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Maximal representation in infinite dimensions 141

1. Introduction
1.1. Representations of semisimple Lie groups and their lattices. Lattices (that is,
discrete subgroups with finite covolume) of semisimple Lie groups may be thought of
as discretizations of these Lie groups. The question of knowing how much of the ambient
group is encoded in its lattices is very natural and has attracted a lot of interest in the past
decades.

Among the many results, one can highlight Mostow’s strong rigidity that implies
that a lattice in a higher-rank semisimple Lie group without compact factors completely
determines the Lie group [Mos73]. Later, Margulis proved his super-rigidity theorem
and showed that linear representations of irreducible lattices of higher-rank semisimple
algebraic groups over local fields are ruled by representations of the ambient algebraic
groups [Mar91].

These rigidity results may be understood using a geometric object associated with the
algebraic group: a Riemannian symmetric space (for a Lie group) or a Euclidean building
(for an algebraic group over a non-Archimedean field).

Lattices have natural and interesting linear representations outside the finite-dimensional
world, which starts with Hilbert spaces. For example, some representations may come from
the principal series of the Lie group. Outside the world of unitary representations, some
infinite-dimensional representations of a lattice have a very strong geometric flavor. This
is the case when there is an invariant non-degenerate quadratic or Hermitian form of the
finite index, that is, when the representation falls in POK(p,∞) where K = R or C and
p is finite. Then, one can consider the associated action on some infinite-dimensional
Riemannian symmetric space of non-positive curvature XK(p,∞). For example,
when p = 1, XK(p,∞) is the infinite-dimensional real or complex hyperbolic
space. Gromov had the following expressive words to say about XR(p,∞) [Gro93,
p. 121]:

These spaces look as cute and sexy to me as their finite-dimensional siblings but they
have been neglected by geometers and algebraists alike.

In [Duc15b], an analog of Margulis super-rigidity has been obtained for higher-rank
cocompact lattices of semisimple Lie groups using harmonic map techniques. The
main result is that non-elementary representations preserve a totally geodesic copy of a
finite-dimensional symmetric space of non-compact type. The finite-rank assumption, here
p <∞, may be thought of as a geometric Ersatz of local compactness.

The reader should be warned that even in the case of actions on finite-rank symmetric
spaces of infinite dimension, some new baffling phenomena may appear. For example,
Delzant and Py exhibited representations of PSL2(R) in OR(1,∞) (and, more generally, of
PO(1, n) in OR(p,∞) for some values of p depending on n). They found a one-parameter
family of exotic deformations of XR(1, 2) in XR(1,∞) equivariant with respect to
representations leaving no finite-dimensional totally geodesic subspace invariant. See
[DP12, MP14] for a classification. Very recently, this classification has been extended
to self-representations of OR(1,∞) [MP18]. Moreover, exotic representations of SU(1, n)
in OC(1,∞) have also been obtained in [Mon18].
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142 B. Duchesne et al

In rank one, there is, in general, no hope for an analog of Margulis super-rigidity (even in
finite dimension). For example, fundamental groups of non-compact hyperbolic surfaces of
finite volume are free groups and thus not rigid. For compact hyperbolic surfaces, the lack
of rigidity gives rise to the Teichmüller space and thus to a whole variety of deformations
of the corresponding lattices.

For complex hyperbolic lattices, the complex structure constrains the lattices because
the Kähler form implies the non-vanishing of the cohomology in degree two. Furthermore,
in finite dimension, the Kähler form was successfully used to define a characteristic
invariant that selects representations with surprising rigidity properties, the so-called
Toledo invariant [BIW10, Tol89].

The goal of this paper is to study representations of complex hyperbolic lattices in the
groups POC(p,∞) and POR(2,∞), and the associated isometric actions on the Hermitian
symmetric spaces XC(p,∞) and XR(2,∞). These spaces have a Kähler form ω and this
yields a class in bounded cohomology of degree two on G = POC(p,∞) induced by the
cocycle that computes the integral of the Kähler form ω over a straight geodesic triangle
�(g0x, g1x, g2x) whose vertices are in the orbit of a basepoint:

Cxω(g0, g1, g2) = 1
π

∫
�(g0x,g1x,g2x)

ω.

We denote by κbG ∈ H2
b(G, R) the associated cohomology class whereG = POC(p,∞)

(see §5). As in finite dimension, the Gromov norm ‖κbG‖∞ is exactly the rank ofXC(p,∞)
(after normalization of the metric). Let ρ : �→ POC(p,∞) be a homomorphism of a
complex hyperbolic lattice. Pulling back κbG by ρ, one gets a bounded cohomology class
for � and one can define maximal representations of � as representations maximizing a
Toledo number defined as in finite dimension (see Definition 5.7).

Our main results concern maximal representations of fundamental groups of surfaces
and, more generally, hyperbolic lattices. It is a continuation of previous results for
finite-dimensional Hermitian targets, see [BI08, BIW10, KM17, Poz15] among other
references. The meaning of Zariski density in infinite dimension is explained in the
following subsection. For representations with target POC(p,∞), we prove rigidity in the
following way.

THEOREM 1.1. Let � < SU(1, n) be a complex hyperbolic lattice with n a positive integer,
and let ρ : �→ POC(p,∞) be a maximal representation. If p ≤ 2, then there is a
finite-dimensional totally geodesic Hermitian symmetric subspace Y ⊂ XC(p,∞) that is
invariant by �. Furthermore, the representation �→ Isom(Y) is maximal.

More generally, for any p ∈ N, there is no maximal Zariski-dense representation
ρ : �→ POC(p,∞).

In particular, because Y is finite dimensional, the results of Burger and Iozzi [BI08],
the third author [Poz15] and Koziarz and Maubon [KM17] apply.

Interestingly enough, the analogous result of Theorem 1.1 does not hold for the
orthogonal group OR(2,∞) and n = 1. Let� be a compact connected Riemann surface of
genus one with one connected boundary component (which is a circle), that is, a one-holed

https://doi.org/10.1017/etds.2021.111 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.111


Maximal representation in infinite dimensions 143

torus. The fundamental group �� of � is thus a free group on two generators and a lattice
in SU(1, 1).

THEOREM 1.2. There are geometrically dense maximal representations ρ : �� →
POR(2,∞).

Observe that the properties of maximal representations in POR(2,∞) and POC(p,∞)
are so different because, for every p, the Hermitian Lie group OR(2, p) is of tube type,
while the Hermitian Lie groups SU(p, q) are of tube type if and only if p = q. We refer
to §2.4 for more details. This allows much more flexibility, the chain geometry at infinity
being trivial.

Not much is known about the representations of complex hyperbolic lattices, and
even less so in infinite dimension. In the case of surface groups, instead, from the
complementary series of PSL2(R), Delzant and Py exhibited one-parameter families of
representations in POR(p,∞) for every p ∈ N [DP12]. Having explicit representations in
POR(2,∞), it is compelling to determine if they induce maximal representations. Showing
that some harmonic equivariant map is actually totally real, we conclude in Appendix A
that the Toledo invariant of these representations vanishes.

Remark 1.3. The difference between p ≤ 2 and p > 2 lies in the hypotheses under which
we can prove the existence of boundary maps (see §1.2). For p ≤ 2, we are able to prove
the existence of well-suited boundary maps under geometric density (a hypothesis to which
we can easily reduce). Unfortunately, for p > 2, we can only prove it under Zariski density,
which is a stronger assumption.

1.2. Boundary maps and standard algebraic groups. To prove Theorem 1.1, we use, as
it is now standard in bounded cohomology, boundary map techniques. Let � be a lattice in
SU(1, n) and P a strict parabolic subgroup of SU(1, n). The space B = SU(1, n)/P is a
measurable �-space which is amenable and has very strong ergodic properties, and is thus
a strong boundary (see Definition 4.7) in the sense of [BF14]. This space can be identified
with the visual boundary of the hyperbolic space XC(1, n).

In finite dimension, for example in [Poz15], the target of the boundary map is the
Shilov boundary of the symmetric space XC(p, q). If p ≤ q, this Shilov boundary can
be identified with the space Ip of isotropic linear subspaces of dimension p in Cp+q . In
our infinite-dimensional setting, we use the same space Ip of isotropic linear subspaces of
dimension p.

A main difficulty appears in this infinite-dimensional context: this space is not compact
anymore for the natural Grassmann topology. Thus the existence of boundary �-maps
B → Ip is more involved than in finite dimension. Such boundary maps have been
obtained in a non-locally compact setting when the target is the visual boundary ∂X of
a CAT(0) space X of finite telescopic dimension, on which a group � acts isometrically
[BDL16, Duc13]. Here, Ip is only a closed G-orbit of ∂XC(p,∞). Actually, Ip is a
subset of the set of vertices in the spherical building structure on ∂XC(p,∞) and the
previous result is not sufficient. To prove the existence of boundary maps to Ip, we reduce
to representations whose images are dense, in the sense that is explained below.
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144 B. Duchesne et al

Following [CM09], we say that a group � acting by isometries on a symmetric space
(possibly of infinite dimension) of non-positive curvature is geometrically dense if there
is no strict closed invariant totally geodesic subspace (possibly reduced to a point) or
fixed point in the visual boundary. For finite-dimensional symmetric spaces, the geometric
density is equivalent to Zariski density in the isometry group, which is a real algebraic
group. To prove Theorem 1.7, we rely also on the theory of algebraic groups in infinite
dimension introduced in [HK77]. Roughly speaking, a subgroup of the group of invertible
elements of a Banach algebra is algebraic if it is defined by (possibly infinitely many)
polynomial equations with a uniform bound on the degrees of the polynomials.

This notion of algebraic groups is too coarse for our goals and we introduce the notion of
standard algebraic groups in infinite dimension. Let H be a Hilbert space and let GL(H)
be the group of invertible bounded operators of H. An algebraic subgroup of GL(H) is
standard if it is defined by polynomial equations in the matrix coefficients g �→ 〈gei , ej 〉,
where (ei) is some Hilbert base ofH. See Definition 3.4. With this definition, we are able
to show that stabilizers of points in ∂XK(p,∞) are standard algebraic subgroups, and the
same holds for stabilizers of proper totally geodesic subspaces.

Definition 1.4. A subgroup of OK(p,∞) is Zariski dense when it is not contained in a
proper standard algebraic group. A representation ρ : �→ POK(p,∞) is Zariski dense if
the preimage of ρ(�) in OK(p,∞) is Zariski dense. For a short discussion about a possible
Zariski topology in infinite dimension, we refer to Remark 3.2.

We show in Proposition 1.5 that Zariski density implies geometric density.

PROPOSITION 1.5. Let p ∈ N. Stabilizers of closed totally geodesic subspaces of
XK(p,∞) and stabilizers of points in ∂XK(p,∞) are standard algebraic subgroups
of OK(p,∞).

In particular, a Zariski-dense subgroup of OK(p,∞) is geometrically dense.

Question 1.6. Is it true that the converse of Proposition 1.5 holds? Namely, are geometric
density and Zariski density equivalent? It is also possible that one needs to strengthen the
definition of standard algebraic groups to ensure that geometric density and Zariski density
are the same.

Finally, we get the existence of the desired boundary maps under geometric or Zariski
density. In the following statement, two linear subspaces are said to be transverse if their
intersection is trivial.

THEOREM 1.7. Let � be a countable group with a strong boundary B and p ∈ N.
If � acts geometrically densely on XK(p,∞) with p ≤ 2, then there is a measurable

�-equivariant map φ : B → Ip. Moreover, for almost all pairs (b, b′) ∈ B2, φ(b) and
φ(b′) are transverse.

If �→ POK(p,∞) is a representation with a Zariski-dense image, then there is a
measurable �-equivariant map φ : B → Ip. Moreover, for almost all pairs (b, b′) ∈ B2,
φ(b) and φ(b′) are transverse.
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Maximal representation in infinite dimensions 145

1.3. Geometry of chains. In [Car32], Cartan introduced a very nice geometry on the
boundary ∂XC(1, n) of the complex hyperbolic space. A chain in ∂XC(1, n) is the
boundary of a complex geodesic inXC(1, n). It is an easy observation that any two distinct
points in ∂XC(1, n) define a unique chain; moreover, to determine if three points lie in a
common chain, one can use a numerical invariant, the so-called Cartan invariant. Three
points lie in a common chain if and only if they maximize the absolute value of the Cartan
invariant. This invariant can be understood as an angle or the oriented area of the associated
ideal triangle. See [Gol99, §7.1].

As in [Poz15], we use a generalization of chains and of the Cartan invariant to prove
our rigidity statements. For p ≥ 1 and q ∈ N ∪ {∞} with q ≥ p, we denote by Ip(p, q),
or simply Ip if the pair (p, q) is understood, the set of isotropic subspaces of dimension p
in Cp+q . A p-chain (or simply a chain) in Ip(p, q) is the image of a standard embedding
of Ip(p, p) in Ip(p, q). This corresponds to the choice of a linear subspace of Cp+q
where the Hermitian form has signature (p, p). A generalization of the Cartan invariant
is realized by the Bergmann cocycle β : I3

p → [−p, p]. Two transverse points in Ip
determine a unique chain and once again, three points in I3

p that maximize the absolute
value of the Bergmann cocycle lie in a common chain.

The strategy of proof of Theorem 1.1 goes now as follows. We first reduce to
geometrically dense representations (Proposition 5.15) if needed. Thanks to a now
well-established formula in bounded cohomology (Proposition 5.10), we prove that a
maximal representation of a lattice � ≤ SU(1, n) in OC(p,∞) has to preserve the chain
geometry and almost surely maps 1-chains to p-chains (Corollary 6.1).

1.4. Outline of the paper. Section 2 is devoted to the background on Riemannian and
Hermitian symmetric spaces in infinite dimension. Section 3 focuses on algebraic and
standard algebraic subgroups where Proposition 1.5 is proved. The existence of boundary
maps is proved in §4. In §5, we provide a short summary of the basic definitions
related to maximal representations, and adapt them in infinite dimension. Section 6
deals with representations in POC(p,∞), where we prove Theorem 1.1. In §7, we study
representations of fundamental groups of surfaces in POR(2,∞) and prove Theorem 1.2.
The computation of the Toledo invariant for the variation on the complementary series is
carried out in Appendix A.

2. Riemannian and Hermitian symmetric spaces of infinite dimension
2.1. Infinite-dimensional symmetric spaces. In this section, we recall definitions and
facts about infinite-dimensional Riemannian symmetric spaces. By a Riemannian man-
ifold, we mean a (possibly infinite-dimensional) smooth manifold modeled on some real
Hilbert space with a smooth Riemannian metric. For a background on infinite-dimensional
Riemannian manifolds, we refer to [Lan99] or [Pet06].

Remark 2.1. Implicitly, all Hilbert spaces considered in this paper will be separable.
In particular, any two Hilbert spaces of infinite dimension over the same field will be
isomorphic. The symmetric spaces studied below can be defined as well on non-separable
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Hilbert spaces but because we will consider representations of countable groups, we can
always restrict ourselves to the separable case.

Let (M , g) be a Riemannian manifold, a symmetry at a point p ∈ M is an involutive
isometry σp : M → M such that σp(p) = p, and the differential at p is − Id. A Rieman-
nian symmetric space is a connected Riemannian manifold such that, at each point, there
exists a symmetry. See [Duc15a, §3] for more details.

We will be interested in infinite-dimensional analogs of symmetric spaces of
non-compact type. If (M , g) is a symmetric space of non-positive sectional curvature
without local Euclidean factor, then for any point p ∈ M , the exponential exp: TpM → M

is a diffeomorphism and, if d is the distance associated to the metric g, then (M , d) is
a CAT(0) space [Duc15a, Proposition 4.1]. So, such a space M has a very pleasant
metric geometry and in particular, it has a visual boundary ∂M at infinity. If M is
infinite-dimensional, then ∂M is not compact for the cone topology.

Let us describe the principal example of an infinite-dimensional Riemannian symmetric
space of non-positive curvature.

Example 2.2. LetH be some real Hilbert space with orthogonal group O(H). We denote
by L(H) the set of bounded operators onH and by GL(H) the group of the invertible ones
with continuous inverse. If A ∈ L(H), we denote its adjoint by tA. An operator A ∈ L(H)
is Hilbert–Schmidt if

∑
i,j 〈Aei , Aej 〉2 <∞, where (ei) is some orthonormal basis ofH.

We denote by L2(H) the ideal of Hilbert–Schmidt operators and by GL2(H) the elements
of GL(H) that can be written Id +A, where A ∈ L2(H). This is a subgroup of GL(H):
the inverse of Id +A is Id −B with B = A(Id +A)−1 = (Id +A)−1A ∈ L2(H). We also
set O2(H) = O(H) ∩ GL2(H), and denote by S2(H) the closed subspace of symmetric
operators in L2(H) and by P2(H) the set of symmetric positive definite operators in
GL2(H).

Then P2(H) identifies with the quotient GL2(H)/ O2(H) under the action of GL2(H)
on P2(H) given by g · x = gxtg, where g ∈ GL2(H) and x ∈ P2(H). The space P2(H)
is actually a Riemannian manifold, GL2(H) acts transitively by isometries, and the
exponential map exp: S2(H)→ P2(H) is a diffeomorphism. The metric at the origin
o = Id is given by 〈X, Y 〉 = Trace(XY ) and it has non-positive sectional curvature. Then it
is a complete simply connected Riemannian manifold of non-positive sectional curvature.
This is a Riemannian symmetric space and the symmetry at the origin is given by
x �→ x−1.

A totally geodesic subspace of a Riemannian manifold (M , g) is a closed submanifold
N such that for any x ∈ N and v ∈ TxN \ {0}, the whole geodesic with direction v is
contained in N. All the simply connected non-positively curved symmetric spaces that
will appear in this paper are totally geodesic subspaces of the space P2(H) described in
Example 2.2.

A Lie triple system of S2(H) is a closed linear subspace p < S2(H) such that for all
X, Y , Z ∈ p, [X, [Y , Z]] ∈ p, where the Lie bracket [X, Y ] is simply XY − YX. The
totally geodesic subspaces N of P2(H) containing Id are in bijection with the Lie triple
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systems p of S2(H). This correspondence is given byN = exp(p). See [dlH72, Proposition
III.4].

All totally geodesic subspaces of P2(H) are symmetric spaces as well and satisfy a
condition of non-positivity of the curvature operator. This condition of non-positivity of
the curvature operator allows a classification of these symmetric spaces [Duc15a, Theorem
1.8]. In this classification, all the spaces that appear are the natural analogs of the classical
finite-dimensional Riemannian symmetric spaces of non-compact type.

The isometry group of a finite-dimensional symmetric space is a real algebraic group
and thus has a Zariski topology; this is no more available in infinite dimension. Let (M , g)
be an irreducible symmetric space of finite dimension and non-positive sectional curvature,
and let G ≤ Isom(M). It is well known that the group G is Zariski dense if and only if
there is neither a fixed point at infinity nor an invariant totally geodesic strict subspace
(possibly reduced to a point). Thus, following the ideas in [CM09], we say that a group
G acting by isometries on a (possibly infinite-dimensional) Riemannian symmetric space
of non-positive curvature X is geometrically dense if G has no fixed point in ∂X and no
invariant closed totally geodesic strict subspace in X.

2.2. The Riemannian symmetric spaces XK(p,∞). Throughout the paper, H denotes
the division algebra of the quaternions, and H is a separable Hilbert space over K = R,
C, or H of infinite dimension. In the latter case, the scalar multiplication is understood
to be on the right. We denote by L(H) the algebra of all bounded K-linear operators of
H, and GL(H) is the group of all bounded invertible K-linear operators with bounded
inverse. Using the real Hilbert space HR underlying H, one can consider GL(H) as a
closed subgroup of GL(HR). We denote by A∗ the adjoint of A ∈ L(H). In particular,
when K = R, A∗ =t A.

Let p ∈ N. We fix an orthonormal basis (ei)i∈N of the separable Hilbert space H, and
we consider the Hermitian form

Q(x) =
p∑
i=1

xixi −
∑
i>p

xixi ,

where x =∑
eixi . The isometry group of this quadratic form will be denoted OK(Q) or

equivalently OK(p,∞).
The intersection of OK(p,∞) and the orthogonal group ofH is isomorphic to OK(p)×

OK(∞), where OK(p) (respectively OK(∞)) is the orthogonal group of the separable
Hilbert space of dimension p (respectively of infinite dimension). Then the quotient

X = XK(p,∞) = OK(p,∞)/(OK(p)× OK(∞))

has a structure of an infinite-dimensional irreducible Riemannian symmetric space
of non-positive curvature. This can be seen by the identification of XK(p,∞) with
the set

V = {V ≤ H, dimK(V ) = p, Q|V > 0}.
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The group OK(p,∞) acts transitively on V (by Witt’s theorem) and the stabilizer of
the span of the p first vectors is OK(p)× OK(∞). Moreover, the subgroup O2

K(p,∞) =
OK(p,∞) ∩ GL2(H) also acts transitively onV and thus

XK(p,∞) � V � O2
K(p,∞)/(OK(p)× O2

K(∞)).
The stabilizer of the origin in the action of O2

K(p,∞) on P2(HR) is exactly OK(p)×
O2

K(∞) and the orbit of O2
K(p,∞) in P2(HR) is a totally geodesic subspace [Duc13,

Proposition 2.3]. Thus XK(p,∞) has a structure of a simply connected non-positively
curved Riemannian symmetric space.

Observe that when K = R or C, homotheties act trivially on XK(p,∞) and thus
the group POK(p,∞), defined to be OK(p,∞)/{λ Id, |λ| = 1}, acts by isometries on
XK(p,∞). Moreover, it is proved in [Duc13, Theorem 1.5] that this is exactly the isometry
group of XK(p,∞) when K = R.

Definition 2.3. Let X1, X2 be two symmetric spaces of type XK(pi , qi), where pi ≤
qi ∈ N ∪ {∞}, corresponding to Hilbert spaces H1,H2 and Hermitian forms Q1, Q2.
By a standard embedding, we mean the data of a linear map f : H1 → H2 such that
Q2(f (x), f (y)) = Q1(x, y) for all x, y ∈ H1. The group OK(Q1) embeds in OK(Q2)

in the following way: f intertwines the actions on H1 and f (H1) and the action is
trivial on the orthogonal of f (H1), which is a supplementary of f (H1) because Q2 is
non-degenerate on f (H1).

Finally the totally geodesic embedding X1 ↪→ X2 is given by the orbit of the identity
under the action of the orthogonal group of Q1.

The spaces XK(p,∞), with p finite, are very special among infinite-dimensional Rie-
mannian symmetric spaces: they have finite rank, which is p. This means there are totally
geodesic embeddings of Rp in XK(p,∞) but there are no totally geodesic embeddings of
Rq for q > p. Furthermore, every infinite-dimensional irreducible Riemannian symmetric
space of non-positive curvature operator and finite rank arises in this way [Duc15a].

This finite-rank property gives some compactness on X = X ∪ ∂X for a weaker
topology [CL10, Remark 1.2]. Moreover, we have the following important property.

PROPOSITION 2.4. [Duc13, Proposition 2.6] Any finite configuration of points, geodesics,
points at infinity, flat subspaces of XK(p,∞) is contained in some finite-dimensional
totally geodesic subspace of XK(p,∞) which is a standard embedding of XK(p, q) with
q ∈ N.

The boundary at infinity ∂XK(p,∞) has a structure of a spherical building, which we
now recall. We refer to [AB08] for general definitions and facts about buildings, and to
[Duc13] for the specific case in which we are interested. The space ∂XK(p,∞) has a
natural structure of a simplicial complex (of dimension p − 1): a simplex (of dimension
r − 1) in ∂XK(p,∞) is defined by a flag (V1 � · · · � Vr), where all the Vi are non-zero
totally isotropic subspaces ofH. In particular, vertices of ∂XK(p,∞) correspond to totally
isotropic subspaces. A simplex A is contained in a simplex B if all the subspaces appearing
in the flag A also appear in the flag B.
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Each vertex has a type, which is a number between 1 and p given by the dimension of the
corresponding isotropic subspace. More generally, the type of a cell is the finite increasing
sequence of dimensions of the isotropic subspaces in the associated isotropic flag.

Definition 2.5. Two vertices of ∂XK(p,∞), corresponding to isotropic spaces V and
W, are opposite if the restriction of Q to V +W is non-degenerate, which means
W ∩ V ⊥ = 0.

Two simplices of the same type, corresponding to two flags (V1 ⊂ · · · ⊂ Vr) and (W1 ⊂
· · · ⊂ Wr) of the same type, are opposite if their vertices of the same type are opposite.

Remark 2.6. In terms of CAT(0) geometry, we note that two vertices of ∂XK(p,∞) of the
same type are opposite if and only if they are joined by a geodesic line in XK(p,∞). For
vertices of dimension p, opposition is equivalent to transversality: two vertices V , W with
dim(V ) = dim(W) = p are opposite if and only if V ∩W = 0.

2.3. Hermitian symmetric spaces. Let (M , g) be a Riemannian manifold (possibly
of infinite dimension). An almost complex structure is a (1, 1)-tensor J such that for
any vector field X, J (J (X)) = −X. A triple (M , g, J ), where (M , g) is a Riemannian
manifold and J is an almost complex structure, is a Hermitian manifold if for all vector
fields X, Y , g(J (X), J (Y )) = g(X, Y ). If (M , g, J ) is a Hermitian manifold, we define
a 2-form ω by the formula ω(X, Y ) = g(J (X), Y ). A Kähler manifold is a Hermitian
manifold such that dω = 0 and ω is the Kähler form on M.

Let (M , g, J ) be a Hermitian manifold and ∇ be the Levi-Civita connection associated
to the Riemannian metric g. The almost-complex structure J is parallel if ∇J = 0, that
is, if for all vector fields X, Y , ∇X(JY ) = J (∇XY). This parallelism condition implies
that ω is parallel as well, that is, for all vector fields X, Y , Z, (∇Xω)(Y , Z) = 0. Because
dω(X, Y , Z) = (∇Xω)(Y , Z)− (∇Yω)(X, Z)+ (∇Zω)(X, Y ), the parallelism condition
∇J = 0 implies that ω is closed.

Let N be the Nijenhuis (2,0)-tensor on M, that is, for all vector fields X, Y ,

N(X, Y ) = 2([X, Y ]− [J (X), J (Y )]− J [J (X), Y ]− J [X, J (Y )]).

The parallelism of J implies that this tensor vanishes. An almost-complex structure J with
vanishing Nijenhuis tensor is called a complex structure. Thus a parallel almost-complex
structure is a complex structure.

Definition 2.7. Let (M , g) be a simply connected Riemannian symmetric space of
non-positive sectional curvature. The symmetric space M is said to be a Hermitian
symmetric space if it admits a Hermitian almost-complex structure J that is invariant under
symmetries. This means that for any p, q ∈ M ,

dσp ◦ Jσp(q) ◦ dσp = Jq
on the tangent space TqM . One also says that the symmetries are holomorphic.

Let us recall some notation in P2(H). We denote by o the origin in P2(H), that is, the
identity Id of H. The symmetry σo at the origin is the map x �→ x−1. The action τ of
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GL2(H) on P2(H) is given by τ(g)(x) = gxtg. In particular, one has the relation

σo ◦ τ(g) = τ(g−1) ◦ σo.
The exponential map exp: L2(H)→ GL2(H) is a local diffeomorphism around the origin
and it induces a diffeomorphism exp: S2(H)→ P2(H). In particular, we identify the
tangent space at the origin To P2(H) with the Hilbert space S2(H). The isotropy group of
the origin, that is, the fixator of o, is O2(H). It acts also on S2(H) by g · v = gvtg and
one has g exp(v)tg = exp(gvtg) for all v ∈ S2(H) and g ∈ O2(H). If K is a subgroup of
O2(H), we denote by K∗ its image in the isometry group of S2(H).

The following proposition is a mere extension of a classical statement in finite dimen-
sion to our infinite-dimensional setting (see for example [Hel01, Proposition VIII.4.2]). It
can be proved with the same methods.

PROPOSITION 2.8. Let (M , g) be a totally geodesic subspace of the symmetric space
P2(H) containing o (the identity element) and corresponding to the Lie triple system p.
Let G be the connected component of the stabilizer of M in GL2(H) and let K be the
isotropy subgroup of o in G. Assume there is an operator J0 : p→ p such that:
(1) J 2

0 = − Id;
(2) J0 is an isometry; and
(3) J0 commutes with all elements of K∗.
Then there is a unique G-invariant almost-complex structure J on M which coincides
with J0 on ToM . Moreover, J is Hermitian and parallel. Thus, (M , g, J ) is a Hermitian
symmetric space and a Kähler manifold.

Remark 2.9. It is well known that a finite-dimensional manifold with a complex structure
J is a complex manifold, that is, a manifold modeled on Cn with holomorphic transition
maps. The same result does not hold in full generality for infinite-dimensional manifolds
but in the case of real analytic Banach manifolds, the result still holds [Bel05, Theorem 7].
The Hermitian symmetric spaces we consider have a real analytic complex structure and
thus are complex manifolds. Nonetheless, we will not need this result.

In the remainder of this section, we exhibit the complex structures J on two classes of
Hermitian symmetric spaces we will use later in the paper. Thanks to Proposition 2.8, it
suffices to find J0 with the required properties. The complex structures we describe are all
the natural analogs of the corresponding complex structures in finite dimension.

Below, we use orthogonal decompositions H = V ⊕W and block decompositions for
elements of L(H). When we write g =

[
A B
C D

]
, this means that A = πV ◦ g|V ∈ L(V ),

B = πV ◦ g|W ∈ L(W , V ), C = πW ◦ g|V ∈ L(V , W), and D = πW ◦ g|W ∈ L(W).

2.3.1. The Hermitian symmetric space XC(p,∞). LetH be a complex Hilbert space of
infinite dimension. We denote byHR the underlying real Hilbert space. Let V , W be closed
orthogonal complex subspaces of dimension p ∈ N ∪ {∞} and∞ such thatH = V ⊕W .
Let Ip,∞ = IdV ⊕− IdW . Thus,

O2
C(p,∞) = {g ∈ GL2(H), g∗Ip,∞g = Ip,∞}.
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The symmetric space XC(p,∞) is the O2
C(p,∞)-orbit of the identity in P2(HR), that is,

the image under the exponential map of the Lie triple system

p =
{[

0 A

A∗ 0

]
, A ∈ L2(W , V )

}
.

The complex structure is induced by the endomorphism J0 of p defined by J0

[
0 A
A∗ 0

]
=[

0 iA
−iA∗ 0

]
. Because the stabilizer of IdHR in OC(p,∞) is given by all the operators that

can be expressed as
[
P 0
0 Q

]
with P ∈ O2

C(V ) and Q ∈ O2
C(W), J0 satisfies the conditions

of Proposition 2.8.

2.3.2. The Hermitian symmetric space XR(2,∞). Let H be a real Hilbert space of
infinite dimension. Let V , W be closed orthogonal subspaces of dimension two and ∞
such thatH = V ⊕W . Let I2,∞ = IdV ⊕− IdW . Thus,

O2
R(2,∞) = {g ∈ GL2(H), t gI2,∞g = I2,∞}.

The symmetric space XR(2,∞) is the O2
R(2,∞)-orbit of the identity in P2(H), that is, the

image under the exponential map of the Lie triple system

p =
{[

0 A
tA 0

]
, A ∈ L(W , V )

}
.

Fix some orthonormal basis (e1, e2) of V and let I =
[

0 −1
1 0

]
. This element belongs to the

group SOR(2), which is commutative. The complex structure is defined by J0

[
0 A
tA 0

]
=[

0 IA
−t (IA) 0

]
. Because the stabilizer of IdH in the identity component of O2

R(2,∞) is given

by operators of the form
[
P 0
0 Q

]
, with P ∈ SOR(2) and Q ∈ O2

R(∞), let us denote by

O+R(2,∞) the set of elements in OR(2,∞) of the form
[
A B
C D

]
, where A has positive

determinant. So there is a O+R(2,∞)-invariant complex structure on XR(2,∞). Let us
denote by PO+R(2,∞) the image of O+R(2,∞) under the quotient map OR(2,∞)→
POR(2,∞).

2.4. Tube-type Hermitian symmetric spaces. In finite dimension, the class of Hermitian
symmetric spaces splits into two classes: those of tube type and those that are not of
tube type. This distinction is important for the approach we use to understand maximal
representations. For a definition in finite dimension, we refer to [BIW09]. Let us briefly
recall that if X is a finite-dimensional Hermitian symmetric space, a chain is the boundary
(as a subset of the Shilov boundary of X) of a maximal tube-type subspace. By definition,
if X is of tube type, there is a unique maximal tube-type subspace: X itself. However, if X
is not of tube type, chains lie in a unique Isom(X)-orbit and it yields a new incidence
geometry: the chain geometry (see [Poz15, §3]). Let us give an ad hoc definition of
tube-type Hermitian symmetric spaces in infinite dimension.
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Definition 2.10. An irreducible Hermitian symmetric space is of tube type if there is
a dense increasing union of tube-type finite-dimensional totally geodesic holomorphic
Hermitian symmetric subspaces.

LEMMA 2.11. The Hermitian symmetric spaces XC(∞,∞), XR(2,∞), Sp2(H)/ U2(H),
and the space O∗2(∞)/ U2(∞) are of tube type.

The Hermitian symmetric space XC(p,∞) with p <∞ is not of tube type.

Proof. The four first cases are simply the closure of an increasing union of Hermitian
totally geodesic holomorphic subspaces isomorphic to respectively XC(n, n), XR(2, n),
Sp(2n)/ U(n), and SO∗(4n)/ U(2n). All those spaces are of tube type.

For XC(p,∞) with p <∞, we know that any finite-dimensional totally geodesic
and holomorphic Hermitian symmetric subspace Y is contained in some standard copy
of XC(p, q) for q > p large enough. In particular, if Y is of tube type, then it lies in
some standard copy of XC(p, p) and thus standard copies of XC(p, p) are maximal
finite-dimensional Hermitian symmetric subspaces of tube type.

Remark 2.12. Among the infinite-dimensional Hermitian symmetric spaces of tube type,
XR(2,∞) is remarkable. This is the only one to be of tube type and of finite rank.

Remark 2.13. A theory of tube-type domains and Jordan algebras in infinite dimension
has been developed. We refer to [KU77] and references for an entrance to this subject. We
do not rely on this theory.

3. Algebraic groups in infinite dimension
3.1. Algebraic subgroups of bounded operators of Hilbert spaces. Algebraic subgroups
of finite-dimensional linear Lie groups are well understood and equipped with a useful
topology: the Zariski topology. In infinite dimension, some new and baffling phenomena
may appear. For example, one-parameter subgroups may be non-continuous. In [HK77],
Harris and Kaup introduced the notion of linear algebraic groups and showed that they
behave nicely with respect to the exponential map. In particular, the exponential map is a
local homeomorphism and any point sufficiently close to the origin lies in some continuous
one-parameter subgroup.

LetA, B be two real Banach algebras and letG(A) be the set of all invertible elements of
A. A map f : A→ B is a homogeneous polynomial map of degree n if there is a continuous
n-linear map f0 ∈ Ln(A, B) such that for any a ∈ A, f (a) = f0(a, . . . , a). Now, a map
f : A→ B is polynomial if it is a finite sum of homogeneous polynomial maps. Its degree
is the maximum of the degrees that appear in the sum.

LetH be a real Hilbert space. The Banach algebras we will use are L(H) endowed with
the operator norm and the field of real numbers R. The group of invertible elements in
L(H) is GL(H).

Definition 3.1. A subgroup G of G(A) is an algebraic subgroup if there is a constant n
and a set P of polynomial maps of degrees at most n on A× A such that

G = {g ∈ G(A); P(g, g−1) = 0, for all P ∈ P}.
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Observe that P may be infinite but the degrees of its elements are uniformly bounded.
The main result of [HK77] is the fact that an algebraic subgroup is a Banach Lie group
(with respect to the norm topology) and that the exponential map gives a homeomorphism
in a neighborhood of the identity.

Remark 3.2. In this context, one could define a generalized Zariski topology by choosing
the smallest topology such that zeros of polynomial maps (or standard polynomial maps,
see below) are closed. This topology behaves differently from the finite-dimensional case
because the Noetherian property does not hold. We will not use any such topology.

Moreover, the intersection of an infinite number of algebraic subgroups has no reason
to be an algebraic group. Degrees of the defining polynomials may be unbounded.

Examples 3.3.
(1) Let H be a Hilbert space of infinite dimension over C and let HR be the underlying

real Hilbert space. Let I be the multiplication by the complex number i. Then I is an
isometry ofHR of order two and

GL(H) = {g ∈ GL(HR), gI = Ig}.
Because the map M �→ MI − IM is linear on L(H), GL(H) is an algebraic
subgroup of GL(HR). Similarly, if H is the field of quaternions and H is a Hilbert
space over H (with underlying real Hilbert space HR), then GL(H) is an algebraic
subgroup of GL(HR).

(2) Let H be a Hilbert space of infinite dimension over K and H = V ⊕W be an
orthogonal splitting where V has dimension p ∈ N. Let Ip,∞ be the linear map
IdV ⊕− IdW . By definition, the group OK(p,∞) is

OK(p,∞) = {g ∈ GL(H), g∗Ip,∞g = Ip,∞}
and because the map (L, M) �→ L∗Ip,∞M is bilinear on L(HR)× L(HR), the
group OK(p,∞) is a (real) algebraic subgroup of GL(HR). This is a particular case
of [HK77, Example 4].

In finite dimension, linear algebraic groups of GLn(R) are given by polynomial
equations in matrix coefficients. We generalize this notion to subgroups of GL(H).

Definition 3.4. Let H be a real Hilbert space. A matrix coefficient is a linear map
f : L(H)→ R such that there are x, y ∈ H such that f (L) = 〈Lx, y〉 for any L ∈ L(H).
A homogeneous polynomial map P on L(H)× L(H) of degree d is standard if there is
an orthonormal basis (en)n∈N of H, non-negative integers m, l such that d = m+ l, and
families of real coefficients (λi)i∈N2m , (μj )j∈N2l such that for all (M , N) ∈ L(H)× L(H),
P(M , N) can be written as an absolutely convergent series

P(M , N) =
∑

i∈N2m, j∈N2l

λiμjPi(M)Pj (N),

where Pi(M)=∏m−1
k=0 〈Mei2k , ei2k+1〉 for i ∈ N2m and similarly Pj (N)=∏l−1

k=0 〈Nei2k , ei2k+1〉
for j ∈ N2l .
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A polynomial map is standard if it is a finite sum of standard homogeneous polynomial
maps. A subgroup of GL(H) is a standard algebraic subgroup if it is an algebraic subgroup
defined by a family of standard polynomials.

Examples 3.5.
(1) Any matrix coefficient is a standard homogeneous polynomial map of degree one.

For x, y ∈ H and any orthonormal basis (en)n∈N, we define xn = 〈x, en〉 and
similarly yn = 〈y, en〉 for any n ∈ N. Then the matrix coefficient P(M) = 〈Mx, y〉
is given by the series ∑

i,j∈N

xiyj 〈Mei , ej 〉.

For any finite subset K ⊂ N2 finite containing {1, . . . , n}2,∣∣∣∣ ∑
i,j≤n

xiyj 〈Mei , ej 〉 − 〈Mx, y〉
∣∣∣∣ ≤ ‖M‖(‖x‖‖πn(y)− y‖ + ‖y‖‖πn(x)− x‖),

where πn(x) is the projection on the space spanned by the n first vectors of the basis.
This implies that the series is absolutely convergent (see [Cho69, VII-3-§8]).

(2) The group OK(p,∞) is not only an algebraic group, it is also a standard algebraic
group. Let (ei)i∈N be an orthonormal basis of H adapted to the decomposition
H = V ⊕W as in Example 3.3. An element g ∈ GL(H) is in OK(p,∞) if and
only if 〈Ip,∞gei , gej 〉 = 〈Ip,∞ei , ej 〉 for any i, j ∈ N. Because 〈Ip,∞gei , gej 〉 =∑
k∈N〈gei , Ip,∞ek〉〈gej , ek〉 and the coefficient 〈gei , Ip,∞ek〉 is εk〈gei , ek〉 with

εk = −1 for m ≤ p and εk = 1 for m ≥ p, we see that OK(p,∞) is a standard
algebraic group.

(3) Let H be a real Hilbert space and V < H be a closed subspace, then H = Stab(V )
is a standard algebraic subgroup of GL(H). Actually,

H = {g ∈ GL(H), 〈gx, y〉 = 0, for all x ∈ V , y ∈ V ⊥},
and thus is a standard algebraic subgroup of GL(H).It follows that stabilizers of
simplices of the building at infinity of XK(p,∞) are standard algebraic subgroups
of OK(p,∞). Moreover, if ξ is a point at infinity, its stabilizer coincides with the
stabilizer of the minimal simplex that contains it. See [Duc13, Proposition 6.1] for
details in the real case. The same argument works as well over C and H. In particular,
stabilizers of points at infinity are standard algebraic subgroups.

Let H be a standard algebraic subgroup of GL(H). If E is a finite-dimensional subspace
ofH, we denote by HE the subgroup of elements g ∈ H such that g(E) = E, g|E⊥ = Id.
We identify HE with an algebraic subgroup of GL(E). By a strict algebraic group H, we
mean that H is algebraic and H �= GL(H).

LEMMA 3.6. If H is a strict standard algebraic subgroup, then there is a finite-dimensional
subspace E ⊂ H such that HE is a strict algebraic subgroup of GL(E).
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Proof. Let P be the family of standard polynomials defining the algebraic subgroup H.
Let P ∈ P be a non-constant standard polynomial. Choose an orthonormal basis (en) such
that P can be written as an absolutely convergent series. For n ∈ N, let us set En to be the
space spanned by (e1, . . . , en).

In particular for n large enough, the restriction of P to pairs (g, g−1) is a non-constant
polynomial map on GL(En) and thus defines a strict algebraic subset of GL(En).

Remark 3.7. Not all polynomial maps are standard. The set of compact operators Lc(H)
is closed in L(H) (it is the closure of the set of finite-rank operators) and by Hahn–Banach
theorem, there is a non-trivial bounded linear form that vanishes on Lc(H). This linear
form is not standard because it vanishes on all finite-rank operators.

Remark 3.8. By Proposition 1.5 (proved in §3.2), Zariski density (Definition 1.4) implies
geometric density and we do not know if the converse holds. Lemma 3.6 shows that
algebraic subgroups can be tracked by considering finite-dimensional subspaces. So, one
can think that phenomena similar to those in the finite-dimensional case happen and this is
maybe a clue that the converse implication between geometric density and Zariski density
holds. In particular, one can show that if H is a strict algebraic subgroup of OK(p,∞)
such that there is some finite-dimensional subspace E with HE �= {Id}, then H is not
geometrically dense.

3.2. Exterior products. Let HK be a Hilbert space over K with Hermitian form Q of
signature (p,∞). We denote by H the underlying real Hilbert space and by (·, ·) the real
quadratic form �(Q).

The exterior product
∧kH has a natural structure of pre-Hilbert space and there is a

continuous representation πk : GL(H)→ GL(
∧kH) given by the formula πk(g)(x1 ∧

· · · ∧ xk) = gx1 ∧ · · · ∧ gxk . An orthonormal basis of
∧kH is given by (ei1 ∧ · · · ∧

eik )i∈I, where I is the set of elements i ∈ Nk such that i1 < · · · < ik and (ei) is an
orthonormal basis of H. In other words, if 〈·, ·〉 is the scalar product on H, then the
bilinear form applied to two vectors x1 ∧ · · · ∧ xk and y1 ∧ · · · ∧ yk is given by the Gram

determinant det(〈xi , yj 〉i,j=1..k). As usual, the completion of
∧kH is denoted

∧kH.
The space

∧kH is also endowed with a quadratic form built from Q. One defines
(x1 ∧ · · · ∧ xk , y1 ∧ · · · ∧ yk) to be det((xi , yj )). As soon as k ≥ 2, this quadratic form

is non-degenerate of signature (∞,∞) and extends continuously to
∧kH. Moreover,

πk(OK(Q)) preserves this quadratic form.

LEMMA 3.9. Let (ei)i∈I be an orthonormal basis of H and let v, w be vectors of
∧kH.

There are families (λi) and (μi) such that for any g ∈ GL(H),

(πk(g)v, w) =
∑
i,j∈I

λiμj
1
k!

∑
σ∈Sk

k∏
l=1

(geil , ejσ(l) )

is a standard polynomial in g.
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Proof. If suffices to write v =∑
i∈I

∧k
l=1 eil λi and w =∑

j∈I
∧k
l=1 ejlμj and express

the scalar product of
∧kH in the basis (ei1 ∧ · · · ∧ eik )i∈I. The sum is absolutely

convergent because (λi) and (μj ) are Hilbert coordinates. Finally, (geil , ejσ(l) ) =
〈geil , Ip,∞ejσ(l)〉 and writing Ip,∞ejσ(l) in the Hilbert base, one recovers an absolutely
convergent series of matrix coefficients in the Hilbert base (ei).

LEMMA 3.10. Let V be a non-trivial subspace of
∧kH. The stabilizer of V in OK(Q) is a

standard algebraic subgroup.

Proof. If V is a non-trivial subspace of
∧kH, one can choose an orthonormal basis (vi)i∈I

of
∧kH such that the closure V in the Hilbert completion

∧kH is the closed span of
(vi)i∈I0 for some I0 ⊂ I .

Let H be the subgroup of OK(Q) stabilizing V . Thus, by Lemma 3.9, g belongs to
H if and only if, for all i ∈ I0 and j ∈ I \ I0, we have (πk(g)vi , vj ) = 0. Thus, H is
the algebraic subgroup of OK(Q) defined by the family of polynomials P = {Pij } where
Pij (g) = (πk(g)vi , vj ).
Proof of Proposition 1.5. We have seen in Example 3.5 that stabilizers of points at infinity
are standard algebraic subgroups. Assume Y is a strict totally geodesic subspace of X.
Without loss of generality, we assume that o ∈ Y and thus Y corresponds to some Lie
triple system p < S2(H). Let k = [p, p] and m be the Lie algebra k⊕ p ≤ L2(H). Because
m is a Lie algebra,G = exp(m) is a subgroup of GL2(H) that is generated by transvections
along geodesics in Y. In particular, for any h ∈ OK(p,∞), h normalizes G if and only if
h preserves Y. Because G = exp(m), h normalizes G if and only if it stabilizes m under
the adjoint action (that is, Ad(h)(m) = m, which means that for any X ∈ m, hXh−1 ∈ m).
Because m is a closed subspace of L2(H), we have the splitting L2(H) = m⊕m⊥. So,
h stabilizes m if and only if for any X ∈ m and Y ∈ m⊥, 〈hXh−1, Y 〉 = 0, where 〈 , 〉
is the Hilbert–Schmidt scalar product. Finally, because the map (M , N) �→ 〈MXN , Y 〉 is
bilinear on L(H)× L(H), H is an algebraic subgroup of OK(p,∞). It remains to show
that these bilinear maps are standard. Let (en) be an orthonormal basis ofH and let Ei,j =
ei ⊗ e∗j be the associated orthonormal basis of L2(H), that is, Ei,j (x) = 〈x, ej 〉ei . Thus,
let us write X =∑

i,j Xi,jEi,j and Y =∑
i,j Xi,jEi,j to obtain

〈MXN , Y 〉 =
∑
i,j ,k,l

Xi,j Yk,l〈MEi,jN , Ek,l〉,

where
〈MEi,jN , Ek,l〉 = Trace((MEi,jN)∗Ek,l)

=
∑
n∈N

〈N∗Ei,jM∗Ek,l(en), en〉

= 〈N∗Ej ,iM
∗(ek), el〉

= 〈Ej ,iM
∗(ek), N(el)〉

= 〈ei , M∗(ek)〉〈ej , N(el)〉
= 〈M(ei), ek〉〈ej , N(el)〉.
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The absolute convergence of the series can be proven with the same arguments as in
Example 3.5.(1).

Let H be a Hilbert space over K with a non-degenerate Hermitian form Q of signature
(p,∞) with p ∈ N. For a finite-dimensional non-degenerate subspace E ⊂ H of Witt
index p, we denote by XE ⊂ XK(p,∞) the subset of isotropic subspaces of E of
dimension p. This corresponds to a standard embedding of XK(p, q) ↪→ XK(p,∞),
where (p, q) is the signature of the restriction of Q to E. Let E be the collection of all
such finite-dimensional subspaces. We conclude this section with a lemma that shows that
the family (XE)E∈E is cofinal among finite-dimensional totally geodesic subspaces.

LEMMA 3.11. For any finite-dimensional totally geodesic subspaceY ⊂ XK(p,∞), there
is E ∈ E such that Y ⊂ XE .

Proof. We claim that one can find finitely many points x1, . . . , xn ∈ Y such that Y is
the smallest totally geodesic subspace of X that contains {x1, . . . , xn}. We define by
induction points x1, . . . , xk ∈ Y and Yk , that is, the smallest totally geodesic subspace
containing {x1, . . . , xk}. Observe thatYk has finite dimension because {x1, . . . , xk} ⊂ Y
and Y has finite dimension. For x1, choose any point in Y and let Y1 be {x1}. Assume
x1, . . . , xk have been defined. If Yk �= Y, choose xk+1 ∈ Y \Yk . One has Yk+1 � Yk
and thus dim(Yk+1) > dim(Yk). So, in finitely many steps, one gets that there is n ∈ N
such that Yn = Y.

The points x1, . . . , xn are positive definite subspaces (with respect to Q) of H. So,
let E be the span of these subspaces. Observe that this space has finite dimension and
x1, . . . , xn ∈ XE . Up to adding finitely many vectors to E, we may moreover ensure that
E is non-degenerate with Witt index p.

4. Boundary theory
4.1. Maps from strong boundaries. Let G be a locally compact, second countable group
acting continuously by isometries onXK(p,∞), where p is finite. This section is dedicated
to the analysis of Furstenberg maps also known as boundary maps from a measurable
boundary of G to the geometric boundary ∂XK(p,∞), or more precisely, to some specific
part of this boundary. We use a suitable notion of a measurable boundary of a group
introduced in [BF14, §2]. This definition (see Definition 4.7) is a strengthening of previous
versions introduced by Furstenberg [Fur73] and Burger and Monod [BM02].

Let us recall that a Polish space is a topological space which is separable and completely
metrizable. By a Lebesgue G-space, we mean a standard Borel space (that is, a space and
a σ -algebra given by some Polish space and its Borel σ -algebra), equipped with a Borel
probability measure and an action of G which is measurable and preserves the class of the
measure. We denote by P(�) the space of probability measures on a standard Borel space
�. This is a Polish space for the topology of weak convergence.

Definition 4.1. Let� be a standard Borel space, λ ∈ P(�). Assume that G acts on�with a
measure-class preserving action. The action of G on� is isometrically ergodic if for every
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separable metric space Z equipped with an isometric action of G, every G-equivariant
measurable map �→ Z is essentially constant.

Remark 4.2. If the action of G on � is isometrically ergodic, then it is ergodic (take Z =
{0, 1} and the trivial action). Furthermore, if the action of G on �×� is isometrically
ergodic, then it is also the case for the action on �.

Definition 4.3. Let Y and Z be two Borel G-spaces and p : Y → Z be a Borel
G-equivariant map. We denote by Y ×p Y the fiber product over p, that is, the subset
{(x, y) ∈ Y 2, p(x) = p(y)} with its Borel structure coming from Y 2.

We say that p (or Y) admits a fiberwise isometric action if there exists a Borel,
G-invariant map d : Y ×p Y → R such that any fiber Y ′ ⊂ Y of p endowed with d|Y ′×Y ′
is a separable metric space.

Before going on, let us give a few examples of fiberwise isometric actions. These
examples are closed to measurable fields of metric spaces that appear in [BDL16] and
are simpler versions of fiberwise isometric actions that will appear in the proof of
Theorem 1.7.

Example 4.4. Let (M , d) be a metric space. The Wisjman hyperspace 2M is the set of
closed subspaces in M. This space can be embedded in the space C(M) of continuous
functions on M: to any close subspace A, one associates the distance function x �→
d(A, x). The topology of pointwise convergence on C(M) induces the so-called Wisjman
topology on 2M . If (M , d) is complete and separable, then the Wisjman hyperspace is a
Polish space. Actually, when M is separable, the topology is the same as the topology of
pointwise convergence on a countable dense subset.

Let X be a complete separable CAT(0) space. We denote by Fk the space of flat
subspaces of dimension k in X (that is, isometric copies of Rk). One can check that Fk
is closed in 2X: flatness is encoded in three conditions (equality in the CAT(0) inequality,
convexity, and geodesic completeness), the dimension is encoded in the Jung inequality
(see e.g. [LS97]), and all these conditions are closed. The visual boundary ∂X with the
cone topology is a closed subspace of X, which is an inverse limit of a countable family of
closed balls [BH99]. Thus, ∂X is a Polish space.

Let G act by isometries on X and let k > 0 be such that there exists a k-dimensional
flat inX. Let ∂Fk = {(F , ξ) | F ∈ Fk and ξ ∈ ∂F }. This is a closed subspace of Fk × ∂X.
Then the continuous projection ∂Fk → Fk admits a fiberwise isometric action of Isom(X),
each ∂F being endowed with the Tits metric.

Definition 4.5. Let A and B be Lebesgue G-spaces. Let π : A→ B be a measurable
G-equivariant map. We say that π is relatively isometrically ergodic if each time we have a
G-equivariant Borel map p : Y → Z of standard Borel G-spaces, which admits a fiberwise
isometric action, and measurable G-maps A→ Y and B → Z such that the following
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diagram commutes:

A

π

��

�� Y

p

��
B �� Z

then there exists a measurable G-map φ : B → Y which makes the following diagram
commutative.

A

π

��

�� Y

p

��
B ��

φ
��

Z

Remark 4.6. If a G-Lebesgue space B is such that the first projection π1 : B × B → B is
relatively isometrically ergodic, then it is isometrically ergodic. Indeed, if Y is a separable
metric G-space and f : B → Y is G-equivariant, then it suffices to apply relatively
isometric ergodicity to the map f̃ : (b, b′) �→ f (b′) and the trivial fibration Y → {∗}.

B × B
π1

��

f̃ �� Y

��
B ��

φ

��

{∗}
Actually, relative isometric ergodicity yields a measurable map φ : B → Y such that for
almost all (b, b′), φ(b) = f (b′), and thus f, is essentially constant.

Let B be a Lebesgue G-space. We use the definition of amenability for actions
introduced by Zimmer, see [Zim84, §4.3]. The action G� B is amenable if for any
compact metrizable space M on which G acts continuously by homeomorphisms, there
is a measurable G-equivariant map φ : B → P(M).

Definition 4.7. The Lebesgue G-space B is a strong boundary of G if:
• the action of G on (B, ν) is amenable (in the sense of Zimmer); and
• the first projection π1 : B × B → B is relatively isometrically ergodic.

Example 4.8. The most important example for us is the following [BF14, Theorem 2.5].
Let G be a connected semisimple Lie group and P a minimal parabolic subgroup. Then
G/P , with the Lebesgue measure class, is a strong boundary for the action of G. If � < G

is a lattice, then G/P is also a strong boundary for the action of �. More generally, this is
also true if G is a semisimple algebraic group over a local field.

The next example shows that every countable group admits a strong boundary.

Example 4.9. Let � be a countable group, and μ ∈ P(�) be a symmetric measure whose
support generates �. Let (B, ν) be the Poisson-Furstenberg boundary associated to (�, μ).
Then B is a strong boundary of � [BF14, Theorem 2.7].
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Existence of Furstenberg maps is already known. In the next section, we show that we
can specify the type of points in the essential image and get that these points are essentially
opposite. Let us recall that an isometric action of a group � on a CAT(0) space X is
non-elementary if there is neither invariant flat subspace (possibly reduced to a point) nor
a global fixed point at infinity.

THEOREM 4.10. [Duc13, Theorem 1.7] Let � be a locally compact second countable
group, B a strong boundary for G, and p ∈ N. For any continuous and non-elementary
action of � on XK(p,∞), there exists a measurable �-map φ : B → ∂XK(p,∞).

We will also rely on results obtained in [BDL16]. Unfortunately, [BDL16] was written
before the final version of [BF14] and a slightly different language was used there. Group
actions on measurable metric fields were used there and here we just described fiberwise
isometric actions. In the following proposition, we establish the relation between these
two notions. We refer to [BDL16, §3] for definitions, notation, and a discussion about
measurable metric fields. Roughly speaking, a measurable metric field over a Lebesgue
�-space � is a collection X = (Xω)ω∈� of metric spaces (Xω, dω) where one moves from
one such metric space to another one in a measurable fashion. It admits a �-action if for all
ω ∈ �, g ∈ �, there is an isometry σ(g, ω) : Xω → Xgω that satisfies the cocycle relation
σ(gg′, ω) = σ(g, g′ω) ◦ σ(g′, ω) almost surely.

LEMMA 4.11. Let � be a countable group and let X be a measurable metric field over a
Lebesgue �-space � with a �-action. Then there is a �-invariant Borel subset �0 ⊂ � of
full measure, a standard Borel structure onX =⊔

ω∈�0
Xω, and a Borel map p : X→ �0

such that p admits a �-fiberwise isometric action. Moreover, the fiber p−1(ω) is Xω with
the metric dω.

If x is an invariant section of X, then x corresponds canonically to a �-equivariant
measurable map �0 → X.

Proof. Let {xn}n∈N be a fundamental family for the field X. One can find a Borel subset
�0 ⊂ � of full measure such that all the maps ω �→ dω(x

n
ω, xmω ) are Borel for all n, m ∈ N

on �0. Observe that �0 is a Lebesgue space as well [Kec95, §12.B]. Up to replacing �0

by
⋂
γ∈� γ�0, we may assume that �0 is �-invariant and still a Lebesgue space.

Let us setX =⊔
ω∈�0

Xω and define p : X→ �0 such that p(x) is the unique ω ∈ �0

with x ∈ Xω. Let us define φn : X→ R by the formula φn(x) = dp(x)(x, xnp(x)). Now,
let A be the smallest σ -algebra such that p and φn are measurable for all n. To show
that (X,A) is a standard Borel space, it suffices to show that A is countably generated
and separates points [Kec95, §12.B]. It is countably generated because �0 and R are
so. Let x �= y ∈ X. If p(x) �= p(y), then there is a Borel subset �′ ⊂ �0 such that
p(x) ∈ �′ and p(y) /∈ �′ thus p−1(�′) ∈ A separates x and y. If p(x) = p(y) = ω, then
by density of {xnω} in Xω, there is n such that φn(x) < φn(y), and thus A, separates
x and y. Moreover, for (x, y) ∈ X ×p X, we simply note d(x, y) for dp(x)(x, y). Then,
d(x, y) = supn∈N |φn(x)− φn(y)| and thus d is a Borel map. Because �0 is �-invariant,
p : X→ �0 admits a fiberwise isometric �-action.

If x is a section of X, that is, an element of �ω∈�Xω with measurability conditions
[BDL16, Definitions 8 and 9], let us use the same notation for the map x : �0 → X
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such that x(ω) = xω. By construction, π ◦ x and φn ◦ x are measurable and thus x
is measurable. If the section is invariant, then this yields equivariance of the map
x : �0 → X.

Remark 4.12. With this lemma, for any two Lebesgue �-spaces A, B with a �-factor map,
that is, a measurable surjective �-map π : A→ B, the relative isometric ergodicity of π ,
as stated in [BDL16, Definition 25], follows from Definition 4.5 above. Actually, if X is a
metric field over B, and B0, p : X→ B0 are given by Lemma 4.11, this relative ergodicity
is reflected in the following diagram where A0 = π−1(B0).

A0

π

��

�� X

p

��
B0 Id

��

��

B0

This allows us to use freely the results from [BDL16].

4.2. Equivariant maps to the set of maximal isotropic subspaces under Zariski density.
As before, let H be a Hilbert space over K with a Hermitian form Q of signature (p, q)
with p < q and q ∈ N ∪ {∞}. We fix some locally compact second countable group G
with a continuous action by isometries on XK(p, q) and strong boundary B.

We denote by Ik the space of totally isotropic subspaces of H of dimension k ≤ p.
Following the end of §2.2, this space can be identified with a type of vertices of the
spherical building structure on ∂Xp,q . When recalling that the signature of the Hermitian
form will seem to help comprehension, we will include it in our notation, and denote the
space of totally isotropic subspaces as Ik(p, q). Let us observe that if p, q are finite, then
Ik(p, q) can be identified with some homogeneous space G/P , where G = OK(p, q)
and P is a parabolic subgroup. In that case, we endow G/P with the corresponding
σ -algebra and the unique G-invariant measure class on it (see e.g. [BdlHV08, Appendix
B]). Observe that when p = k = 1 (and q is finite or infinite), then I1(1, q) is merely the
visual boundary ∂XK(1, q) of the hyperbolic space XK(1, q) of dimension q over K. For
the application to maximal representations, the space Ip of totally isotropic subspaces of
maximal dimension plays an important role.

For example, if H is a finite-dimensional complex vector space, XC(p, q) is a
complex manifold admitting a bounded domain realization whose Shilov boundary can
be SU(p, q)-equivariantly identified with Ip. The purpose of this section is to associate to
geometrically dense or Zariski-dense representations ρ an equivariant boundary map with
values in the set of maximal isotropic subspaces Ip (Theorem 1.7).

Remark 4.13. Under the hypothesis of Theorem 4.10, we get maps B → Ik for at least
one k: indeed, assume that φ is a map obtained by Theorem 4.10. Considering the smallest
cell of the spherical building at infinity containing φ(b), one gets a map B → F, where F
is a space of totally isotropic flags of H (see §6 in [Duc13]). Note that by ergodicity, the
type of this flag is constant. Thus, for each dimension k that appears in this flag, one gets a
map B → Ik .
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First, we prove opposition for boundary maps to Ik under Zariski density.

PROPOSITION 4.14. Let k ≤ p and assume that � is countable. Assume that the action
� � XK(p, q) is Zariski dense. If φ : B → Ik is a �-equivariant measurable map, then
for almost every (b, b′) ∈ B × B, φ(b) is opposite to φ(b′).

Proof. We denote by Vb the linear subspace of dimension k corresponding to φ(b) and let
�b be the corresponding line in

∧kH. By ergodicity of the action � � B × B, one of the
three following cases happens for almost all (b, b′):
• either �b = �b′ (which means that Vb = Vb′);
• �b and �b′ span a totally isotropic plane in

∧kH (in other words 0 �= Vb ∩ V ⊥b′ �= Vb);
• or �b and �b′ span a non-degenerate plane, that is, Vb ∩ V ⊥b′ = {0}. In other words, Vb

and Vb′ are opposite.
Our goal is to show that only the third case can happen. Assume first that Vb = Vb′ for
almost every (b, b′). Then the map b �→ Vb is essentially constant and its essential image
is a �-invariant vertex. This contradicts the assumption that � does not fix a point in
∂XK(p,∞).

Now assume that for almost every (b, b′), the lines �b and �b′ are orthogonal, namely
their span is an isotropic plane. Then, thanks to Fubini’s theorem, there exists b ∈ B and
Bb ⊂ B with full measure such that, for any b′ ∈ Bb, �b′ is orthogonal to �b. Let B ′ be
the intersection

⋂
γ∈� γBb. The set B ′ has full measure and is �-invariant, thus the space

spanned by {�b′ , b′ ∈ B ′} is a proper subspace (being included in the orthogonal of �b)
and is �-invariant. The closure of this space is not OK(p,∞)-invariant because this group
acts transitively on the space of totally isotropic subspaces of dimension k. We conclude
by using Lemma 3.10.

In the remainder of this section, our goal is to show the existence of maps from a
strong boundary B to Ip. We begin our discussion by observing that for every k, there is a
natural fiberwise isometric action of � over Ik: we denote by Vk the space of subspaces
V of H with dimension p such that Q|V is non-negative and ker(Q|V ) has dimension k.
We endow both Ik and Vk with the induced topologies coming from the corresponding
Grassmannians Gk , Gp of subspaces of dimension k and p in H. Let us recall that a
complete and separable distance on the Grassmannian Gm of all subspaces of dimension
m is given by

d(V , W)2 =
m∑
i=1

α2
i ,

where α1, . . . , αm are the principal angles between V and W ∈ Gm. This topology also
coincides with the Wisjman topology of the hyperspace 2H.

The natural projection
π : Vk → Ik
V �→ ker(Q|V )

is continuous. For V0 ∈ Ik , the fiber π−1(V0) can be identified with a symmetric space
X(V ⊥0 /V0, Q) that we define in the following lines. The kernel of Q restricted to V ⊥0 is
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exactly V0 and thus Q defines a strongly non-degenerate Hermitian form on V ⊥0 /V0 of
signature (p − k, q). So, we define X(V ⊥0 /V0, Q) to be the symmetric space associated to
that Hermitian form, that is, the collection of positive subspaces of V ⊥0 /V0 of dimension
p − k. The metric on X(V ⊥0 /V0, Q) is given by the hyperbolic principal angles [Duc13,
§3.1]. The preimages of such a positive subspace under the projection V ⊥0 → V ⊥0 /V0 are
in bijective correspondence with the elements in the fiber ofVk above V0.

Recall that V0, W0 ∈ Ik are opposite if the restriction of Q to V0 +W0 is
non-degenerate and thus has signature (k, k). If V0, W0 are opposite, then H =
V0 ⊕W⊥0 because W⊥0 has codimension k and V0 ∩W⊥0 = {0}. So, there is a bijective
correspondence σV0,W0 : X(V ⊥0 /V0, Q)→ X(W⊥0 /W0, Q) given by the formula

σV0,W0(V ) = (V ∩W⊥0 )+W0

for V ∈ π−1(V0). This map is well defined because V ∩W⊥0 has dimension p − k and is
positive definite for Q. The inverse is given by

σ−1
V0,W0

(W) = σW0,V0(W) = (W ∩ V ⊥0 )+ V0.

LEMMA 4.15. If V0, W0 ∈ Ik are opposite, then the map σV0,W0 : X(V ⊥0 /V0, Q)→
X(W⊥0 /W0, Q) is an isometry.

Proof. Because V0 andW0 are opposite, we have the following orthogonal decomposition:

H = (V0 ⊕W0)⊕⊥ (V ⊥0 ∩W⊥0 ),
and the restriction of Q to V ⊥0 ∩W⊥0 is non-degenerate of signature (p − k,∞). In
particular, V ⊥0 = V0 ⊕ (V ⊥0 ∩W⊥0 ) and thus the quotient map induces an isomorphism
(V ⊥0 /V0, Q) � (V ⊥0 ∩W⊥0 , Q) as spaces with Hermitian forms.

Now, if V ∈ π−1(V0) is written V = V0 + V ′, where V ′ = V ∩W⊥0 , then V ′ ⊂
V ⊥0 ∩W⊥0 . In particular, σW0,V0(V ) = V ′ +W0. By construction of the metric through
hyperbolic principal angles, the following map are isometries:

X(V ⊥0 /V0, Q) ← X(V ⊥0 ∩W⊥0 , Q) → X(W⊥0 /W0, Q)
V0 + V ′ ←� V ′ �→ W0 + V ′.

Finally, σW0,V0 is an isometry being the composition of two isometries.

In particular, σV0,W0 maps flat subspaces to flat subspaces.

Proof of Theorem 1.7 in the Zariski-dense case. In this proof, we freely use measurable
metric fields thanks to Lemma 4.11. We know from Theorem 4.10 that there exists a
�-map to the visual boundary ∂X(p,∞) and, by ergodicity, we get a �-equivariant map
φ : B → Ik for some k ≥ 1. Assume that k is a maximal such integer. If k = p, we are
done. Assume then that k < p. Denoting Vb ∈ Ik for φ(b) and Xb = X(V ⊥b /Vb, Q), we
obtain a measurable field of (non-trivial) CAT(0) spaces X = {Xb} with a �-isometric
action. Thanks to [Duc13, Theorem 1.8], either there is an invariant section of the metric
field ∂X = {∂Xb} or there is a �-equivariant Euclidean subfield F = {Fb} with Fb ⊂ Xb
for almost all b ∈ B.
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In the first case, the stated result easily follows: to every point in ∂Xb, one can
associate a (non-trivial) totally isotropic flag in V ⊥b /Vb, and we can choose the totally
isotropic subspace of maximal dimension in such a flag (whose dimension is essen-
tially constant by ergodicity) to define a totally isotropic subspace V ′b of H strictly
containing Vb. Thus, we get a �-map φ′ : B → Ik′ for k′ > k, which contradicts the
maximality of k.

To conclude the proof, it is enough to show that, under our hypotheses, there cannot
exist a �-equivariant Euclidean subfield. So let us assume that there exists such a subfield.
In other words, we have a �-map ψ0 : B → F , where F is the Polish space constructed
from F thanks to Lemma 4.11, such that ψ0(b) is a flat in Xb. Let us merely denote Fb for
ψ0(b). Note that the map b �→ dim(Fb) is measurable [BDL16, Lemma 14] and henceFb
is essentially of constant dimension. Among all possible such maps ψ0, we choose one
such that this dimension, say k0, is minimal.

Let us denote σb,b′ = σφ(b),φ(b′) the correspondence isometry from Xb to Xb′ defined
above.

We claim first that σb′,b(Fb′) is parallel to Fb. The proof of this statement is very
similar to that of [BDL16, Theorem 34]. We will explain the proof quickly and refer to
[BDL16] for more details (in particular, about measurability of the various maps which
appear during the proof).

Consider the function fb,b′ defined on Fb by fb,b′(x) = d(x, σb′,b(Fb′)) (recall that
both Fb and σb′,b(Fb′) are flat subspaces of Xb). Then, fb,b′ is a convex function on the
Euclidean space Fb. Using proposition 4 from [BDL16], we see that four cases are possible
for fb,b′ , which are described below. By the arguments from the proof of [BDL16, Theorem
34], these four conditions are measurable and �-invariant, so that one of them happens
almost surely.

The first case is when fb,b′ does not attain its infimum m. In that case, one can consider
the sequenceEb,b′

n of a subset of Fb defined asEb,b′
n = {x | f (x) ≤ m+ 1/n}. By [Duc13,

Proposition 8.10], this sequence of subsets gives a �-map ξ : B × B → ∂F , where ∂F is
the Borel space associated to the metric field ∂F such that ξ(b, b′) ∈ ∂Fb for almost all
(b, b′). Because ∂F is a metric field with a �-action, using relative isometric ergodicity,
we see that ξ does not in fact depend on b′, and therefore we have a map ξ : B → ∂X

(where ∂X is the Borel space associated to the metric field ∂X) such that ξ(b) ∈ ∂Xb. Now
Xb = X(V ⊥b /Vb, Q) has a boundary, which is a spherical building where cells correspond
to totally isotropic flags in V ⊥b /Vb. Therefore, to a point in the boundary, one can associate
a totally isotropic subspace W ⊂ V ⊥b /Vb, which we can lift to a totally isotropic space W
containing Vb in H. Thus the map ξ gives rise to a map B → Ik′ with k′ > k, which
contradicts the assumption on k.

If fb,b′ attains its minimum m, let Y = f−1
b,b′(m), which depends on b and b′. The

second case is when Y is bounded. Then one can consider its circumcenter y(b, b′). The
map (b, b′) �→ y(b, b′) is measurable [Duc13, Lemma 8.7] and �-equivariant. By relative
isometric ergodicity, it does not in fact depend on b′. So there is a �-map x : B → X such
that x(b) ∈ Xb. In particular, {x(b)} is a Euclidean subfield of Xb and by minimality of
k0, Fb = {xb} and thus we get parallelism of σb,b′(Fb′) and Fb because any two points are
parallel as Euclidean subspaces of dimension zero.
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In the third case, one can write Y = E × T , where E is subflat and T is bounded. Let t
be the circumcenter of T and let E′ = E × {t}. Then E′ is a subflat of some dimension d
which, by ergodicity, does not depend on (b, b′). Now the set of subspheres of dimension
d of a k0-dimensional Euclidean space is a metric field with a �-invariant metric [BDL16,
Lemma 20]. By relative isometric ergodicity, the map (b, b′) �→ ∂E′ does not depend on
b′. By the second part of [BDL16, Lemma 20], the set of Euclidean subsets of Xb, whose
boundary is ∂E′, is again a metric field with a �-invariant metric. Thus, relative isometric
ergodicity again allows us to conclude that the map (b, b′) �→ E′ does not depend on b′.
In other words, we get a map which associates to b a subflat of Fb. Because we assumed
the dimension of Fb to be minimal, this map must be equal to ψ0. This means that fb,b′ is
constant on Fb, and therefore Fb and σb′,b(F ′b) are parallel.

In the last case, one can write Y = E × T , where T is unbounded, but ∂T has a center.
Then we get a map which associates to (b, b′) the center of ∂T , which is a point in ∂Xb.
We conclude by the same argument as in the first case.

This concludes the proof of the claim: Fb is (almost surely) parallel to σb′,b(Fb′).
The set of flats parallel to Fb is a metric field with a �-invariant metric. Therefore, one
can apply again relative isometric ergodicity to prove that the map (b, b′) �→ σb′,b(Fb′)
does not depend on b′. In other words, we get a map ψ1 such that for almost all b′,
σb,b′(ψ0(b

′)) = ψ1(b). Let us denote Gb = ψ1(b). One has σb,b′(Fb′) = Gb and because
σb′,b = σ−1

b,b′ , one also has σb,b′(Gb′) = Fb. Thus, σb,b′ maps the flat equidistant to Fb′ and
Gb′ maps the flat equidistant to Fb and Gb.

Up to replacing ψ0(b) by the flat equidistant to ψ0(b) and ψ1(b), we may assume
that ψ0(b) = ψ1(b) and thus σb,b′(Fb′) = Fb for almost all (b, b′) ∈ B × B. Let us recall
that points in Xb are positive definite subspaces W ⊂ V ⊥b /Vb and we denote by W the
preimage of W under the quotient map V ⊥b → V ⊥b /Vb. Let us denote ψ(b) = Fb ⊂ Vk ,
where Fb is the collection of W for W ∈ Fb. Because σb,b′(Fb′) = Fb, if W ∈ Fb,
then W ′ = σb′,b(W) ∈ Fb′ satisfies W = Vb + (W ∩W ′). In particular, Span(ψ(b)) ∩
Span(ψ(b′)) �= {0} for almost all (b, b′). Moreover, the dimension of this intersection is
essentially constant by ergodicity.

So, there is b0 ∈ B such that for almost every b, Span(ψ(b0)) ∩ Span(ψ(b)) �= {0}
and this set, B ′, of full measure can be assumed to be �-invariant. Let �b be the line
corresponding to Span(ψ(b)) in �dH, where d is the dimension of Span(ψ(b)). In
particular, for all b ∈ B ′, �b is in the kernel of the map

�dH → �2dH
v �→ v ∧ vb0 ,

where vb0 is a fixed non-trivial vector in �b0 . As in the proof of Proposition 4.14, the closure
of the span of {ψ(b)}b∈B ′ is a non-trivial �-invariant subspace in�dH. Thanks to Lemma
3.10, we have a contradiction with the Zariski-density assumption.

The statement about transversality is a direct consequence of Proposition 4.14.

4.3. Low-rank cases. In this subsection, we prove that if the rank of the target is at
most two, then Zariski density can be relaxed to geometric density to obtain the desired
boundary map. The difference between the rank-1 or -2 cases and the general case comes
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from the complexity of the relative positions of finitely many points in Ik for k ≤ p. This
complexity increases with p but remains manageable in small ranks.

THEOREM 4.16. Let � be a countable group with strong boundary B and let ρ : �→
POK(p,∞) be a representation. Assume that p ≤ 2 and ρ has no invariant linear
subspace of dimension at most four. Then there is a �-map φ : B → Ip such that for
almost every (b, b′) ∈ B × B, φ(b) is opposite to φ(b′).

Proof. Let us prove first that the induced action on XK(p,∞) is non-elementary. If there
is a fixed point at infinity, then there is an invariant isotropic subspace of dimension at
most p and if there is a flat subspace of dimension d, the span of its points is a subspace of
dimension 2d ≤ 4.

In the case p = 1, the whole visual boundary is identified with Ip and opposition
simply means that the map is not essentially constant (which is the case, otherwise there
would be an invariant isotropic line). So the existence is guaranteed by Theorem 4.10 and
it is not constant because there is no fixed point at infinity.

Now assume p = 2. We know the existence of a �-map φ : B → Ik with k = 1 or
2 by Theorem 4.10. Let us prove opposition first, in both cases. If k = 1, two isotropic
lines are not opposite if they are orthogonal. By double ergodicity of �, if the opposition
condition is not satisfied, then one can find a subset B1 of B of full measure such that for
all b ∈ B1 and γ ∈ �, φ(b) and φ(γ b) are orthogonal. Fix b ∈ B1. In particular, the span
of {φ(γ b)}γ∈� is totally isotropic (thus of dimension at most two) and �-invariant, which
contradicts the assumption.

Now if k = 2, two distinct isotropic planes are not opposite if and only if their
intersection is a line. We claim that the essential image of φ is given by isotropic planes
with a common line. Let Vb = φ(b), assume the map φ is not essentially constant, and
choose V1, V2 distinct isotropic planes with a common line � = V1 ∩ V2 such that almost
surely Vb ∩ Vi is a line. If � lies in Vb almost surely, then � is �-invariant. So assume that
� is not essentially contained in Vb, then there is V3 in the image of φ such that � is not
in V3. So �1 = V1 ∩ V3 and �2 = V2 ∩ V3 are distinct lines and thus V3 = �1 ⊕ �2 lies in
V1 + V2. Now, for any b′ ∈ B, if Vb′ contains �, then Vb′ is spanned by a � and a line in
V3. If not, Vb′ meets V1 and V2 in two different lines. In both cases, Vb′ lies in V1 + V2.
So, Vb lies in V1 + V2 which is thus �-invariant. So we have a contradiction and thus we
know that φ has the opposition property.

We conclude the proof by showing that if the image of φ lies in I1, then there is also a
�-map to I2. We rely on the beginning of the proof of Theorem 1.7 in the Zariski-dense
case before the appearance of stabilizers of subspaces in some exterior power at the very
end. Let us denote �b for the line φ(b). In particular, we can reduce to one of the following
two cases: either there is an invariant section of the field Xb = X(�⊥b /�b, Q) or there is an
invariant flat subfield not reduced to a point.

If there is an invariant section of the field Xb = X(�⊥b /�b, Q), then we get a map
b �→ Vb, where Vb is a two-dimensional linear subspace containing �b and such that the
signature of Q on Vb is (1, 0). We also know (by the same argument as in the proof of
Theorem 1.7) that almost surely Vb ∩ Vb′ is a positive definite line which is orthogonal
to �b and �b′ . If this intersection is essentially constant, then we have a positive definite
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invariant line and we are done. So assume this is not the case. We can choose V1, V2

distinct in the essential image and V3 that does not contain V1 ∩ V2. The same argument as
in the proof of opposition shows that any Vb in the essential image actually lies in V1 + V2

and we have a contradiction, which shows that it cannot happen that there is an invariant
section of the field Xb = X(�⊥b /�b, Q).

If there is an invariant flat subfield not reduced to a point in Xb, then it is a geodesic
because Xb has rank one. This means, as before, that there is a map b �→ Vb, where Vb is
a three-dimensional subspace of signature (1, 1) that contains �b (which is the kernel of
the restriction of Q to Vb). By construction of the perspectivity σb,b′ , one has that almost
surely Vb ∩ Vb′ is a two-dimensional subspace of signature (1, 1). If this intersection is
essentially constant, then we have a two-dimensional invariant linear subspace and we are
done.

If this is not the case, then as before choose V1, V2 in the essential image of the map
b �→ Vb and V3 that does not contain V1 ∩ V2, so V3 ∩ V1 and V3 ∩ V2 are two distinct
subspaces of dimension two. In particular, their union spans V3 and V3 ≤ V1 + V2. Now
let Vb be in the essential image. For the same reason as for V3, either Vb lies in V1 + V2 or
Vb contains V1 ∩ V2, but in this last case, Vb meets V3 in a two-dimensional subspace that
contains a line not included in V1 ∩ V2. So Vb ≤ (V1 ∩ V2)+ V3 ≤ V1 + V2. Once again,
we get that V1 + V2 is �-invariant.

If there is no invariant section nor invariant flat subfield in (Xb), then there is a map
ψ : b �→ ∂Xb which yields the desired map to I2.

It is shown in [MP14, Proposition 5.5] that geometric density implies irreducibility (in
the real case, but the proof works over C and H as well). So we deduce straightforwardly
the following.

COROLLARY 4.17. Let � be a countable group with strong boundary B and let ρ : �→
POK(p,∞) be a representation. Assume that p ≤ 2 and ρ is geometrically dense, then
there is a �-map φ : B → Ip such that for almost every (b, b′) ∈ B × B, φ(b) is opposite
to φ(b′).

Remark 4.18. In general, irreducibility of the representation �→ POK(p,∞) implies
non-elementarity and it is shown in [MP14, Proposition 5.5] that geometric density implies
irreducibility. The converse of the latter implication does not hold because the embedding
of OC(1,∞) in OR(2,∞) (given by considering the underlying real Hilbert spaceHR and
the real part of the Hermitian form) is irreducible but not geometrically dense because a
copy of XC(1,∞) embeds equivariantly in XR(2,∞).

We do not expect that Theorem 4.16 holds for p ≥ 3 but it is likely that Corollary 4.17
holds for p ≥ 3.

5. Bounded cohomology and the bounded Kähler class
In this section, we will recall the definitions of maximal representations, as well as adapt
them to deal with infinite-dimensional symmetric spaces. Some familiarity with the basics
on Kähler classes and bounded cohomology in finite dimension is advisable; the interested
reader can consult, for example, [BI09].
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5.1. Bounded cohomology. We recall here the notions from the theory of bounded
cohomology that we will need in the paper. We refer the reader to [Mon01] for a thorough
treatment.

The bounded cohomology Hnb(G, R) of a group G is the cohomology of the complex

Cnb(G, R)G =
{
f : Gn+1 → R|f is G-invariant, sup

(g0,...,gn)∈Gn+1
|f (g0, . . . , gn)| <∞

}

whose coboundary operator is defined by the formula

df (g0, . . . , gn+1) =
n+1∑
i=0

(−1)if (g0, . . . , ĝi , . . . , gn+1).

The bounded cohomology of discrete groups was first introduced by Gromov [Gro82],
and proved to be a useful tool in proving rigidity results, in particular because it allows
detection of the properties of boundary maps. We will also exploit this feature in
Proposition 5.10 below.

Despite bounded cohomology being, in general, a much wider theory then
ordinary group cohomology (e.g. the third bounded cohomology of a free group is
infinite-dimensional), it admits a natural homomorphism

c : Hnb(G, R)→ Hn(G, R),

the comparison map, induced by the inclusion of bounded cochains in ordinary cochains.
A second important advantage of bounded cohomology over ordinary group cohomol-

ogy that will play a crucial role also in our work is that the �∞-norm on bounded cochain
Cnb(G, R) induces a seminorm, the Gromov norm, in bounded cohomology:

‖κ‖∞ := inf
[f ]=κ sup

(g0,...,gn)∈Gn
|f (g0, . . . , gn)|.

When G is a locally compact group, Burger and Monod [BM99] defined the continuous
bounded cohomology Hncb(G, R) of G and showed that, in degree two, the comparison
map c : H2

cb(G, R)→ H2
c(G, R) is an isomorphism when G is a semisimple Lie with

finite center. Here, H2
c(G, R) denotes the continuous cohomology of G (a standard text

about continuous cohomology is [BW00]). The result of Burger and Monod allows to
give a complete description of H2

cb(G, R) in case of semisimple Lie groups with finite
center: the continuous cohomology H2

c(G, R) can be identified with the vector space of
G-invariant differential form�2(X, R)G, where X is the symmetric space associated to G.
In particular, for a simple Lie group G of non-compact type and finite center, the second
continuous cohomology H2

cb(G, R) is equal to RκcbG if X is a Hermitian symmetric space
(and κcbG is then the bounded Kähler class, see below), and vanishes otherwise. In general,
H2
cb(G, R) is generated by the bounded Kähler classes of the Hermitian factors of X.

5.2. The bounded Kähler class. We now turn our attention to the bounded cohomology
of the groups G of isometries of the infinite-dimensional Hermitian symmetric spaces
X introduced in §2. Because such groups G are not locally compact, there is no
well-established theory of continuous bounded cohomology; therefore, we will just work
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with the bounded cohomology H2
b(G, R). If X has finite rank, we can use the Kähler form

to define a class in the bounded cohomology of G, precisely as in the finite-dimensional
case.

Definition 5.1. The bounded Kähler class of the groups G = POC(p,∞) and G =
PO+R(2,∞) is the class κbG ∈ H2

b(G, R) defined by the cocycle

Cxω(g0, g1, g2) = 1
π

∫
�(g0x,g1x,g2x)

ω,

where x is any base point in the corresponding symmetric space X, �(g0x, g1x, g2x) is
the geodesic triangle with vertices (g0x, g1x, g2x), and ω is the Kähler form normalized
such that the minimum of the holomorphic sectional curvature is −1.

The fact that κbG is independent on x is proved below.

Remark 5.2. Let i : H = SU(p, q)→ G = POC(p,∞) be a standard embedding. As
before, we denote by κcbH ∈ H2

cb(H , R) the generator corresponding, under the natural
isomorphism, to the bounded Kähler class, and we denote by κbH ∈ H2

b(H , R) the image of
κcbH under the map induced by the inclusion of continuous bounded cochains in bounded
cochains. It follows from the definition that i∗κbG = κbH .

LEMMA 5.3. The class κbG is well defined. Furthermore,

‖κbG‖∞ = rk(X),

where X is the symmetric space associated to G. In particular, κbG is not zero.

Proof. The cocycle Cxω has norm bounded by rk(X) because the three points
(g0x, g1x, g2x) lie on some isometrically embedded totally geodesic copy of XC(p, 2p)
(respectively XR(2, 4)) and therefore the sharp bound of the integral computed in [DT87]
applies. Furthermore, the class κbG does not depend on the choice of the base point x
because for any other point y, the difference Cxω − Cyω is the coboundary of the function

f x,y
ω (g0, g1) = 1

π

∫
�(g0x,g1x,g1y)

ω + 1
π

∫
�(g0x,g1y,g0y)

ω,

which, again, is bounded because the four points (g0x, g1x, g0y, g1y) lie on some isomet-
rically embedded totally geodesic copy ofXC(p, 3p) (respectivelyXR(2, 6)). Observe that
for any triple (g0, g1, g2), the value Cyω(g0, g1, g2)− Cxω(g0, g1, g2)+ df x,y

ω (g0, g1, g2)

is the integral of the closed form ω on a triangulation of the triangular prism with
the bottom face �(g0x, g1x, g2x) and upper face �(g0y, g1y, g2y). This is a closed
polyhedral surface contained in a finite-dimensional subspace; therefore, the integral of
ω over it vanishes.

To conclude the proof, we therefore only need to show that ‖κbG‖∞ ≥ rk(X). For
this purpose, let � denote the fundamental group of a surface and let us consider the
homomorphism i : �→ SU(p, p)→ POC(p,∞) (respectively i : �→ SO+(2, 2)→
PO+R(2,∞)), in which the inclusion � ≤ SU(1, 1)→ SU(p, p) (respectively �→
SO(2, 2)) is such that the diagonal inclusion of the Poincaré disk in a maximal polydisk
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is equivariant. It follows from [BILW05, Example 3.9] together with Remark 5.2
that ‖i∗κbG‖∞ = rk(X). Because the pullback in bounded cohomology is clearly norm
non-increasing, the result follows.

5.3. The Bergmann cocycle. In the study of rigidity properties of maximal representa-
tions, it will be useful to have a different representative of the bounded Kähler class. Such
a representative will depend only on the action on a suitable boundary of the symmetric
space. We distinguish two cases.

When dealing with the groups POC(p,∞), the new representative will depend on the
choice of a point V ∈ Ip the set of maximal isotropic subspaces of H(p,∞). Recall
that every triple (V0, V1, V2) ∈ (Ip)3 is contained in a finite-dimensional subspace (of
dimension at most 3p). This implies that the Bergmann cocycle studied in [Cle02, Cle07].
In [Cle02, Cle07], this cocycle is referred to as the generalized Maslov index. We chose
to denote this cocycle as a Bergmann cocycle, following [BIW09, §3.2] for SU(p, 3p)
extends to a strict POC(p,∞)-invariant cocycle

βC : I3
p → [−rk(X), rk(X)]

with the property that if |βC(V0, V1, V2)| = rk(X), then V0, V1, V2 are contained in a
2p-dimensional subspace of signature (p, p) and are pairwise transverse.

While we will not recall the explicit definition of the Bergmann cocycle (we refer to the
aforementioned papers), we record its most important property.

LEMMA 5.4. For every V ∈ Ip, the cocycle CVβ defined by

CVβ (g0, g1, g2) = βC(g0V , g1V , g2V )

represents the bounded Kähler class.

Proof. Because any 4-tuple (V0, V1, V2, V3) ∈ I4
p is contained in a finite-dimensional

subspace of H(p,∞), it follows from [Cle07, Theorem 5.3] that the cocycle CVβ is a
strict alternating bounded cocycle, cohomologous to Cxω: the difference of the cocycles is
the coboundary of a function defined similarly to the function fx,y in the proof of Lemma
5.3, but integrating on simplices with some ideal vertices.

Remark 5.5. It is worth remarking that if G is a (finite dimensional) Hermitian Lie group,
the cocycles Cxω and CVβ also define a class κcbG in the continuous bounded cohomology
H2
cb(G, R). This class generates the continuous bounded cohomology H2

cb(G, R) for
simple groups of Hermitian type.

In the case of the group PO+R(2,∞), the same construction works except that the
boundary of XR(2, n) on which the Bergmann cocycle is defined is I1(2, n) and not
I2(2, n). Thus, the Bergmann cocycle for PO+R(2,∞) is a map βR : I1(2,∞)3 →
{−2, 0, 2}. The fact that, in this case, the Bergmann cocycle only assumes a discrete set of
possible values reflects the fact that OR(2, p) is of tube type. It is worth remarking that,
in this case, the Bergmann cocycle is only preserved by the connected component of the
identity in OR(2,∞), denoted by OR

+(2,∞).
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It is possible to give an explicit description (based upon [Cle04, §6]) of the value of
the Bergmann cocycle for triples of pairwise opposite points in I1(2,∞). For this, we
need to choose representatives x, y, z of the classes x, y, z such that Q(x, z) < 0 and
Q(x, y) < 0; furthermore, given an isotropic vector x inH, we denote by [x] the vector in
R2 = 〈e1, e2〉, which corresponds to the orthogonal projection (with respect to Q) of [x],
and we endow R2 = 〈e1, e2〉 with its canonical orientation, which allows us to determine
if a triple of pairwise distinct non-zero vectors is positively or negatively oriented. We then
define (here or denotes the orientation):⎧⎨

⎩
βR(x, y, z) = 0 if Q|〈x,y,z〉 has signature (1, 2),
βR(x, y, z) = 2 if Q|〈x,y,z〉 has signature(2, 1), and or([x], [y], [z]) = +,
βR(x, y, z) = −2 if Q|〈x,y,z〉 has signature (2, 1), and or([x], [y], [z]) = −.

One checks that the value of βR does not depend on the choices involved and βR coincides
with the Bergmann cocycle.

To unify the notation, we will denote, from now on, by SG the spaces SOR(2,∞) :=
I1(2,∞) and SOC(p,∞) := Ip(p,∞). Similarly, when this will not seem to generate
confusion, we will simply use the letter β for the cocycles that we denoted before as βR
(respectively βC).

5.4. Maximal representations. Let � ≤ SU(1, n) be a lattice. We denote by

T ∗b : H2
b(�, R)→ H2

cb(SU(1, n), R)

the transfer map, as defined in [BI09, §2.7.2]: this is a left inverse of the restriction map
i∗ : H2

cb(SU(1, n), R)→ H2
b(�, R) that has norm one. Recall that H2

cb(SU(1, n), R) ∼= R
and is generated by the bounded Kähler class of the group SU(1, n) [BM99, Lemma 6.1].
In this section, we will denote the bounded Kähler class of the group SU(1, n) by κcbn , to
avoid confusion with the other Kähler classes, and simplify the notation.

Definition 5.6. Let G ∈ {POR(2,∞), POC(p,∞)} and let ρ : �→ G be a homomor-
phism. The Toledo invariant of the representation ρ is the number iρ such that

T ∗b ρ∗κbG = iρκcbn . (1)

Observe that the absolute value |iρ | of the Toledo number is bounded by rk(G) because
both the transfer map and the pullback are norm non-increasing. This inequality is often
referred to as the generalized Milnor–Wood inequality. In analogy with [BI09], we say the
following.

Definition 5.7. The representation ρ is maximal if |iρ | = p.

As in the finite-dimensional case, it follows from the definition that the restriction of a
maximal representation to a finite index subgroup is also maximal.

LEMMA 5.8. The restriction of a maximal representation ρ : �→ G to a finite index
subgroup � < � is maximal.
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Proof. Indeed denoting by T ∗b,� (respectively T ∗b,�) the transfer map and by ι∗ :
H2
b(�, R)→ H2

b(�, R) the isometric injection induced in bounded cohomology by the
inclusion ι : �→ � [Mon01, Proposition 8.6.2], one gets T ∗b,� = T ∗b,�ι

∗.

Also the following fact descends directly from the definition, but is very useful in
understanding geometric properties of maximal representations.

PROPOSITION 5.9. Let ρ : �→ POC(p,∞) be a maximal representation. Then there is
no fixed point at infinity for ρ.

Proof. Assume by contradiction that ρ(�) fixes an isotropic subspace V, and choose any
maximal isotropic subspace V ′ containing V. The cocycle CVβ ◦ ρ represents the class
ρ∗κbG and, because maximal triples consist of pairwise transverse subspaces, has norm
strictly smaller than p, thus leading to a contradiction.

We conclude this subsection observing that, as in the finite-dimensional case, the
pullback in bounded cohomology can be realized through boundary maps.

PROPOSITION 5.10. Let H = POC(p,∞) and ρ : �→ H be a maximal representation.
If there exists a measurable ρ-equivariant boundary map φ : I1(1, n)→ SH , then for
every triple of pairwise distinct points (x, y, z) ∈ I1(1, n), it holds that

rk(H)βI1(1,n)(x, y, z) =
∫
�\ SU(1,n)

β(φ(gx), φ(gy), φ(gz)) dμ(g),

where μ on SU(1, n)/� is the unique SU(1, n)-invariant probability measure.

Proof. We use the formula in [BI09, Proposition 2.38]. Let G = SU(1, n), L = G′ =
�, X = SH with its Borel σ -algebra. Let κ ′ = ρ∗κbG ∈ H2

b(�, R) be the pullback of the
bounded Kähler class and κ = T ∗b ρ∗κbH ∈ H2

cb(SU(1, n), R). Because rk(H)βI1(1,n) and
β are strict alternating bounded cocycles representing respectively κ and κ ′, equation (2.12)
in [BI09, Proposition 2.38] yields that

(x, y, z) �→ rk(H)βI1(1,n)(x, y, z)−
∫
�\ SU(1,n)

β(φ(gx), φ(gy), φ(gz)) dμ(g)

is a coboundary in L∞(X3). By [BI09, Remark 3.1], the coboundary actually vanishes and
thus the equality claimed holds almost surely. Now, because both terms of the equation are
everywhere defined, are G-invariant, and satisfy the cocyle relation, the same argument as
in [Poz15, Lemma 2.11] proves that the equality holds for every triple of pairwise distinct
points (x, y, z) ∈ I1(1, n).

5.5. Tight homomorphisms and tight embeddings. Burger, Iozzi, and Wienhard intro-
duced, in [BIW09], the notion of tight homomorphism between Hermitian Lie groups and
analogously tight embeddings between Hermitian symmetric spaces: this is of fundamental
importance in the study of maximal representations because, on the one hand, tight
homomorphisms between Lie groups can be completely classified, and on the other, the
inclusion of the Zariski closure of the image of a maximal representation is tight; this
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allows, in the finite-dimensional setting, to reduce the study of maximal representations to
Zariski-dense maximal representations, for which construction of boundary maps is much
easier.

In analogy with [BIW09, Definition 2.4], we define the following.

Definition 5.11. Let X and Y be (possibly infinite-dimensional) Hermitian symmetric
spaces of non-compact type with Kähler forms ωX and ωY associated to the Riemannian
metrics of minimal holomorphic sectional curvature −1. A totally geodesic embedding
f : Y→ X is tight if

sup
�⊂Y

∫
�

f ∗ωX = sup
�⊂X

∫
�

ωX.

Let H be any group and G be the isometry group of a (possibly infinite-dimensional)
Hermitian symmetric space XG. Let us endow G with the topology of pointwise
convergence, that is, the coarsest topology on G such that g �→ gx is continuous for any
x ∈ XG. Because XG is a complete separable metric space, it is well known that G is
Polish for this topology [Kec95, §9.B]. If ι : H → G is a continuous homomorphim (that
is, the action of H onXG is continuous), then we denote by ι∗(κbG) the continuous bounded
cohomology class of the pullback of the Kähler cocycle. Let us observe that this cocycle
is continuous because the integration depends continuously on the vertices of the triangle.
We say that ι is tight if

‖ι∗(κbG)‖∞ = ‖κbG‖∞.

Assume that, in Definition 5.11, H is the connected component of the isometry group of
an irreducible Hermitian symmetric space of finite dimension and consider the homo-
morphism ι : H → G. Because geodesic triangles are contained in finite-dimensional
symmetric spaces, the tightness of ι is equivalent to the requirement that the inclusion
XH → XG of the symmetric spaces associated to G and H is tight [BIW09, Corollary
2.16].

LEMMA 5.12. The inclusionXH → XG of a finite-dimensional totally geodesic symmetric
subspace is tight if and only if the inclusion ι : H → G is tight.

Remark 5.13. If the inclusion XH → XG is totally geodesic, isometric, and holomorphic,
then the pullback, through the equivariant group homomorphism ι : H → G of the
bounded Kähler class, is clearly the bounded Kähler class. This provides many examples
of tight maps: whenever the symmetric spaces have the same rank, the homomorphism is
tight.

Let ρ : �→ G be a representation of a lattice in SU(1, n) and assume that the
symmetric space XG associated to G has rank p ∈ N. Because both pullback and transfer
maps are norm non-increasing, and ‖κcbn ‖ = 1, we deduce that |iρ | ≤ ‖ρ∗κbG‖∞, where
iρ is defined by equation (1). In particular, if the representation ρ is maximal, then
‖ρ∗κbG‖∞ = p. The same argument gives the following.
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LEMMA 5.14. Assume that a maximal representation ρ : �→ G preserves a totally
geodesic Hermitian symmetric subspace Y ⊂ XG. Then the inclusion Y→ XG is tight.

5.6. Reduction to geometrically dense maximal representations. In this subsection, we
explain how to reduce the understanding of maximal representations to geometrically
dense maximal representations.

Recall that the totally geodesic subspaces of XC(p,∞) are products of irreducible
factors that are either finite-dimensional or are isomorphic to either XC(q,∞) or
XR(q,∞) or XH(q,∞) [Duc15a, Corollary 1.9].

PROPOSITION 5.15. Let ρ : �→ POC(p,∞) be a maximal representation. There is a
minimal �-invariant totally geodesic subspace Y of XC(p,∞). This space Y splits iso-
metrically as a direct product Y = Y1 × · · · ×Yk (possibly reduced to a unique factor),
and for each i, either Yi is finite-dimensional Hermitian, or it is isometric to XC(m,∞)
and the restricted representation ρi : �→ Isom(Yi ) is maximal and geometrically dense.

Proof. Because the representation is maximal, there is no fixed point at infinity
(Proposition 5.9). Thus there is a minimal totally geodesic �-invariant subspace Y
(otherwise [Duc13, Proposition 4.4] would yield a fixed point at infinity). Because Y is a
totally geodesic subspace of XC(p,∞), it is a symmetric space of non-positive curvature
operator and finite rank. Thus, Y decomposes as a product Y = Y0 ×Y1 × · · · ×Yk ,
where each Yk is a symmetric space of finite dimension of non-compact type, the
Euclidean de Rham factor, or the symmetric space associated to some OK(l,∞) with
K = R, C or H [Duc15a, Corollary 1.10]. Up to passing to a finite index subgroup, we
may assume that � preserves each factor of this splitting (see Lemma 5.8). Because Y is
minimal as �-invariant totally geodesic subspace, the induced action � � Yi is minimal
as well.

Recall that a geodesic segment in Y has the form σ(t) = (σ1(t), . . . , σk(t)), where
each σi is a curve with constant speed (which may vary from factor to factor). Because the
inclusion Y ⊂ X is tight (Lemma 5.14), we have

sup
�⊂Y

∫
�

ωX = sup
�⊂X

∫
�

ωX,

where� is a geodesic triangle. Let�i be the projection of� to the factorYi . The triangle
�i is completely determined by three points. If Yi has infinite dimension, these three
points are given by three positive definite linear subspaces and thus are included in some
standard embedding of XK(l, 2l) in Yi . We denote by Y0

i any Yi , if the subspace already
has finite dimension or the image of a standard embedding of XK(l, 2l) in Yi . Finally, we
denote by Y0 the product Y0

0 × · · · ×Y0
k . The symmetric space Y0 has finite dimension,

and, because the isometry group of XK(p,∞) acts transitively on standard embeddings of
XC(l, 2l), we have

sup
�⊂Y0

∫
�

ω = sup
�⊂Y

∫
�

ω = sup
�⊂X

∫
�

ω.
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Now Y0 lies in some standard copy X0 of XC(p, N) for N ≥ p (Lemma 3.11) and
thus the embedding of Y0 in X0 is tight and we can apply [BIW09, Theorem 7.1]. So, we
know that each Y0

i is Hermitian of non-compact type and the Euclidean de Rham factor is
trivial. In particular, all Yi of finite dimension are Hermitian and the infinite-dimensional
ones are a priori XC(m,∞) and XR(2,∞) but the latter is impossible. To see that,
assume by contradiction that there is factor XR(2, n) in Y0. Then the classification of
tight embeddings obtained in [HP14, §5.2] implies that the image of the tube-type factors
through the embedding lies in some totally geodesic copy of XC(m, m). By considering
the rank, we have m ≤ p and by considering the dimension, this gives a finite bound on n.
Thus there is no factor XR(2,∞) in Y.

Finally, the fact that each representation ρi is maximal is standard (see for example
[BIW09, Lemma 2.6(4)]).

6. Representations in POC(p,∞)
We first focus on the case where the target is POC(p,∞). In this case, we prove that the
representation preserves a finite-dimensional totally geodesic subspace. Thus, in particular,
if the domain � is a lattice in SU(1, n) for n ≥ 2, super-rigidity of maximal representations
ρ : �→ G, where G is a Hermitian Lie group applies [BI08, KM17, Poz15]. To this aim
we need a good understanding of the geometry of the boundaries I1(1, n) and Ip(p,∞).
It can be noted that the only case that is still open is the case of representations of
non-uniform lattices in groups of tube type.

6.1. The geometry of the boundary of XC(1, n). Recall that a chain C ⊆ ∂XC(1, n) is
the boundary of a totally geodesic holomorphic diskD ⊆ XC(1, n), and is the intersection
of ∂XC(1, n) ⊆ CPn with a complex projective line in CPn. For this reason, a chain
is uniquely determined by two points belonging to it. Given two distinct points x, y ∈
∂XC(1, n), we will denote by Cx,y the unique chain containing the points x and y.
More generally, for every k-dimensional subspace PV ⊆ CPn that intersects XC(1, n), the
subspace PV intersects XC(1, n) in a totally geodesic submanifold isometric to XC(1, k)
and intersects ∂XC(1, n) in a (2k − 1)-dimensional sphere ∂XC(1, k). Following [Gol99],
we will call any such sphere a k-hyperchain.

Part of the work of [Poz15] was aimed at showing that a similar picture exists in
higher rank: any two transverse subspaces X, Y ∈ Ip(p,∞) determine a 2p-dimensional
subspace 〈X, Y 〉 and therefore a finite-dimensional totally geodesic subspace XC(p, p) ⊂
XC(p,∞) as well as a subset Ip(p, p) ⊂ Ip(p,∞). As in [Poz15], we will refer to these
subsets as p-chains or merely chains.

Here and in the rest of the article, when we will deal with differentiable manifolds,
almost surely will mean for a set of full measure in the Lebesgue measure class. We say
that a measurable map φ : ∂XC(1, n)→ Ip(p,∞) almost surely maps chains to chains
if for almost every chain C ⊆ ∂XC(1, n), there is a p-chain T ⊂ Ip(p,∞) such that for
almost every point x ∈ C, φ(x) ∈ T. In this case, we say that the chain C is generic for φ.
To guarantee that a measurable map φ almost surely maps chains to chains, it is enough to
check that for almost every pair (x, y) ∈ ∂XC(1, n)× ∂XC(1, n), the subspaces φ(x) and
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φ(y) are transverse and that for almost every z ∈ Cx,y , the subspace φ(z) is contained in
〈φ(x), φ(y)〉 (this statement can be found e.g. in [Poz15, Lemma 4.2]). In this case, we
say that the pair (x, y) is generic for φ.

A consequence of Proposition 5.10 is the following.

COROLLARY 6.1. Let � < SU(1, n) be a lattice. Assume that a representation ρ : �→
POC(p,∞) is maximal and admits an equivariant boundary map φ : ∂XC(1, n)→
Ip(p,∞). Then the boundary map φ almost surely maps chains to chains.

Proof. Observe that, because SU(1, 1) acts transitively on positively oriented triples in
I1(1, 1), there are precisely two SU(1, n) orbits of pairwise distinct triples of points on a
chain. Because the equality in Proposition 5.10 holds for every triple (x, y, z), we deduce
that for almost every triple (x, y, z) on a chain, the triple (φ(x), φ(y), φ(z)) is contained
in a p-chain and consists of transverse points. Hence, φ almost surely maps chains to
chains.

The purpose of the rest of the section will then be to show the following proposition.

PROPOSITION 6.2. If φ : ∂XC(1, n)→ Ip(p,∞) is measurable and almost surely maps
chains to chains, then there exists a finite-dimensional, totally geodesic subspace Xp,np ⊂
Xp,∞ such that φ(∂XC(1, n)) ⊂ ∂Xp,np up to discarding a null subset of ∂XC(1, n).

The proof of Proposition 6.2 is a measurable version of an easy geometric construction
(Lemma 6.6). Compare with [BI08, Poz15] for similar statements and arguments. To prove
the proposition, we will need several easy lemmas, the first of which is a straightforward
consequence of Fubini’s theorem.

LEMMA 6.3. Let A, B be differentiable manifolds and π : A→ B be a smooth fibration.
Then:
(1) if O ⊆ B has full measure, then π−1(O) ⊂ A has full measure;
(2) if Y ⊆ A has full measure, then for almost every x ∈ B, Y ∩ π−1(x) has full

measure in π−1(x).

In the proof of Proposition 6.2, we will argue by induction on the dimension n of
∂XC(1, n). In particular, to have at our disposal the inductive step, we will need the
following.

LEMMA 6.4. If the measurable map φ : ∂XC(1, n)→ Ip(p,∞) almost surely maps
chains to p-chains, then for every 1 ≤ k ≤ n and for almost every k-hyperchain
∂XC(1, k) ⊂ ∂XC(1, n), the restriction φ|∂XC(1,k) : ∂XC(1, k)→ Ip(p,∞) almost
surely maps chains to chains.

Proof. This is an application of Lemma 6.3: consider the configuration spaces

Ek1 = {(C, X)| C is a chain, X is a k-hyperchain, C ⊆ X},
E0 = {C| C is a chain}.
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Clearly, for every k, there is a smooth surjection Ek1 → E0. In particular, the subsetY ⊂ Ek1
consisting of pairs (C, X) such that C is generic for φ has full measure. Lemma 6.3(2)
implies the desired statement.

In the inductive step, we will need to increase the dimension of ∂XC(1, n) by one. For
this purpose, the following additional configuration spaces will be handy:

F0 = {(C, X)| C is a chain, X is a (n− 1)-hyperchain, C ∩X is a point};
F1 = {(C, X, c, x)| (C, X) ∈ F0, c ∈ C, x ∈ X};
F2 = {(C, X, c)| (C, X) ∈ F0, c ∈ C};
F3 = {(C, X, x)| (C, X) ∈ F0, x ∈ X}.

LEMMA 6.5. Assume φ : ∂XC(1, n)→ Ip(p,∞) almost surely maps chains to chains.
Then for almost every pair (C, X) ∈ F0, the following hold:
(1) the chain C is generic for φ;
(2) for almost every pair (c, x) ∈ C ×X, the pair (c, x) is generic for φ;
(3) for almost every point c ∈ C, the pair (c, C ∩X) is generic for φ;
(4) for almost every point x ∈ X, the pair (x, C ∩X) is generic for φ.

Proof. Because the intersection of finitely many full measure subsets has full measure, it
is enough to verify that each condition holds on a full measure set. The pairs for which
condition (1) holds have clearly full measure: by assumption, almost every chain is generic
and F0 smoothly fibers over the set of all chains.

To verify condition (2) observe that, becuase φ almost surely maps chains to chains,
the set of pairs (c, x) ∈ ∂XC(1, n)× ∂XC(1, n) that are generic for φ has full measure.
Consider now the forgetful map π : F1 → ∂XC(1, n)× ∂XC(1, n). If we restrict to the
open dense subset of F1 consisting of 4-tuples (C, X, c, x), such that c, x and C ∩X are
pairwise distinct, π gives a surjective fibration onto the (open and dense) set of transverse
pairs in ∂XC(1, n)× ∂XC(1, n). In particular, we deduce from Lemma 6.3(1) that the set
of 4-tuples (C, X, c, x) ∈ F1, such that (c, x) is generic for φ, has full measure in F1.
Because F1 → F0 is a smooth fibration, the statement is then a direct consequence of
Lemma 6.3(2).

To verify that the last two conditions hold on a full measure set as well, we use a
similar argument for the fibrations F2 → ∂XC(1, n)× ∂XC(1, n) and F3 → ∂XC(1, n)×
∂XC(1, n) given respectively by (C, X, c) �→ (C ∩X, c) and (C, X, x) �→ (C ∩X, x).

The inductive step will be based on the following construction.

LEMMA 6.6. For any pair (C, X) in F0, the union

S =
⋃
c∈C
x∈X

Cc,x

contains an open and dense subset of ∂XC(1, n).
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FIGURE 1. The proof of Lemma 6.6.

Proof. We work in the Heisenberg model for ∂XC(1, n) in which the intersection point
C ∩X corresponds to ∞. It is well known that in this model, isomorphic to Cn−1 � R,
a chain W corresponds to either a vertical line or to a topological circle that projects to
an Euclidean circle E contained in an affine complex line L ⊂ Cn−1. Moreover, denoting
by π : Cn−1 � R→ Cn−1 the projection, for every Euclidean circle E ⊂ Cn−1, and every
point x ∈ π−1(E), there exists a unique chain W containing x and satisfying π(W) = E
[Gol99, §4.3].

Because we chose the Heisenberg model in which C ∩X corresponds to ∞, (see
Figure 1) the chain C corresponds to a vertical line (preimage of the point pC ∈ Cn−1), and
the (n− 1)-hyperchain X corresponds to the preimage under π of a (n− 2)-dimensional
affine subspace SX of Cn−1. If 〈SX, pC〉R denotes the R-affine span of the two affine
subspaces of Cn−1, we will prove that the open dense subset

π−1(Cn−1 \ 〈SX, pC〉R)
is contained in S.

Indeed, for any point y in Cn−1 � R such that π(y) does not belong to 〈SX, pC〉R, the
complex affine line determined by π(y) and pC intersects SX at a unique point zy . The
three points (pC , zy , π(y)) are not R-colinear and determine a unique Euclidean circle
Ey . The unique chain C projecting to Ey and containing y will, by construction, intersect
C at a point c and X at a point x, which shows that y ∈ S.

We can now conclude the proof of Proposition 6.2.

Proof of Proposition 6.2. We argue by induction.
In the case where n = 1, we know that for almost every positively oriented triple

(x, y, z), the triple (φ(x), φ(y), φ(z)) is contained in a 2p-dimensional linear subspace
of the Hilbert spaceH (as in §2.2) of signature (p, p). By Fubini’s theorem, one can find
x, y such that φ(x) and φ(y) are opposite (that is, span a subspace of signature (p, p))
and for almost all z, φ(z) lies in the span 〈φ(x), φ(y)〉.
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For the inductive step, combining Lemmas 6.4 and 6.5, we deduce that the set A of
pairs (C, X) ∈ F0, such that the restriction of φ to X almost surely maps chains to chains
and such that all conditions of Lemma 6.5 hold for (C, X), has full measure in F0. In
particular,A is not empty and we can chose a pair (C, X) ∈ A.

By the inductive hypothesis and Lemma 6.5(4), there is a np-dimensional linear
subspace Vp,(n−1)p of H such that φ(C ∩X) < Vp,(n−1)p and for almost every x ∈ X,
φ(x) < Vp,(n−1)p. Let us choose a point y in C such that the pair (y, C ∩X) is generic for
φ and define

Vp,np = 〈Vp,(n−1)p, φ(y)〉.
Because the pair (y, C ∩X) is generic for φ, for almost every point c ∈ C, φ(c) <

Vp,np. Because, by Lemma 6.5(2), almost every pair (c, x) ∈ C ×X is generic, there
exist a full measure subset of S =⋃

Cc,x consisting of points s with φ(s) < Vp,np. The
conclusion follows because, by Lemma 6.6, the set S contains an open dense subset of
∂XC(1, n) and hence a full measure subset of S has full measure in ∂XC(1, n).

6.2. Rigidity of maximal representations of complex hyperbolic lattices. We now have
all the needed ingredients to prove our rigidity result for maximal representations of
complex hyperbolic lattices.

THEOREM 6.7. Let n ≥ 2 and let � < SU(1, n) be a complex hyperbolic lattice, and let
ρ : �→ POC(p,∞) be a maximal representation. If there is a ρ-equivariant measurable
map φ : ∂XC(1, n)→ Ip, then there is a finite-dimensional totally geodesic Hermitian
symmetric subspace Y ⊂ XC(p,∞) that is invariant by �. Furthermore, the representa-
tion �→ Isom(Y) is maximal.

Proof. By Corollary 6.1 and Proposition 6.2, we know that the image of φ is essentially
contained in the boundary of some XC(p, np). Because � is countable, we can find a
�-invariant full measure subset of ∂XC(1, n) whose image in contained in ∂XC(p, np). In
particular, this copy of XC(p, np) is �-invariant. This concludes the proof.

Proof of Theorem 1.1. Under the hypothesis of Zariski density, a measurable ρ-equivariant
map φ : ∂XC(1, n)→ Ip is given by Theorem 1.7. If p ≤ 2, we know from Proposition
5.15 that the representation ρ virtually splits as a product of geometrically dense maximal
representations, and therefore is enough to understand the case in which ρ is geometrically
dense. In this case, the existence of a measurable ρ-equivariant map φ : ∂XC(1, n)→ Ip
is given by Corollary 4.17.

Remark 6.8. Combining the results of this paper and those of [KM17], one can deduce
that if � < SU(1, n) is cocompact and ρ : �→ OC(p,∞) is maximal, then there is
a totally geodesic subspace Y ⊂ XC(p,∞) preserved by ρ(�) which is isometric to
XC(1, n)× XC(p1,∞)× · · · × XC(pk ,∞) after a suitable rescaling of the metric of the
various factors, where pi > 2. Furthermore, the induced action on XC(pi ,∞) is maximal
and geometrically dense, but not Zariski dense. If � < SU(1, n) is non-uniform, we can
deduce from [Poz15] the same result where possibly Y also has some finite-dimensional
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factors of tube type. We conjecture that indeed Y = XC(1, n): the absence of factors of
type XC(pi ,∞) would be implied by a positive answer to Question 1.6.

7. Maximal representations in POR(2,∞)
In this section, we will construct the example of Theorem 1.2. Here, we focus on lattices
�� < PSL(2, R) = PU(1, 1). A finite index subgroup of�� is then the fundamental group
of a Riemann surface of negative Euler characteristic.

To construct geometrically dense maximal representations, we need to recall some of
the geometry of XR(2,∞) and of the specific boundary where the Bergmann cocycle
is defined. Recall from §5.3 that the Bergmann cocycle βR : I1(2,∞)3 → {−2, 0, 2}
induces a O+R(2,∞)-invariant partial cyclic ordering on the set of isotropic lines I1(2,∞):
we say that (x, y, z) is positively oriented if and only if βR(x, y, z) = 2. This is a conse-
quence of the fact that βR is a cocycle, and hence if βR(x, y, z) = 2 and βR(x, z, t) = 2,
then necessarily βR(x, y, t) = 2 and βR(y, z, t) = 2. We say that a triple (x, y, z) ∈
I1(2,∞) is maximal if βR(x, y, z) = 2. It is easy to check that maximal triples form a
single O+R(2,∞)-orbit. More generally, we say that an n-tuple (x1, . . . , xn) is maximal
if every subtriple (xi , xj , xk), with i ≤ j ≤ k, is. Furthermore, given an opposite pair
(x, z) ∈ I1(2,∞), we denote by Ix,z the interval with endpoints (x, z):

Ix,z = {y ∈ I1(2,∞)| (x, y, z) is maximal}.
The following property of intervals will be useful.

PROPOSITION 7.1. Let x, y be a pair of opposite points in I1(2,∞). The interval Ix,y is
homeomorphic to a bounded convex subspace of a Hilbert space.

Proof. Recall from §5.3 that given two opposite isotropic lines x, y ∈ I1(2,∞) of which
we choose representatives x, y such that Q(x, y) < 0, the interval Ix,y consists of the
isotropic subspaces

Ix,y = {z ∈ I1(2,∞)| Q(x, z) < 0, Q(y, z) < 0, and or([x], [y], [z]) = +}.
Indeed the expression of the restriction of the quadratic form to the subspace x, y, z is
represented, with respect to that basis {x, y, z} by the matrix⎛

⎝ 0 Q(x, y) Q(x, z)
Q(x, y) 0 Q(y, z)
Q(x, z) Q(y, z) 0

⎞
⎠ ,

whose determinant, 2Q(x, y)Q(x, z)Q(y, z), is negative if and only if the signs ofQ(x, z)
and Q(y, z) are equal and can be chosen negative.

Without lost of generality, we can find a Hilbert basis (ei)i∈N which is orthogonal
for Q, such that Q(e1) = Q(e2) = 1, Q(ei) = −1 for i ≥ 3 and such that x, y have
representatives x = e1 + e3 and y = −e1 + e3. For z ∈ I1(2,∞), let z be a representative
of z, such that ‖z‖ = √2 (here the norm ‖ · ‖ is computed with respect to the scalar product
〈 , 〉 defining the Hilbert space H). We can write z = u+ v with ‖u‖ = ‖v‖ = 1, u in
the span of {e1, e2}, and v in the orthogonal of {e1, e2}. If we write u = u1e1 + u2e2

and v = v3e3 + v′ with v′⊥e3, then the requirements Q(x, z) < 0 and Q(y, z) < 0 are
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both satisfied if and only if v3 > |u1|. Furthermore, in this case, or([x], [z], [y]) = + if
and only if u2 > 0. In particular, I1(2,∞) is homeomorphic to the pairs (u1, v′) with
|v′|2 + |u1|2 < 1, which is a bounded convex subset of a Hilbert space.

In analogy with the finite-dimensional case, we say that an element g ∈ OR
+(2,∞)

is Shilov hyperbolic if it has an attractive line in I1(2,∞) or equivalently if g has a real
eigenvalue λ1(g) of absolute value strictly bigger than one and multiplicity one (observe
that g has at most two eigenvalues of absolute value bigger than one, and in this case, we
denote by λ1(g) the eigenvalue with highest absolute value). If g is Shilov hyperbolic, we
denote by g+ ∈ I1(2,∞) the eigenline corresponding to λ1(g) and by g− ∈ I1(2,∞) the
eigenline corresponding to λ1(g)

−1.
To carry out our construction of geometrically dense maximal representation, we will

need the following result, which ensures a good nesting property of the images of intervals
under the action of Shilov-hyperbolic elements.

PROPOSITION 7.2. Given a Shilov-hyperbolic element g and a maximal 4-tuple
(x, y, z, t) ∈ I1(2,∞) such that also (x, y, g+, z, t , g−) is maximal, there exists n ∈ N
such that (y, gnx, g+, gnt , z) is maximal as well.

Proof. As in the proof of Proposition 7.1, we fix a Hilbert basis ofH such thatQ(e1, e1) =
Q(e2, e2) = 1 and Q(ei , ei) = −1 for all i ≥ 3. Because the group OR(2,∞) acts transi-
tively on pairs of opposite isotropic lines, we can, without loss of generality, assume that
g+ = e1 + e3 and g− = −e1 + e3. Because the 6-tuple (x, y, g+, z, t , g−) is maximal, we
can fix, for every w ∈ {x, y, z, t}, a lift w of the form (cos θw, sin θw, w3, . . .) with the
additional requirements that

∑
i≥3 w

2
i = 1 (because w defines an isotropic line) and that

w3 > 0. Furthermore, because the restriction of Q to 〈w, g+, g−〉 has signature (2, 1), we
deduce thatQ(x, g+) andQ(x, g−) have the same sign, and, in particular, w3 > |cos θw|.
Finally, the maximality of the 6-tuple (x, y, g+, z, t , g−) implies that

−π < θx < θy < 0 < θz < θt < π .

We decompose each vector w in the relevant eigenspaces for g: w = w+g+ + w−g− +
w0 (where the vector w0 is orthogonal to 〈g+, g−〉). Observe that w+ = (w3 + cos θw)/2
and w− = (w3 − cos θw)/2. Because we know that w3 > |cos θw|, we deduce that w+ �=
0 and because ‖gn(w+g+)‖/‖gn(w − w+g+)‖ ≥ |λ1(g)/λ2(g)|n, where λ2(g) is the
second maximal eigenvalue (possibly of absolute value 1), we can find n big enough such
that θy < θgnx < 0 < θgnt < θz. Up to considering g2 instead of g, we may assume that
λ1(g) > 0 and because w3 > 0, we have gnw/‖gnw‖ → g+/‖g+‖. So by continuity of
Q, Q(gnw, y) has the same sign as Q(g+, y) for n large enough.

Hence we can find n such that the restriction of Q to 〈y, gnx, g+〉 has signature (2, 1)
and θy < θgnx < 0, which implies that the orientation or([y], [gnx], [g+]) is positive.
For such n, the triple (y, gnx, g+) is maximal and similarly, we can also assume, up to
possibly further enlarging n, that (g+, gnt , z) is maximal for n large enough. Together
with the fact that (gnx, g+, gnt) is maximal for any n, this is enough to guarantee that
(y, gnx, g+, gnt , z) is maximal for n large enough.
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PROPOSITION 7.3. There exists a maximal 4-tuple (x, y, z, t) ∈ I1(2,∞) and Shilov-
hyperbolic elements g, h ∈ O+R(2,∞) such that the 8-tuple (x, h+, y, g+, z, h−, t , g−)
is maximal and such that the group generated by g and h does not preserve any
finite-dimensional subspace ofH.

Proof. We decompose the Hilbert space H as a direct sum H = V⊕W, where V and
W are orthogonal with respect to Q, the restriction of Q to V has signature (2, 2), and
(W, −Q|W) is a Hilbert space with Hilbert basis (ei)i≥3. We choose an element g ∈
O+R(2,∞) that induces a Shilov-hyperbolic element ofV, and acts on each subspaceLi :=
〈e2i+1, e2i+2〉 ofW as a rotation of angle θi , where θi/π are distinct irrational numbers
modulo two. Observe that the attractive (respectively repulsive) eigenlines g± of g belong
to I1(V) ⊂ I1(2,∞). Furthermore, every invariant subspace for the g action is obtained
as the direct sum of a subspace ofV and a sum of the Li .

We construct a basis {f1, f2, e1, e2} of V which is orthogonal for Q and such that
Q(f1, f1) = Q(f2, f2) = 1, so thatQ|〈e1,e2〉 is negative definite. LetW0 =W⊕ 〈e1, e2〉
(recall that the restriction of Q toW is negative definite). Choose two independent vectors
v and v′ inW0 whose projection on every Rei (for i ≥ 1) is different from 0. Let V′ =
〈V, v, v′〉; the restriction of Q toV′ has signature (2, 4). BecauseV′ is finite-dimensional,
we can choose x, y, z, t ∈ I1(V′) = I1(2, 4) and an isometry h0 ∈ SO+(2, 4) such that
the 8-tuple (x, h+0 , y, g+, z, h−0 , t , g−) is maximal and there is no h0-invariant subspace
ofV′ ⊂ H that is invariant by g.

Let W′ ⊂W be the orthogonal of V′, and choose a Hilbert basis of W′ consisting
of vectors which have a non-trivial projection on every Rei . We choose h that acts as the
hyperbolic isometry h0 of V′, and h acts on W′ as g does on W. The group generated
by g and h does not preserve any finite-dimensional subspace: because every subspace
Z ⊂ H, which is invariant by h, will be either contained in V′ (and then it is trivial by
assumption if it is also invariant by g) or contain a vector whose projection on every Rei is
not trivial. However, then it must containW0, if it is g-invariant and therefore cannot be
h-invariant.

Remark 7.4. If g, h are constructed as in the proof of Proposition 7.3, for every integer n,
the pair gn, hn satisfies the conclusion of Proposition 7.3 as well.

Given an interval Ia,b, we denote its closure by Ia,b for the quotient topology on the
projective space PH coming from the Hilbert topology on H. The following property of
intervals is also useful.

PROPOSITION 7.5. Assume (a, b, c, d) ∈ I1(2,∞)4 is maximal, then Ib,c ⊂ Ia,d .

Proof. As above, we can assume without loss of generality that b = e1 + e3, c =
−e1 + e3 for a Hilbert basis orthogonal for Q, such that Q(e1) = Q(e2) = 1, Q(ei) =
−1 for i ≥ 3. A generic point t ∈ Ib,c will then have a representative of the form
t = (cos θt , sin θt , vt , wt1, . . .), where wt ∈ 〈e4, . . .〉, ‖wt‖2 + v2

t = 1, 0 ≤ θt ≤ π , and
vt ≥ |cos θt |. A similar computation shows that the classes a, d will have representatives
a, b of a similar form such that ‖wa‖2 + v2

a = ‖wd‖2 + v2
d = 1, −π ≤ θd < θa ≤ 0 and

va > |cos θa|, vd > |cos θd |.
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To verify that (a, t , d) is maximal, it is enough to verify that Q(a, t) and Q(d , t) are
negative (the condition with the orientation follows immediately from the analog property
for intervals in the circle): an explicit computation gives

Q(a, t) = cos θa cos θt − vavt + sin θa sin θt − 〈wa , wt 〉 < 0.

More precisely, because va > |cos θa| and vt ≥ |cos θt |,
cos θa cos θt − vavt ≤ 0. (2)

Furthermore, because − sin θa > ‖wa‖ and sin θt ≥ ‖wt‖,
sin θa sin θt − 〈wa , wt 〉 < sin θa sin θt + ‖wa‖‖wt‖ ≤ 0. (3)

Observe that equations (2) and (3) cannot be an equality simultaneously because if
equation (2) is an equality, then θt = π/2 and thus sin(θt ) = 1. The verification that
Q(d , t) < 0 is identical and thus the result follows.

Combining Propositions 7.2, 7.3, and 7.5, we obtain the following.

COROLLARY 7.6. There exists a maximal 4-tuple (x, y, z, t) in I1(2,∞), and a pair of
Shilov-hyperbolic elements A, B ∈ O+R(2,∞) that play ping-pong with this tuple, namely
such that

⎧⎪⎪⎨
⎪⎪⎩
AIt ,z ⊂ Ix,y ,
BIx,t ⊂ Iy,z,
A−1Iy,x ⊂ Iz,t ,
B−1Iz,y ⊂ It ,x .

A
>

B>

y

xt

z

We can furthermore assume that the group generated by A, B does not leave invariant any
finite-dimensional subspace ofH.

Proof. Let g, h be the Shilov-hyperbolic elements and (x, y, z, t) be the points given by
Proposition 7.3. Proposition 7.2 implies that we can find an integer n such that the pair
(A, B) = (hn, gn) plays ping-pong with the 4-tuple. Moreover, we can pass to the closure
thanks to Proposition 7.5. The second claim is a consequence of Remark 7.4.

PROPOSITION 7.7. Let � be the once punctured torus, and let a, b be the standard
generators of �� = π1(�) oriented as in the picture.

a
>

b>

l

ρ(b)−1lρ(a−1b−1)l

ρ(a−1)l
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Assume that ρ : �� → O+R(2,∞) has the property that the image ρ(aba−1b−1) has a
fixed point l in I1(2,∞). Then

2iρ = βR(l, ρ(a−1)l, ρ(ba)−1l)+ βR(ρ(ba)
−1l, ρ(b−1)l, l).

Proof. As the (relative) bounded cohomology of a surface with a puncture and that of
a homotopic surface with a boundary component are canonically isomorphic, we can
realize � as a surface with geodesic boundary ∂�. We denote by H2

b(�, R) the singular
bounded cohomology of the topological space � (namely the cohomology of the complex
of bounded singular cochain), and by H2

b(�, ∂�, R) the relative bounded cohomology,
which is the cohomology of the complex of bounded cochains that vanishes on singular
simplices with image entirely contained in ∂�.

It follows from [BIW10, Theorem 3.3] that the Toledo invariant iρ can be computed
from the formula

2iρ = 〈j−1
∂�g�ρ

∗(κb), [�, ∂�]〉.
Here, g� : H2

b(�� , R)→ H2
b(�, R) is the canonical isomorphism and j−1

∂� : H2
b(�, R)→

H2
b(�, ∂�, R) is the isometric isomorphism described in [BBF+14] that is inverse to the

map induced by the inclusion of bounded relative cochains in bounded cochains. Recall
that, whenever a base point x ∈ �̃, the universal cover, is fixed, the bounded cohomology
H2
b(�, R) can be also isometrically computed from the complex of functions on straight

simplices with vertices in the set �� · x ⊂ �̃. Furthermore, if c is a cocycle representing
the class [c] ∈ H2

b(�� , R), the class g�([c]) is represented by the cocycle

c(�(g0x, g1x, g2x)) = c(g0, g1, g2).

We denote, as in Lemma 5.4, Clβ ∈ C2
b(�� , R) the cocycle defined by

Clβ(g0, g1, g2) = βR(ρ(g0)l, ρ(g1)l, ρ(g2)l)

(recall that l ∈ I1(2,∞) is a fixed point of ρ(bab−1a−1))). We deduce that C
l

β vanishes
on simplices contained in ∂�, as long as we choose x ∈ �̃ in the preimage of ∂�. Thus,

〈j−1
∂�g�ρ

∗(κb), [�, ∂�]〉 =
∑
i

aiβR(g
i
0l, g

i
1l, g

i
2l),

provided
∑
i ai�(g

i
0x, gi1x, gi2x) represents the relative fundamental class [�, ∂�].

Observe that a relative fundamental class for the once punctured torus can be writ-
ten as the sum of the triangles �(x, a−1x, b−1a−1x), �(x, b−1a−1x, a−1b−1x), and
�(a−1b−1x, b−1x, x), and the cocycle βR vanishes on the third simplex because βR is
��-equivariant and alternating, and�(x, b−1a−1x, a−1b−1x) = �(abx, x, [a, b]x). The
result follows.

Proof of Theorem 1.2. Let A, B ∈ O+R(2,∞) as given by Corollary 7.6. The group �� is a
free group on two generators a and b. We define the representation ρ by setting ρ(a) = A,
ρ(b) = B. Corollary 7.6 implies that ρ(bab−1a−1)Iy,z ⊂ Iy,B+ .

Because the interval Iy,z is a non-empty bounded convex set of a Hilbert space
(Proposition 7.1) whose closure is compact in the weak topology, we deduce using
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Tychonoff’s fixed point theorem [Tyc35] (see [DS88] for a modern proof) that the
continuous function ρ([a, b]) : Iy,z → Iy,z has a fixed point.

Because l belongs to the interval Iy,z ⊂ Iy,x , we have that ρ(a−1)l belongs to the
interval Iz,t and ρ(a−1b−1)l = ρ(b−1a−1)l belongs to the interval It ,x . This implies that

βR(l, ρ(a−1)l, ρ(ba)−1l) = 2;

the verification that βR(ρ(ba)
−1l, ρ(b−1)l, l) = 2 is analogous. Together with

Proposition 7.7, this shows that iρ = 2, namely that the representation ρ is maximal.
We conclude the proof verifying that the representation is geometrically dense. Because

the representation is irreducible, there is no fixed point at infinity and thus there is a
minimal totally geodesic invariant subspace, which cannot be of finite dimension because
of Lemma 3.11. It has no Euclidean factor otherwise there would be a fixed point at infinity
or a pair of such fixed points, which is impossible thanks to Proposition 2.4. So either it
is of rank one, a product of two rank-1 subspaces, or a rank-2 subspace. Lemma 5.14
excludes the presence of rank-1 factors and that the symmetric subspace is associated to
OH(2,∞). The closure cannot be associated to OC(2,∞) by Theorem 1.1. Therefore, the
minimal totally geodesic subspace is isometric to the symmetric subspace to OR(2,∞).
By possibly restricting to the isometry group of that subspace, we can assume that the
representation is geometrically dense.

Acknowledgements. We would like to thank J.-L. Clerc for explanations about tube-type
and non-tube-type Hermitian symmetric spaces, and their generalizations in infinite
dimension; Y. Benoist for discussions about constructions of geometrically dense repre-
sentations in infinite dimension; J. Maubon for discussion about maximal representations
of surface groups and N. Treib for discussion about concrete realizations of the Bergmann
cocycle on the Shilov boundary of the group POR(2, n). B.D. and J.L. are supported in part
by French projects ANR-14-CE25-0004 GAMME and ANR-16-CE40-0022-01 AGIRA,
and M.B.P. is supported in part by the DFG priority program SPP 2026 Geometry at
infinity.

A. Appendix. Exotic actions of PSL2(R) on XR(2,∞)
Delzant and Py [DP12] initiated a geometric study of representations πs of PU(1, 1) �
PSL2(R) on the space L2(S1, C) of square integrable, complex valued functions on the
circle S1 = ∂D, seen as the boundary of the unit disk D, endowed with the angular measure
dθ/2π . While these representations were previously studied from an algebraic point of
view, they noticed that they give rise to interesting exotic actions on infinite-dimensional
symmetric spaces of finite rank. Despite the main interest of [DP12] (as well as of [MP14])
being actions on the infinite-dimensional real hyperbolic space, the construction also gives
a one-parameter family of representations in OR(2,∞). The goal of this appendix is to
explicitly compute the Toledo invariant of those representations. We will show that the
invariant vanishes.

We quickly recall the construction in our specific setting. We refer the reader to
[DP12, §2] for more details. Let s ∈ (3/2, 5/2). The representation πs alluded to before is
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defined by

πs(g) · f = Jac(g−1)(1/2)+sf ◦ g−1,

where Jac(g) is the Jacobian of an element g with respect to the measure dθ on the circle.
If we denote by c the constant function and, for every n ∈ Z \ {0}, we denote by en, fn

the functions z �→ �(zn), z �→ �(zn) which are the real and the imaginary part of z �→ zn

(these constitute a Hilbert basis of the space L2(S1, R)), then the representation πs is not
unitary, but it is shown in [DP12, Proposition 2] that πs preserves a quadratic form Qs for
which the family {c, ei , fi} is orthogonal and satisfies

Qs(en) = Qs(fn) = −
n−1∏
i=0

i + (1/2)− s
i − (1/2)+ s

and Q(c) = −1. It is easy to compute that, for every s ∈ (3/2, 5/2), Qs(en) < 0 if n �= 1
and Qs(e1) = Qs(f1) > 0, and hence the action of πs on the completion H of L2(S1, R)
with respect to the form Qs induces an homomorphism in OR(2,∞). The purpose of the
section is to prove the following.

PROPOSITION A.1. Let � < SU(1, 1) be a torsionfree lattice, and let ρs : �→ OR(2,∞)
denote the restriction to � of the composition of the projection to PU(1, 1) and πs . Then
ρ∗s κbOR(2,∞) = 0.

We denote by XsR(2,∞) the symmetric space associated to the group preserving the
form Qs . Because the subgroup U(1) < SU(1, 1) fixes the positive definite subspace
x = 〈e1, f1〉 ∈ XsR(2,∞), we have a PU(1, 1)-equivariant (harmonic) map fs : D =
XC(1, 1)→ XsR(2,∞) induced by the orbit map g �→ gx. Let ωs denote the Kähler form
of the symmetric space XsR(2,∞); and let us denote by � the quotient D/�.

We prove the stronger fact that fs is a totally real equivariant harmonic map, that is,
ωs(dfs(v), dfs(Jv)) = 0 for some vector v ∈ T0D (here J denotes the complex structure
of the disk, which we identify as the corresponding element in U(1) < SU(1, 1)). For this
purpose, we consider the one-parameter subgroup of hyperbolic elements

gt =
(

cosh t sinh t
sinh t cosh t

)
,

whose axis contains 0. Let us denote by γ : R+ → D the geodesic γ (t) = gt · 0, and let
v = γ ′(0). To compute the image dfs(v), we will compute d/dt |t=0πs(gt ) · x. Observe
that πs(gt ) · x is the vector space generated by the real and imaginary parts of the function
πs(gt ) · z (where, for ease of calculation, we extend the action of πs to the Hilbert space
L2(S1, C)).

If we denote by a = tanh t , we have

πs(gt ) · z = Jac(g−1
t )(1/2)+s z− a

1− az = (1− a
2)(1/2)+s(z− a)

( ∞∑
n=0

anzn
)2+2s
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because

Jac(g−1
t ) = 1− a2

(1− az)2 .

Therefore, we have

d

dt

∣∣∣∣
t=0
πs(gt ) · z = −1+ (2+ 2s)z2.

Using the notation from §2.3, we may identify T0XsR(2,∞) with the Lie triple system

p = {
[

0 A
tA 0

]
, A ∈ L(W , V )}, where V = 〈e1, f1〉 and W = 〈c, e2, f2, . . .〉. The tangent

vector dfs(v) is the element in the tangent space p that corresponds to the matrix A ∈
L(W , V ) given by

A =
(−1 2+ 2s 0 0 . . .

0 0 2+ 2s 0 . . .

)
.

Because the vectors e2n, f2n are eigenvectors for πs(J ) of eigenvalues (−1)n, we get that
the tangent vector dfs(Jv) corresponds to the matrix

B =
(−1 −2− 2s 0 0 . . .

0 0 −2− 2s 0 . . .

)
.

Denoting by J0 the complex structure of XsR(2,∞), we have that J0 · dfs(Jv) ∈ p

corresponds to the matrix

IB =
(

0 0 −2− 2s 0 . . .

1 2+ 2s 0 0 . . .

)
.

Because
[

0 A
tA 0

]
and

[
0 IB

−t (IB) 0

]
are orthogonal with respect to the scalar product on

S2(H), we obtain our claim and conclude the proof of Proposition A.1.
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