
J. Fluid Mech. (2024), vol. 1000, A82, doi:10.1017/jfm.2024.1004

Freely rising or falling of a sphere in a square
tube at intermediate Reynolds numbers
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The motion of a sphere freely rising or falling in a 5d (d is the diameter of the sphere)
square tube was numerically studied for the sphere-to-fluid density ratio ranging from
0.1 to 2.3 (0.1 ≤ ρs/ρ ≤ 2.3, ρs is the density of spheres and ρ the fluid density) and
Galileo number from 140 to 230 (140 ≤ Ga ≤ 230). We report that Hopf bifurcation
occurs at Gacrit ≈ 157, where both the heavy and light spheres lose stability. The helical
motion is widely seen for all spheres at Ga > 160 resulting from a double-threaded vortex
interacting with the tube walls, which becomes irregular at Ga ≥ 190 where heavy spheres
act differently from their counterparts; that is, heavy spheres change their helical directions
alternately while light spheres exhibit helical trajectories with jaggedness in connection
with the shedding of the double-threaded vortices. This is because of the difference in
inertia between the heavy and light spheres. We also checked the oscillation periods for the
helical motion of the spheres. They show opposite variations with ρs/ρ for the two types
of spheres. Light spheres (ρs/ρ ≤ 0.7) reach a zigzagging regime at Ga ≥ 200 where a
vortex loop (hairpin-like vortical structure) is formed which may develop into a vortex ring
downstream at small ρs/ρ. This might be the first time a transition from the helical motion
to the zigzagging motion for heavy spheres (ρs/ρ ≥ 1.8) has been reported. Finally, we
examined the dependence of both the terminal Reynolds number and the drag coefficient
of the spheres on the Galileo number.

Key words: particle/fluid flow, suspensions, wakes

1. Introduction

The free motion of solid particles in air or water is a common phenomenon in nature and
industry. Heavy particles generally fall, while light particles rise, owing to competition
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between the effects of gravity and buoyancy. One may think that this is a simple problem
to understand and can be mathematically solved. However, existing studies indicate that
this common phenomenon reflects a complex and rich dynamics when the inertia of both
particles and fluids becomes significant (Ern et al. 2012). Owing to its importance from
both theoretical and practical perspectives, most relevant studies have been performed
numerically or experimentally at moderate Reynolds numbers. For the free motion of a
single sphere in an unbounded domain, much effort (Natarajan & Acrivos 1993; Mittal
1999; Ormières & Provansal 1999; Ghidersa & Dušek 2000; Tomboulides & Orszag
2000; Fabre, Auguste & Magnaudet 2008; Chrust, Goujon-Durand & Wesfreid 2013) was
devoted to the reverse case in the early years, that is, the case of uniform flow past a
fixed sphere. Accordingly, the transition scenario for a fixed sphere is well understood
in terms of the onset of instability, loss of flow planarity and vortex dynamics. For
instance, it is widely believed that the flow loses its axial symmetry at a Reynolds
number (Re) of approximately 212 (Natarajan & Acrivos 1993; Johnson & Patel 1999;
Tomboulides & Orszag 2000; Chrust et al. 2013), in association with the formation of a
double-threaded vortex in the wake that exhibits planar symmetry. The second transition
occurred at Re = 270–280, representing the Hopf bifurcation (Natarajan & Acrivos 1993;
Johnson & Patel 1999; Ghidersa & Dušek 2000). As Re increased, the shedding of the
double-threaded vortex occurred and a hairpin-like vortex formed downstream of the
sphere. At a high Reynolds number (Re ≈ 420, Sakamoto & Haniu 1995; Re = 350–375,
Mittal 1999; Re ≈ 500, Tomboulides & Orszag 2000; Re ≈ 375, Chrust et al. 2013) the flow
falls into chaos, leading to disappearance of the planarity.

Things become more complicated when a sphere can freely fall or rise in a fluid. As
previously reported (Karamanev & Nikolov 1992; Karamanev, Chavarie & Mayer 1996),
light spheres may experience a significantly larger drag than the standard drag curve
(Turton & Levenspiel 1986). Horowitz & Williamson (2010) indicated that the increasing
drag coefficient of a light sphere (ρs/ρ < 0.36, ρs is the density of spheres and ρ the fluid
density) could be nearly twice that of a fixed sphere because of vibration at Re > 260.
However, Auguste & Magnaudet (2018) argued that a deviation from the standard drag
could only be observed for light spheres (ρs/ρ ≤ 0.1) undergoing a helical motion at high
Reynolds numbers (Re > 350). This contradicts the findings of an experimental study by
Veldhuis, Biesheuvel & Lohse (2009), who claimed that a very light sphere (ρs/ρ = 0.02)
experiences enhanced drag as it rises helically or along a zigzag path. A recent experiment
work (Will & Krug 2021a) revealed the existence of a helical regime for light spheres with
ρs/ρ ≤ 0.42 where the drag is significantly increased. They believed that a change in the
wake structure leads to the higher drag. Further attention should be paid to addressing the
disagreement in the ranges of both ρs/ρ and Re where the deviation from the standard drag
curve occurs and how large the deviation is.

Another concern is the wake-induced motion patterns of the spheres. Jenny, Dušek &
Bouchet (2004) presented a pioneering study on the motion and dynamics of spheres over
a broad region of sphere-to-fluid density ratio and Galileo number, which is defined as
follows:

Ga =
√∣∣∣∣ρs

ρ
− 1

∣∣∣∣ gd3

ν2 , (1.1)

where d is the diameter of the spheres, g is the gravitational acceleration and ν is the
kinematic viscosity. A variety of motions were revealed for a sphere under the action of
gravity: vertical steady, oblique steady, oblique oscillating, zigzagging and chaotic states.
More significantly, Jenny et al. (2004) established a regime diagram in the parametric
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space (Ga, ρs/ρ), which provided a clear view of the transition scenario and bifurcations
of the motion of falling or rising spheres. They reported that a zigzagging motion existed
for all light spheres (ρs/ρ < 1) for Ga values ranging between 175 and 215. A subsequent
experimental study (Veldhuis & Biesheuvel 2007) confirmed ‘the main features’ of the
motion patterns revealed by Jenny et al. (2004), despite the small discrepancy observed in
the frequency of the oscillating regime. Using the same numerical scheme as Jenny et al.
(2004), Zhou & Dušek (2015) performed a systematic study on the same problem and
provided an updated regime map that, in principle, resembled the previous one. In contrast,
several new patterns (helical/rotating and vertical periodic patterns) were reported in the
latter. The regimes for the falling of heavy spheres (Zhou & Dušek 2015) agree well
with those of a recent experimental study (Cabrera-Booman, Plihon & Bourgoin 2024).
A new (vertical periodic) pattern was confirmed by Cabrera-Booman et al. (2024), who
performed experiments on settling spheres with density ratio close to unity (ρs/ρ = 1.1).
However, Zhou & Dušek (2015) claimed light spheres with ρs/ρ ≤ 0.5 may undergo the
zigzagging motion. This density ratio range considerably differs from that of Jenny et al.
(2004) as well as those reported by several other studies (ρs/ρ ≤ 0.36 at Re = 260–1550
and ρs/ρ ≤ 0.61 at Re = 1550–15 000, Horowitz & Williamson 2010; ρs/ρ < 1, Auguste &
Magnaudet 2018; Raaghav, Poelma & Breugem 2022). Raaghav et al. (2022) reported that
a moderately light sphere (ρs/ρ ≈ 0.87) exhibits a zigzagging motion at Ga values ranging
between 190 and 250. The reason for the diversity in the critical ρs/ρ remains unclear. It
is worth mentioning here that Cabrera-Booman et al. (2024) derived formulations of the
drag coefficient (CD) and terminal Reynolds number (ReT = UTd/ν, UT is the terminal
velocity of freely falling or rising spheres) as a function of the Galileo number, based on
the relationship between CD and Ga

CD = 4
3

(
Ga
ReT

)2

. (1.2)

To solve (1.2), Cabrera-Booman et al. (2024) adopted the drag coefficient of a fixed sphere
proposed by Brown & Lawler (2003)

CD = 24
ReT

(1 + 0.15 Re0.681
T ) + 0.407

1 + 8710
ReT

. (1.3)

The following formulations were obtained (Cabrera-Booman et al. 2024):

ReT(Ga) = Ga2(22.5 + Ga1.364)

0.0258Ga2.6973 + 2.81Ga2.0306 + 18Ga1.364 + 405
, (1.4)

CD(Ga) = 4
3

(
Ga(22.5 + Ga1.364)

0.0258Ga2.6973 + 2.81Ga2.0306 + 18Ga1.364 + 405

)−2

. (1.5)

Equations (1.4) and (1.5) allow one to directly assess the terminal velocity (or terminal
Reynolds number) and drag coefficient of falling or rising spheres, respectively, because
Ga is an input parameter instead of an output parameter, such as ReT . Broadly speaking,
existing studies show reasonable agreement on the motion regimes of a falling or rising
sphere at low Ga and moderate ρs/ρ. As Ga increases, discrepancies emerge among
these studies, especially for very heavy and light spheres. For instance, both studies
(Jenny et al. 2004; Zhou & Dušek 2015) revealed an oblique oscillating motion with high
frequency for heavy spheres (ρs/ρ > 2.5), but Raaghav et al. (2022) did not observe such
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a regime for spheres with ρs/ρ = 3.19 and 3.9 at relevant Ga. By contrast, the recent study
(Cabrera-Booman et al. 2024) confirmed this regime through experiments on spheres with
ρs/ρ = 7.9. Furthermore, according to Zhou & Dušek (2015), a vertical periodic pattern
occurred at Ga > 250, which was not reported in the experimental work of Veldhuis &
Biesheuvel (2007). The most noticeable disagreement may exist between the study by
Horowitz & Williamson (2010) and other studies in terms of the range of Ga or Re for the
zigzagging motion of light spheres and the motion patterns of heavy spheres. Numerical
(Zhou & Dušek 2015) and experimental (Will & Krug 2021a; Raaghav et al. 2022) work
revealed that a light sphere will rise in a helical path at high Ga. However, Horowitz &
Williamson (2010) did not report this motion. Substantial efforts are required to shed light
on the gravity/buoyancy-driven motion of spheres in the broader parametric space of (Ga,
ρs/ρ) to provide a comprehensive and indisputable regime map.

In contrast, little is known about confined spheres under similar flow conditions. The
presence of solid walls raises several issues which are absent for an unconfined sphere,
such as the inertial migration (Segrè & Silberberg 1961; Matas, Morris & Guazzelli
2004; Yu, Phan-Thien & Tanner 2004; Yang et al. 2005), wake-induced lift (Bagchi &
Balachandar 2002; Zeng, Balachandar & Fischer 2005; Feng, Gatewood & Michaelides
2021; Shi et al. 2021) and the suppression of flow instability (Zeng et al. 2005; Zhao
et al. 2016). Yu et al. (2004) used a distributed Lagrange multiplier method to simulate
the falling of a heavy sphere (ρs/ρ = 1.5) in a 5d circular tube at several Reynolds
numbers, i.e. Re = 20, 100, 200, 300 and 400 (corresponding to ReT ≈ 8, 84, 197, 306
and 424). These Reynolds numbers represent four different regimes of flow past a fixed
sphere (Natarajan & Acrivos 1993; Johnson & Patel 1999; Tomboulides & Orszag 2000):
unseparated flow (Re = 20), axisymmetric flow (Re = 100 and 200), periodic oscillatory
flow (Re = 300) and chaotic flow (Re = 400). The confined sphere was seen to fall in a
helical path at Re ≥ 200 (Yu et al. 2004), which essentially differs from the unconfined
case for which one could only observe the helical motion of heavy spheres (ρs/ρ > 1.7)
at a bi-stable region (212 < Ga < 240) where the chaotic motion and a high-frequency
oscillating oblique motion coexist. As indicated by Deloze, Hoarau & Dušek (2012),
spheres confined to a tube are quickly subjected to a wall repulsive interaction and
tend to fall helically. Furthermore, Yu et al. (2004) checked the role of rotation on the
lateral motion of the sphere (i.e. the Magnus effect). Note that Will & Krug (2021b)
also addressed the significance of rotational dynamics in the motion of falling and rising
spheres. Yu et al. (2004) provided a careful analysis on the vortex dynamics in the wake
of the sphere and characterized the formation and evolution of a hairpin-like vortex at
Re = 400. Similarly, Deloze et al. (2012) focused on the motion transitions of a heavy
sphere (mostly at ρs/ρ = 2) within the same tube. The critical Galileo number, at which
the flow loses its axial symmetry and instead attains a planer symmetry, was found to
be lie somewhere between 155 and 160 (Deloze et al. 2012), slightly higher than that of
an unconfined sphere (Gacrit ≈ 155, Fabre et al. 2008). This bifurcation is of the Hopf
type because the sphere begins to oscillate in the tube and quickly falls into the helical
regime as Ga increases (Deloze et al. 2012). They predicted a possible jump in the vortex
shedding frequency at Ga = 250 as ρs/ρ increases from 3 to 5. In the case of an unconfined
sphere, this occurs at ρs/ρ values between 2 and 3, as Jenny et al. (2004) indicated. Despite
considerable progress made in the past, the motion regimes and transition scenarios of
falling or rising spheres confined to tubes are not well understood. Because of the limited
number of computations, neither study (Yu et al. 2004; Deloze et al. 2012) established a
regime map for the motion of a confined sphere in a relatively broad parametric space (Ga,
ρs/ρ), unlike in the unconfined case. Furthermore, light spheres have not been considered
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in the literature. Considering what we know about an unconfined sphere, one may ask
whether a confined sphere can run in a zigzag path or how heavy spheres behave differently
from their counterparts in a tube. The wall effect on the drag coefficient is also a concern.
In view of this, we performed a considerable number of direct numerical simulations of
a sphere freely falling or rising in a 5d square tube within the ranges of 140 ≤ Ga ≤ 230
and 0.1 ≤ ρs/ρ ≤ 2.3, hoping to present a comprehensive understanding. To the best of our
knowledge, there have been no similar report on a square tube. Furthermore, we can expect
more complex dynamic features from a sphere released in a square tube as compared with
a circular tube.

The remainder of this paper is organized as follows. In § 2, we briefly introduce
the three-dimensional (3-D) lattice Boltzmann method (LBM) along with the boundary
conditions. The problem description and key parameters are also included. Code validation
is presented in § 3. In § 4, we provide the simulation results and a discussion on the critical
Galileo number, helical motion and zigzagging motion of both heavy and light spheres.
In § 4 we show a regime map of sphere motion in the Ga − ρs/ρ space. The oscillation
periods and drag coefficients of both the heavy and light spheres are summarized. In § 5,
the concluding remarks are provided.

2. Numerical method and problem description

2.1. Lattice Boltzmann method
The fluid motion was solved using a 3-D lattice Boltzmann method. The discrete lattice
Boltzmann equations of a single-relaxation-time model are expressed as (Qian 1992)

fi(x + ei�t, t + �t) − fi(x, t) = −1
τ
( fi(x, t) − fi(eq)(x, t)), (2.1)

where fi(x, t) is the distribution function for the microscopic velocity ei in the ith direction,
f (eq)
i (x, t) is the equilibrium distribution function, �t is the time step of the simulation, τ

is the relaxation time and wi are weights related to the lattice model. The fluid density ρ

and velocity u are determined by the distribution function

ρ =
∑

i

fi, ρu =
∑

i

fiei. (2.2a,b)

For the D3Q19 (19 speeds in three dimensions) lattice model used in this study, the
discrete velocity vectors (shown in figure 1) are given by

ei =
⎧⎨
⎩

(0, 0, 0)c i = 0
(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c i = 1–6
(±1, ±1, 0)c, (±1, 0, ±1)c, (0, ±1, ±1)c i = 7–18

, (2.3)

where c = �x/�t, and �x is the lattice spacing. The speed of sound (cs) was determined
as cs = c/

√
3.

Following Qian (1992), the equilibrium distribution function is chosen as follows:

f (eq)(x, t) = ρwi

[
1 + 3(ei · u)

c2 + 9(ei · u)2

2c4 − 3(u · u)

c2

]
, (2.4)

where the weights are set to be w0 = 1/3, w1–6 = 1/18 and w7–18 = 1/36.
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Figure 1. Discrete velocity vectors of D3Q19 lattice model (e0 ∼ e18).

By performing Taylor and Chapman–Enskog expansions, the macroscopic mass and
momentum equations in the low-Mach-number limit can be recovered from (2.1)

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.5)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · [ρν(∇u + (∇u)T)]. (2.6)

A linear relation between the kinematic viscosity and the relaxation time is achieved, i.e.
ν = c2

s �t (τ − 0.5). Lattice units are commonly used instead of physical units in lattice
Boltzmann simulations. For example, �x and �t represent 1 lu (lattice unit) and 1 ts (time
step), respectively. This resulted in c = 1 and cs = 1/

√
3, both in a lu/ts unit. Using these

lattice units one could develop LBM codes in a simple manner.

2.2. Problem
In this work, we aim to provide a comprehensive study of the motion and wake patterns
of a sphere falling or rising in an infinite square tube. The spheres are assumed to be
uniform in density. As shown in figure 2, the sphere diameter and density are denoted
as d and ρs, respectively, leading to the mass and moment of inertia of the sphere being
M = πρsd3/6 and I = Md2/10, respectively. The square tube is filled with a fluid of density
ρ and kinematic viscosity ν. The width of the tube was fixed at L = 5d. There were three
reasons for choosing 5d: first, the effect of the tube walls is expected to be considerably
large at this size. We may be able to reveal primary regimes and transitions of moving
spheres confined to a square tube at intermediate Reynolds numbers. Second, several
studies (Yu et al. 2004; Deloze et al. 2012) focused on the falling of a heavy sphere in a
5d circular tube. Therefore, we could possibly make a reasonable comparison between our
study and previous analyses. Finally, the not-too-large tube size allowed us to perform 3-D
simulations at an affordable computational cost. Similar to most of the relevant studies,
both the sphere-to-fluid density ratio (ρs/ρ) and the Galileo number (Ga) are adopted as
the control parameters for our system (figure 2), with ρs/ρ ranging from 0.1 to 2.3, and Ga
from 140 to 230. These ranges allowed us to provide a fundamental understanding of the
transition scenario of the gravity/buoyancy-driven motion of both light and heavy spheres.

The sphere was initially placed in the central plane (y = 0 plane) at a distance d from the
tube axis. The vertical position of the sphere was 12d apart from its upstream (Hu = 12d)
and 25d from its downstream (Hd = 25d). Consequently, the height of the computational
domain was H = 37d. In the simulations, a moving grid scheme was applied to ensure that
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(b)(a)

Figure 2. Schematic diagram of the present problem. A heavy sphere (a: ρs/ρ > 1) or a light one (b: ρs/ρ < 1)
is freely falling or rising in an infinite square tube which is filled with a fluid with density ρ and kinematic
viscosity ν. Note that d and ρs denote the diameter and density of the spheres, respectively. The width of the
tube was fixed at 5d, i.e. L = 5d. We used a moving grid scheme to make sure the spheres stay at a vertical
position having distances of 12d and 25d from the upstream and the downstream, i.e. Hu = 12d and Hd = 25d,
respectively. This results in a total height of the domain of 37d, i.e. H = Hu + Hd = 37d.

the sphere maintained a distance of 25d from the downstream. In doing so, the fluid field
and the position of the sphere are shifted upward/downward by one lattice spacing once the
sphere falls/rises below a height of 12d from upstream. No-slip boundary conditions were
imposed on all the tube walls. The normal derivative of the velocity is zero downstream,
and the velocity upstream is zero. In accordance with most of previous studies, we chose
Ug as the velocity scale, which is given by

Ug =
√∣∣∣∣ρs

ρ
− 1

∣∣∣∣ gd. (2.7)

The time scale was Tg = d/Ug. Note that this velocity scale could be obtained from a
force balance of gravity, drag and buoyancy for a given drag coefficient. For convenience,
we use Ux, Uy and Uz to denote the three components of the velocity of the spheres,
which are consistent with the coordinate system shown in figure 2. These components
were normalized through Ug, that is, U∗

x = Ux/Ug, U∗
y = Uy/Ug and U∗

z = Uz/Ug.
Some parameters were fixed as follows: d = 32, ρ = 1 and g = 9.8 × 10−4. For all cases
considered the initial positions (x0, y0, z0) of the heavy and light spheres are (−d, 0, 12d)
and (−d, 0, 25d), respectively, unless otherwise stated.
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Ga = 144 Ga = 178

Particle velocity
(Vertical: U∗

z , horizontala: U∗
h ) |U∗

z | U∗
h |U∗

z | U∗
h

Present simulations d = 16 1.251 0 1.350 0.0155
d = 24 1.261 0 1.343 0.1235
d = 32 1.262 0 1.345 0.1240
d = 40 1.262 0 1.345 0.1241

Uhlmann & Dušek (2014) 1.285 0 1.356 0.1245
Results given by (1.4) 1.282 / 1.367 /

Table 1. Terminal velocities of a heavy sphere (ρs/ρ = 1.5) at steady state for two Ga numbers.
aNote that the horizontal velocity of the sphere is determined through U∗

h = (U∗2
x + U∗2

y )0.5.

2.3. Moving boundary conditions
To ensure a no-slip boundary condition on a moving surface, special treatments are usually
required to redistribute the distribution functions ( fi) adjacent to the surface. In this study,
we adopted an improved bounce-back scheme proposed by Lallemand & Luo (2003)
to address the boundary conditions of moving spheres. This scheme, which originates
from the bounce-back rule and is based on a second-order interpolation method, is easily
implemented for 3-D problems and was successfully applied in our previous study (Nie &
Lin 2020). Readers are referred to Lallemand & Luo (2003) for more details.

Once all distribution functions at the fluid nodes surrounding a sphere are known, the
hydrodynamic force and torque experienced by the sphere can be obtained through a
momentum exchange scheme (Mei et al. 2002; Lallemand & Luo 2003). In addition, to
account for the effects of a sphere moving in a fluid, the method proposed by Aidun,
Lu & Ding (1998) was used to calculate the added force and torque due to the covered
and uncovered fluid nodes. Using the net force and torque, the motion of the spheres was
determined by solving Newton’s equations. Note that Peng et al. (2016) investigated the
numerical performance in LBM simulations of particulate flows and carefully checked
the impact of both the momentum exchange and interpolated bounce-back schemes used
here. These implementations may lead to fluctuations in calculating the hydrodynamic
forces of a moving particle, as Peng et al. (2016) revealed. However, one could still obtain
generally accurate results by introducing Aidun’s correction process (Peng et al. 2016), as
demonstrated by our previous studies (Nie & Lin 2019; Nie & Lin 2020; Nie et al. 2023).

3. Validation

To validate our code and check the grid resolution, we performed simulations of a heavy
sphere (ρs/ρ = 1.5) settling in an unbounded domain (7d × 7d × 25d) at two Galileo
numbers, Ga = 144 and Ga = 178, representing patterns of steady vertical motion and
steady oblique motion (Jenny et al. 2004), respectively. Periodic boundary conditions were
implemented in both lateral directions.

In table 1, we show the terminal velocities of the sphere (horizontal: U∗
h and vertical: U∗

z )
obtained from different grid resolutions, i.e. d = 16, 24, 32 and 40, and compare our results
with previous values from Uhlmann & Dušek (2014). Note that the horizontal velocity
of the sphere is determined through U∗

h = (U∗2
x + U∗2

y )0.5, which is zero at Ga = 144
(steady vertical motion). Good agreement was observed in the terminal velocities (U∗

h
and U∗

z ) for both Galileo numbers. Note that the literature (Uhlmann & Dušek 2014)
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Figure 3. Simulation results at (a,b) Ga = 144 and (c,d) Ga = 178, respectively. Note that (a,c) show the
iso-surfaces of the vertical fluid velocity where u∗

z = −0.1 and (b,c) show the iso-surfaces of the vorticity where
λ2 = −0.01. We use the second largest eigenvalue of the tensor S2 +Ω2 (where S and Ω are the symmetrical
and anti-symmetrical components of the velocity gradient tensor, i.e. ∇u, respectively), represented by λ2
(Jeong & Hussain 1995), to identify the vortical structures in the wake of a falling or rising sphere (the same
below). Note that it seems the heavy sphere is purple in colour because the iso-surface results were made 60%
transparent. The sphere is actually red in colour as indicated in figure 2 (the same below).

provided two values for the terminal velocity at each Ga, which were obtained from a
small lateral domain and a large one. We chose the latter for comparison and revealed that
the relative errors were below 2% for both Ga. The results given by (1.4) are also included
in table 1, showing no apparent discrepancy with our calculations (U∗

z ). In addition, the
values obtained from d = 32 are almost the same as those from a finer grid (d = 40), which
makes d = 32 a good choice for the study.

Figure 3 further shows iso-surfaces of the vertical fluid velocity (figure 3a,c), where
U∗

z = −0.1, as well as those of the vorticity (figure 3b,d), where λ2 =−0.01, at Ga = 144
(figure 3a,b) and Ga = 178 (figure 3c,d). Here, λ2 is the second largest eigenvalue of the
tensor S2 +Ω2 (where S and Ω are the symmetrical and anti-symmetrical components of
the velocity gradient tensor, i.e. ∇u, respectively), represented by λ2 (Jeong & Hussain
1995), to identify the vortical structures in the wake of falling or rising spheres. The
flow was perfectly axisymmetric at Ga = 144 (figure 3a,b). In contrast, an oblique wake
was observed at Ga = 178 (figure 3c,d). The axial symmetry is replaced by a planar
symmetry (Johnson & Patel 1999; Mittal 1999; Ghidersa & Dušek 2000; Chrust et al.
2013). Figure 3(d) provides a clear view of the double-threaded vortical structure generated
by the falling sphere in accordance with previous studies (Uhlmann & Dušek 2014; Zhou
& Dušek 2015). Both threads were steady and off centred, producing a horizontal force
on the sphere. This is how the sphere underwent an oblique falling motion at Ga = 178.
Note that the double-threaded wake was first reported by Magarvey & Bishop (1961), who
used dye visualization to display the wake generated by liquid drops falling in water. In
the range of 210 < Re < 270, they observed that the flow became non-axisymmetric and
the dye was released from the wake in two parallel threads (Magarvey & Bishop 1961).
The double-threaded vortical structure was also observed in the wake of flow past a fixed
sphere (Natarajan & Acrivos 1993; Johnson & Patel 1999; Tomboulides & Orszag 2000)
at Re ≈ 212 where a transition from the axisymmetric wake to non-axisymmetric wake
occurs.

4. Results

To provide an overview of the study, we show the motion patterns of the spheres confined
to a 5d square tube in figure 4, which also illustrates the transition scenario between
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Figure 4. Motion patterns of the spheres rising or falling in a 5d square tube in the parametric space of
(Ga, ρs/ρ) for Ga ranging between 140 and 240, and ρs/ρ from 0.1 to 2.3.

different regimes. Roughly speaking, the spheres (0.1 ≤ ρs/ρ ≤ 2.3) exhibit four kinds
of motion when Ga ranges from 140 to 230 (140 ≤ Ga ≤ 230), i.e. the vertical motion,
helical motion (regular helical motion, alternate helical motion and jagged helical motion),
zigzagging motion (ZM) and chaotic motion.

Both heavy and light spheres will lose steadiness at a similar Galileo number
(Gacrit ≈ 157), which is discussed in § 4.2. Before that (Ga < Gacrit) the spheres were seen
to fall or rise vertically in the tube, exhibiting a steady vertical motion for all ρs/ρ studied
(§ 4.1). A transition regime (transitional oscillatory motion, TOM) is seen for the heavy
spheres after the onset of unsteadiness, which is not the case for the light ones. The TOM
features small oscillations in an arbitrary plane (Deloze et al. 2012).

Helical motion was widely observed in both the heavy and light spheres at Ga > 160.
The regular helical motion (RHM) is characterized by its unchanged helical direction
and a constant helical size. A type of irregular helical motion (alternate helical motion,
AHM) occurs at Ga ≥ 190 for all heavy spheres studied, which will be discussed in § 4.3.
For spheres undergoing AHM, they change the helical direction in an alternate way as
sedimenting in the tube. By contrast, very light spheres (ρs/ρ ≤ 0.3) undergo another type
of irregular helical motion (jagged helical motion, JHM) at Ga ≥ 190 where the vortex
shedding occurs (§ 4.4). Jagged helical motion here refers to the motion of the spheres
exhibiting trajectories with visible jaggedness (or corners). As Ga increases the helical
motion may give way to the ZM for both heavy (ρs/ρ ≥ 1.8 and Ga ≥ 210) and light
(ρs/ρ ≤ 0.7 and Ga ≥ 200) spheres (figure 4). The relevant discussion is given in § 4.5.
This is because of the confined conditions of the square tube. A transition from zigzagging
to chaotic motion has been extensively observed for light spheres (Ga > 220). However,
heavy spheres (ρs/ρ ≥ 1.8) are falling helically again after going through the zigzagging
regime (Ga > 225), as seen in figure 4.

4.1. Steady vertical motion at Ga = 150 (ReT ≈ 186)
Figure 5 shows time histories of the velocities for spheres with different densities at
Ga = 150, indicating that all cases eventually attained a steady state. The vertical velocities
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The result from Deloze et al. (2012) for a heavy

sphere (ρs/ρ = 2) in a circular tube (5d )
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0
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(b)(a)

Figure 5. Time history of the velocities for spheres with different densities at Ga = 150: (a) vertical component
(|U∗

z |), (b) horizontal component (U∗
x ). The terminal Reynolds number is ReT ≈ 186 for all particle densities

considered.

z
y

x
ρs/ρ = 2

ρs/ρ = 0.1

ρs/ρ = 2

ρs/ρ = 0.1

(b)(a) (d )(c)

Figure 6. Simulation results for a heavy sphere (a,c) with ρs/ρ = 2 and a light one (b,d) with ρs/ρ = 0.1 at
steady state. Note that (a,b) show iso-surfaces of the vorticity (λ2 =−0.01), and (c,d) show iso-surfaces of the
vertical fluid velocity where u∗

z = −0.1 for the heavy sphere and u∗
z = 0.1 for the light sphere, respectively.

The light sphere (d) seems to be orange in colour because of the transparent iso-surface of the fluid velocity
(the same below).

of the spheres (figure 5a) reached a similar value (|U∗
z | ≈ 1.24) for all the sphere-to-fluid

density ratios considered, resulting in the same terminal Reynolds number of ReT ≈ 186.
This is reasonable because our system completely maps its reverse case (i.e. uniform flow
past a fixed sphere) at steady state irrespective of the density of the spheres.

We also include the result of Deloze et al. (2012) in figure 5(a), that is, the terminal
velocity of a heavy sphere (|U∗

z | ≈ 1.26) in a 5d circular tube. These two values were
very close to each other. In addition, the terminal velocity of an unconfined sphere at
Ga = 150, obtained using (1.4), is approximately 1.3, slightly larger than that of a confined
sphere. Thus, it can be inferred that at low Ga the influence of the tube walls is limited
when the tube sizes are larger than 5d. However, the particle density affects the motion of
the spheres in terms of the transient nature of both U∗

z (figure 5a) and U∗
x (figure 5b).

In figure 6, we show iso-surfaces of the vorticity (figure 6a,b), where λ2 = −0.01, and
vertical fluid velocity (figure 6c,d), where U∗

z = −0.1 for ρs/ρ = 2 and U∗
z = 0.1 for

ρs/ρ = 0.1. Both results, which were obtained when the motion of the spheres reached
a steady state, showed axial symmetrical wakes that were downwards for the heavy sphere
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Figure 7. Trajectories of a heavy sphere with ρs/ρ = 2.3 (a,b) and a light one ρs/ρ = 0.1 (c, d) at Ga = 156
(a,c) and Ga = 157 (b,d), respectively. Note that both spheres are seen to lose steadiness at Ga = 157. The
corresponding Reynolds number is ReT ≈ 196. The blue circle in each panel denotes the initial position of the
spheres (the same below). In this study we normalized the particle trajectory through x* = x/d, y* = y/d, and
z* = (z − z0)/d. Note that (x∗

0, y∗
0, z∗

0) = (−1, 0, 0) for all spheres.

(figure 6a,c) and upwards for the light sphere (figure 6b,d). Our study indicates that the
spheres in the square tube will lose their steadiness beyond a critical Galileo number
(Gacrit ≈ 157), along with loss of the axial symmetry of the wake seen at Ga < Gacrit.

4.2. Onset of unsteadiness at Gacrit ≈ 157 (ReT ≈ 196)
Our simulations indicate that the steadiness of spheres confined to the square tube
is lost at Ga ≈ 157 for all sphere-to-fluid density ratios considered (0.1 ≤ ρs/ρ ≤ 2.3).
To demonstrate this, we provide trajectories of both a heavy sphere with ρs/ρ = 2.3
(figure 7a,b) and a light sphere with ρs/ρ = 0.1 (figure 7c,d) at Ga = 156 (figure 7a,c)
and Ga = 157 (figure 7b,d). The blue circles in each panel represent the initial positions of
the spheres (the same below). Small but finite oscillations are seen for both spheres at in
figure 7(b,d), indicating a transition to unsteadiness occurs at Gacrit ≈ 157, corresponding
to a terminal Reynolds number of ReT ≈ 196. This critical value is consistent with those
of both an unconfined sphere (Gacrit = 155 for ρs/ρ = 0 and Gacrit = 160 for ρs/ρ → ∞,
Jenny et al. 2004) and a confined one in a 5d circular tube (155 < Gacrit < 160, Deloze
et al. 2012). Later studies (Fabre, Tchoufag & Magnaudet 2012; Zhou & Dušek 2015)
reported a critical Ga falling between 155 and 156. This further confirmed our results
when we considered the effects of the tube confinement. More importantly, the present
bifurcation is Hopf type owing to wall repulsion (Deloze et al. 2012), which is different
from the case of an unconfined sphere. To further illustrate the role of the wall repulsion
in the transition, we show contours of the 2-D vorticity in an (x, y) plane for the light
sphere (ρs/ρ = 0.1) at Ga = 150–160 in figure 8. All the results were obtained when
the sphere reached a statistically steady state. Note that the 2-D vorticity is given by
ω∗

z = (∇ × u)z ∗ d/Ug .
Similar vorticity distribution is seen near each tube wall at Ga < Gacrit (figure 8a,b).

Therefore, the sphere which is falling along the tube axis does not experience any lateral
force from the walls. As Ga increases (Ga ≥ Gacrit) the magnitude of the vorticity grows
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Figure 8. Instantaneous contours of the 2-D vorticity (ω∗
z ) in the (x, y) plane for the light sphere (ρs/ρ = 0.1)

at different Galileo numbers: (a) Ga = 150, (b) Ga = 156, (c) Ga = 157, (d) Ga = 158 and (e) Ga = 160. Note
that the 2-D vorticity is given by ω∗

z = (∇ × u)z ∗ d/Ug.
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Figure 9. Top views (x–y projections) of particle trajectories for spheres with different densities at Ga = 158:
(a) ρs/ρ = 0.1, (b) ρs/ρ = 0.5, (c) ρs/ρ = 1.5 and (d) ρs/ρ = 2.3.

and the vortex becomes unstable (see the upper and bottom walls in figure 8c−e), reflecting
an unsteady motion of the light sphere in the (x, y) plane.

Figure 7 also shows that the sphere-to-fluid density ratio has a significant influence
on the oscillatory pattern of the spheres at near-critical Galileo numbers. It appears that
the heavy sphere oscillated in the central plane (figure 7b). However, the light sphere
eventually rose along a helical path (figure 7d). To address the effects of ρs/ρ we projected
the particle trajectories onto the (x, y) plane for different spheres at Ga = 158 (figure 9). We
chose Ga = 158, a Galileo number slightly higher than Gacrit, to provide a better view of
the particle motion. Interestingly, light spheres tend to undergo helical motion, with their
path projections being circular at small ρs/ρ (figure 9a), which transform into an ellipse
at large ρs/ρ (figure 9b). In contrast, the heavy spheres tended to oscillate near the central
(y* = 0) plane, where they were released (figure 9c,d). This tendency was stronger for
heavier spheres. The behaviours shown in figure 9 are reasonable because lighter spheres
with smaller inertia are more sensitive to solid walls, and accordingly, are more likely
to alter their directions of motion. As Ga increases, heavy spheres may exhibit helical
trajectories, as discussed in the following section (§ 4.3).

4.3. Helical motion of heavy spheres (ρs/ρ > 1)
Similar to a circular tube, heavy spheres are widely observed undergoing helical motion
in a square tube at Ga > Gacrit. Figure 10 shows falling trajectories of a sphere (ρs/ρ = 2)
at different Galileo numbers (Ga = 165, 170, 185 and 195), providing a clear view of the
helical motion.

In all cases, the spheres exhibited a zigzagging-like movement once they were released
from rest before giving way to the helical motion. However, a significant difference is
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Figure 10. Falling trajectories of a heavy sphere (ρs/ρ = 2) showing RHM at (a) Ga = 165, (b) Ga = 170 and
(c) Ga = 185, and AHM at (d) Ga = 195.
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Figure 11. Top views of figure 10(a−d). The arrows denote the circling directions of the sphere.

clearly observed in the result of Ga = 195 (figure 10d) as compared with the others
(figure 10a−c): the sphere changes its helical direction in an alternate manner while
falling in the tube. This is unique because heavy spheres generally circle in the same
direction when confined to a circular tube (Deloze et al. 2012). Heavy spheres confined
to a square tube also underwent RHM at low Ga. The RHM is here referred to as
a type of helical motion with unchanged helical direction and a constant helical size
(figure 10a−c). Figure 11 provides a clear view of this, which shows the respective
top views of figure 10(a−d). Accordingly, we use the term ‘alternate helical motion’ to
represent another type of helical motion (figure 10d) which is extensively seen for heavy
spheres in the square tube as well (figure 4). For instance, our study indicates that the
sphere (ρs/ρ = 2) undergoes AHM for the Galileo number ranging between 190 and 205,
with its helical direction changing more frequently at a higher Ga (figure 4). Our regime
map indicates the heavy spheres exhibit RHM for Ga approximately ranging from 160
to190. This range is surprisingly consistent with that of the steady oblique regime for an
unconfined heavy sphere (Jenny et al. 2004; Zhou & Dušek 2015; Raaghav et al. 2022).

Figure 11 shows that the 2-D projections of the particle trajectories are nearly circular
at low Ga (figure 11a,b). The limit cycle expands outwards as Ga increases, suggesting
a stronger helical motion of the sphere at a higher Ga. Further increasing Ga, however,
results in the tendency of the sphere to move towards the tube corners because of the
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Figure 12. Time history of the rotational angles of the same sphere as in figure 10: (a) rotational angles around
the z-axis (θ∗

z ) at Ga = 185 and 195, (b) rotational angles around the x-(θ∗
x ) and y-axes (θ∗

y ) at Ga = 185. The
angles were normalized through θ∗

x = θx/π, θ∗
y = θy/π and θ∗

z = θz/π. The initial value of each of θx, θy and
θ z was zero, i.e. θ∗

x (0) = 0, θ∗
y (0) = 0 and θ∗

z (0) = 0. Note that t1 ∼ t3 in (b) correspond to those in figure 11(c).

confinement. This resulted in an elliptical limit cycle (figure 11c). The situation is quite
different for the AHM (figure 11d): no limit cycle exists. Owing to the change in the helical
direction, the sphere alternately moves towards the corners located in either of the diagonal
planes, leading to a random and homogeneous distribution of the particle trajectory in its
2-D projection (figure 11d).

On the other hand, the rotational angles of the sphere (figure 12) provide a better view
on the difference between RHM and AHM. We here define θx, θy and θ z as the angles of
the sphere rotating around the x-, y- and z-axes, as shown in figure 12(a). It is seen that the
rotational angle θ z increases monotonically after the initial transients die out for Ga = 185
(RHM), representing a positive rotation of the sphere around the z-axis (figure 12a). For
Ga = 195 (AHM), however, the change in θ z indicates the sphere was rotating around the
z-axis in a positive or negative direction alternately (figure 12a). Figure 12(b) shows other
rotational angles (θx and θy) of the sphere at Ga = 185. Note that t1 ∼ t3 correspond to
those in figure 11(c). Both components suggest that the sphere was ‘rolling’ forward as it
circled in the counterclockwise direction.

Figure 13 shows time history of the velocities (U∗
z and U∗

h ) of the same sphere as in
figure 10 and instantaneous vortical structures of the wake for three Galileo numbers,
that is, Ga = 165, 185 and 195. It is clear that the oscillations in both components of
the particle velocity are significantly suppressed after the transition from ZM to RHM
(figure 13a,b). In contrast, the AHM of the sphere exhibited the opposite trend (figure 13c).
The double-threaded vortical structures in the wake, which are obtained when the sphere
is closest to the right wall, are clearly seen for all three Ga values in figure 13(d). The
sphere helical motion is a direct result of the interaction between the double-threaded
vortex and the walls, as Deloze et al. (2012) stated. In addition, the principal threads
became longer and more bent as Ga increased, suggesting stronger oscillatory motion of
the sphere at higher Ga (figure 13d). However, no visible vortex shedding was observed
even at Ga = 195.

To further elucidate the behaviour of AHM, we provide a close-up view of the change
in the circling (helical) direction of a heavy sphere (ρs/ρ = 2.3) falling at Ga = 205
(figure 14). The solid and dashed lines represent a specific time period during which the
sphere circles in the counterclockwise and clockwise directions (figure 14a), respectively.
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Figure 13. Time history of the velocities (top: vertical, bottom: horizontal) for the same sphere as in figure 10
at (a) Ga = 165 (RHM), (b) Ga = 185 (RHM) and (c) Ga = 195 (AHM), and (d) instantaneous vortical
structures (λ2 =−0.005) in the wake of the sphere at the three Galileo numbers.

The opposite was true for the sphere during another time period (figure 14b). When this
sphere undergoes AHM, it comes closer to the tube walls every time it circles in the
tube (note the solid lines in figure 14). As a result, the wall repulsion becomes stronger
at smaller sphere–wall separations resulting from the increased pressure and flow shear
rate between the sphere and tube walls. At a time of, say t* = t2 (as in figure 14a), the
sphere could be ‘bounced’ back by a tube wall once the repulsion is strong enough. Then,
the sphere runs towards the opposite wall in a nearly straight line following the ‘bounce
back’ (say t* = t2 ∼ t3 as in figure 14a). A second ‘bounce back’ occurs when the sphere
approaches the opposite wall where a mirror-reflection-like path is formed, leading to a
change in the direction of circling (say t* = t3 ∼ t5 as in figure 14a). A similar pattern is
shown in figure 14(b). It should be remarked that here we use ‘bounce back’ or ‘bounced’
just to emphasize a very strong sphere–wall interaction. The sphere did not collide with
the tube walls, as indicated by the simulations.

The strong interactions between a heavy sphere and the tube walls may also be reflected
by the wake features generated by the falling sphere. Figure 15 shows instantaneous
vortical structures (principally displaying the double-threaded character) at t1 ∼ t5 (see
figure 14a), during which the sphere changes its helical direction. There is no vortex
shedding at t* = t1 before the first ‘bounce back’ takes place (figure 15a). By contrast, an
intense vortex shedding is seen at both t* = t2 and t* = t3 when the sphere is successively
‘bounced’ back by the left and right walls (figure 15b,c). The shape of the wake is
reminiscent of the oscillating oblique motion of an unconfined sphere at similar Galileo
numbers (Jenny et al. 2004; Uhlmann & Dušek 2014; Zhou & Dušek 2015; Raaghav

1000 A82-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1004


Freely rising or falling of a sphere in a square tube
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Figure 14. Top views of the trajectories for a heavy sphere (ρs/ρ = 2.3) falling at Ga = 205 during two time
periods: (a) t* ≈ 1220–1435, and (b) t* ≈ 1614–1714, respectively. The arrows denote the circling direction of
the sphere, indicating the AHM.
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Figure 15. Instantaneous iso-surfaces of the vorticity (λ2 =−0.005) for the same sphere (AHM) as in figure 14
at different times: (a) t* = t1, (b) t* = t2, (c) t* = t3, (d) t* = t4 and (e) t* = t5. Note that t1 ∼ t5 are indicated
in figure 14(a).

et al. 2022). The major difference is that the double-threaded vortex detaches from
the unconfined sphere regularly. After the helical direction of the sphere changed, the
double-threaded vortex was quickly restored until the next cycle began (figure 15d,e).

Further increasing Galileo number (Ga > 205) may result in another transition (from
AHM) to the ZM of heavy spheres (ρs/ρ ≥ 1.8). This is discussed in § 4.5. After the
zigzagging regime, it is interesting to reveal that these confined spheres will fall in a helical
path (RHM) again (figure 4), due to a significant change in the wake of the spheres. To
illustrate this we show instantaneous iso-surfaces of the vorticity in the wake of a heavy
sphere (ρs/ρ = 2.2) at Ga = 230 (the highest Ga considered) in figure 16. The vortical
structures exhibiting a chain of vortex loops (so-called hairpin vortices) in the wake of
the sphere were significantly different from those at low Ga (figure 13d or figure 15)
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Figure 16. Instantaneous iso-surfaces of the vorticity (λ2 =−0.01) for a heavy sphere (ρs/ρ = 2.2) at Ga = 230
during one period (T* ≈ 69): (a) t* = 0, (b) t* ≈ 0.25T*, (c) t* ≈ 0.45T* and (d) t* ≈ 0.85T*. Note that the
sphere undergoes the RHM.

in terms of wake curvature and distortion. We believe these structures are relevant to
the helical/rotating regime reported for heavy spheres (ρs/ρ = 3.19 and 3.9) at ReT > 270
(Raaghav et al. 2022). Figure 16 also illustrates how the vortex loops rolling down from the
sphere connect and evolve as the vorticity convects and develops downstream. The general
feature is very similar to those revealed for flow over a fixed sphere (Re = 300, Johnson
& Patel 1999; Re = 350, Mittal 1999). This is reasonable because the terminal Reynolds
number of our case (figure 16) is ReT ≈ 300. In addition, the sphere oscillated much faster
at Ga = 230 compared with the RHM of the same sphere at low Ga. Furthermore, the
normalized period (T*) was 80 at Ga = 190, which declined to 69 at Ga = 230.

4.4. Helical motion of light spheres (ρs/ρ < 1)
Light spheres exhibited helical motion at a lower Galileo number (near Gacrit) than their
counterparts (figure 4). Figure 17 shows trajectories of a light sphere (ρs/ρ = 0.2) for
the Galileo number ranging from 160 to 195. Similar to the case of a heavy sphere
(figure 10), a zigzagging-like ascending path quickly gives way to a helical path at
each Ga for a light sphere (figure 17). Top views provide a better understanding of this
phenomenon (figure 18). A circular-shaped limit cycle is eventually formed for each case
except Ga = 190 and 195 (figure 18d,e), suggesting the sphere undergoes the RHM at
Ga ≤ 180. The limit cycle expands rapidly outwards as Ga increases from 160 to 180.
However, it appears that the helical path of the sphere becomes less smooth at Ga = 190
(figure 17d) compared with those at Ga ≤ 180. This tendency is more significant at
Ga = 195 (figure 17e). Here, we refer to this pattern as JHM because its 2-D projections
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Figure 17. Rising trajectories of a light sphere (ρs/ρ = 0.2) showing the RHM at (a) Ga = 160, (b) Ga = 170,
(c) Ga = 180, and showing the JHM at (d) Ga = 190 and (e) Ga = 195.
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Figure 18. Top views of figure 17(a−e).

show clear jaggedness (figure 18). Our study indicates that the JHM occurs only for very
light spheres (ρs/ρ ≤ 0.3), as shown in figure 4.

As stated above, the AHM and JHM exist for heavy and light spheres, respectively, at
high Ga (Ga > 185). Figures 10(d) and 17(d,e) show that they differ from each other in
an essential manner because of the significant difference in inertia between the heavy and
light spheres. For a heavy sphere exhibiting the AHM, wall repulsion has a slow effect
on the change in the direction of its translational movement until the sphere approaches
the wall (figure 14). By contrast, light spheres are more sensitive to wall repulsion. In
the case of intermediate Galileo numbers, the wall repulsive effect is more significant
for the motion of a lighter sphere. Therefore, the limit cycles of a light sphere were
generally more circular than those of a heavy sphere (figures 11 and 18). In particular,
for a light sphere exhibiting JHM at a high Ga, the 2-D projection of its trajectory has
a circular-like shape, suggesting that it is rising helically with a similar helical size and
shape (figure 18d,e). However, the heavy spheres exhibiting AHM showed significant
variations in both helical sizes and shapes (figure 11d). More importantly, we reveal that
vortex shedding occurs when a light sphere undergoes JHM, which is not a necessary
phenomenon for AHM, as seen in figure 19, which shows instantaneous vortical structures
corresponding to figure 17. A double-threaded vortex was clearly observed at Ga = 170 and
180 (figure 19b,c), whereas it was invisible at Ga = 160 (figure 19a). At a higher Ga, when
the light sphere rises in a helical path with jaggedness, shedding of the double-threaded
vortex is demonstrated (figure 19d,e).

To cast more light on this issue, we show iso-surfaces of the vertical vorticity (ω∗
y =

±0.5) at different Ga in figure 20(a−e), which corresponds to figure 19(a−e). Note
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Figure 19. Instantaneous iso-surfaces of the vorticity (λ2 =−0.01) for the same sphere (ρs/ρ = 0.2) as in
figure 17. Each result is chosen at the time when the sphere moves to the rightmost position.
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Figure 20. Iso-surfaces of the vertical vorticity (ω∗
y = ±0.5) corresponding to figure 19(a−e). Note that

ω∗
y = (∇ × u)y ∗ d/Ug.

that ω∗
y = (∇ × u)y ∗ d/Ug. From ω∗

y one could observe the vortex features of the wake
from a different aspect. For instance, the length of the sphere wake is clearly increasing
with Ga, and the wake becomes wavy for JHM, suggesting stronger unsteadiness in the
motion of the sphere (figure 20d,e). More importantly, it seems that the tube walls have
a negligible effect on the sphere at Ga = 160 (figure 20a). At Ga ≥ 170, the wall effect
becomes increasingly important as Ga increases, as indicated by the vorticity on the right
wall shown in figure 20(b−e). This could not be revealed from λ2 (figure 19).

The jaggedness of the trajectories, which we believe is attributed to the added mass
effect, became more noticeable for the spheres with lower densities. To illustrate this, we
provide simulation results for light spheres with different densities (ρs/ρ = 0.1, 0.3 and
0.5) at Ga = 195 in figure 21. We obtain a clear view of JHM in figure 21(a,b) while
considering RHM in figure 21(c). For spheres with very small ρs/ρ (say ρs/ρ ≤ 0.3), the
added mass forces become dominant over the wall repulsion as the spheres are significantly
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Figure 21. Rising trajectories of a light sphere with different densities at Ga = 195: (a) ρs/ρ = 0.1 (JHM), (b)
ρs/ρ = 0.3 (JHM), (c) ρs/ρ = 0.5 (RHM). (d) Top views of (a) at two specific time periods.

accelerating or decelerating, which is the case of figure 21(a,b). Under the action of the
added mass forces, the spheres may not run along a smooth path until the wall repulsion
forces dominate and cause an abrupt change in the direction of movement. To clarify
this, we present top views of the trajectory of the lightest sphere studied (ρs/ρ = 0.1) at
two specific time periods in figure 21(d). The 2-D projections are shaped like a regular
pentagon (figure 21d). Between the two neighbouring corners of the pentagon, the sphere
runs along a nearly straight path, resulting from a strong added mass force. At each corner
where the sphere approaches a tube wall, it responds promptly to wall repulsion by abruptly
changing its direction of movement. In addition, the vortical structures (figure 22) provide
evidence of an intense vortex shedding as this sphere rises helically. Compared with
figure 19(e), the vortices in the wake of the lighter sphere are more twisted and bent.

Note that the present simulations were performed under conditions that the initial
particle positions were fixed at (x∗

0, y∗
0, z∗

0) = (−1, 0, 12) and (x∗
0, y∗

0, z∗
0) = (−1, 0, 25),

for heavy and light spheres, respectively (figure 2). To check the effects of the initial
position we varied both x∗

0 and y∗
0 while keeping z0* unchanged and show the results in

figure 23 for ρs/ρ = 0.2 and Ga = 180 (RHM). The trajectory in figure 23(a) is equivalent
to that in figure 18(c). It seems that the calculations based on different initial positions
will converge to a similar solution (i.e. a helical path with the same size) after the initial
transients die out (figure 23).

4.5. Zigzagging motion of spheres
Here, we discuss the ZM of heavy and light spheres confined to a square tube. Previous
studies (Jenny et al. 2004; Horowitz & Williamson 2010; Zhou & Dušek 2015; Auguste &
Magnaudet 2018) have reported that only light spheres may rise in a zigzagging path in the
absence of confinement, although a significant disagreement on the critical value of ρs/ρ
exists among these studies. However, ZM has not been reported for heavy spheres confined
to a circular tube (Yu et al. 2004; Deloze et al. 2012). Surprisingly, here, we report that
heavy spheres (ρs/ρ ≥ 1.8) confined to a square tube may fall in a zigzagging trajectory for
Ga ranging from 210 to 225 (210 ≤ Ga ≤ 225), as shown in figure 4.
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Figure 22. Instantaneous iso-surfaces of the vorticity (λ2 =−0.01) for a light sphere (ρs/ρ = 0.1) at Ga = 195
(JHM): (a) t* = t1, (b) t* = t2, (c) t* = t3 and (d) t* = t4. Note that t1 ∼ t4 are indicated in figure 21(d).
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Figure 23. Top views of the trajectories for a rising sphere (ρs/ρ = 0.2) at Ga = 180 (RHM): effects of the
initial position, i.e. (x∗

0, y∗
0). Note that the trajectory resulting from (−1, 0) is equivalent to that in figure 18(c).

Figure 24 shows the trajectories of a heavy sphere (ρs/ρ = 1.9, 2, 2.2 and 2.3) freely
falling at Ga = 220. It is seen that the sphere vibrates in a perfect zigzagging path in the
square tube for ρs/ρ ≥ 2 (figure 24b−d). However, the lighter sphere (ρs/ρ = 1.9) exhibited
a zigzagging-like path (figure 24a). We intend to include this motion because it displays
a helical path with oscillations along the x direction that are much stronger than those
along the y direction (figure 24a), which is different from RHM. Our study indicates that
such zigzagging-like motion exists narrowly for 1.8 ≤ ρs/ρ ≤ 2 at similar Galileo numbers.
Similar to figure 23, we show effects of the initial particle position on the ZM of a heavy
sphere (ρs/ρ = 2.3 and Ga = 220) in figure 25. It seems that the sphere underwent ZM
only if it was released from a central plane (figure 25a,b). Otherwise (figure 25c−e), we
observed helical paths of alternate circling direction (AHM).

We show instantaneous vortical structures of the wake of a heavy sphere (ρs/ρ = 2.3)
during one oscillation period at Ga = 220 in figure 26. Compared with those at Ga = 205,
where the same sphere undergoes AHM (figure 15), vortex shedding is much more
noticeable (figure 26). The double-threaded vortices detach from the sphere in succession,
form an oblique vortex street downstream, and show no twist because of the sphere’s
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Figure 24. Falling trajectories of a heavy sphere with different densities at Ga = 220 showing the ZM for
(a) ρs/ρ = 1.9, (b) ρs/ρ = 2, (c) ρs/ρ = 2.2 and (d) ρs/ρ = 2.3.
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Figure 25. Top views of the trajectories a falling sphere (ρs/ρ = 2.3) at Ga = 220 (ZM): effects of the initial
position. Note that (a) is the top view of figure 24(d).

oscillating motion in a fixed plane (the central plane). Another significant difference is
that once a double-threaded vortex was generated behind the wavering sphere, it quickly
evolved into a vortex loop which helps to prevent the sphere from leaving the central plane
and maintain a planar symmetry of the wake. This tendency is more noticeable for light
spheres (see also figure 29). However, this was not the case for helically falling spheres
(figure 15). In particular, a vortex ring eventually developed downstream as the sphere
approaches the wall (figure 26a,c).

Similar to the unconfined case, light spheres may exhibit a zigzagging trajectory when
confined to a square tube. Our simulations indicate that the ZM is seen for light spheres
with ρs/ρ ≤ 0.7 when the Galileo number falls within [200, 220], as shown in figure 4.
This suggests that the transition from helical to ZM occurs earlier for light spheres than
for their counterparts. Note that our critical sphere-to-fluid density ratio (≈0.7) is larger
than the values obtained by Horowitz & Williamson (2010) and Zhou & Dušek (2015),
who reported 0.36 (at low ReT ) or 0.61(at high ReT ) and approximately 0.5, respectively.
In contrast, some studies (Jenny et al. 2004; Auguste & Magnaudet 2018) revealed that
all light spheres (ρs/ρ < 1) may oscillate in a zigzagging manner at certain ranges of Ga.
This discrepancy warrants further investigation. However, we did not intend to focus on
this issue. Our simulations are consistent with those of one of these studies in terms of

1000 A82-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1004


D. Nie, J. Wang, S. Li and J. Lin

z

Loop

Loop

Loop

Loop

Ring

Ring

y

x

(a) (b) (c) (d)

Figure 26. Instantaneous iso-surfaces of the vorticity (λ2 =−0.01) for a heavy sphere (ρs/ρ = 2.3) at
Ga = 220 (ZM) during one period (T* ≈ 69): (a) t* = 0, (b) t* ≈ 0.25T*, (c) t* = 0.5T* and (d) t* = 0.75T*.
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Figure 27. Rising trajectories of a light sphere with different densities at Ga = 210 showing the ZM:
(a) ρs/ρ = 0.3, (b) ρs/ρ = 0.4, (c) ρs/ρ = 0.5, (d) ρs/ρ = 0.6 and (e) ρs/ρ = 0.7.

both the critical ρs/ρ and the relevant range of Ga that is 175−215, as revealed by Jenny
et al. (2004).

Figure 27 shows oscillating trajectories experienced by the light spheres with different
densities (ρs/ρ = 0.3–0.7) at Ga = 210. All the results reflect a zigzagging pattern.
Moreover, it appears that the ZM is more regular at a larger ρs/ρ (figure 27c–e). In other
words, the sphere may occasionally deviate from the central plane where it is released
from rest if it is much lighter than the fluid (figure 27a). Similar to figure 12, we show
time history of the rotational angles of a zigzagging sphere (ρs/ρ = 0.7) in figure 28. The
trajectory of the sphere is given in figure 27(e) along with notations ‘t1 ∼ t3’ corresponding
to those in figure 28. It is seen that the sphere only rotated around the y-axis (θy) as it was
rising in a wavy manner. From t = t1 to t = t2, the sphere has a positive rotation direction
(figures 28e) while moving from the leftmost position to the rightmost one (figure 27e).
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Figure 28. Time history of the angles of a light sphere (ρs/ρ = 0.7) exhibiting the ZM at Ga = 210. Note that
t1 ∼ t3 correspond to those in figure 27(e).
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Figure 29. Instantaneous iso-surfaces of the vorticity (λ=−0.01) in the wake of the same light sphere as in
figure 27 (Ga = 210).

We see the opposite from t = t2 to t = t3. Similar to figure 12(b), the sphere appeared to
‘roll’ forward as it vibrated in the tube.

Figure 29(a-e) shows instantaneous vortical structures in the wake of the same sphere,
as shown in figure 27(a-e), indicating a more intense motion for the lighter sphere.
A vortex loop (hairpin vortex) quickly formed as it extended from each sphere, which
is different from the case of the helical motion at low Ga (figure 19) where a pair of
threads was generally observed. The vortex shedding became more noticeable as ρs/ρ
decreases. At least four pairs of the double-threaded vortices were detached from the
sphere of ρs/ρ = 0.3, along with the appearance of a vortex ring downstream (figure 29a).
By contrast, one could hardly see the occurrence of the vortex shedding at ρs/ρ = 0.7
(figure 29e). It is also clearly shown that the two sides of the vortex rings did not reconnect
fully (figure 27a–c), as revealed by Horowitz & Williamson (2010). It is worth stating that
the vortical structures revealed here (e.g. figures 15, 16, 19, 26 and 29), stemming from the
motion of a single sphere, might be of use for understanding the clustering behaviour of
settling particles at high Reynolds numbers (Kajishima 2004; Daniel et al. 2009; Uhlmann
& Doychev 2014) because the wake pattern plays a key role in how particles interact with
each other. For instance, sedimenting spheres at Ga = 178 may form a ‘tube-like’ cluster
where the particle wakes exhibit complex tangles of vortices extending from particle to
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Figure 30. Trajectories of a light sphere showing irregular ZM: (a) ρs/ρ = 0.1 (Ga = 200), (b) ρs/ρ = 0.2
(Ga = 205), (c) ρs/ρ = 0.3 (Ga = 205) and (d) top views of (a-c).

particle, as Uhlmann & Doychev (2014) noticed. By contrast, for those spheres outside the
cluster region the double-threaded vortices were seen in their wakes (Uhlmann & Doychev
2014).

The ZM may become irregular for a very light sphere owing to the small inertia of
the sphere. To illustrate this, we show trajectories of light spheres with ρs/ρ ≤ 0.3 in
figure 30(a−c), along with their top views in figure 30(d). Compared with figure 27, these
results reflect at least three types of irregular ZM in terms of the oscillating orientations
of the spheres. For example, the lightest sphere studied (ρs/ρ = 0.1) is alternating between
the diagonal planes as it rises in the tube (figure 30a). This is rational for a sphere driven by
a large buoyant force if one recognizes that the diagonal planes allow a larger space than
the central plane. The top panel of figure 30(d) provides a clearer view. For ρs/ρ = 0.2
(figure 30b), the sphere exhibits a zigzagging path in one of the diagonal planes. This time
the sphere no longer shifts to the other diagonal plane. A further increase ρs/ρ leads to
the fact that spheres are more likely to stay in the central plane, where they are initially
released. Figure 30(c) confirms this tendency. Note that these irregular patterns result
directly from the confined condition of our square tube and, therefore, should not appear
for an unconfined sphere.

4.6. Period of oscillation and drag coefficient
In this section, we focus on the oscillation periods and drag coefficients the spheres.
A comparison was also performed to illustrate the differences in the dynamical features
exhibited by the heavy and light spheres.

Figure 31(a,b) summarizes the normalized oscillation periods (i.e. the inverses of the
Strouhal number, T* = 1/St) for the spheres undergoing RHM and ZM, respectively. It can
be seen that both heavy and light spheres oscillate much faster when they display a zigzag
path. This is reasonable, because when a sphere moves helically in a tube, it is more likely
to experience a wall effect. More significantly, it appears that the light spheres oscillate at a
similar speed at a fixed Ga, both helically and waveringly. For their counterparts, however,
the period increases rapidly as ρs/ρ increases (figure 31). Note that we normalized the
periods through the time scale Tg, that is, T* = T/Tg. However, a smaller time scale (Tg)
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Figure 31. Oscillation periods for both heavy (ρs/ρ > 1) and light (ρs/ρ < 1) spheres undergoing: (a) the
RHM (Ga = 170 and 190), and (b) ZM (Ga = 210 and 220), respectively.
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Figure 32. Oscillation periods (T∗
r ) normalized by the time scale at ρs/ρ = 0.8 (or 1.2) for Ga = 190

depending on (a) ρs/ρ and (b) |ρs/ρ − 1|, respectively.

was obtained for a heavier sphere when ρs/ρ > 1 and for a lighter sphere when ρs/ρ < 1
[see (2.7)]. Consequently, Tg varies according to ρs/ρ. To illustrate how fast a sphere
circles around the tube axis, we normalized the periods at Ga = 190 using the same time
scale (i.e. Tg at ρs/ρ = 0.8 or 1.2) and show them (T∗

r ) in figure 32. It is interesting to find
that the value of T∗

r is ‘rising’ with ρs/ρ for the rising spheres while the opposite is seen
for the falling spheres, suggesting an increase in the particle inertia results in a different
dynamical response from a heavy sphere and a light one (figure 32a). In addition, the
period (T∗

r ) is rapidly increasing as ρs/ρ approaches one (the neutrally buoyant case) from
both sides.

However, we show the relationship between the period and |ρs/ρ − 1| at Ga = 190 in
figure 32(b), which may provide a better understanding of the effects of the sphere-to-fluid
density ratio. A similar dependence of T∗

r on the accelerating factor (|ρs/ρ − 1|) is seen for
both types of the spheres. A sphere falling or rising in the tube circles the tube axis faster
as |ρs/ρ − 1| increases (figure 32b). Surprisingly, a light sphere always achieves a higher
circling speed than a heavy sphere when it has the same driving force (i.e. |ρs/ρ − 1|). This
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Figure 33. Top views of helical trajectory for heavy spheres with different densities at Ga = 190:
(a) ρs/ρ = 1.2, (b) ρs/ρ = 1.5, (c) ρs/ρ = 1.7 and (d) ρs/ρ = 1.8. The limit cycle is indicated by a thick line
for each case (the same below).
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Figure 34. Top views of particle trajectory for light spheres with different densities at Ga = 190:
(a) ρs/ρ = 0.25, (b) ρs/ρ = 0.5, (c) ρs/ρ = 0.6 and (d) ρs/ρ = 0.8.

may be primarily owing to the confined conditions of the square tube. To address this, we
show limit cycles of the helical trajectories projected onto the (x, y) plane for heavy spheres
(figure 33) and light spheres (figure 34) at Ga = 190. It can be clearly observed that each
heavy sphere exhibits an ellipse-shaped limit cycle that is more elliptical at larger ρs/ρ
(figure 33). However, the limit cycles remained nearly circular for all the light spheres
(figure 34). This is due to the difference in particle inertia between the heavy and light
spheres, which respond differently to wall repulsion, as mentioned above. We can expect a
stronger wall effect for a heavy sphere because it is more likely to approach the tube walls
as it runs along an ellipse-shaped path. Consequently, the movement of the heavy spheres
was hindered by the tube walls more noticeably than their counterparts.

Figure 35 provides a direct view of the wall ‘hindering’ effect by displaying the 2-D
vorticity (ω∗

z ) for a light (ρs/ρ = 0.8) and heavy (ρs/ρ = 0.8) spheres when they move close
to the right and upper walls, respectively. Note that both spheres have the same driving
force (|ρs/ρ − 1|). The sphere–wall interaction, characterized by the magnitude of ω∗

z , is
more significant for the heavy sphere (figure 35b,d) than for the light one (figure 35a,c)
whenever they approach a tube wall, suggesting a stronger ‘hindering’ effect experienced
by the heavy sphere. For instance, the heavy sphere attained a lower speed (≈0.13Ug)
as compared with the light one (≈0.14Ug) when both spheres moved close to the right
wall (figure 35a,b). In particular, both spheres showed a similar speed (≈0.14Ug) despite
a larger distance from the upper wall seen for the heavy sphere (figure 35c,d). This leads
to a smaller period (or a faster circling motion) for light spheres (figure 34b).

It is known that both the terminal velocity and drag coefficient of an unconfined sphere
are considerably dependent on the Galileo number. Similarly, we verified the dependence
of ReT and CD of our confined sphere on Ga in figure 36(a,b). The drag coefficient was
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Figure 35. Instantaneous contours of the 2-D vorticity (ω∗
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Figure 36. Dependence of (a) the terminal Reynolds number and (b) drag coefficients on the Galileo number.
The relationship between ReT and Ga and that between CD and Ga from Cabrera-Booman et al. (2024) are
indicated for reference.

computed through the following expression:

CD =
∣∣∣∣ρs

ρ
− 1

∣∣∣∣ 2gd

3U2
T
. (4.1)

The solutions of the empirical formulations, that is (1.4) and (1.5) from Cabrera-Booman
et al. (2024) are also provided for reference. The general features of our results (both ReT
and CD) agree with those of previous studies (Cabrera-Booman et al. 2024). A lower ReT
and larger CD were observed for our spheres because of the wall effects, which is rational.
In addition, at steady state, similar terminal velocities were obtained for both the confined
and unconfined spheres (figure 36a), irrespective of ρs/ρ. The onset of flow unsteadiness
led to an increasing discrepancy between our results and the solutions in the literature as
Ga increased (figure 36).

As far as we know, the influence of the sphere-to-fluid density ratio on the drag
coefficient is an arguable issue. It can be inferred from (1.5), CD is independent of ρs/ρ.
This is reasonable because (1.5) was developed based on the CD−ReT relationship for
a fixed sphere (Brown & Lawler 2003). Interestingly, an experimental study on the free
motion of spheres (ρs/ρ = 0.87, 1.12, 3.19 and 3.9) at 100 < Ga < 700 reflected a similar
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behaviour (Raaghav et al. 2022): their drag coefficients nearly coincided with those of
a fixed sphere. However, previous studies (Karamanev & Nikolov 1992; Horowitz &
Williamson 2010; Auguste & Magnaudet 2018) have revealed that a very light sphere
(ρs/ρ 
 1) with vibrations experiences a significantly larger drag coefficient than a fixed
sphere. In contrast, Cabrera-Booman et al. (2024) reported a systematic effect of the
sphere-to-fluid density ratio on CD of heavy spheres. In other words, the drag coefficients
of very heavy spheres (large ρs/ρ) were considerably smaller than those of fixed spheres.
The opposite is true for nearly neutrally buoyant spheres (Cabrera-Booman et al. 2024).
Things were different for our confined spheres. From figure 36(b) it seems that the effect
of ρs/ρ on CD cannot be neglected. Small but visible deviations in the drag coefficients
are seen between the result of ρs/ρ = 2.3 and the other ones (0.1 ≤ ρs/ρ ≤ 2). The CD of
our heaviest sphere studied (ρs/ρ = 2.3) shows an opposite trend as compared with the
observations of Cabrera-Booman et al. (2024). The primary reason for this is the same as
mentioned above. The tube walls had a stronger ‘hindering’ effect on the heaviest sphere
than on the other spheres.

Finally, it should be stated that the transition scenario illustrated in figure 4 only applies
to the confined conditions of a 5d square tube. The results essentially differ from those seen
for an unconfined sphere. So, the tube width-to-sphere diameter ratio (L/d) is certainly a
key factor in determining the motion patterns of the spheres as well as the boundaries
between different regimes. Due to high costs of the computations, we do not provide a
quantitative analysis on the effect of L/d. For a larger tube, the irregular helical motions
could only occur for lighter spheres (AHM) and heavier spheres (JHM), respectively, due
to requirement of a stronger sphere–wall interaction. Both motions will switch to the
regular one (RHM) if the tube width is larger than a threshold. The ZM of heavy spheres
is sensitive to the confined conditions (see figure 25). As a result, the zigzagging path may
disappear quickly for heavy spheres when L/d increases.

5. Conclusions

We simulated the freely falling or rising of a sphere confined to a 5d square tube using
a 3-D lattice Boltzmann method combined with an improved bounce-back scheme. The
sphere-to-fluid density ratio (ρs/ρ) and the Galileo number (Ga) were chosen as the control
parameters with ρs/ρ ranging from 0.1 to 2.3 and Ga from 140 to 230. For spheres confined
to a square tube, our simulations showed different behaviours compared with the cases of
unconfined spheres or spheres confined to a circular tube. The conclusions are summarized
as follows:

(i) The onset of unsteadiness occurred at Gacrit ≈ 157 for both the heavy (ρs/ρ > 1)
and light spheres (ρs/ρ < 1), representing a Hopf bifurcation. This Gcrit is consistent
with those of both an unconfined sphere (Jenny et al. 2004; Zhou & Dušek 2015) and
a sphere confined to a 5d circular tube (Deloze et al. 2012). Near Gcrit light spheres
exhibited a helical path, whereas the heavy spheres oscillated near the central plane
of the tube, where they were initially released from rest. Increasing Ga slightly
(Ga > 160) also led to helical motion of the heavy spheres.

(ii) Both heavy and light spheres were widely observed to move helically within the
ranges of ρs/ρ and Ga studied because of the double-threaded vortex in the wake
of the spheres interacting with the tube walls. As Ga increases the helical motion of
spheres will become irregular (Ga ≥ 190), with heavy spheres acting differently from
their counterparts. The trajectories of light spheres (ρs/ρ ≤ 0.3) show jaggedness
which is associated with the added mass effect. The double-threaded vortices begin
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to shed when the light spheres exhibit a JHM. In contrast, the heavy spheres
alternately change their helical directions as they fall. These different behaviours
were caused by the difference in inertia between the heavy and light spheres. More
significantly, at a fixed Ga the oscillation period of the light spheres increases rapidly
as ρs/ρ increases. However, the opposite was observed for the heavy spheres. This
suggests a very slow circling motion of the nearly neutrally buoyant spheres. In
addition, a light sphere always circles faster than a heavy one even though they have
the same driving force (|ρs/ρ − 1|). This may be owing to the fact that a heavy sphere
generally falls in an ellipse-shaped path (from top view) while a light one rises in a
circle-shaped path (from top view), leading to a stronger wall effect on the hindering
of the heavy sphere.

(iii) Interestingly, a transition from the helical motion to the ZM is seen for both heavy
(ρs/ρ ≥ 1.8 and Ga ≥ 210) and light (ρs/ρ ≤ 0.7 and Ga ≥ 200) spheres. To the best
of our knowledge, there are no previous reports on the ZM of a falling sphere. This
certainly results from the confined situations of a square tube. A hairpin-like vortical
structure (vortex loop) is formed downstream in the wake of a sphere that waveringly
falls or rises at high Ga. In particular, for the ZM of light spheres, our study shows
reasonable agreement with a pioneering study (Jenny et al. 2004) in terms of both
the ranges of Ga and ρs/ρ. After passing through the zigzagging regime, the light
spheres underwent chaotic motion at Ga > 220. However, the heavy spheres return
to their helical regime (Ga > 225) due to the emergence of a chain of vortex loops.

(iv) The dependences of both the terminal Reynolds number (ReT ) and drag coefficient
(CD) on Ga show trends similar to those in the case of an unconfined sphere. It
appears that the sphere-to-fluid density ratio had a small effect on both ReT and
CD except for ρs/ρ = 2.3. Because of the stronger wall effect, the heaviest sphere
considered in this study experienced a considerably larger drag.

The findings shed light on the near-wall motion and wake patterns of both heavy and
light spheres at intermediate Reynolds numbers, and may contribute to a fundamental
understanding of the transport mechanism of particulate flows confined to a square tube.
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