminary models is crucial. Traditional
manual optimization methods can be time-consuming, labor-
intensive, and inefficient. Conversely, the Bayesian parameter opti-
mization algorithm can efficiently utilize the information from
prior function evaluations based on the Bayesian theorem, selecting
the next promising sampling point as per the objective function’s
posterior distribution. This algorithm is highly suitable for the auto-
mated selection of model parameters. As displayed in Table 9, the
parameters for each preliminary model were finalized following
Bayesian parameter optimization, Value_1, Value_2 and Value_3

represent the model hyperparameter values corresponding to
Group_I, Group_II and Group_III. For the model BPNN, a three-
layers neural network is selected, that is, there is only onehidden layer,
and the number of its neurons is shown as ‘hidden_layer_sizes’.
Additionally, BPNN uses ReLU as the activation function and Adam
as the optimizer, thereby achieving adaptive learning rate adjustment,
and the initial learning rate is shown as ‘learning_rate_init’. Similarly,
the accuracy of each preliminary model was denoted by the mean
values of the evaluation metrics across the three test sets. As depicted
in Figure 17, the prediction accuracy of each model significantly
improved post-Bayesian parameter optimization.

Stacking model prediction
The stacking ensemble learning procedure designed is represented in
Figure 18. Initially, the original fused features were input into each
preliminary model to generate the prediction results. Subsequently,

Figure 17. Indicator Comparison between baseline and improved model.

Table 9. Model hyperparameter optimization results

Model Hyperparameters Range Value_1 Value_2 Value_3 Hyperparameter description

RF n_estimators 50–500 105 405 280 The number of decision trees

max_depth 50–100 23 73 69 The max depth of each decision tree

LightGBM n_estimators 50–500 107 166 169 The number of decision trees

max_depth 50–100 58 50 37 The max depth of each decision tree

learning_rate 0.001–0.05 0.03 0.04 0.03 The rate of learning in each iteration

min_child_weight 0.001–1 0.86 0.48 0.01 The min sample weight of a child node.

BPNN learning_rate_init 0.001–0.05 0.03 0.03 0.02 The rate of learning in each iteration

hidden_layer_sizes 6–14 6 7 9 The number of nodes in hidden layer

wac 0–0.0001 0.005 0.002 0.001 The weight attenuation coefficient of Adam
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these prediction outcomes from each preliminarymodel were used as
new features. These, along with the original fused features, were input
into the secondary GBDT model. Through the GBDT’s forward
process, the final MRR prediction value was produced.

Figure 19 depicts a comparison between the MRR predicted
values and the actual ones from the trained Stacking MRR

prediction model over the three test sets, yielding an average
MSE of 7.72. As demonstrated in Figure 20, the correlation
between the model output and the actual values attained an R2

value of 95.82%. Compared with each preliminary model, the
evaluation metrics show further improvement, as depicted in
Figure 21.

(a)

(b)

(c)

Figure 19. Predicted results on each test dataset group.

Figure 18. Training process of MRR prediction stacking model.

14 Zhilong Song et al.

https://doi.org/10.1017/S0890060424000167 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000167


Discussion

As MRR prediction models of semiconductor wafer polishing
process are concerned, prediction accuracy, real-time perform-
ance, and broad applicability of the application methodology are
all critical. In pursuit of high prediction accuracy, this paper
attempts to employ stacking models with significant structural
differences, hoping that the established model can focus on data
characteristics from different aspects. As depicted in Table 10, it
shows the evaluation indicators of different methods on the
PHM2016 dataset. Compared with simply stacking multiple
tree-based models of similar structure, such as CART-Stacking
and ELM-Stacking, which have MSEs of 22.88 and 21.53,

respectively, the proposed method has achieved MSE of 7.72.
In comparison with the Res-CNN-based model, although the
overall prediction accuracy of the stacking model is slightly
lower, it has also demonstrated a certain advantage in the third
group of test data.

The establishment of predictive models not only focuses on
accuracy, but also emphasizes the real-time performance of predic-
tion, which helps researchers grasp the processing status in real-
time, thereby making decisions. The developed stacking model
integrates tree models with efficient calculating power and a three-
layer neural networkmodel with few parameters and powerful non-
linear fitting ability. Compared with models based on full CNN

Figure 21. Comparison among stacking model and each preliminary models.

Figure 20. Correlation between prediction results and ground truth.
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structure, it achieves a balance between precision and speed. Fur-
thermore, the broad applicability determines whether the method
can be conveniently and effectively applied to other scenarios and is
key to industrialization. As described above, the application of the
Res-CNN-based model is, to a certain extent, limited by the dimen-
sions of the input features. The developed stacking model can
accept inputs of any dimension and can be more conveniently
migrated to other scenarios.

Despite that, there is still room for improvement in terms of
speed and accuracy for the developed MRR prediction model.
Hence, as machine learning techniques evolve, more efficient and
accurate model structures will emerge, such as the recently popular
Transformer series models (Vaswani et al., 2017; Devlin et al., 2019;
Dosovitskiy et al., 2020). Exploring how to apply these emerging
models with novel structural forms in model fusion to push the
boundaries of MRR prediction accuracy may be a worthwhile
direction for future research.

Conclusion

In this paper, a CMP MRR prediction model for semiconductor
wafers that integrates multiple preliminary models with significant
structural differences is developed, utilizing the stacking ensemble
learning method. The experiments were conducted on the
PHM2016 dataset, which involved the analysis and preprocessing
of raw data, followed by feature extraction and fusion. The resulting
fused features served as input to train both preliminary and stack-
ing models, and their effectiveness was validated using a test set.
The main conclusions from this study are as follows:

(1) A feature extraction and fusion pipeline was created for the
semiconductor wafer CMP process signals, relying on the
PCCA and PCA. This method effectively reduced the
extracted 112-dimensional features to 18 dimensions, with-
out compromising the prediction accuracy of the model. It
demonstrated potential in reducing the computational load
of the model and enhancing the real-time performance of
MRR prediction.

(2) ACMPMRRpredictionmodel for semiconductor wafers was
developed using the PHM2016 dataset. Compared with the
preliminary models, the final prediction model showed fur-
ther improvement in accuracy, reducing the MSE to 7.72 and

raising the R2 value to 95.82%. These results validate the
efficacy of the data-driven method in constructing the MRR
prediction model.

(3) For the first time, an ensemble learning method has been
employed to integrate multiple preliminary models with
significant structural and principle differences into the devel-
opment of a data-driven CMP MRR prediction model for
semiconductor wafers. Compared to existing studies that
incorporate preliminary models with similar structures or
principles, our approach achieved higher prediction accur-
acy. This sets the stage for merging a wider array of efficient
and diverse preliminary models in the future, aiming to push
the boundaries of MRR prediction precision.
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