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Perron units which are not Mahler measures
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Abstract. The Mahler measure M(«) of an algebraic integer « is the product of
the absolute value of the conjugates of @ which lie outside the unit circle. The
quantity log M (a) occurs in ergodic theory as the entropy of an endomorphism of
the torus. Adler and Marcus showed that if 8= M(«a) then B is a Perron number
which is a unit if « is a unit. They asked whether the Perron number 8 whose
minimal polynomial is t™ —¢—1 is the measure of any algebraic integer. We show
here that the answer is negative for all m > 3.

Introduction
Let a be an algebraic integer with conjugates a = a4, . .., a, over the rationals. The
Mabhler measure M(a) of a is defined by

M(a) =H max (e, 1).

If we number the o, so that
lay|= - - =zl >1=|a,nlz= - - =]a,)

then M(a)=B=ua, - a, where u==x1. Thus B is itself an algebraic integer.
We wish to consider the inverse question of deciding if a given algebraic integer B
is M(a) for some «, in which case we say that 8 is a measure.

The quantity log M («) occurs in ergodic theory as the entropy of an automorphism
of the torus. In [1], Adler and Marcus observed that if 8 = M(a) then B is a Perron
number, i.e. if v is a conjugate of 8 different from B8 then |y|< B. Furthermore, if
« is a unit then so is B. They asked [1, p. 80] whether the positive zero B of t™ —t—1
can be a measure for any m>3.

Here we will present two additional requirements which must be satisfied by a
measure and apply our results to show, in particular, that the above B8 is not a
measure for any m>3. This may be regarded as indirect evidence in favour of
Lehmer’s conjecture [5] that the set of measures is bounded away from 1 since the
above B—>1 as m- oo,

Our interest in these questions was awakened by the interesting lecture of Boyle
[4]. This research was supported in part by a grant from NSERC.

THEOREM 1. Suppose « is an algebraic integer and that B = M (a) = ua, - -+ a,. Then:
(a) All conjugates y+# B of B lie in the annulus B~ <|y|<B. If |y|=B"" then
y=xBp"".
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(b) If deg @ = n,deg B =m and a has v conjugates in |z}|> 1, then mv/n=r is an
integer and N(B)=u"N(a)".

In particular, if N(a)=1 and m is even then N(8)=1.

Proof. (a) Let I denote a subset of [1,n]={1,2,..., n} of cardinality |I| and let J
be its complement. Write

a(l)=T]{ax: ke I}.
Then each conjugate y of 8 is of the form

y=ua(l), with |I|= .

Since N(a)=a, ' a,=a(l)a(J), we have
y~'=ua(J)/ N(a).

Clearly 8 = M(a)=max {|a(I)|: I<[1, n]}. If a is non-reciprocal then |a,.,|<1
so equality holds only if I =[1, »]. If « is non-reciprocal then |a,|=1for v+ 1<k =<
n—v so equality holds only if [1, v]< Ic[l,n- v].

Thus, if y# B then

ly|=la(D|<8.
Also |y7!|=|a(J)|/|N(a)|= B. Equality here requires N(a)=+1and J=[1,n—»].
Thus, either a is reciprocal and y~'=g8 or else @ is non-reciprocal, 2v=n and
y~'= N(a)B = £B. This completes the proof of (a).

(b) Let G be the Galois group of K =Q(«,,..., «,) over Q represented as a
permutation group on [1, n]. Then G acts on the v-subsets of [1, n] in the obvious
way.

Let O={I,,..., I,;} denote the orbit of I, =[1, ] under G. The conjugates of
B =ua(l,) are thus {ua(l,), ..., ua(I,;)}. Each of the m conjugates of B appears,
say, s times in the list ua(l;),..., ua(l) with M = ms. But here B =ua(l))>
|ua(Ij)|,j¢1 so s=1and thus M =m.

Consider S;={I|je I} for j=1,..., n. We claim that |S;|=r is independent of
J. For G is transitive and hence for any i,j there is a 7 in G with j = =(i). The
action of 7 on O defines a one-one correspondence between S; and S; so |S;| =|S}|.
The orbit O thus consists of m v-sets which together contain the n conjugates of
a r times each. Hence mv = nr and

N@B) =u" 11 a(L)=u"(ay " - an) = u™N(a)"

k=1
COROLLARY. Let 0,>1 solve 1 —t—1=0. If B<8,, B is a measure and deg B is
even, then N(B)=1.

Proof. By a theorem of Smyth [7]; if M(a) < 6, then « is reciprocal, i.e. a is an
algebraic integer with ' a conjugate of a. Then N(a)=+1and by (b), N(8) =+1
if m is even.

PROPOSITION. Let r be as in (b) of theorem 1. Then M(B)<B". Ifr=1then B isa
Pisot or Salem number.
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Proof. M(B) is a product of certain |a(I;)| with I, in O. Since each a; occurs at
most r times in the disjoint union of the I, in O we can estimate this product by

M@)=laf - e 17+ 1" = M(a) = B".

If r=1then M(B8)=8 so B> 1 and has all its other conjugates in |z| <1, thus is a
Pisot or Salem number.

THEOREM 2. Let m>3 and let B be the positive zero of t™ —t—1. Then B is not a
measure.

Proof. The complex zeros of P(z)=z"—z-~1 are discussed by Selmer [6] in his
proof that P is irreducible. They clearly lie on the curve C,, defined by [z|™ =|z+1]|.
If z=re™ then C,, has the polar equation 7™ = r*—2r cos ¢ + 1. This has a unique
positive solution r=f(¢) where f is even and strictly decreasing on 0=¢ <.
Clearly B = f(0).

A given r =0 will be in the range of fif and only if the circles |z] = r and |z + 1| = r™
intersect, i.e. if r™+r=1. In particular, if r=1/8 then r"+r=1/(B+1)+1/8=1
since B°—B—-1=B8"—-B—-1=0. Let 87" ¢® denote the point of intersection of
lz|=B"and |z+1|= 8™ with 0 < ¢o< 7. If m> 2 then ¢, < , and then f($)<B~"
for ¢o< ¢ < .

To show that P(z) =0 has a zero y with |y| < 8~' we must show that it has a zero
re’® with ¢o< ¢ <. If m>2 is even this is clear since —f () is such a zero.

If m is odd then the argument principle shows that P(z) =0 has two zeros in the
sector |arg z— | < 7/ m. If m/m <~ ¢, then P has a zero with ¢o< ¢ <.

Since P(1+1/m)>0> P(1), it follows that 1 <B<1+1/mso,form=58<1.2
and

m— ¢o=cos <—§(1+B_2—(1+B)‘2))

>cos”! <172 (1+(1.2)2— (2-2)—2)) =4,

where 7/8>6.7. Thus P has a zero with |y|<B87' if m=7.

If m=5, a numerical calculation shows that 8 =1.16730 - - - and that there is a
zero vy with |y|=0.84219 - - - <1/8.

Applying theorem 1(a), B is not a measure for m=4.

Remarks. (1) For even m, the corollary also applies since 8 < 8, but N(8)=—1.
(2) The argument principle shows that z™ —z —1 has exactly one zero in each of
the sectors

.

Since the ¢, of the proof tends to 7 —cos ' (7/8) as m-o0, asymptoticaily
m cos ™' (7/8)/ 7 of the zeros of z™ —z—1 satisfy |z|<1/B.

(3) The positive zero B of z°—z°—1 satisfies theorem 1(a), but not 1(b) hence is
not a measure.

2k
m-—1

51} fork=0,1,...,m-2; k#(m—1)/2.

argz—
m
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(4) The polynomial z° — z* — 1 has zeros 8 =1.1938 ..., |B,| =8| =1.0864 - - - and
|Bs| =185/ =0.8423 - - - >1/B hence does not violate either part of theorem 1. It
seems unlikely that B is a measure.

(5) There are reciprocal « for which M () is non-reciprocal. We presented some
examples of degree 6 in [2]. In particular if the minimal polynomial of « is
P(t)=t*+>+2t*+31>+ 21>+ t+1 then 8 = M(a) has minimal polynomial £ — 1> —
t — 1. The explanation depends on the Galois group G of P. Recently [3] we have
constructed such examples of every degree n =2(2k+1)=6.

(6) A complete characterization of the set of measures would be very desirable
but seems difficult.
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