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Abstract

We prove that if y′′ = f(y, y′, t, α, β, . . .) is a generic Painlevé equation from
among the classes II, IV and V, and if y1, . . . , yn are distinct solutions, then
tr.deg(C(t)(y1, y

′
1, . . . , yn, y

′
n)/C(t)) = 2n. (This was proved by Nishioka for the single

equation PI.) For generic Painlevé III and VI, we have a slightly weaker result:
ω-categoricity (in the sense of model theory) of the solution space, as described below.
The results confirm old beliefs about the Painlevé transcendents.

1. Introduction

In this paper we are concerned with algebraic relations over C(t) between solutions of a
generic Painlevé equation. We should stress that by ‘generic’ we mean generic within one
of the families PI–PVI, so for example the single PI equation is considered as generic in its
class. We direct the reader to our earlier paper [NP11] for a very detailed introduction but
also for a summary of the model theoretic techniques. We conjectured there that for the
generic Painlevé equations from each of the families PI–PVI (see the list below), if y1, . . . , yn
are solutions viewed as meromorphic functions on some disc D ⊂ C and if we work in the
differential field F of meromorphic functions on D (which contains the differential subfield C(t) of
rational functions), then tr.deg(C(t)(y1, y

′
1, . . . , yn, y

′
n)/C(t)) = 2n, that is y1, y

′
1, . . . , yn, y

′
n are

algebraically independent over C(t). So there are ‘no algebraic relations between distinct solutions
(and their derivatives)’. For PI there is a single equation, and the result was proved in this case
by Nishioka [Nis04]. In this paper we prove the conjecture for the families PII, PIV and PV. The
situation for PIII and PVI is more delicate. It may very well be the case that the conjecture is true
there, but all we can prove is the following: given solutions y1, . . . , yk of generic PIII (respectively
PVI) such that tr.deg(C(t)(y1, y

′
1, . . . , yk, y

′
k)/C(t)) = 2k, then for all other solutions y, except

for at most k (respectively 11k), tr.deg(C(t)(y1, y
′
1, . . . , yk, y

′
k, y, y

′)/C(t)) = 2(k + 1). (And it is
well known that for any single solution y, tr.deg(C(t)(y, y′)/C(t)) = 2.)

There are other natural and related questions concerning algebraic relations between solutions
of generic Painlevé equations from different families, some of which can be treated using methods
of this paper, and these are being pursued by the first author. The Painlevé equations are

PI :
d2y

dt2
= 6y2 + t,

PII(α) :
d2y

dt2
= 2y3 + ty + α,
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PIII(α, β, γ, δ) :
d2y

dt2
=

1

y

(
dy

dt

)2

− 1

t

dy

dt
+

1

t
(αy2 + β) + γy3 +

δ

y
,

PIV(α, β) :
d2y

dt2
=

1

2y

(
dy

dt

)2

+
3

2
y3 + 4ty2 + 2(t2 − α)y +

β

y
,

PV(α, β, γ, δ) :
d2y

dt2
=

(
1

2y
+

1

y − 1

)(
dy

dt

)2

− 1

t

dy

dt
+

(y − 1)2

t2
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αy +

β

y

)
+ γ

y

t

+ δ
y(y + 1)

y − 1
,

PVI(α, β, γ, δ) :
d2y

dt2
=

1

2

(
1

y
+

1

y + 1
+

1

y − t

)(
dy

dt

)2

−
(

1

t
+

1

t− 1
+

1

y − t

)
dy

dt

+
y(y − 1)(y − t)
t2(t− 1)2

(
α+ β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)
,

where α, β, γ, δ ∈ C.
In [NP11], we proved a weak version of this algebraic independence conjecture which is valid

for all generic Painlevé equations. Namely, we showed that if y1, . . . , yn are distinct solutions and
if y1, y

′
1, . . . , yn, y

′
n are algebraically dependent over C(t), then already for some 1 6 i < j 6 n,

yi, y
′
i, yj , y

′
j are algebraically dependent over C(t). This corresponds to the model theoretic

notion ‘geometric triviality’ and the proof consisted of combining results by the Japanese school
on ‘irreducibility’ of the Painlevé equations, with nontrivial results in the model theory of
differentially closed fields (such as the trichotomy theorem for strongly minimal sets).

The proofs of the main results in the current paper have three ingredients: (i) the ‘geometric
triviality’ results from [NP11]; (ii) the description/classification (in the literature) of algebraic
solutions of the Painlevé equations in the various families, as the parameters vary, depending also
on the understanding of the relevant Backlund/Okamoto transformations; and (iii) elementary
model theoretic considerations, specifically quantifier elimination for DCF0. So overall by
combining the existing global structural analysis of the Painlevé families (i.e. irreducibility, and
existence of algebraic solutions, as parameters vary) with the model theory of differential fields,
we obtain definitive information about ‘generic’ Painlevé equations.

In § 2 we give precise definitions of the various notions we will be using, concentrating on
the case at hand. In the third section we prove the main conjecture for the Painlevé equations
PII, PIV and PV (Propositions 3.2, 3.4, 3.7), by first in each case describing the classification of
algebraic solutions. In the final section, we deal with PIII and PVI, which are more delicate; we
obtain the weaker statement mentioned above (Propositions 4.2, 4.3).

Many thanks are due to Philip Boalch and Marta Mazzocco for pointing out, and explaining
the significance of, Boalch’s ‘generic icosahedral solution’ to Painlevé VI, which is precisely what
is needed to prove our results for generic Painlevé VI.

2. Preliminaries

Note that apart from PI, which is a single equation, each of the other families is parametrized
by a tuple (α, β, . . .) of complex numbers. We will say that an equation in one of these families
is ‘generic’ if the corresponding tuple of complex numbers is an algebraically independent tuple
of transcendental complex numbers. In fact PIII is essentially a 2-parameter family, and PV a
3-parameter family (see [NP11]).
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The reader is free to view a ‘solution’ to any of the equations above, as a meromorphic
function on some open connected set D ⊆ C. The collection of all meromorphic functions on
D (equipped with d/dt) is a differential field containing C(t) and as such one can discuss
transcendence questions. One the other hand it is natural to think, more generally, of a solution
as an element y of an arbitrary differential field (F, ∂) extending (C(t), d/dt) (which solves the
equation in the obvious sense). This is the point of view of the Japanese school in their study
of irreducibility, for example, and will also be the point of view of the current paper.

In fact it will be important for us to work in the framework of an ambient differentially
closed field U , one of the reasons being that the first order theory DCF0 of differentially
closed fields of characteristic 0 has quantifier elimination: any first order formula φ(x1, . . . , xn) is
equivalent to a quantifier-free formula. The underlying ‘language’ here is that of differential rings
{+,−, ·, 0, 1, ∂}. We will call this language L when there is no chance for ambiguity. See [Mar05]
for more details on the model theory of differential fields, in particular the ω-stability of DCF0.
Section 2 of [NP11] discusses in detail model–theoretic notions and results relevant to the work
in this paper. But in fact the current paper will not require so much model theory, mainly
just the results (rather than background) from [NP11]. For a field L, Lalg denotes its algebraic
closure (in the field-theoretic sense). We will discuss later the model–theoretic notion of algebraic
closure and its meaning in differentially closed fields. But we try to keep this paper relatively
self-contained.

We will now give the relevant notions, in the special case of equations over C(t) of the
form y′′ = f(y, y′) with f a rational function (where eventually this will be one of the Painlevé
equations). We take (U , ∂) to be a ‘saturated’ (or universal, in the sense of Kolchin) differentially
closed field of cardinality the continuum, and all differential fields we consider will be sub
differential fields of U . Without loss of generality the field of constants of U is C. We take
t ∈ U with ∂(t) = 1. Let F0 be a finitely generated subfield of C. We fix an ODE, y′′ = f(y, y′, t)
where f is a rational function (in y, y′, t) over F0. Let K0 = F0(t) (field of rational functions
over F0), and we also let K denote C(t) (field of rational functions over C). Let X be the set of
solutions of the equation y′′ = f(y, y′, t) in U .

Definition 2.1. Let L be a differential field containing K0 (e.g. L = K). We call a solution
y ∈X generic over L if tr.deg(L(y, y′)/L) = 2, and call solutions y1, . . . , yn ∈X mutually generic
if tr.deg(L(y1, y

′
1, . . . , yn, y

′
n)/L) = 2n.

Remark 2.2. If L is countable then by saturation of U there will in fact exist a continuum of
mutually generic solutions of X over L.

Definition 2.3. The set of solutions X (or the equation) is said to be strongly minimal if for
any differential field L containing K0, and y ∈ X, either y ∈ Lalg, or y is generic over L.

Explanation and commentary. This is equivalent to any definable subset of X being finite or
cofinite, and the latter is the definition of a strongly minimal definable set X in an arbitrary
structure. For example the set of constants is strongly minimal in U . But under the current
assumptions on X, strong minimality corresponds to the equation y′′ = f(y, y′, t) satisfying
Umemura’s J-condition. See [NP11] for more details. Note that if X is strongly minimal, L > K0,
y1, . . . , yn ∈ X and yi+1 /∈ L(y1, y

′
1, . . . , yi, y

′
i)

alg for i = 1, . . . , n− 1 then y1, . . . , yn are mutually
generic over L.

Remark 2.4. Suppose that X is strongly minimal and y1, . . . , yn ∈ X are mutually generic over
K0. Then they are also mutually generic over K = C(t). In particular if y ∈ X is in Kalg then it
is already in Kalg

0 .
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Explanation. This is because X, being strongly minimal and of order 2, is ‘orthogonal’ to the

constants C, the latter being a strongly minimal set of order 1. See [NP11].

Definition 2.5. Suppose X is strongly minimal. We say that X is geometrically trivial if

whenever y1, . . . , yn ∈ X are pairwise mutually generic over K0 then they are mutually generic

over K0.

Commentary. This is equivalent to saying: for any L > K0 whenever y1, . . . , yn ∈ X are pairwise

mutually generic over L, then they are mutually generic over L.

Definition 2.6. Let L > K0. We say that X is strictly disintegrated over L, if whenever y1, . . . ,

yn ∈ X are distinct, then they are mutually generic over L.

Commentary. Note that strict disintegratedness over L of X implies strong minimality of X. It

also implies that no solution is in Lalg. As in Remark 2.4 we have that X is strictly disintegrated

over K0 = F0(t) if and only if it is strictly disintegrated over K = C(t). Finally note that strict

disintegratedness of X over L implies that any permutation of X extends to an automorphism

of the differential field U which fixes L pointwise.

Now we mention ω-categoricity (which is what we will prove for generic PIII and PVI). The

notion is treated in some detail in [NP11], but here we only consider it in the strongly minimal

context.

Definition 2.7. Suppose X is strongly minimal. We say that X is ω-categorical, if whenever

y1, . . . , yk ∈ X and L is the differential field generated by K0 and y1, . . . , yk, then only finitely

many y ∈ X are in Lalg.

Commentary. As remarked in [NP11] this definition does not depend on the choice of the finitely

generated subfield F0 of C over which f(y, y′, t) is defined. Moreover, as in Remark 2.4, we can

replace K0 by K = C(t). Clearly if (strongly minimal) X is strictly disintegrated over K0, then X

is ω-categorical, and in turn ω-categoricity implies geometric triviality. (See [NP11] for discussion

of the last implication, which is rather specific to DCF0.)

Now let us mention the main results from [NP11] in the light of the above definitions. For

each of the Painlevé equations y′′ = f(y, y′, t, α, β, . . .) we will take F0 to be the subfield of C
generated by the parameters α, β, . . ., so K0 = Q(α, β, . . .)(t).

Fact 2.8. Suppose y′′ = f(y, y′, t, . . .) is a generic Painlevé equation in any of the classes I–VI.

Let X be the solution set. Then X is strongly minimal, there are no algebraic (over K0, so also

over K) solutions, and moreover X is geometrically trivial.

Commentary. Strong minimality was noted in [NP11], as a consequence of the work of the

Japanese school on ‘irreducibility’ (they classified the parameters for which the corresponding

equation has Umemura’s J-property, and the latter is equivalent to strong minimality). Likewise

the parameters for which there exist algebraic (over C(t)) solutions of the corresponding equations

have been classified. References will appear throughout this paper. Geometric triviality was the

main result of [NP11]: see Propositions 3.1, 3.6, 3.9, 3.12, 3.15 and 3.18 in that paper.

We will prove that generic Painlevé equations in class II, IV and V are strictly disintegrated

over K0, and thus over K = C(t). By virtue of Remark 2.4, it will suffice to prove that any two

solutions y1, y2 ∈ X are mutually generic over K0. Likewise to prove that generic PIII and PVI

are ω-categorical it will suffice to prove that for a solution y of X, there are only finitely many

other solutions in K0(y, y′)alg.
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https://doi.org/10.1112/S0010437X13007525 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007525


Let us finish this section with a few comments on the very basic model–theoretic context,
in particular ‘algebraic closure’ in U , as our proofs will be from this point of view. Given a
structure M for a countable language L (where we identify M notationally with its underlying
set or universe), a subset A of (the underlying set of) M and a finite tuple a from M , we say
that ‘a is algebraic over A in M , in the sense of model theory’, if there is a formula φ(x) with
parameters from A such that M |= φ(a), and there are only finitely many other tuples b such that
M |= φ(b). Given no ambiguity about the ambient structure M , by acl(A) we mean the set of all
tuples which are algebraic over A in M . If X is a definable subset of Mn, defined over A, then
by aclX(A) we mean acl(A) ∩X, the set of elements of X which are algebraic over A. It should
be mentioned that sometimes acl(A) is used to denote the set of elements of the structure M
which are algebraic over A, but there is no real ambiguity as a finite tuple is algebraic over A if
and only if each of its coordinates is algebraic over A. We also have the notion dcl(A), definable
closure of A in M , which is as above except a should be the unique realization of φ in M .

As in the commentary to Definition 2.3, a definable set X (in M) is strongly minimal if
it is infinite and any definable subset is finite or cofinite. Suppose X is strongly minimal and
definable over a finite set A. Assume some degree of ‘saturation’ of M , as well as stability of
Th(M). Then acl(−) has the following exchange property: if b, c ∈X, b /∈ acl(A), and c ∈ acl(A, b)
then b ∈ acl(A, c). Geometric triviality of X amounts to: whenever b1, . . . , bn ∈ X\acl(A), and
bi /∈ acl(A, bj) whenever i 6= j, then for each i = 1, . . . , n, bi /∈ acl(A, b1, . . . , bi−1, bi+1, . . . , bn).
And ω-categoricity of X amounts to: for any finite subset B of X, aclX(A ∪B) is finite.

Now let us consider our differential closed field U . We have the following fact.

Fact 2.9. Let A be a subset of U . Then:

(i) dcl(A) is the differential subfield of U generated by A;

(ii) acl(A) is dcl(A)alg, the field-theoretic algebraic closure of dcl(A) (which will also be a
differential subfield of U).

Reverting to the case where X is the solution set of y′′ = f(y, y′, t) with f rational over F0

and K0 = F0(t), we have the following fact.

Fact 2.10. Let y1, . . . , yn, y ∈ X. Then y is generic in X over the (differential) field
K0(y1, y

′
1, . . . , yn, y

′
n) if and only if y /∈ acl(K0, y1, . . . , yn) in the model–theoretic sense.

A trivial model–theoretic fact we use is expressibility of acl: namely in an arbitrary structure
M for language L, if c ∈ acl(A) then there is an L-formula φ(x, y), and tuple a from A, such
that M |= φ(c, a), and whenever c1, a1 are from M such that M |= φ(c1, a1) then c1 ∈ acl(a1).
Our main argument will combine this with the following equally basic fact about DCF0.

Fact 2.11. Let φ(x1, x2, . . . , xn, y) be a formula in the language of differential fields. Suppose
α1, α2, . . . , αn are algebraically independent complex numbers such that U |= φ(α1, α2, . . . , αn, t).
Then for all but finitely many c ∈ C, we have U |= φ(c, α2, . . . , αn, t).

Commentary. This simply follows from quantifier elimination in DCF0: we may assume φ(x1, x2,
. . . , xn, y) is a quantifier-free formula in our language of differential rings. As the αi are constants,
∂(t) = 1, and α1, α2, . . . , αn, t are algebraically independent and transcendental in the underlying
field of U , all φ can say is that the ∂(xi) = 0, ∂(t) = 1, and Pj(x1, . . . , xn, y) 6= 0 for finitely
many polynomials Pj over Z. Hence we obtain the result.

Of course this also ‘follows’ from strong minimality of the constants together with the
‘independence’ hypotheses, but our point here is just that very elementary facts are behind
our proofs.
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3. Generic Painlevé equations PII, PIV and PV

In this section we prove that the solution set of each of the generic Painlevé equations PII, PIV

and PV is strictly disintegrated over C(t): if y1, . . . , yn are distinct solutions, then y1, y
′
1, . . . , yn, y

′
n

are algebraically independent over C(t).
For each of the families we will first describe the results on the classification of algebraic

solutions and then make use of those results to prove strict disintegratedness. There is essentially
just one common argument;using the information that, in each of the families, there is a Zariski-
dense subset of the parameter space for which the corresponding equation has a unique algebraic
(over C(t)) solution, together with Fact 2.11. We will go through the details in the case of PII,
giving sketches in the remaining cases.

3.1 The family PII

For α ∈ C, PII(α) is given by the equation

∂2y = 2y3 + ty + α

or by the equivalent Hamiltonian system

SII(α)


∂y = x− y2 − t

2

∂x = 2xy + α+
1

2
.

It is not difficult to see that (y, x) = (0, t/2) is a rational solution of SII(0). The work of Murata
in [Mur85] shows that this is the only algebraic solution. However, we also have ‘Backlund
transformations’ that send solutions of SII(α) to that of SII(−1− α), SII(α− 1) and SII(α+ 1).
From [Mur85, UW97] we have the following fact.

Fact 3.1. For α 6∈ 1
2 + Z, PII(α) has an algebraic over C(t) solution if and only if α ∈ Z.

Furthermore, this solution is unique.

We can now prove our main result.

Proposition 3.2. Let α ∈ C be generic (i.e. transcendental). Then the solution set X(α) of
PII(α) is strictly disintegrated over K = C(t).

Proof. By Fact 2.8 and Remark 2.4 it suffices to prove that any two elements of X(α) are
mutually generic over K0 = Q(α, t). Let y ∈ X(α) (so generic over K0 by Fact 2.8). We want
to show that aclX(α)(K0, y) = {y}. For a contradiction suppose there is z ∈ aclX(α)(K0, y), with
z 6= y. Let the formula φ(α, t, u, v) witness this, i.e. U |= φ(α, t, y, z) and for any α1, y1, z1 such
that U |= φ(α1, t, y1, z1) we have that z1 ∈ acl(Q(α1, t, y1)). Now as (by Fact 2.8) all elements of
X(α) are generic over K0, so by quantifier elimination they all satisfy the same formulas as y
over K0.

Hence: U |= σ(α, t) where σ(α, t) is

∀u(u ∈ X(α)) → ∃v(u 6= v ∧ v ∈ X(α) ∧ φ(α, t, u, v)).

By Fact 2.11, U |= σ(α1, t) for all but finitely many α1 ∈ C. So for some n ∈ Z, σ(n, t) is true
in U ; that is

∀u(u ∈ X(n)) → ∃v(u 6= v ∧ v ∈ X(n) ∧ φ(n, t, u, v)).

However, choosing u to be the unique algebraic (over C(t)) element of X(n) (from Fact 3.1), we
obtain another distinct algebraic (over C(t)) element of X(n), which is a contradiction. 2
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3.2 The family PIV

For α, β ∈ C, the fourth Painlevé equation is

∂2y =
1

2y
(∂y)2 +

3

2
y3 + 4ty2 + 2(t2 − α)y +

β

y
.

From the work of Murata [Mur85] (see also [GLS02]) we have the following fact.

Fact 3.3. The fourth Painlevé equation, PIV, has algebraic solutions if and only if α, β satisfy
one of the following conditions:

(i) α = n1 and β = −2(1 + 2n2 − n1)2, where n1, n2 ∈ Z;

(ii) α = n1, β = −2
9(6n2 − 3n1 + 1)2, where n1, n2 ∈ Z.

Furthermore the algebraic solutions for these parameters are unique.

Proposition 3.4. The solution set X(α, β) of PIV(α, β), α, β ∈ C algebraically independent, is
strictly disintegrated over C(t).

Proof. Again it suffices to work over K0 = Q(t, α, β). Let y ∈ X(α, β). We want to show that
aclX(α,β)(K0, y) = {y}. Suppose for a contradiction there is z ∈ aclX(α,β)(K, y), with z 6= y. As
before this is witnessed by a formula φ(α, β, t, u, v), and again as all solutions of X(α, β) are
generic over K0, the following sentence σ(t, α, β) is true in U :

∀u(u ∈ X(α, β)) → ∃v(u 6= v ∧ v ∈ X(θ, κ) ∧ φ(α, β, t, u, v)).

By Fact 2.11 (and Fact 3.3(i)) we can first choose n1 ∈ Z, then n2 ∈ Z such that σ(t, n1, n2) is
true in U and X(n1, n2) has a unique algebraic (over C(t)) point. As in the PII case we get a
contradiction. 2

3.3 The family PV

The fifth Painlevé equation PV(α, β, γ, δ) is given by

∂2y =

(
1

2y
+

1

y − 1

)
(∂y)2 − 1

t
∂y +

(y − 1)2

t2

(
αy +

β

y

)
+ γ

y

t
+ δ

y(y + 1)

y − 1
,

where α, β, γ, δ ∈ C.
For our purposes it is enough to restrict to the case when δ 6= 0, in which case all algebraic

(over C(t)) solutions are rational (see [KLM94, GLS02]). We let λ0 = (−2δ)−1/2, fixing −π <
arg(λ0) < π, and with the same references we have the following fact.

Fact 3.5. The fifth Painlevé equation, PV, with δ 6= 0 has an algebraic solution if and only if
for some branch of λ0, one of the following holds with m,n ∈ Z:

(i) α = 1
2(m+ λ0γ)2 and β = −1

2n
2 where n > 0, m+ n is odd, and α 6= 0 when |m| < n;

(ii) α = 1
2n

2 and β = −1
2(m+ λ0γ)2 where n > 0, m+ n is odd, and β 6= 0 when |m| < n;

(iii) α = 1
2a

2, β = −1
2(a+ n)2 and λ0γ = m, where m+ n is even and a arbitrary;

(iv) α = 1
8(2m+ 1)2, β = −1

8(2n+ 1)2 and λ0γ 6∈ Z.

Remark 3.6. In case (iv) the algebraic solution is unique. This is also true for most of the other
cases (see [KLM94]).

Proposition 3.7. The solution set X(α, β, γ, δ) of PV(α, β, γ, δ), α, β, γ, δ ∈ C algebraically
independent, is strictly disintegrated over C(t).
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Proof. Assuming not, as in the earlier cases we find a sentence σ(t, α, β, γ, δ) expressing that

for any solution u of X(α, β, γ, δ) there is another solution v 6= u which is algebraic over

Q(t, α, β, γ, δ, u). By Fact 2.11 (applied twice), we first find r = 1
8(2m+ 1)2 for some m ∈ Z, and

then s = −1
8(2n+ 1)2 for some n ∈ Z such that U |= σ(t, r, s, γ, δ), and obtain (since γ and δ are

algebraically independent) a contradiction to Fact 3.5(iv) and Remark 3.6. 2

4. Generic PIII and PVI

We do not, currently, have any reason to believe that the results for generic PI, PIV and PV

do not hold for generic PIII and PVI. But our methods, involving the description of algebraic

solutions, as parameters vary, yield a weaker statement: the solution sets of generic PIII and PVI

are ω-categorical, as in Definition 2.7.

4.1 The family PIII

As discussed in [NP11], on the face of it, the family PIII is a 4-parameter family: where PIII(α,

β, γ, δ), α, β, γ, δ ∈ C is given by

y′′ =
1

y
(y′)2 − 1

t
y′ +

1

t
(αy2 + β) + γy3 +

δ

y
.

However Okamoto [Oka87] (see also [Mur95]) shows that for the case γδ 6= 0, it is enough to

rewrite the equation as a 2-parameter family. Indeed it is not difficult to check that for λ, µ ∈ C,

the transformation taking y to λy and t to µt takes PIII(α, β, γ, δ) to PIII(λµα, µλ
−1β, λ2µ2γ,

µ2λ−2δ).

Hence taking µ4 = −16/γδ and λ2 = 4/γµ2 (assuming as above that γδ 6= 0), this

transformation takes PIII(α, β, γ, δ) to PIII(λµα, µλ
−1β, 4,−4), and moreover if α, β, γ, δ are

algebraically independent, so are λµα, µλ−1β. Hence the family PIII(α, β, γ, δ) can be replaced by

the family PIII(α, β, 4,−4) and we are reduced to showing that for α, β algebraically independent

the solution set of PIII(α, β, 4,−4) is ω-categorical. Finally, in the study of algebraic solutions

one also replaces α, β by new parameters v1, v2, with α = −4v2 and β = 4(v1 + 1) and α, β are

algebraically independent if and only if v1, v2 are.

Murata in [Mur95] gives a classification of all the algebraic solutions of PIII(v1, v2).

Fact 4.1. (1) The third Painlevé equation, PIII(v1, v2), has algebraic solutions if and only if

there exists an integer n such that v2 − v1 − 1 = 2n or v2 + v1 + 1 = 2n.

(2) If PIII(v1, v2) has algebraic solutions, then the number of algebraic solutions is two or

four; PIII(v1, v2) has four algebraic solutions if and only if there exist two integers n and m such

that v2 − v1 − 1 = 2n and v2 + v1 + 1 = 2m.

He also shows that all the algebraic solutions are rational and gives an explicit description of

the solutions (see [Mur95, Proposition 3.11]). From this we easily get the following proposition.

Proposition 4.2. Let X be the solution set of PIII(α, β, γ, δ), where α, β, γ, δ ∈ C are

algebraically independent (and transcendental). Then for any y ∈ X, aclX(K, y) is finite, where

K = C(t). Consequently as X is geometrically trivial, X is ω-categorical.

Proof. We only need to work with X(v1, v2), the solution set of PIII(v1, v2), v1, v2 in C
algebraically independent. By Remark 2.4 again, it is enough to prove the result over K0 =

Q(t, v1, v2).
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Let y ∈ X(v1, v2). We claim that aclX(v1,v2)(K0, y) has cardinality at most 2 (including y

itself). If not, as before we have a formula σ(v1, v2, t) expressing that for any solution y ∈
X(v1, v2), there are at least two other solutions in the algebraic closure of K0(y, y′). Then, by

Fact 2.11 U |= σ(v1, c, t) is true for all but finitely many c ∈ C.

So we can find such c with c+v1 +1 ∈ 2Z. By Fact 4.1 and the fact that v1 is transcendental,

X(v1, c) has only two algebraic (over C(t)) solutions. As before, this gives a contradiction. 2

4.2 The family PVI

The sixth Painlevé equation, PVI(α, β, γ, δ), α, β, γ, δ ∈ C, is given by

∂2y =
1

2

(
1

y
+

1

y + 1
+

1

y − t

)
(∂y)2 −

(
1

t
+

1

t− 1
+

1

y − t

)
∂y

+
y(y − 1)(y − t)
t2(t− 1)2

(
α+ β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)
.

As for PIII, our result is the following proposition.

Proposition 4.3. Let X = X(α, β, δ, γ) be the solution set of PVI(α, β, δ, γ), where α, β, δ, γ are

algebraically independent, transcendental complex numbers. Then for any y ∈ X, aclX(K, y) is

finite, where K = C(t). Consequently as X is geometrically trivial, X is ω-categorical.

We will prove the proposition by again making use of part the classification of algebraic

solutions of PVI (see [LT08]). However to state the result we need, we first recall a few facts

about PVI.

In its Hamiltonian form, PVI is given by

SVI(ᾱ)

{
∂y = dH/dx

∂x = −dH/dy

where

H(ᾱ, ρ)=
1

t(t− 1)
(y(y − 1)(y − t)x2 − x{α4(y − 1)(y − t) + α3y(y − t) + (α0 − 1)y(y − 1)

+α2(α2 + α1)(y − t)})

and α0 +α1 + 2α2 +α3 +α4 = 1. The parameters α, β, δ, γ of PVI are related to the ᾱ as follows:

α = 1
2α

2
1, β = −1

2α
2
4, γ = 1

2α
2
3 and δ = 1

2(1− α2
0).

Let us note that any solution y of PVI(α, β, γ, δ) yields a unique solution (y, x) of SVI(ᾱ). The

only possible solutions (y, x) of SVI(ᾱ) not of this form are when y = 0, 1, t and such solutions will

exhibit non strong minimality of SVI(ᾱ) (even though PVI(α, β, γ, δ) may be strongly minimal).

Let us note also that the relation between the parameters ᾱ above and the parameters

(a1, a2, a3, a4) in Watanabe’s Hamiltonian vector field for PVI (beginning of [Wat98, § 3]) is:

α4 = a3 + a4, α3 = a3 − a4, α0 = 1− a1 − a2 and α1 = a1 − a2.

We now describe some ‘Backlund transformations’ for SVI(ᾱ).

Recall that the Backlund transformations map solutions of a given SVI equation to solutions

of the same equation with different values of parameters ᾱ, but clearly may be undefined at

certain solutions. The list of the Backlund transformations we are interested in are given in

Table 1. The five transformations s0, s1, s2, s3, s4 generate a group W which is isomorphic to the

affine Weyl group of typeD4 and which is sometimes referred to as Okamoto’s affineD4 symmetry
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Table 1. Some Backlund transformations for SVI.

α0 α1 α2 α3 α4 y x

s0 −α0 α1 α2 + α0 α3 α4 y x− α0/(y − t)
s1 α0 −α1 α2 + α1 α3 α4 y x
s2 α0 + α2 α1 + α2 −α2 α3 + α2 α4 + α2 y + α2/x x
s3 α0 α1 α2 + α3 −α3 α4 y x− α3/(y − 1)
s4 α0 α1 α2 + α4 α3 −α4 y x− α4/y

group. By definition, the reflecting hyperplanes of Okamoto’s affine D4 action are given by the
affine linear relations αi = n for i = 0, 1, 3, 4 and n ∈ Z, as well as α0 ± α1 ± α3 ± α4 = 2n + 1
for n ∈ Z.

Let M be the union of all these hyperplanes. Then as proven in [Wat98] by Watanabe (see
Theorem 2.1(v)), and discussed in [NP11], if (α0, α1, α3, α4) 6∈ M then the solution set of SVI(ᾱ)
is strongly minimal (equivalently Umemura’s J-condition holds).

Remark 4.4. (i) Let t0 = s0s2(s1s3s4s2)2, t1 = s1s2(s0s3s4s2)2, t3 = s3s2(s0s1s4s2)2, and t4 =
s4s2(s0s1s3s2)2. Then for i = 0, 1, 3, 4, and parameters (α0, α1, α3, α4), ti(αi) = αi − 2, and
ti(αj) = αj . Hence the orbit of (α0, α1, α3, α4) under W includes {(α0 − 2Z, α1 − 2Z, α3 − 2Z,
α4 − 2Z)}.

(ii) If (α0, α1, α3, α4) /∈M then its orbit under W also avoids M.

(iii) If ᾱ = (α0, α1, α3, α4) /∈ M, then each si, i = 0, 1, 2, 3, 4 establishes a bijection between
the solutions of SVI(ᾱ) and SVI(si(ᾱ)).

Proof. (iii) This is because the solution sets of both SVI(ᾱ) and SVI(si(ᾱ)) are strongly minimal,
hence neither has a solution of form (y, x) with y = 0, 1 or t, or x = 0. So si is defined on all
solutions. Using the fact that s2

i is the identity for each i we obtain the desired conclusion. 2

The key result is Boalch’s ‘generic icosahedral solution’: see [Boa06, § 6].

Fact 4.5. The equation SVI(1/2,−1/5, 1/3, 2/5) has exactly 12 algebraic solutions (of course
all in Q(t)alg). Moreover (1/2, 4/5, 1/3, 2/5) /∈M.

By Remark 4.4 we conclude with the following corollary.

Corollary 4.6. Let ᾱ ∈ (1/2− 2Z,−1/5− 2Z, 1/3− 2Z, 2/5− 2Z). Then SVI(ᾱ) has precisely
12 algebraic solutions (again necessarily in Q(t)alg).

This is enough for us to prove our result.

Proof of Proposition 4.3. For algebraically independent transcendental α, β, γ, δ ∈ C, the
solutions of PVI(α, β, γ, δ) are in bijection with those of the SVI(α0, α1, α3, α4) (where the αi are
related to α, β, γ, δ as stated above) via y → (y, x). (Because α0, α1, α3, α4 are also algebraically
independent, so ᾱ /∈M and SVI(ᾱ) is strongly minimal.) Without ambiguity we denote a solution
of a system SVI(−) by y. Now let X(ᾱ) denote the solution set of SVI(ᾱ) (likewise for other
parameters). Let y ∈X(ᾱ). As before (using Remark 2.4), it is enough to work over K0 = Q(ᾱ, t).
We know y (like all elements of X(ᾱ)) is generic over K0.

Claim. The set of tuples aclX(ᾱ)(K0, y) has cardinality at most 12 (including y itself).
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Proof. The same argument as before: if not then we find a true sentence σ(α0, α1, α3, α4, t)
expressing that for any solution y of SVI(ᾱ), there are at least 12 other solutions in the algebraic
closure of Q(ᾱ, t, y, y′) (i.e. in (Q(ᾱ, t, y, y′)alg). Applying Fact 2.11, we find (one by one),
(r0, r1, r3, r4) ∈ {(1/2 − 2Z,−1/5 − 2Z, 1/3 − 2Z, 2/5 − 2Z)} such that U |= σ(r0, r1, r3, r4, t).
But then choosing y to be one of the algebraic solutions of SVI(r0, r1, r3, r4) we obtain at
least 12 other algebraic solutions, contradicting Corollary 4.6. This proves the claim and the
proposition. 2
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