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PARTITION GENERICITY AND PIGEONHOLE BASIS THEOREMS

BENOIT MONIN AND LUDOVIC PATEY

Abstract. There exist two main notions of typicality in computability theory, namely, Cohen genericity
and randomness. In this article, we introduce a new notion of genericity, called partition genericity, which is
at the intersection of these two notions of typicality, and show that many basis theorems apply to partition
genericity. More precisely, we prove that every co-hyperimmune set and every Kurtz random is partition
generic, and that every partition generic set admits weak infinite subsets, for various notions of weakness.
In particular, we answer a question of Kjos-Hanssen and Liu by showing that every Kurtz random admits
an infinite subset which does not compute any set of positive effective Hausdorff dimension. Partition
genericity is a partition regular notion, so these results imply many existing pigeonhole basis theorems.

§1. Introduction. The infinite pigeonhole principle can be considered as the most
basic statement from Ramsey’s theory. The infinite pigeonhole principle for two
colors can be formulated as “for every set A ⊆ �, there is an infinite set H ⊆ A
or H ⊆ A.” From a combinatorial viewpoint, the infinite pigeonhole principle is
trivial. On the other hand, the computational analysis of this principle is very subtle
and received the attention of the computability community for decades, motivated
by the reverse mathematics of Ramsey’s theorem for pairs.

1.1. Pigeonhole basis theorems. The computability-theoretic analysis of a math-
ematical problem consists in understanding, given an instance, how computably
complicated are its solutions. From this perspective, a lower bound is a statement of
the form “There exists an instance such that every solution is computationally
strong,” while an upper bound is of the form “For every instance, there is a
computationally weak solution.” Here, the notions of strength and weaknesses
range over many computability-theoretic properties.

A pigeonhole basis theorem is an upper bound for the pigeonhole principle, that
is, a statement of the form: “For every set A ⊆ �, there is an infinite set H ⊆ A or
H ⊆ A which is computationally weak.” Several pigeonhole basis theorems have
been proven:

1. If B is a non-computable set, then for every set A ⊆ �, there is an infinite set
H ⊆ A or H ⊆ A such that B �≤T H [3].

2. If B is a non-Σ0
1 set, then for every set A ⊆ �, there is an infinite setH ⊆ A or

H ⊆ A such that B is not Σ0
1(H ) [21].
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3. If f is hyperimmune, then for every set A ⊆ �, there is an infinite set H ⊆ A
or H ⊆ A such that f is H-hyperimmune [16].

4. For every set A ⊆ �, there is an infinite set H ⊆ A or H ⊆ A of non-PA
degree [12].

5. For every set A ⊆ �, there is an infinite set H ⊆ A or H ⊆ A of non-random
degree, and which does not compute any set of positive effective Hausdorff
dimension [13].

Asking for an infinite subset of A or of A is important, as there exist sets A such
that every infinite subset is arbitrarily strong. For example, if A is the set of all
initial segments of a set B, then every infinite subset of A computes B. In some cases
however, one can fix the side of the subset. This happens in particular when the set
A is sufficiently typical, where typicality means either randomness or genericity.

1.2. Randomness subset basis theorems. Randomness is a notion of typicality
which was originally defined using measure theory. More recently, Algorithmic
Randomness gave a formal meaning to the notion of random sequence using effective
measure theory and Kolmogorov complexity. This yielded a hierarchy of randomness
notions, among which we should mention (in increasing order) Kurtz random-
ness, Schnorr randomness, Martin-Löf randomness, Schnorr 2-randomness, and
2-randomness.

A randomness subset basis theorem is a statement of the form: “For every
sufficiently random sequence A ⊆ �, there is an infinite subset set H ⊆ A which is
computationally weak.” Here, by “sufficiently random,” we mean that the class of all
such sets A has positive measure. One can then quantify the amount of randomness
needed for such a statement, and obtain a theorem of the form “For every � random
sequence A ⊆ �, there is an infinite subset set H ⊆ A which is computationally
weak,” where “� random” should be replaced by the right notion of randomness,
such as Martin-Löf randomness for example. Subsets of random sequences were
mainly studied as mass problems. For example, the Muchnik degree of the class of
infinite subsets of Martin-Löf random sequences (seen as sets of numbers) is the
Muchnik degree of DNC functions [4, 8]. However, a few randomness subset basis
theorems appeared in the literature:

1. Every 2-random (or even Schnorr 2-random) has an infinite subset which does
not compute a 1-random [9].

2. Every 1-random has an infinite subset which does not compute a 1-random,
or even which does not compute any set with positive effective Hausdorff
dimension [10].

Kjos-Hanssen and Liu [10] asked whether these results could be improved to
weaker notions of randomness, such as Schnorr randomness. In this article, we give
a strong positive answer by showing that these results can be improved to Kurtz
randomness.

1.3. Genericity subset basis theorems. Genericity is a notion of typicality which
can be defined in terms of co-meager sets. The default notion of genericity considered
is Cohen genericity. Later, Jockusch studied effectivizations of Cohen genericity,
yielding again a hierarchy of genericity notions, among which we mention in
increasing order bi-hyperimmunity, weak 1-genericity, and 1-genericity. A genericity
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subset basis theorem is a statement of the form: “For every sufficiently Cohen
generic set A ⊆ �, there is an infinite subset set H ⊆ A which is computationally
weak.” Genericity subset basis theorems were not specifically studied per se. One
can however mention one such result:

1. If B is a non-computable set, then every co-hyperimmune set has an infinite
subset which does not compute B [6].

1.4. Partition genericity. In this article, we define a new notion of genericity,
called partition genericity, and prove many statements of the form “Every partition
generic set A has an infinite computationally weak subset.” We call these statements
partition genericity subset basis theorems. Contrary to Martin-Löf randomness and
Cohen genericity, this notion of partition genericity enjoys a property that one
would expect of a subset basis theorem, that is, partition genericity is closed under
supersets.

Theorem 1.1.

1. If B is a non-computable set, and A is partition generic, then there is an infinite
setH ⊆ A such that B �≤T H .

2. If B is a non-Σ0
1 set, and A is partition generic relative to B, then there is an

infinite set H ⊆ A such that B is not Σ0
1(H ).

3. If f is hyperimmune, and A is partition generic relative to f, then there is an infinite
setH ⊆ A such that f is H-hyperimmune.

4. If A is partition generic, then there is an infinite set H ⊆ A of non-PA degree.
5. If A is partition generic, then there is an infinite set H ⊆ A of non-Martin-Löf

random degree, and furthermore, which does not compute any set of positive
effective Hausdorff dimension.

In particular, every co-hyperimmune set and every Kurtz random is partition
generic. Moreover, we show that partition genericity is almost a partition regular
notion (see Corollary 2.34). It follows that all these partition genericity subset basis
theorems imply all the pigeonhole basis theorems mentioned above.

1.5. Organization of this paper. In Section 2, we introduce the central notion of
partition regularity, and study it both from a combinatorial and a computability-
theoretic viewpoint. We then define the notion of partition genericity. Then, in
Section 3, we prove a first range of applications which hold for unrelativized partition
genericity. The two next sections, Sections 4 and 5, are devoted to the preservation
of hyperimmunity and non-Σ0

1 definitions, respectively. These subset basis theorems
require the definition of alternative notions of genericity. Last, we study lowness for
various notions related to partition genericity in Section 6.

1.6. Notation. We use lower case letters a, b, c for integers, upper case letters for
sets of integers, and rounded letters A,B for classes.

A k-cover of a set X is a k-tuple of setsX0, ... , Xk–1 such thatX0 ∪ ··· ∪ Xk–1 ⊇ X .
We do not require the sets Xi to be pairwise disjoint. Given a set X ⊆ � and some
n ∈ �, we let [X ]n denote the set of all subsets of X of size n. Accordingly, we write
[X ]� for the class of all infinite subsets of X. We write 2=n for the set of all binary
strings of length n, and 2<� =

⋃
n 2=n. We write |�| for the length of the string �.
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A Mathias condition is a pair (�,X ), where � ∈ 2<� is a finite binary string, X is
an infinite set of integers, and minX ≥ |�|. The set X is usually called a reservoir, as
it can informally be seen as a reservoir of elements to add to �. A Mathias condition
(�, Y ) extends (�,X ) if � 	 �, Y ⊆ X , and � \ � ⊆ X . Here, we identify a string �
with the set {n < |�| : �(n) = 1}.

§2. Partition regularity. In this section, we conduct a general study of partition
regularity from a computability-theoretic viewpoint. We introduce several related
concepts, including the central notion of partition genericity, which will be justified
by the constructions of Section 3.

2.1. Partition regularity. The central notion we are going to consider in this article
is the one of partition regularity (see [5]). This concept comes from Ramsey theory
and can be considered as a generalization of the infinite pigeonhole principle.

Definition 2.1. A partition regular class is a collection of sets L ⊆ 2� such that:
1. L is not empty.
2. If X ∈ L and X ⊆ Y , then Y ∈ L.
3. For every k, if Y0 ∪ ··· ∪ Yk ∈ L, then there is i ≤ k such that Yi ∈ L.

Ramsey’s theory is sometimes characterized as the study of which classes are
partition regular. Note that our definition of partition regularity differs from the
standard definition in that we require our classes to be closed under superset. We will
make an essential use of this extra closure requirement all along this article. There
are many well-known examples of partition regular classes in combinatorics:

Example 2.2. The following classes are partition regular.
1. {X ⊆ � : X is infinite} by the infinite pigeonhole principle.
2. {X ⊆ � : n ∈ X} for a fixed n.
3. {X ⊆ � : lim supn→∞

|{1,2,...,n}∩X |
n > 0}.

4. {X ⊆ � :
∑
n∈X

1
n = ∞}.

In the computability-theoretic realm, many pigeonhole basis theorems can be
rephrased as statements about partition regularity.

Example 2.3. The following classes are partition regular.
1. {X ⊆ � : ∃Y ∈ [X ]� Y �≥T C} for any C �≤T ∅ (see [3]).
2. {X ⊆ � : ∃Y ∈ [X ]� Y is not of PA degree} (see [12]).
3. {X ⊆ � : ∃Y ∈ [X ]� Y (n) �≥T C} for any non-Δ0

n+1 set C (see [15]).
4. {X ⊆ � : ∃Y ∈ [X ]� �Y1 = �ck1 } (see [15]).

Dorais [1] was the first to use partition regular classes in the context of reverse
mathematics. More precisely, he worked with a variant of Mathias forcing whose
reservoirs avoid a Σ0

2 free ideal over 2� . A class is a free ideal iff it is the complement
of a partition regular class.

2.2. Non-trivial classes. A partition regular class can be thought of as a notion of
largeness. Indeed, if we interpretX ∈ L as “X is large,” then the axioms of partition
regularity say that if a set is large, then any superset of it is large, and if we split
a large set into two (or finitely many) parts, then at least one of the parts is large.
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There exist however a family of partition regular classes that fail this intuition. We
call them principal classes.

Definition 2.4. A partition regular class L ⊆ 2� is principal if L = {X ∈ 2� :
n ∈ X} for some n. A partition regular classL is non-trivial if it contains only infinite
sets, otherwise it is trivial.

The following proposition shows that once one excludes the principal partition
regular classes, then the remaining partition regular classes satisfy at least one
enjoyable property of largeness, namely, having only infinite elements.

Proposition 2.5. A partition regular classL is non-trivial iff it contains no principal
partition regular subclass.

Proof. It is clear that if L is non-trivial, it does not contain a principal
partition regular subclass. Suppose now L is trivial, that is, L contains a finite set
X = {n1, ... , nk}. Then in particular we have {n1} ∪ ··· ∪ {nk} ⊇ X . It follows that
we must have {ni} ∈ L for some i ≤ k. Then any set X containing ni is in L, that is,
we have {X ∈ 2� : ni ∈ X} ⊆ L. 


Non-trivial partition regular classes admit a simple characterization, which will
be later used to generalize the concept of non-triviality to arbitrary classes.

Proposition 2.6. A partition regular class L is non-trivial iff L is included in the
Σ0

1 class U2 of sets containing at least two distinct elements.

Proof. If L is non-trivial then every member of L is infinite and clearly L ⊆ U2.
If L is trivial then by Proposition 2.5, it contains {n} for some n ∈ � and thus we
do not have L ⊆ U2. 


The following proposition says that any non-trivial partition regular class must
contain many elements, in a measure-theoretic sense. All the partition regular classes
we are going to consider in the applications are Borel, hence measurable. Given two
sets X,Y ⊆ �, we write X ⊆∗ Y to say that X \ Y is finite, and X =∗ Y if X ⊆∗ Y
and Y ⊆∗ X . We say that a class L is closed under finite changes if whenever X ∈ L
and X =∗ Y , then Y ∈ L.

Proposition 2.7. Let L be a non-trivial partition regular class. Then L is closed by
finite changes. Furthermore if L is measurable it has measure 1.

Proof. Let X ∈ L. By definition, any Y ⊇ X also belongs to L. Thus L is
closed under finite addition of elements, that is, if X ∈ L and F is finite, then
X ∪ F ∈ L. Consider now any Y ⊆ X such that |X \ Y | is finite. In particular,
X = Y ∪ {n0, ... , nk} for some elements n0, ... , nk . As L contains only infinite
elements, we must have Y ∈ L. Thus L is closed by finite suppression, that is, if
X ∈ L and F is finite, then X \ F ∈ L. We easily conclude that L is closed under
finite changes.

IfL is measurable, by Kolmogorov 0–1 law,L is either of measure 0 or of measure 1.
Suppose for contradiction that L is of measure 0. As L is measurable, if must be
included in some Borel setA of measure 0. Let O be an oracle such thatA is included
in a Π0

2(O) classes effectively of measure 0, that is, A ⊆
⋂
e Ue for some uniformly

O-computable sequence of Π0
2(O) classes such that �(Ue) < 2–e . Then no element of
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L is O-Martin-Löf random. Let Z be any O-Martin-Löf random set. We also have
that Z is O-Martin-Löf random. Also � ⊆ Z ∪ Z. As � ∈ L we must have Z ∈ L
or Z ∈ L, which is a contradiction. Thus L is not of measure 0 and therefore it is of
measure 1. 


2.3. Closure properties. We now study some good closure properties enjoyed by
the collection of all partition regular classes. A superclass of a partition regular class
is not partition regular in general, even when the superclass is closed under superset.
For example, let A be a bi-infinite set, and let LA = {X ∈ 2� : |A ∩ X | = ∞}. Then
LA is a partition regular class, but L = LA ∪ {X ∈ 2� : X ⊇ A} is not. Indeed, let
x0 = minA and B = A \ {x0}. Then {x0} ∪ B = A ∈ L, but neither {x0}, nor B
belong to L. On the other hand, an arbitrary union of partition regular classes is
partition regular.

Proposition 2.8. Suppose {Li}i∈I is an arbitrary non-empty collection of partition
regular classes. Then

⋃
i∈I Li is a partition regular class.

Proof. It is clear that
⋃
i∈I Li is not empty. LetX ∈

⋃
i∈I Li . LetY ⊇ X . There

is some i ∈ I such that X ∈ Li . As Li is partition regular, Y ∈ Li ⊆
⋃
i∈I Li .

Let X ∈
⋃
i∈I Li . Let Y0 ∪ ··· ∪ Yk ⊇ X . There is some i ∈ I such that X ∈ Li .

As Li is partition regular, Yj ∈ Li ⊆
⋃
i∈I Li for some j ≤ k. 


In particular for every classA containing a partition regular class, there is a largest
partition regular class included in A.

Definition 2.9. Given a class A ⊆ 2� , let L(A) denote the largest partition
regular subclass of A. If A does not contain a partition regular class, let L(A) be
the empty set.

The largest partition regular class included in A admits a simple explicit definition
that we shall use to analyse the definitional complexity of the partition regular classes
we consider.

Proposition 2.10. Let A ⊆ 2� be any class. Then

L(A) = {X ∈ 2� : ∀k ∀X0 ∪ ··· ∪ Xk ⊇ X ∃i ≤ k Xi ∈ A}.

Proof. Note that by definition, L(A) ⊆ A, as if X /∈ A then itself as a 1-cover is
not in A, soX /∈ L(A). Let us show that L(A) contains every partition regular class
included in A. Suppose L ⊆ A is partition regular. Then given X ∈ L, for every k
and every X0 ∪ ··· ∪ Xk ⊇ X we have Xi ∈ L ⊆ A for some i ≤ k. It follows that
X ∈ L(A) and thus that L ⊆ L(A).

AssumeL(A) �= ∅. Let us show thatL(A) is partition regular. SupposeX ∈ L(A).
LetY ⊇ X . Then for every k, every k-cover of Y is also a k-cover of X. AsX ∈ L(A),
one element of the k-cover belongs to A. Thus for every k and every k-cover of Y,
one element of the k-cover belongs to A. It follows that Y ∈ L(A). Let X ∈ L(A)
and let Y0 ∪ ··· ∪ Yk ⊇ X for some k. Let us show there is some i ≤ k such that
Yi ∈ L(A). Suppose for contradiction that this is not the case. In particular for
every i ≤ k there are sets Y i0 , ... , Y

i
ki

⊇ Yi such that ∀j ≤ ki , we have Y ij /∈ A. In
particular the sets {Y ij}i≤k,j≤ki are a finite cover of X such that for every i ≤ k
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and every j ≤ ki we haveY ij /∈ A. This contradicts thatX ∈ L(A). Thus there must
exists i ≤ k such thatYi ∈ L(A). So if L(A) is non-empty, it is partition regular. 


Last, partition regular classes enjoy a very useful property: the intersection of an
infinite decreasing sequence of partition regular classes is again partition regular.
This property will be used to propagate properties of Π0

2 partition regular classes to
arbitrary intersections of Σ0

1 partition large classes.

Proposition 2.11. Suppose {Ln}n∈� is a collection of partition regular classes
with Ln+1 ⊆ Ln. Then

⋂
n∈� Ln is partition regular.

Proof. For every n, � ∈ Ln because Ln is partition regular. It follows that
� ∈

⋂
n∈� Ln. In particular

⋂
n∈� Ln is not empty.

Suppose X ∈
⋂
n∈� Ln. Let Y ⊇ X . For every n, since X ∈ Ln then Y ∈ Ln as

Ln is partition regular. Thus Y ∈
⋂
n∈� Ln.

SupposeX ∈
⋂
n∈� Ln. LetY0 ∪ ··· ∪ Yk ⊇ X . Suppose for contradiction that for

every i ≤ k the setYi is not in
⋂
n∈� Ln. For every i ≤ k, let ni be such thatYi /∈ Lni .

Let n be larger than these numbers. For every i ≤ k, since Lni ⊇ Ln, the setYi is not
in Ln. As X ∈ Ln, it follows that Ln is not partition regular, which contradicts our
hypothesis. Thus for every X ∈

⋂
n∈� Ln and for every Y0 ∪ ··· ∪ Yk ⊇ X , there is

some i ≤ k such that Yi ∈
⋂
n∈� Ln. 


2.4. Π0
2 Partition regular classes. The most basic non-trivial partition regular

class, the class of all infinite sets, is Π0
2. In this section, we study a few specific Π0

2
partition regular classes and show that there is no non-trivial Σ0

2 partition regular
class.

Proposition 2.12. Let U be an upward-closed Σ0
1 class. Then L(U) is Π0

2.

Proof. By Theorem 2.10, the largest partition regular subclass of U is defined
by

L(U) = {X ∈ 2� : ∀k ∀X0 ∪ ··· ∪ Xk ⊇ X ∃i ≤ k Xi ∈ U}.
Since U is upward-closed, then ∀X0 ∪ ··· ∪ Xk ⊇ X ∃i ≤ k Xi ∈ U is equivalent to
∀X0 ∪ ··· ∪ Xk = X ∃i ≤ k Xi ∈ U . Since U is Σ0

1, then by compactness, the previous
formula is equivalent to ∃n∀X0 ∪ ··· ∪ Xk = X ∩ {0, ... , n} ∃i ≤ k Xi ∈ U , which is
a Σ0

1 formula. Hence, L(U) is Π0
2. 


The previous proposition will be very useful for our computational analysis of
partition regularity, as shows the following corollary.

Corollary 2.13. Let U be a Σ0
1 class. The sentence “U contains a partition regular

class” is Π0
2.

Proof. By Theorem 2.10, the class U contains a partition regular class iff
� ∈ L(U), which is a Π0

2 sentence. 

The partition regular class of all infinite sets can be generalized to a whole family

of non-trivial partition regular classes in the following way.

Definition 2.14. For any infinite set X we define LX as the Π0
2(X ) partition

regular class of the sets that intersect X infinitely often.
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In particular,L� is the class of all infinite sets. It is not the only possible kind of Π0
2

partition regular class. There are examples of Π0
2 partition regular classesL such that

LX � L for anyX ∈ [�]� . Consider for instance the class {X ⊆ � :
∑
n∈X

1
n = ∞}.

We finish this section by proving that there the only Σ0
2 partition regular classes are

the trivial ones. By Σ0
2, we mean a class which is Σ0

2 in the sense of the Borel hierarchy,
without any effectiveness restriction. For this, we need the following proposition by
Miller [14, Proposition 4.1].

Proposition 2.15 (Miller [14]). If a Σ0,Z
1 class contains all the finite sets, then it

contains all the Z-hyperimmune sets.

Proof. Let U be such a Σ0,Z
1 class. Let X �∈ U . For any n and every string � of

length n we have �0∞ ∈ U . For every n, let f(n) ∈ N be large enough such that for
any string � of length n we have [�0f(n)] ⊆ U . Note that the function f is total and
Z-computable. It must be that X �n+f(n) contains at least a 1 at a position greater
than n. By repeating this we see that we can Z-computably bound pX . 


Proposition 2.16. There are no non-trivial Σ0
2 partition regular classes.

Proof. Suppose for contradiction that there exists a non-trivial Σ0
2 partition

regular class C. Let Z be such that C is Σ0,Z
2 . In particular, 2� \ C contains all the

finite sets, so by Proposition 2.15, it contains all the Z-hyperimmune sets. Consider
now any set X such that both X and X are Z-hyperimmune. By partition regularity,
at least one of them belongs to C, which is a contradiction. 


2.5. Partition largeness. As mentioned earlier, a partition regular class represents
a notion of largeness. However, a class containing a partition regular class is not
necessarily itself partition regular. These classes admit a nice characterization.

Definition 2.17. A partition large class is a non-empty collection of sets A ⊆ 2�

such that:
(a) If X ∈ A and Y ⊇ X , then Y ∈ A.
(b) For every k, if Y0 ∪ ··· ∪ Yk ⊇ �, there is some j ≤ k such that Yj ∈ A.

Proposition 2.18. A class A ⊆ 2� is partition large iff it is upward-closed and
contains a partition regular subclass.

Proof. Suppose A is upward-closed and contains a partition regular subclass
L ⊆ A. (a) is trivially satisfied by hypothesis. By partition regularity ofL,� ∈ L and
for every k and every Y0 ∪ ··· ∪ Yk ⊇ �, there is some j ≤ k such that Yj ∈ L ⊆ A.
So A is partition large.

Suppose now A is partition large. By (a), it is upward-closed. We claim that L(A)
is partition regular. By (b) and Theorem 2.10,� ∈ L(A), soL(A) �= ∅. By definition
of L(A), it is partition regular, hence A contains a partition regular subclass. 


Lemma 2.19. Let L ⊆ 2� be a non-trivial partition regular class and X ∈ L. Then
L ∩ LX is partition large.

Proof. LetY0 ∪ ··· ∪ Yk ⊇ �. In particular we haveY0 ∩ X ∪ ··· ∪ Yk ∩ X ⊇ X .
As X ∈ L we must have Yj ∩ X ∈ L for some j ≤ k. In particular, since L is non-
trivial, Yj ∩ X is infinite, so Yj ∩ X ∈ LX . Therefore, there is some j ≤ k such that
Yj ∩ X ∈ L ∩ LX . 


https://doi.org/10.1017/jsl.2022.69 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.69


PARTITION GENERICITY AND PIGEONHOLE BASIS THEOREMS 837

The following proposition yields another definition of L(A) which will be very
useful.

Proposition 2.20. Let A ⊆ U2 be a partition large class. Then

L(A) = {X : A ∩ LX is partition large}.

Proof. Let L = {X : A ∩ LX is partition large}. Since A is partition large, then
by Proposition 2.18, L(A) is the largest partition regular subclass of A. Moreover,
by Proposition 2.6, L(A) is non-trivial since L(A) ⊆ U2. Thus, by Theorem 2.19,
for everyX ∈ L(A), L(A) ∩ LX is partition large. In particular, A ∩ LX is partition
large, hence X ∈ L. It follows that L(A) ⊆ L.

Let us show that L is partition regular. First, A ∩ L� = A is partition large, so
� ∈ L. Let X ∈ L and Y0 ∪ ··· ∪ Yk ⊇ X . In particular, A ∩ LX is partition large,
so by Proposition 2.18, L(A ∩ LX ) is partition regular. Moreover, X ∈ L(A ∩ LX ),
so there is some i ≤ k such that Yi ∈ L(A ∩ LX ). By Theorem 2.19, L(A ∩ LX ) ∩
LYi is partition large. Since L(A ∩ LX ) ∩ LYi ⊆ A ∩ LYi , then A ∩ LYi is partition
large, so Yi ∈ L.

Last, let us show that L ⊆ A. Indeed, if A ∩ LX is partition large, then since
X ∪ X = �, either X or X belongs to A ∩ LX . However, X �∈ LX , so X ∈ A ∩ LX .
In particular, X ∈ A. It follows that L is a partition regular subclass of A, so by
maximality of L(A), L ⊆ L(A). 


Recall that Proposition 2.6 characterizes non-trivial partition regular classes as
those which are included in the Σ0

1 class U2 of sets containing at least two distinct
elements. Since there is no non-empty Σ0

1 class containing only infinite sets, we
take this characterization as the natural generalization of non-triviality to arbitrary
classes.

Definition 2.21. A class A ⊆ 2� is non-trivial if it is included in the Σ0
1 class U2

of sets containing at least two distinct elements.

2.6. Partition genericity. Given a Π0
2 partition regular class L and a set X, then

either X ∈ L, or X ∈ L. In general, whether the first or the second case holds
depends on the choice of L. For some sets however, the same case always holds. This
yields the notion of partition genericity.

Definition 2.22. Let A ⊆ 2� be a class. We say that X is partition generic in A if
X belongs to every non-trivial Π0

2 partition regular subclass of A. If X is partition
generic in 2� we simply say that X is partition generic.

The first and most trivial example of partition generic set is �. First, note that
partition genericity is closed under finite changes.

Proposition 2.23. If X is partition generic in A and Y =∗ X , then Y is partition
generic in A.

Proof. Let L ⊆ A be any non-trivial Π0
2 partition regular subclass of A. Since

X is partition generic in A, then X ∈ L. Since Y =∗ X , by Theorem 2.7, Y ∈ L.
Therefore Y is partition generic in A. 
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It follows that every co-finite set is partition generic. Actually, this characterizes
the computable partition generic sets. Indeed, if A is a co-infinite computable set,
then LA is a non-trivial Π0

2 partition regular class which does not contain A.

Definition 2.24. Let A ⊆ 2� be a class. We say that X is bi-partition generic in
A if X and X are both partition generic in A. If X is bi-partition generic in 2� we
simply say that X is bi-partition generic.

The existence of bi-partition generic sets will be proven in Proposition 2.26. Note
that, contrary to partition genericity, no computable set is bi-partition generic.

Proposition 2.25. Every bi-partition generic set is bi-immune.

Proof. Let A be bi-partition generic. Let X be an infinite subset of A. Then LX
is a partition regular class such that A �∈ LX . Since A is partition generic, LX is not
Π0

2, so X is not computable. Similarly, A has no infinite computable subset. 

In particular, every bi-partition generic set is bi-infinite. We now prove that every

typical set is bi-partition generic, that is, every sufficiently random or generic set is
bi-partition generic.

Proposition 2.26. Every Kurtz random is bi-partition generic.

Proof. By Theorem 2.7, every non-trivial measurable partition regular class is of
measure 1. It follows that any Kurtz-random belongs to every Π0

2 partition regular
class and thus that any Kurtz-random is bi-partition generic. 


In particular, one can be bi-hyperimmune and bi-partition generic. The following
proposition shows that is actually always the case, in the sense that every bi-
hyperimmune set is bi-partition generic.

Proposition 2.27. Every co-hyperimmune set is partition generic.

Proof. Let A be a co-hyperimmune set. Suppose for the contradiction that
A �∈ L for some non-trivial Π0

2 partition regular class L ⊆ 2� . In particular, there
is a partition large Σ0

1 class U ⊇ L such that A �∈ U . Since U is partition large, for
every t ∈ �, there is some � ∈ 2<� with min � > t such that � ∈ U . In particular, for
every such �, we have � ∩ A �= ∅. Moreover, such a string � can be found computably
uniformly in t. We can therefore compute an array tracing A, contradicting
hyperimmunity of A. 


Corollary 2.28. Every bi-hyperimmune set is bi-partition generic.

Proof. Immediate by Proposition 2.27. 

As mentioned earlier, every sufficiently random set is bi-partition generic.

Moreover, every sufficiently random set is effectively bi-immune. It is natural to
wonder whether every effectively co-immune set is partition generic. The following
proposition answers negatively.

Proposition 2.29. There is an effectively co-immune set which is not partition
generic.

Proof. Consider the following Π0
2 class L = {X : ∀k ∃n |X �n2 | ≥ nk}. Let

us prove it is partition regular: Let X ∈ L and Y1 ∪ ··· ∪ Ym ⊇ X . For k ∈ �
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there is some n such that |X �n2 | ≥ nmk. Then, there is some ek ≤ m such that
|Yek �n2 | ≥ nk. Let e ≤ m be such that e = ek for infinitely many k. We then have
for infinitely many k that there exists n such that |Ye �n2 | ≥ nk. This is therefore
true in particular for every k. Thus Ye ∈ L, so L is partition regular.

It suffices to construct an effectively co-immune set A such that for every n,
|A �n2 | < n for every n. Then A �∈ L, hence A is not partition generic. To construct
such a set, for every e, let xe be the e2th element ofWe (in the<� order), if it exists.
Assume by convention that W0 = ∅, so e0 does not exist. Let A = {xe : e ∈ �}.
Then A is an infinite set, which is effectively co-immune, as witnessed by the function
n �→ n2. Last, for every n, A �n2⊆ {xe : e < n}, so |A �n2 | < n. 


We have seen so far three classes of partition generic sets: co-finite sets, co-
hyperimmune sets, and Kurtz randoms. Let us construct a bi-partition generic set
which belongs to none of these categories.

Proposition 2.30. There is a bi-partition generic set A such that for every n,
A(2n) �= A(2n + 1).

Proof. Consider the notion of forcing whose conditions are strings � of even
length, such that for every n < |�|/2, �(2n) �= �(2n + 1). The conditions are
partially ordered by the suffix relation. Let us show that every sufficiently generic
set G is bi-partition generic.

Let � be a condition, and let U be a non-trivial Σ0
1 partition large class. Let

X0 = {2n : 2n > |�|} and X1 = {2n + 1 : 2n + 1 > |�|}. Since {0} ∪ ··· ∪ {|�|} ∪
X0 ∪ X1 ⊇ �, then either X0 ∈ U , or X1 ∈ U . Say the former case holds as the other
case is symmetric. Since U is Σ0

1, then there is some k such that [X0 �2k] ⊆ U . Let
� = � ∪ X0 �2k . Note that � is a valid condition. Moreover, since U is closed under
superset, then [�] ⊆ U . Therefore, every sufficiently generic set G for this notion of
forcing belongs to every non-trivial Σ0

1 partition large class. By symmetric, so does
the complement of G, so G is bi-partition generic. 


Corollary 2.31. There is a bi-partition generic set which is neither
co-hyperimmune, nor Kurtz random.

Proof. Consider the set A of Proposition 2.30. It is clearly neither hyperimmune
nor co-hyperimmune since F0, F1, ... defined by Fn = {2n, 2n + 1} is a c.e. array
tracing both A and A. Furthermore, A is not Kurtz random, since A ∈ {X :
∀nX (2n) �= X (2n + 1)} which is a Π0

1 class of measure 0. 


The following lemma is a sort of pigeonhole principle, from which we will derive
partition regularity of the class of sets which are partition generic in some non-trivial
Σ0

1 partition large class.

Lemma 2.32. Let A ⊆ 2� be a class and let X be a set which is partition generic in
A. For every Y0 ∪ Y1 ⊇ X , if Y0 /∈ L(A) then Y1 is partition generic in A.

Proof. Suppose for contradiction that there is a non-trivial Π0
2 partition regular

class V ⊆ A such that Y1 /∈ V . In particular, V ⊆ L(A), so Y0 /∈ V . By partition
regularity of V , since Y0 ∪ Y1 ⊇ X , then X /∈ V , which contradicts partition
genericity of X in A. 
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Proposition 2.33. Let A be a partition large class. Suppose X is partition generic
in A. Let Y0 ∪ ··· ∪ Yk ⊇ X . Then there is a Σ0

1 class U such that U ∩ A is partition
large, together with some i ≤ k such that Yi is partition generic in U ∩ A.

Proof. We prove the statement by the lemma by induction on k. For k = 0,
Y0 ⊇ X so Y0 is partition generic in A by upward-closure of partition genericity.
Take U = 2� and we are done.

Suppose now that the property holds for k – 1. SupposeYk is not partition generic
in A. Thus there is a non-trivial Π0

2 partition regular class
⋂
e∈C Ue ⊆ A such that

Yk �∈
⋂
e∈C Ue . In particular, there is some e ∈ C such that Yk /∈ Ue . Note that⋂

e∈C Ue ⊆ A ∩ Ue , so A ∩ Ue is partition large. By Theorem 2.32, Y0 ∪ ··· ∪ Yk–1 is
partition generic in Ue ∩ A. By induction hypothesis on Ue ∩ A and Y0 ∪ ··· ∪ Yk–1,
there is a Σ0

1 class V such that V ∩ Ue ∩ A is partition large, together with some i < k
such that Yi is partition generic in V ∩ Ue ∩ A. The property therefore holds with
the Σ0

1 class V ∩ Ue . 


Corollary 2.34. The following class is partition regular:

P = {X : X is partition generic in some non-trivial Σ0
1 partition large class}.

Proof. First, � is partition generic in U2 = {X : |X | ≥ 2}. Suppose X ∈ P and
let Y0 ∪ ··· ∪ Yk ⊇ X . Let U ⊆ 2� be a non-trivial Σ0

1 partition large class in which
X is partition generic. By Proposition 2.33, there is a Σ0

1 class V such that U ∩ V is
partition large, together with some i ≤ k such that Yi is partition generic in U ∩ V .
Note that U ∩ V ⊆ U , hence is non-trivial. It follows that Yi ∈ P . 


Partition genericity within a large class is not an interesting notion of typicality
whenever one does not put effectiveness restrictions on the large classes. Indeed, we
shall see that every infinite set is partition generic relative to itself within a large
class. Given an infinite set X, let UX,2 = {Y : |Y ∩ X | ≥ 2}.

Lemma 2.35. For every set X, L(UX,2) = LX .

Proof. First, let us show that LX ⊆ L(UX,2). Suppose that Y ∈ LX . By
definition, |Y ∩ X | = ∞, so Y ∈ UX,2. So LX is a partition regular subclass of UX,2.
Since L(UX,2) is the largest partition regular subclass of UX,2, then LX ⊆ L(UX,2).

Then, let us show that L(UX,2) ⊆ LX . Let Y ∈ L(UX,2). We claim that
|Y ∩ X | = ∞. Indeed, otherwise, consider the |Y ∩ X |-cover of Y ∩ X made of
singletons. By partition regularity of L(UX,2), one of the parts belongs to UX,2, but
UX,2 contains no singleton, contradiction. Therefore |Y ∩ X | = ∞, so Y ∈ LX . 


Lemma 2.36. For every infinite set X, UX,2 is a non-trivial Σ0
1(X ) partition large

class.

Proof. UX,2 is clearly non-trivial, upward-closed, and Σ0
1(X ). By Lemma 2.35,

L(UX,2) = LX . Since X is infinite, X ∈ LX , so L(UX,2) �= ∅. By Proposition 2.18,
UX,2 is large. 


The following lemma shows, as promised, that every infinite set is partition generic
relative to itself within a large class.

Lemma 2.37. For every set X, X belongs to any partition large subclass of UX,2.
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Proof. Let V be a partition large subclass of UX,2. Suppose for the contradiction
thatX �∈ V . By largeness of V ,X ∈ V ⊆ UX,2. Then |X ∩ X | ≥ 2, contradiction. 


By Patey [17], if f is a hyperimmune function, then for every set A, there is an
infinite subset H ⊆ A or H ⊆ A such that f is H-hyperimmune. Is it also the case
if one replaces hyperimmunity by partition genericity? We answer negatively by
constructing a specific bi-partition generic set which is neither Kurtz random, nor
bi-hyperimmune.

Lemma 2.38. For every set A and every infinite setH ⊆ A, then A is not H-partition
generic.

Proof. By Lemma 2.36, UH,2 is a non-trivial Σ0
1(A) partition large class.

In particular, L(UH,2) is a non-trivial Π0
2(H ) partition generic class. However,

A �∈ UH,2 ⊇ L(UH,2), so A is not H-partition generic. 


Proposition 2.39. There is a bi-partition generic set A such that for every infinite
setH ⊆ A and H ⊆ A, neither A nor A is H-partition generic.

Proof. Let A be the bi-partition generic set of Proposition 2.30. Let H ⊆ A.
By Lemma 2.38, A is not H-partition generic. Let P = {2n + 1 : 2n ∈ H} ∪ {2n :
2n + 1 ∈ H}. Then P ⊆ A. By Lemma 2.38, A is not P-partition generic, hence not
H-partition generic. The caseH ⊆ A is symmetric. 


If we consider partition genericity in a non-trivial partition large open class, then
the answer is positive, but in an unsatisfactory manner.

Proposition 2.40. Let B be an infinite set. For every set A, there is an infinite
subset H ⊆ A or H ⊆ A such that B is H-partition generic in a non-trivial Σ0

1(H )
partition large class.

Proof. Let H = A ∩ B if it is infinite, otherwise H = A ∩ B . By Lemma 2.36,
UH,2 is a non-trivial Σ0

1(H ) partition large class. We claim that B is H-partition
generic in UH,2. By Lemma 2.37, H is H-partition generic in UH,2. Since B ⊇ H ,
then A is also H-partition generic in UH,2. 


§3. Applications. We now justify the study of partition genericity by proving
several partition genericity subset basis theorems. All these basis theorems are
proven with the same notion of forcing, that we call partition generic Mathias forcing.
A condition is a tuple (�,X,U), where (�,X ) is a Mathias condition, that is, � is a
finite string and X is an infinite set such that minX > |�|. Moreover, U is a non-
trivial large Σ0

1 class within which X is partition generic. A condition (�, Y,V) extends
another condition (�,X,U) if (�, Y ) Mathias extends (�,X ), that is, � ≺ �, Y ⊆ X ,
and � \ � ⊆ X . Moreover, we require that V ⊆ U .

Note that we do not impose any effectivity restriction to the reservoir X. In
particular, if A is a set which is partition generic in a non-trivial Σ0

1 large class U ,
then we will consider sufficiently generic filters containing the condition (∅, A,U).
Indeed, any such filter F induces a subset GF =

⋃
(�,X,V)∈F � of A.

The first property we prove is that GF is an infinite set.

Lemma 3.1. Let F be a sufficiently generic filter. Then GF is infinite.
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Proof. Let us show that for any n, the set of conditions (�, Y,U) such that
�(x) = 1 for some x > n is dense. Let (�,X,U) be a condition. Since X is partition
generic in U and U is non-trivial, then X ∈ L(U), hence X is infinite. Let x ∈ X be
greater than n, let � be string � ∪ {x}, and let Y = X \ {0, ... , |�|}. By Proposition
2.23, Y is partition generic in U . Therefore, (�, Y,U) is a valid extension of
(�,X,U). 


We now turn to the various partition genericity subset basis theorems.

3.1. Cone avoidance. The first one is the cone avoidance partition genericity subset
basis theorem. Recall that Dzhafarov and Jockusch [3] proved that if B is a non-
computable set, then for every set A ⊆ �, there is an infinite set H ⊆ A or H ⊆ A
such that B �≤T H . We prove the corresponding partition genericity theorem.

Lemma 3.2. Let B be a non-computable set and let Φe be a Turing functional. Then
for every condition (�,X,U), there is an extension (�, Y,U) forcing ΦGe �= B .

Proof. A split pair is a pair of strings �0, �1 such that there is an input x ∈ � for
which Φ�∪�0

e (x) ↓�= Φ�∪�1
e (x) ↓. We have two cases.

Case 1: the following class is large:

A = {Y ∈ U : Y contains a split pair}.

Since A is a non-trivial Π0
2 large subclass of U and X is partition generic in U , then

X ∈ A. Let �0, �1 ⊆ X be a split pair, with witness x. In particular, there is some
i < 2 such that Φ�∪�ie (x) �= B(x). Let Y = X \ {0, ... , |�i |}. By Proposition 2.23,
Y is partition generic in U . Then (� ∪ �i , Y,U) is an extension of (�,X,U) forcing
ΦGe (x) �= B(x).

Case 2: there is some k ∈ � such that the following class is non-empty:

C = {Z0 ⊕ ··· ⊕ Zk–1 : Z0 ∪ ··· ∪ Zk–1 = � ∧ ∀i < k Zi �∈ U or Zi contains no split pair}.

Note that C is a Π0
1 class. By the cone avoidance basis theorem [7], there is an element

Z0 ⊕ ··· ⊕ Zk–1 ∈ C such that B �≤T Z0 ⊕ ··· ⊕ Zk–1. By Proposition 2.33, there is
a Σ0

1 class V such that V ∩ U is large and some i < k such that Zi ∩ X is partition
generic in V ∩ U . Note that in particular, Zi ∩ X ∈ V ∩ U , so Zi ∈ U , hence Zi
contains no split pair.

The condition (�,Zi ∩ X,V ∩ U) is a valid extension of (�,X,U).
We claim that (�,Zi ∩ X,V ∩ U) forces ΦGe �= B . Suppose for the contradiction

that ΦGFe = B for some generic filter F . Letf : � → 2 be the partialZi -computable
function which on input x, searches for some � ⊆ Zi such that Φ�∪�e (x) ↓. If such a �
is found, then f(x) = Φ�∪�e (x) ↓. Since ΦGFe = B , then f is total. SinceZi contains
no split pair, then f = B , which contradicts the assumption that B �≤T Zi . 


Theorem 3.3. Let A be a set which is partition generic in a non-trivial Σ0
1 large class

U ⊆ 2� . Then for every non-computable set B, there is an infinite set G ⊆ A such that
B �≤T G .

Proof. Let F be a sufficiently generic filter containing (∅, A,U). By Lemma 3.1,
GF is infinite. By construction, GF ⊆ A. Last, by Lemma 3.2, B �≤T GF . 


Corollary 3.4 (Dzhafarov and Jockusch [3]). Let B be a non-computable set.
Then for every setA ⊆ �, there is an infinite setH ⊆ A orH ⊆ A such thatB �≤T H .
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Proof. By Corollary 2.34, either A or A is partition generic in a non-trivial Σ0
1

large class. Apply Theorem 3.3. 


3.2. PA avoidance. We now turn to a PA avoidance partition genericity subset
basis theorem. Liu [12] proved that for every set A ⊆ �, there is an infinite set
H ⊆ AorH ⊆ Aof non-PA degree. We prove the corresponding partition genericity
theorem.

Lemma 3.5. For every condition (�,X,U) and every Turing functional Φe , there is
an extension (�, Y,V) forcing ΦGe not to be a DNC2 function.

Proof. For every k, let Sk be the set of pairs (x, v) ∈ � × 2 such that for
every k-cover Z0 � ··· � Zk–1 ⊇ �, there is some j < k such that Zj ∈ U , and some
� ⊆ Zj such that Φ�∪�e (x) ↓= v. Note that the set Sk is Σ0

1 uniformly in k. We have
two cases:

Case 1: for every k ∈ �, there is some x ∈ � such that (x,Φx(x)) ∈ Sk . Then the
following class is large:

{Y ∈ U : ∃x ∃� ⊆ Y Φ�∪�e (x) ↓= Φx(x)}.
Since X is partition generic, then it belongs to this class, so there is some x and some
� ⊆ X such that Φ�∪�e (x) ↓= Φx(x). Let Y = X \ {0, ... , |�|}. Note that Y is again
partition generic in U , so (� ∪ �,Y,U) is an extension forcing ΦGe (x) ↓= Φx(x).

Case 2: there is some k ∈ � such that for every x ∈ �, if Φx(x) ↓, then
(x,Φx(x)) �∈ Sk . Then there must be some x such that (x, 0), (x, 1) �∈ Sk , otherwise
we would compute a DNC2 function by waiting, for each x, for some v < 2 such
that (x, v) is enumerated in Sk . Let x be such that (x, 0), (x, 1) �∈ Sk . By definition of
Sk , there are two k-covers of �, Z0

0 ∪ ··· ∪ Z0
k–1 = � and Z1

0 ∪ ··· ∪ Z1
k–1 = � such

that for every i < 2 and every j < k such that Zij ∈ U , and every � ⊆ Zij such that
Φ�∪�e (x) ↓, then Φ�∪�e (x) �= i .

Then 〈Z0
s ∩ Z1

t : s, t < k〉 is a k2-cover of � such that for every s, t < k, either
Z0
s ∩ Z1

t �∈ U , or for every � ⊆ Zij , Φ�∪�e (x) ↑. By Proposition 2.33, there is a non-
trivial large Σ0

1 class V ⊆ U and some s, t < k such that Z0
s ∩ Z1

t ∩ X is partition
regular in V . The condition (�,Z0

s ∩ Z1
t ∩ X,V) is an extension forcing ΦGe (x) ↑. 


Theorem 3.6. Let A be a set which is partition generic in a non-trivial large Σ0
1

class U ⊆ 2� . Then there is an infinite set G ⊆ A of non-PA degree.

Proof. Let F be a sufficiently generic filter containing (∅, A,U). By Lemma 3.1,
GF is infinite. By construction, GF ⊆ A. Last, by Lemma 3.5, GF is of non-PA
degree. 


Corollary 3.7 (Liu [12]). For every set A ⊆ �, there is an infinite subsetH ⊆ A
or H ⊆ A of non-PA degree.

Proof. By Corollary 2.34, either A or A is partition generic in a non-trivial Σ0
1

large class. Apply Theorem 3.6. 

Remark 3.8. In all the arguments above, one could have worked with a

generalized notion of condition (�,X,L) whereL is a non-trivial Π0
2 partition regular

class. Then, for every sufficiently generic filter F and every condition (�,X,L),
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GF ∈ L. This implies in particular that all these partition generic basis theorems
also hold if one replaces “there exists an infinite subset H ⊆ A” by “there exists a
subsetH ⊆ A such that H ∈ L” for any non-trivial Π0

2 partition regular class L.

3.3. Constant-bound trace avoidance. Soon after proving his PA avoidance
pigeonhole basis theorem, Liu proved a constant bound trace avoidance pigeonhole
basis theorem, with several consequences, such as the existence, for every setA ⊆ �,
of an infinite subset H ⊆ A or H ⊆ A which does not compute any Martin-Löf
random, or even no set of positive effective Hausdorff dimension.

Definition 3.9. A k-trace is a sequence of finite sets of strings F0, F1, ... such
that for every n, |Fn| = k and every string � ∈ Fn is of length n. A constant-bound
trace is a k-trace for some k ∈ �. A k-trace of a class C ⊆ 2� is a k-trace F0, F1, ...
such that [Fn] ∩ C �= ∅ for every n, where [Fn] =

⋃
�∈Fn [�].

Liu [13] proved that if C ⊆ 2� is a non-empty Π0
1 class with no computable 1-trace,

then for every setA ⊆ �, there is an infinite subsetH ⊆ A orH ⊆ Awhich does not
compute any 1-trace of C. We prove the corresponding partition genericity subset
basis theorem.

Lemma 3.10. Let C ⊆ 2� be a non-empty Π0
1 class with no computable 1-trace. For

every condition (�,X,U) and every Turing functional Φe , there is an extension (�, Y,V)
forcing ΦGe not to be a 1-trace of C.

Proof. For every k, letSk be the set of strings� ∈ 2<� such that for every k-cover
Z0 � ··· � Zk–1 ⊇ �, there is some j < k such that Zj ∈ U , and some � ⊆ Zj such
that Φ�∪�e (|�|) ↓= �. Note that the set Sk is Σ0

1 uniformly in k. We have two cases:
Case 1: for every k ∈ �, there is some � ∈ Sk such that [�] ∩ C = ∅. Then the

following class is large:

{Y ∈ U : ∃� ∃� ⊆ Y Φ�∪�e (|�|) ↓= � ∧ [�] ∩ C = ∅}
is large. Since X is partition generic, then it belongs to this class, so there is
some � ∈ 2<� and some � ⊆ X such that Φ�∪�e (|�|) ↓= � and [�] ∩ C = ∅. Let
Y = X \ {0, ... , |�|}. Note that Y is again partition generic in U , so (� ∪ �,Y,U) is
an extension forcing ΦGe (|�|) ↓= �.

Case 2: there is some k ∈ � such that for every � ∈ Sk , [�] ∩ C �= ∅. Then there
must be some n such that Sk contains no string of length n. Indeed, otherwise, one
would compute a 1-trace of C, contradicting our hypothesis. For every string � of
length n, let Z�0 ∪ ··· ∪ Z�k–1 = � be a k-cover such that for every j < k such that
Z�j ∈ U , and every � ⊆ Z�j such that Φ�∪�e (n) ↓, then Φ�∪�e (n) �= �.

Let 〈Pj : j < k2n 〉 be the k2n -cover of � refining all the k-covers above. Then for
every j < k2n and every � ⊆ Pj , Φ�∪�e (n) ↑. By Proposition 2.33, there is a non-
trivial large Σ0

1 class V ⊆ U and some j < k2n such that Pj ∩ X is partition regular
in V . The condition (�, Pj ∩ X,V) is an extension forcing ΦGe (n) ↑. 


Theorem 3.11. Let A be a set which is partition generic in a non-trivial large Σ0
1

class U ⊆ 2� . For every countable collection of non-empty Π0
1 classes C0, C1, ... with

no computable 1-trace. Then there is an infinite setG ⊆ A such that none of the classes
Cn admits a G-computable 1-trace.
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Proof. Let F be a sufficiently generic filter containing (∅, A,U). By Lemma 3.1,
GF is infinite. By construction, GF ⊆ A. Last, by Lemma 3.10, none of the classes
Cn admits a GF -computable 1-trace. 


Corollary 3.12 (Liu [13]). Let C0, C1, ... be a countable collection of non-empty
Π0

1 classes with no computable 1-trace. For every set A ⊆ �, there is an infinite subset
H ⊆ A or H ⊆ A such that none of the classes Cn admits an H-computable 1-trace.

Proof. By Corollary 2.34, either A or A is partition generic in a non-trivial Σ0
1

large class. Apply Theorem 3.11. 

Corollary 3.13. Let C0, C1, ... be a countable collection of non-empty Π0

1 classes
with no computable 1-trace. For every Kurtz random A ⊆ �, there is an infinite subset
H ⊆ A such that none of the classes Cn admits an H-computable 1-trace.

Proof. By Proposition 2.26, every Kurtz random is bi-partition generic. Apply
Theorem 3.11. 


We obtain in particular the following theorem, which improves the result of Kjos-
Hanssen and Liu [10] from Martin-Löf randomness to Kurtz randomness.

Theorem 3.14. For every Kurtz random A, there is an infinite subsetH ⊆ A which
does not compute any set of positive effective Hausdorff dimension.

Proof. For every m, c, let Cm,c = {X : ∀kK(X �k) ≥ k/m – c}. A set X has
positive effective Hausdorff dimension iff X ∈ Cm,c for some m, c ∈ �. For every
m, c ∈ �, Cm,c has no computable 1-trace (see Corollary 1.4 in [10]). By Corollary
3.13, there is an infinite subset H ⊆ A such that none of the classes Cm,c admits
an H-computable 1-trace. In particular, H does not compute any set of positive
effective Hausdorff dimension. 


3.4. Lowness. It is clearly not the case that for every setA ⊆ �, there is an infinite
subsetH ⊆ A orH ⊆ A of low degree. One can simply pick A to be any bi-immune
set relative to ∅′. Then A has no even Δ0

2 infinite subset in it or its complement.
Therefore, there is no low or even Δ0

2 partition genericity subset basis theorem.
More interestingly, Downey et al. [2] constructed a Δ0

2 set with no low infinite subset
in it or its complement, using a very involved infinite injury priority argument. Thus,
there is no hope of proving that every Δ0

2 partition generic sets has a low subset.
On the other hand, if A is a Δ0

2 set such that A is not partition generic, then A is
partition generic in a non-trivial Σ0

1 partition large class in a strong sense, in which
case A admits an infinite low subset.

Theorem 3.15. Let A be a Δ0
2 set such that A is not partition generic. Then there is

an infinite subset G ⊆ A of low degree.

Proof. Let
⋂
n Vn be a Π0

2 partition regular class such that A �∈
⋂
n Vn. In

particular, there is some m ∈ � such that A �∈ Vm. Define a Δ0
2 decreasing sequence

of Mathias conditions (�0, X0) ≥ (�1, X1) ≥ ··· such that for every s ∈ �:

(1) �s ⊆ A; Xs is low; Xs ∈
⋂
n Vn;

(2) �s+1 ∈ Ve if s = 2e;
(3) (�s+1, Xs+1) � ΦGe (e) ↓ or (�s+1, Xs+1) � ΦGe (e) ↑ if s = 2e + 1.

Start with the condition (∅, �).
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Satisfying (2): Given a condition (�s , Xs) at a stage s = 2e, search ∅′-computably
for some finite � ⊆ X ∩ A such that � ∈ Vs . We claim that such a � must exist.
Indeed, since X belongs to the partition regular class

⋂
n Vn, then either X ∩ A

or X ∩ A belongs to
⋂
n Vn. However, A �∈ Vm, so by upward-closure of partition

regular classes, X ∩ A �∈
⋂
n Vn, hence X ∩ A ∈

⋂
n Vn. The condition (�s ∪ �,Xs –

{0, ... ,max �}) satisfies (2).
Satisfying (3): Given an condition (�s , Xs) at stage s = 2e + 1, consider the Π0,Xs

1
class C of all B such thatB �∈ Vm and (�s , Xs ∩ B) � ΦGe (e) ↑. Decide ∅′-computably
if C is empty or not. If C = ∅, then in particular A �∈ C, so (�s , Xs ∩ A) �� ΦGe (e) ↑.
Search ∅′-computably for some � ⊆ Xs ∩ A such that Φ�s∪�e (e) ↓. The condition
(�s ∪ �,Xs – {0, ... ,max �}) forces ΦGe (e) ↓, hence satisfies (3). If C �= ∅, then by
the low basis theorem, there is some B ∈ C of low degree. In particular, B �∈ Vm so
B ∩ Xs �∈ Vm. However, Xs ∈

⋂
n Vn, so by partition regularity of

⋂
n Vn, B ∩ Xs ∈⋂

n Vn. The condition (�s , Xs ∩ B) forces ΦGe (e) ↑, hence satisfies (3).
This completes the construction. LetG =

⋃
s �s . In particular, by (1),G ⊆ A. By

(2) G ∈
⋂
n Vn, hence G is infinite. By (3), G ′ ≤T ∅′. This completes the proof. 


The previous theorem gives us a characterization of the Δ0
2 sets with no low infinite

subset in them or their complements.

Corollary 3.16. A Δ0
2 set A has no low infinite subset in it or its complement iff it

is bi-partition generic relative to every low set.

Proof. Suppose A is bi-partition generic relative to every low set. By
Proposition 2.25, A is bi-immune relative to every low set, hence has no low
infinite subset in it or its complement.

Suppose A is not bi-partition generic relative to a low set L. By symmetry, say
A is not partition generic relative to L. By Theorem 3.15 relativized to L, there is
an infinite subset H ⊆ A such that H ′ ≤T L′ ≤T ∅′, hence A has an infinite low
subset. 


Corollary 3.17. There is a Δ0
2 set which is bi-partition generic relative to every

low set.

Proof. Immediate by the previous corollary and the existence of a Δ0
2 set with

no low infinite subset in either it or its complement [2]. 


§4. Preservation of hyperimmunity. The purpose of this section is to find the
right genericity notion admitting a preservation of hyperimmunity genericity basis
theorem, implying the preservation of hyperimmunity pigeonhole basis theorem.
More precisely, the following theorem was proven by Patey [16]:

Theorem 4.1 (Patey [16]). If B is a hyperimmune set, then for every set A ⊆ �,
there is an infinite set H ⊆ A or H ⊆ A such that B is H-hyperimmune.

Partition genericity is not the right notion to reprove this pigeonhole basis
theorem. Indeed, the following proposition shows that there is no preservation
of hyperimmunity partition genericity basis theorem.

Proposition 4.2. There is a hyperimmune set B and a partition generic set A such
that B is hyperimmune relative to no infinite subset of A.
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Proof. Let A be a bi-hyperimmune set and let B = A. Since A is
co-hyperimmune, by Proposition 2.27, A is partition generic. Let H be an infinite
subset of A. Then, H is an infinite subset of B, so B is not H-hyperimmune. 


The remainder of this section is devoted to the design of a notion of
genericity which admits a preservation of hyperimmunity basis theorem, implying
Proposition 4.2.

4.1. Hyperimmunity genericity. From now on, fix a set B ⊆ �. All the following
definitions hold for any B, but because of Proposition 4.14, the only interesting
case is when the set B is hyperimmune. In what follows, recall that we identify a
string � with the set {n < |�| : �(n) = 1}. Hence, Y \ � denotes the set {n ∈ Y :
n ≥ |�| ∨ �(n) = 0}.

Definition 4.3. A class L ⊆ 2� × 2� is H-regular if it is non-empty, upward-
closed, and for every (X,Y ) ∈ L, every k, every k-cover Z0 ∪ ··· ∪ Zk–1 ⊇ X and
every � ∈ 2<� , there is some j < k such that (Zj,Y \ �) ∈ L.

Proposition 4.4. Suppose {Li}i∈I is an arbitrary non-empty collection of
H-regular classes. Then

⋃
i∈I Li is H-regular.

Proof. It is clear that
⋃
i∈I Li is not empty. Let (X0, X1) ∈

⋃
i∈I Li . LetY0 ⊇ X0

and Y1 ⊇ X1. There is some i ∈ I such that (X0, X1) ∈ Li . As Li is H-regular,
(Y0, Y1) ∈ Li ⊆

⋃
i∈I Li .

Let (X0, X1) ∈
⋃
i∈I Li . Let Y0 ∪ ··· ∪ Yk ⊇ X and � ∈ 2<� . There is some i ∈ I

such that (X0, X1) ∈ Li . As Li is H-regular, (Yj,X1 \ �) ∈ Li ⊆
⋃
i∈I Li for some

j ≤ k. 


Definition 4.5. Given a class A ⊆ 2� × 2� , let LH(A) denote the largest
H-regular subclass of A. If A does not contain a H-regular class, let LH(A) be
the empty set.

Proposition 4.6. Let A ⊆ 2� × 2� be an upward-closed class. Then

LH(A) =
{

(X,Y ) ∈ 2� × 2� :
∀k∀X0 ∪ ··· ∪ Xk ⊇ X
∀� ∈ 2<� ∃i ≤ k (Xi , Y \ �) ∈ A

}
.

Definition 4.7. A class A ⊆ 2� × 2� is H-large if it is upward-closed and for
every co-finite set X1, {X0 : (X0, X1) ∈ A} is partition large.

Proposition 4.8. A class A ⊆ 2� × 2� is H-large iff it is upward-closed and
contains a H-regular subclass.

Proof. Suppose A is upward-closed and contains an H-regular subclass L ⊆ A.
Upward closure is trivially satisfied by hypothesis. By H-regularity of L, (�,�) ∈ L
and for every k-coverY0, ... , Yk–1 of�, and every � ∈ 2<� , there is some j < k such
that (Yj,� \ �) ∈ L ⊆ A. So A is H-large.

Suppose now A is H-large. It is upward-closed by definition. We claim that LH(A)
is H-regular. By definition of H-largeness and Theorem 4.6, (�,�) ∈ LH(A), so
LH(A) �= ∅. By definition of LH(A), it is H-regular, hence A contains an H-regular
subclass. 
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Definition 4.9. LetA ⊆ 2� × 2� be a class. We say that X isH(B)-generic inA if
(X,B) belongs to every non-trivial Π0

2H-regular subclass of A. If X is H(B)-generic
in 2� × 2� , we simply say that X is H(B)-generic.

Proposition 4.10. If X is H(B)-generic in A and Y ⊇ X , then Y is H(B)-generic
in A.

Proof. Let L ⊆ A be any non-trivial Π0
2H-regular subclass of A. Since X is

H(B)-generic in A, then (X,B) ∈ L. Since Y ⊇ X , then by upward-closure of L,
(Y,B) ∈ L. Therefore Y is H(B)-generic in A. 


Proposition 4.11. If X is H(B)-generic in A and Y =∗ X , then Y is H(B)-generic
in A.

Proof. Let L ⊆ A be any non-trivial Π0
2H-regular subclass of A. Since X is

H(B)-generic in A, then (X,B) ∈ L. Since Y =∗ X , then there is a finite set F such
that Y ∪ F ⊇ X . By H-regularity of L, either (Y,B) or (F,B) belongs to L. Since L
is non-trivial, (F,B) /∈ L, so (Y,B) ∈ L. Therefore Y is H(B)-generic in A. 


Lemma 4.12. Let A ⊆ 2� × 2� be a class and let X be H(B)-generic in A. For
every Y0 ∪ Y1 ⊇ X , if (Y0, B) /∈ LH(A), then Y1 is H(B)-generic in A.

Proof. Suppose for contradiction that there is a non-trivial Π0
2H-regular class

V ⊆ A such that (Y1, B) /∈ V . In particular, V ⊆ LH(A), so (Y0, B) /∈ V . By
partition H-regularity of V , since Y0 ∪ Y1 ⊇ X , then (X,B) /∈ V , which contradicts
H(B)-genericity of X in A. 


Proposition 4.13. Let A ⊆ 2� × 2� be a non-trivial H-large Σ0
1 class. Suppose X

is H(B)-generic in A. Let Y0 ∪ ··· ∪ Yk ⊇ X . Then there is a non-trivial H-large Σ0
1

subclass U ⊆ A together with some i ≤ k such that Yi is H(B)-generic in U .

Proof. We proceed by induction on k. For k = 0, Y0 ⊇ X , so by Proposition
4.10, Y0 is H(B)-generic in A. Take U = A and we are done.

Suppose now that the property holds for k – 1. Suppose Yk is not H(B)-
generic in A. Thus there is a non-trivial Π0

2H-regular class
⋂
e∈C Ue ⊆ A such that

(Yk, B) �∈
⋂
e∈C Ue . In particular, there is some e ∈ C such that (Yk, B) /∈ Ue . Note

that
⋂
e∈C Ue ⊆ A ∩ Ue , so A ∩ Ue is H-large. By Theorem 4.12, Y0 ∪ ··· ∪ Yk–1 is

H(B)-generic in Ue ∩ A. By induction hypothesis on Ue ∩ A and Y0 ∪ ··· ∪ Yk–1,
there is a non-trivial H-large Σ0

1 class V ⊆ Ue ∩ A, together with some i < k such
that Yi is H(B)-generic in V . 


Proposition 4.14. Suppose B is hyperimmune. Then � is H(B)-generic.

Proof. Let L ⊆ 2� × 2� be a non-trivial Π0
2H-regular class. We can assume

L =
⋂
n Un for some decreasing sequence of Σ0

1H-large classes. Fix n ∈ � and let
W ⊆ 2<� × 2<� be a c.e. set such that Un = {(X,Y ) : ∃(�0, �1) ∈W �0 ⊆ X ∧
�1 ⊆ Y}. Let P be a cofinite set.

Fix some s ∈ �. Since Un is H-large, then (�, {s + 1, s + 2, ... }) ∈ Un. Therefore,
there is some (�0, �1) ∈W such that min �1 > s . Let Fs = �1. Note that Fs can
be found computably uniformly in s. Since B is hyperimmune, there is some s
such that Fs ⊆ B . It follows that (�,B) ∈ Un. Since this holds for every n, then
(�,B) ∈

⋂
n Un = L. 
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Proposition 4.15. Suppose B is hyperimmune and A is partition generic relative
to B. Then A is H(B)-generic.

Proof. LetL ⊆ 2� × 2� be a non-trivial Π0
2H-regular class. By Proposition 4.14,

(�,B) ∈ L. Since L is H-regular, then for every k, everyZ0 ∪ ··· ∪ Zk–1 = �, there is
some j < k such that (Zj, B) ∈ L. Thus the classL0 = {X : (X,B) ∈ L} is partition
large. Moreover, L0 is Π0

2(B), so since A is partition generic relative to B, A ∈ L0.
It follows that (A,B) ∈ L. 


4.2. Applications. We now turn to the main application of H(B)-genericity, that
is, a partition genericity subset basis theorem for preservation of hyperimmunity.
As mentioned earlier, the basic preservation of hyperimmunity statement fails for
partition genericity. However, when one considers relativized partition genericity,
then one can prove such as basis theorem.

Theorem 4.16. Suppose A is H(B)-generic in a non-trivial H-large Σ0
1 class U ⊆

2� × 2� . Then there is an infinite subset H ⊆ A such that B is H-hyperimmune.

Proof. Consider the notion of forcing (�,X,V) where (�,X ) is as Mathias
condition, and V ⊆ U is an H-large Σ0

1 class within which X is H(B)-generic. A
condition (�, Y,W) extends another condition (�,X,V) if (�, Y ) Mathias extends
(�,X ) and W ⊆ V .

Any filter F induces a subsetGF =
⋃

(�,X,V)∈F � of A. The first property we prove
is that GF is an infinite set.

Lemma 4.17. Let F be a sufficiently generic filter. Then GF is infinite.

Proof. Let us show that for any n, the set of conditions (�, Y,V) such that
�(x) = 1 for some x > n is dense. Let (�,X,V) be a condition. Since X is
H(B)-generic in V and V is non-trivial, then X ∈ L(V), hence X is infinite. Let
x ∈ X be greater than n, let � be string � ∪ {x}, and let Y = X \ {0, ... , |�|}. By
Proposition 4.11, Y is H(B)-generic in V . Therefore, (�, Y,V) is a valid extension of
(�,X,V). 


In the following lemma, we interpret ΦGe as a partial G-c.e. array {ΦGe (n) : n ∈ �}.
An array {Fn : n ∈ �} intersects a set C if ∀n Fn ∩ C �= ∅.

Lemma 4.18. For every condition (�,X,V), there is an extension (�, Y,W) forcing
ΦGe not to be a G-c.e. array intersecting B.

Proof. We have two cases.
Case 1: the following class is H-large:

A = {(Y,C ) ∈ V : ∃� ⊆ Y∃n Φ�∪�e (n) ⊆ C}.

Since A is a non-trivial Π0
2H-large subclass of U and X is H(B)-generic in U , then

(X,B) ∈ A. Therefore there is some � ⊆ X and some n such that Φ�∪�e (n) ⊆ B .
Let Y = X \ {0, ... , |�|}. By Proposition 4.11, Y is H(B)-generic in V . Therefore
(� ∪ �,Y,V) is an extension of (�,X,V) forcing ΦGe (n) ⊆ B .
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Case 2: there is a co-finite set P and some k such that the following class is
non-empty:

C =
{
Z0 ⊕ ··· ⊕Zk–1 :

Z0 ∪ ··· ∪Zk–1 = �∧
∀i < k (Zi , P) �∈ V ∨ ∀n∀� ⊆ ZiΦ�∪�e (n) ↑ ∨Φ�∪�e (n) �⊆ P

}
.

Note that C is a non-empty Π0
1 class. Pick any element Z0 ⊕ ··· ⊕ Zk–1 ∈ C. By

Proposition 4.13, there is an H-large Σ0
1 subclass W ⊆ V and some i < k such

that Zi ∩ X is H(B)-generic in W . In particular, (Zi ∩ X,B) ∈ LH(W ) ⊆ W , so
(Zi ∩ X,B ∩ P) ∈W ⊆ V and by upward-closure of V, (Zi , P) ∈ V , so for every
n and every � ⊆ Zi , Φ�∪�e (n) ↑ ∨Φ�∪�e (n) �⊆ P. The condition (�,Zi ∩ X,W) is an
extension of (�,X,V) forcing ΦGe not to be a c.e. array. 


We are now ready to prove Theorem 4.16. Let F be a sufficiently generic filter
containing (∅, A,U). By Lemma 4.17,GF is infinite. By construction,GF ⊆ A. Last,
by Lemma 4.18, B is GF -hyperimmune. 


Corollary 4.19. Suppose B is hyperimmune and A is partition generic relative
to B. Then there is an infinite subsetH ⊆ A such that B is H-hyperimmune.

Proof. By Proposition 4.15, A isH(B)-generic. By Theorem 4.16, there is infinite
subsetH ⊆ A such that B is H-hyperimmune. 


Corollary 4.20. Suppose B is hyperimmune and A is Kurtz random relative to B.
Then there is an infinite subset H ⊆ A such that B is H-hyperimmune.

Proof. By Proposition 2.26, A is partition generic relative to B. Apply
Corollary 4.19. 


Corollary 4.21. Let B be a hyperimmune set. Then for every set A ⊆ �, there is
an infinite setH ⊆ A or H ⊆ A such that B is H-hyperimmune.

Proof. By Proposition 4.14, � is H(B)-generic. By Proposition 4.13, there is
an H-large Σ0

1 class U ⊆ 2� × 2� within which either A or A is H-generic. By
Theorem 4.16, there is an infinite set H ⊆ A or H ⊆ A such that B is H-
hyperimmune. 


§5. Preservation of non-Σ0
1 definitions. The purpose of this section is to find the

right genericity notion admitting a preservation of non-Σ0
1 definitions genericity

basis theorem, implying the preservation of non-Σ0
1 definitions pigeonhole basis

theorem. More precisely, the following theorem was proven by Wang [21]:

Theorem 5.1 (Wang [21]). If B is a non-Σ0
1 set, then for every set A ⊆ �, there is

an infinite setH ⊆ A or H ⊆ A such that B is not Σ0
1(H ).

Partition genericity is not the right notion to reprove this pigeonhole basis
theorem. Indeed, the following proposition shows that there is no preservation
of non-Σ0

1 definitions partition genericity basis theorem.

Proposition 5.2. There is a non-Σ0
1 set B and a partition generic set A such that B

is Σ0
1 in every infinite subset of A.
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Proof. Fix any computable linear order L = (�,<L) of order type � + �∗

with no infinite computable ascending or descending sequence (see [18]). Let A
be the � part of this order. Note that A is the �∗ part of this order. First, note
that A is bi-hyperimmune. Indeed, suppose F0, F1, ... is a c.e. array such that for
every n, Fn ∩ A �= ∅. Then the set X = {min<L Fn : n ∈ �} is an infinite c.e. subset
of A. By thinning out the set X, one can compute an infinite increasing sequence,
contradicting our assumption. Thus A is hyperimmune. By a symmetric argument,
A is co-hyperimmune.

By Proposition 2.27, since A is co-hyperimmune, it is partition generic. LetB = A.
Since A is hyperimmune, then it is not c.e. Let H be any infinite subset of A. Then
B = {x ∈ � : ∃n ∈ H, x <L n}. Thus B is c.e. in every infinite subset of A. 


The remainder of this section is devoted to the design of a notion of genericity
which admits a preservation of non-c.e. definitions basis theorem, implying
Theorem 5.1.

5.1. Enumeration genericity. From now on, fix a set B ⊆ �. All the following
definitions hold for any B, but because of Proposition 5.4, the only interesting case
is when the set B is non-Σ0

1. Contrary to hyperimmunity genericity, we need to work
with largeness rather than regularity, for some reasons which will become clear when
proving Proposition 5.4.

Definition 5.3. A class A ⊆ 2� × � is E(B)-large if:

1. If (X, n) ∈ A and X ⊆ Y , then (Y, n) ∈ A.
2. For every finite set F ⊆ B and every k-cover Y0, ... , Yk–1 of �, there is some
j < k such that ∀n ∈ F (Yj, n) ∈ A.

The definition of E(B)-largeness ensures that the class {X : ∀n ∈ B (X, n) ∈ A}
is partition large. If B is not c.e. but A is Σ0

1, then there must be some “overflow,”
in the sense that for every k-cover Y0, ... , Yk–1 of �, there must be some n ∈ B and
some j < k such that (Yj, n) ∈ A. Such an n however depends on k. Therefore, there
does not exist in general an n ∈ B such that the class {X : (X, n) ∈ A} is partition
large, but one still have the following proposition:

Proposition 5.4. Suppose B is not c.e. For every E(B)-large Σ0
1 class U ⊆ 2� × �,

the class {X : ∀n ∈ B (X, n) ∈ U ∧ ∃n ∈ B (X, n) ∈ U} is partition large.

Proof. Suppose B is non-c.e. Let U ⊆ 2� × � be any non-trivial E(B)-large Σ0
1

class. For everyk, s , letAk,s = {m : ∀Z0 ∪ ··· ∪ Zk–1 = � ∃i < k (Zi ,m) ∈ U ∧ ∀n ∈
B �s (Zi , n) ∈ U}. Since U is E(B)-large, for every k, s , the setAk,s is a c.e. superset
of B, so since B is not c.e., there is some ns ∈ Ak,s \ B . By the infinite pigeonhole
principle, for every Z0 ∪ ··· ∪ Zk–1 = �, there is some i < k such that for infinitely
many s, ns ∈ Zi and ∀n ∈ B �s (Zi , n) ∈ U . It follows that for every Z0 ∪ ··· ∪
Zk–1 = �, there is some i < k such that ∃n ∈ B (Zi , n) ∈ U and ∀n ∈ B (Zi , n) ∈ U .
Thus the class {X : ∀n ∈ B (X, n) ∈ U ∧ ∃n ∈ B (X, n) ∈ U} is partition large. 


A class A ⊆ 2� × � is non-trivial if for every (X, n) ∈ A, |X | ≥ 2.

Definition 5.5. Let A ⊆ 2� × � be a class. We say that X is E(B)-generic in
A if for every non-trivial E(B)-large Σ0

1 class U ⊆ A, X ∈ L({Z : ∀n ∈ B (Z, n) ∈
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U ∧ ∃n ∈ B (Z, n) ∈ U}). If X is E(B)-generic in 2� × �, we simply say that X is
E(B)-generic.

Proposition 5.6. Suppose B is not c.e. and A is partition generic relative to B.
Then A is E(B)-generic.

Proof. Fix a non-trivial E(B)-large Σ0
1 class U ⊆ 2� × �. Since B is not c.e.,

by Proposition 5.4, the class V = {X : ∀n ∈ B (X, n) ∈ U ∧ ∃n ∈ B (X, n) ∈ U} is
partition large. Note that V is Π0

2(B). By Proposition 2.18, V contains a partition
regular subclass, so L(V) is partition regular. By Theorem 2.10, L(V) is Π0

2(B), so
since A is partition generic relative to B, A ∈ L(V). 


Proposition 5.7. Suppose B is not c.e. Then � is E(B)-generic.

Proof. Immediate from Proposition 5.6, since � is partition generic relative
to B. 


Proposition 5.8. If X is E(B)-generic in a non-trivial E(B)-large Σ0
1 class A ⊆

2� × �, then X is infinite.

Proof. Let V = {Z : ∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ A}. Since X is E(B)-
generic in A,X ∈ L(V). Since A is non-trivial, for everyX ∈ V , |X | ≥ 2. Therefore,
by Proposition 2.6, L(V) is non-trivial, so since X ∈ L(V), X is infinite. 


Proposition 5.9. If X is E(B)-generic in A and Y ⊇ X , then Y is E(B)-generic
in A.

Proof. Let U be a non-trivial E(B)-large Σ0
1 subclass of A. Since X is E(B)-

generic in A, then, letting V = {Z : ∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ U}, X ∈
L(V). SinceL(V) is closed upward,Y ∈ L(V). Therefore Y isE(B)-generic inA. 


Proposition 5.10. If X is E(B)-generic in A and Y =∗ X , then Y is E(B)-generic
in A.

Proof. Let U ⊆ A be any non-trivial E(B)-large Σ0
1 subclass of A. Let V = {Z :

Z : ∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ U}. Since X is E(B)-generic in A, then
X ∈ L(V). Since Y =∗ X , then there is a finite set F such that Y ∪ F ⊇ X . By
partition regularity of L(V), either F ∈ L(V), or Y ∈ L(V). Since U is non-trivial,
then L(V) is non-trivial, so F �∈ L(V). It follows that Y ∈ L(V). Therefore Y is
E(B)-generic in A. 


Lemma 5.11. Suppose X is E(B)-generic in a class A ⊆ 2� × �. For every
Y0 ∪ Y1 ⊇ X , if Y0 �∈ L({Z : ∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ A}), then Y1

is E(B)-generic in A.

Proof. Fix any non-trivial E(B)-large Σ0
1 class U ⊆ A and let V = {Z : ∀n ∈

B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ U}. Since X is E(B)-generic in A, then X ∈
L(V). Since Y0 ∪ Y1 ⊇ X , then by partition regularity of L(V), either Y0 ∈ L(V),
or Y1 ∈ L(V). Since U ⊆A, then V ⊆{Z : ∀n ∈B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n)∈
A}, so L(V) ⊆ L({Z : ∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ A}). If follows from
hypothesis that Y0 �∈ L(V), so Y1 ∈ L(V). Therefore, Y1 is E(B)-generic in A. 
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Proposition 5.12. Let A ⊆ 2� × � be a non-trivial E(B)-large Σ0
1 class. Suppose

X is E(B)-generic in A. Let Y0 ∪ ··· ∪ Yk ⊇ X . Then there is a non-trivial E(B)-large
Σ0

1 subclass U ⊆ A together with some i ≤ k such that Yi is E(B)-generic in U .

Proof. We proceed by induction on k. For k = 0, Y0 ⊇ X , so by Proposition
5.9, Y is E(B)-generic in A. Take U = A and we are done. Suppose now that the
property holds for k – 1. Suppose Yk is not E(B)-generic in A. Thus there is a non-
trivial E(B)-large Σ0

1 class U ⊆ A such that Yk �∈ L({Z : ∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈
B (Z, n) ∈ U}). By Theorem 5.11,Y0 ∪ ··· ∪ Yk–1 is E(B)-generic in U . By induction
hypothesis on U and Y0 ∪ ··· ∪ Yk–1, there is a non-trivial E(B)-large Σ0

1 subclass
V ⊆ U together with some i < k such that Yi is E(B)-generic in V . 


5.2. Applications. We now turn to the main application of enumeration genericity,
which is a partition genericity subset basis theorem for preservation of non-Σ0

1
definitions.

Theorem 5.13. Suppose A is E(B)-generic in a non-trivial E(B)-large Σ0
1 class

U ⊆ 2� × �. Then there is an infinite subsetH ⊆ A such that B is not Σ0
1(H ).

Proof. Consider the notion of forcing (�,X,V) where (�,X ) is a Mathias
condition, and V ⊆ U is an E(B)-large Σ0

1 class within which X is E(B)-generic.
A condition (�, Y,W) extends another condition (�,X,V) if (�, Y ) Mathias extends
(�,X ) and W ⊆ V .

Any filter F induces a subsetGF =
⋃

(�,X,V)∈F � of A. The first property we prove
is that GF is an infinite set.

Lemma 5.14. Let F be a sufficiently generic filter. Then GF is infinite.

Proof. Let us show that for any n, the set of conditions (�, Y,V) such that
�(x) = 1 for some x > n is dense. Let (�,X,V) be a condition. Since X is E(B)-
generic in V , then by Proposition 5.8, X is infinite. Let x ∈ X be greater than
n, let � be string � ∪ {x}, and let Y = X \ {0, ... , |�|}. By Proposition 5.10, Y is
E(B)-generic in V . Therefore, (�, Y,V) is a valid extension of (�,X,V). 


Lemma 5.15. For every condition (�,X,V), there is an extension (�, Y,W) forcing
WG
e �= B .

Proof. We have two cases.
Case 1: the following class is E(B)-large:

A = {(Y, n) ∈ V : ∃� ⊆ Y n ∈W�∪�
e }.

Since A is a non-trivial E(B)-large Σ0
1 subclass of U and X is E(B)-generic in

U , then X ∈ L({Z : ∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ A}). Therefore there is
some � ⊆ X and some n ∈ B such that n ∈W�∪�

e . Let Y = X \ {0, ... , |�|}. By
Proposition 5.10, Y is E(B)-generic in V . Therefore (� ∪ �,Y,V) is an extension of
(�,X,V) forcingWG

e �= B .
Case 2: there is some finite set F ⊆ B and some k ∈ � such that the following

class is non-empty:

C =
{
Z0 ⊕ ··· ⊕ Zk–1 :

Z0 ∪ ··· ∪ Zk–1 = �∧
∀i < k ∃n ∈ F (Zi , n) �∈ V ∨ ∀� ⊆ Zi n �∈W�∪�

e

}
.
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Note that C is a non-empty Π0
1 class. Pick any element Z0 ⊕ ··· ⊕ Zk–1 ∈ C. By

Proposition 5.12, there is a non-trivialE(B)-large Σ0
1 subclassW ofU and some i < k

such thatZi ∩ X is E(B)-generic in W . In particular, ∀n ∈ B (Zi ∩ X, n) ∈ W ⊆ V ,
and by upward-closure of V , ∀n ∈ B (Zi , n) ∈ V . By choice of Zi , there is some
n ∈ F such that (Zi , n) �∈ V ∨ ∀� ⊆ Zi n �∈W�∪�

e . Since F ⊆ B , (Zi , n) ∈ V , so
∀� ⊆ Zi n �∈W�∪�

e . The condition (�,Zi ∩ X,W) is an extension of (�,X,V) forcing
n �∈WG

e , with n ∈ B . 


We are now ready to prove Theorem 5.13. Let F be a sufficiently generic filter
containing (∅, A,U). By Lemma 5.14,GF is infinite. By construction,GF ⊆ A. Last,
by Lemma 5.15, B is not Σ0

1(GF ). 


Corollary 5.16. Let B be a non-Σ0
1 set. Let A be partition generic relative to B.

Then there is an infinite subset H ⊆ A such that B is not Σ0
1(H ).

Proof. By Proposition 5.6, A is E(B)-generic. By Theorem 5.13, there is an
infinite subset H ⊆ A such that B is not Σ0

1(H ). 


Corollary 5.17. Let B be a non-Σ0
1 set. Let A be Kurtz random relative to B. Then

there is an infinite subset H ⊆ A such that B is not Σ0
1(H ).

Proof. By Proposition 2.26, A is partition generic relative to B, so by
Corollary 5.16, there is an infinite subsetH ⊆ A such that B is not Σ0

1(H ). 


Proof of Theorem 5.1. Let B be a non-Σ0
1 set and let A be a set. By

Proposition 5.7, � is E(B)-generic. By Proposition 5.12, there is a non-trivial
E(B)-large Σ0

1 class A ⊆ 2� × � within which either A or A is E(B)-generic. By
Theorem 5.13, there is an infinite subset H ⊆ A such that B is not Σ0

1(H ). 


§6. Partition genericity and computability. We conclude this study of partition
regularity and partition genericity by considering the corresponding notions of
lowness, and constructing a partition generic set which is both computably
dominated and of non-DNC degree.

Definition 6.1.

1. A set X is low for partition genericity if every partition generic set is partition
X -generic.

2. A set X is low for partition regularity if for every Π0
2(X ) partition regular class

L, there is a Π0
2 partition regular subclass M ⊆ L

3. A set X is low for partition largeness if for every Σ0
1(X ) partition large class U ,

there is a Σ0
1 large subclass V ⊆ U .

It is clear that if X is low for partition regularity or low for partition largeness,
then it is low for partition genericity. Actually, all three notions are trivial, in the
sense that the only degree which is low for partition genericity is the computable
one.

Proposition 6.2. If X is low for partition genericity, then X is computable.

Proof. Let X be a non-computable set. Let A = {� ∈ 2<� : � ≺ X}. Then
A ≡T X and every infinite subset of A computes A. Either A is partition generic
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in a non-trivial partition large Σ0
1 class, or A is partition generic in 2� . In the first

case, by Theorem 3.3, there is an infinite subset of A which does not compute A,
contradiction. Therefore A is partition generic.

Let us show that A is not partition generic relative to X. Since A is infinite, LA is
a non-trivial Π0

2(X ) partition regular class. However, A �∈ LA. Therefore, X is not
low for partition genericity. 


The degrees of partition generic sets are not fully understood. In Section 2.6,
we proved that every co-hyperimmune set and every Kurtz random is partition
generic. By the computably dominated basis theorem, there are Kurtz randoms
of computably dominated degree. Since every weakly 1-generic is Kurtz random,
there are Kurtz randoms of non-DNC degree. On the other hand, Stephan and Yu
[19] proved that the degrees which are low for Kurtz-randomness are precisely the
computably dominated non-DNC degrees, which implies that no Kurtz random is
of both degrees simultaneously. We now prove the existence of a partition generic set
which is low for Kurtz-randomness. This is done using a perfect tree forcing starting
from a suitable tree.

Definition 6.3 (Terwijn and Zambella [20]). Fix a canonical coding of all finite
sets D0, D1, ... . A set X is computably traceable if there is a computable function p
such that, for each functionf ≤T A, there is a computable function h satisfying, for
all n, |Dh(n)| ≤ p(n) and f(n) ∈ Dh(n).

Terwijn and Zambella [20] proved that the computably traceable degrees are
precisely those which are low for Schnorr randomness. It is clear that every
computably traceable set is computably dominated. Moreover, by Kjos-Hanssen,
Merkle, and Stephan [11], every computably traceable set is of non-DNC degree.

Proposition 6.4. There is a partition generic set which is computably traceable and
of minimal degree.

Proof. A function tree is a function T : 2<� → 2<� such that for every
� ∈ 2<� , T (�0) and T (�1) are incompatible extensions of T (�). Any such function
T : 2<� → 2<� induces a function T : 2� → 2� by defining T (X ) =

⋃
�≺X T (�).

We then write [T ] = {f(X ) : X ∈ 2�}. A function tree S extends a function tree T
(written S ≤ T ) if [S] ⊆ [T ].

Lemma 6.5. There is a computable function tree T0 such that for every X,Y ∈ 2�

with X �= Y , then T0(X ) ∪ T0(Y ) =∗ �.

Proof. Let T0(�) = �. Suppose T0 is defined on 2≤n for some n. Let
�0, �1, ... , �2n+1–1 be the list of all strings of length n + 1. For every i < 2n+1,
let �i be the string of length 2n+1 which has a 0 at position i, and 1 everywhere else.
Let T0(�i) = T0(�i �n)��i . For instance, T0(0) = 01, T0(1) = 10, T (00) = 010111,
T (01) = 011011,T (10) = 101101, andT (11) = 101110. Note that every two strings
of same length is sent to strings of same length.

Let X,Y ∈ � be such that X �= Y , and let � be the longest common substring.
We claim that for every n > |T0(�), then either n ∈ T0(X ), or n ∈ T1(Y ). Indeed,
let t be the smallest length such that n < |T0(X �t)|, or equivalently such that
n < |T0(Y �t)|. Let i and j < 2t be such that X �t and Y �t are respectively
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the ith and the jth string of length t. Note that since n > |T0(�)|, then X �t
and Y �t are incomparable, hence i �= j. By definition, T0(X �t) = T0(X �t–1)��i
and T0(Y �t) = T0(Y �t–1)��j , where �i and �j do not have a 0 at the same
position. By choice of t, n ≥ |T0(X �t–1)| = |T0(Y �t–1)|, so either n ∈ T0(X �t),
or n ∈ T0(Y �t). 


Consider the notion of forcing P whose conditions are computable function trees
extending T0. Any sufficiently generic filter F induces a set GF which is the unique
member of

⋂
T∈F [T ]. A condition T forces a formula ϕ(G) if the formula holds for

every G ∈ [T ].

Lemma 6.6. For every non-trivial partition large Σ0
1 classU ⊆ 2� and every condition

T there is an extension S ≤ T forcing G ∈ U .

Proof. Pick two X,Y ∈ 2� with X �= Y . Since T ≤ T0, then T (X ) ∪
T (Y ) =∗ �. Since U is a non-trivial partition large class, either T (X ) ∈ U , or
T (Y ) ∈ U . Assume the first case holds, by symmetry. Since U is Σ0

1, there is a
finite string � ≺ X such that [T (�)] ⊆ U . Let S be the extension of T defined by
S(�) = T (��). Then for every G ∈ [S], G ∈ U . 


Let F be a sufficiently generic filter. By Lemma 6.6, GF is partition generic.
It is well known that every sufficiently generic filter for computable Sacks forcing
produces sets of minimal degree. Terwijn and Zambella [20] proved that these sets
are also computably traceable. 
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CRÉTEIL, FRANCE

E-mail: benoit.monin@computability.fr

CNRS, IMJ-PRG, PARIS, FRANCE

E-mail: ludovic.patey@computability.fr

https://doi.org/10.1017/jsl.2022.69 Published online by Cambridge University Press

https://mathscinet.ams.org/mathscinet-getitem?mr=2703773
https://mathscinet.ams.org/mathscinet-getitem?mr=3382369
https://eprints.illc.uva.nl/id/eprint/1388/
mailto:benoit.monin@computability.fr
mailto:ludovic.patey@computability.fr
https://doi.org/10.1017/jsl.2022.69

	1 Introduction
	1.1 Pigeonhole basis theorems
	1.2 Randomness subset basis theorems
	1.3 Genericity subset basis theorems
	1.4 Partition genericity
	1.5 Organization of this paper
	1.6 Notation

	2 Partition regularity
	2.1 Partition regularity
	2.2 Non-trivial classes
	2.3 Closure properties
	2.4 Π02 Partition regular classes
	2.5 Partition largeness
	2.6 Partition genericity

	3 Applications
	3.1 Cone avoidance
	3.2 PA avoidance
	3.3 Constant-bound trace avoidance
	3.4 Lowness

	4 Preservation of hyperimmunity
	4.1 Hyperimmunity genericity
	4.2 Applications

	5 Preservation of non-Σ01 definitions
	5.1 Enumeration genericity
	5.2 Applications

	6 Partition genericity and computability

