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Abstract

Brazil et al. [‘Maximal subgroups of infinite symmetric groups’, Proc. Lond. Math. Soc. (3) 68(1) (1994),
77–111] provided a new family of maximal subgroups of the symmetric group G(X) defined on an infinite
set X. It is easy to see that, in this case, G(X) contains subsemigroups that are not groups, but nothing is
known about nongroup maximal subsemigroups of G(X). We provide infinitely many examples of such
semigroups.
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1. Introduction

Throughout this paper, X is an infinite set and I(X) denotes the symmetric inverse semi-
group on X, that is, the semigroup (under composition) consisting of all one-to-one
partial transformations whose domain, dom α, and range, ranα, are subsets of X (see
[2, Volume 1, page 29]). In addition, if α ∈ I(X), we write

g(α) = |X \ dom α|, d(α) = |X \ ranα|
and refer to these cardinal numbers as the gap and defect of α, respectively.

In [11], the authors studied some algebraic properties of the semigroup defined by

A(X) = {α ∈ I(X) : g(α) = d(α)}.
In particular, for uncountable X, they described all maximal subsemigroups of A(X),
some of which involve a maximal subsemigroup of G(X), the symmetric group on X.
However, little seems to be known about such semigroups of permutations.
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In [4], Hotzel describes many different types of maximal subsemigroups of
BL(p, q), the Baer–Levi semigroup defined on X, when |X| = p ≥ q ≥ ℵ0 (for the
definition, see [2, Section 8.1]). In addition, in [4, page 157], he remarks that
{π ∈ G(X) : |Aπ \ A| < |A|} is a maximal subsemigroup of G(X) if and only if |A| = 1 or
ℵ0 ≤ |A| ≤ |X \ A| (see [2, Section 3]). However, Hotzel does not prove this assertion
in [4], albeit a tour-de-force in many other ways, even though he often uses the
assumption that ℵ0 ≤ |A| ≤ |X \ A| in [4, Section 3] (see Corollary 3.10 and elsewhere).
Furthermore, we cannot find any statement like Hotzel’s assertion anywhere else in the
literature.

In [4, page 154], Hotzel gives a brief summary of what was known about maximal
subgroups of G(X) in 1995. In fact, maximal subgroups of G(X) have been extensively
studied, particularly when X is infinite. For later developments, see [1, 3] and the
references therein. In [4, page 153], Hotzel remarks that some maximal subgroups
of G(X) are also maximal as subsemigroups of G(X). In [3, Section 10], the authors
provide several examples of such maximal subsemigroups of G(X). However, here we
focus on nongroup maximal subsemigroups of G(X), since that is what is needed to
support the main result in [11, Section 4].

In Section 2, we prove Hotzel’s assertion (as quoted above) and, in Section 4, we
prove a linear version of it (for interest, and to support a linear version of [11, Section 4]
which naturally arises from [8]). In Section 3, we observe that, in many cases, G(X)
is not isomorphic to G(V), the general linear group on an infinite-dimensional vector
space, even though their algebraic properties are similar, for example, the description
herein of some of their maximal subsemigroups. This is akin to work in [10, 11] (see
Section 3 for more details).

2. Infinite symmetric group

In what follows, Y = A ∪̇B means that Y is a disjoint union of A and B, and we let
idX denote the identity of G(X). Also, following standard practice in transformation
semigroup theory, we compose mappings from left to right.

We adapt the convention introduced in [2, Volume 2, page 241]: namely, if
α ∈ G(X), then we write

α =
(ai
xi

)

and take as understood that the subscript i belongs to some (unmentioned) index set I,
that the abbreviation {ai} denotes {ai : i ∈ I}, and that X = {ai} = {xi} and xiα

−1 = ai for
each i. In addition, if X = A ∪̇B = C ∪̇D, where |A| = |C| and |B| = |D|, we often write

α =
(A B
C D

)
,

to indicate that α ∈ G(X) consists of some (unspecified) bijection from A to C, together
with a bijection from B to D.
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For all other notation and terminology in semigroup theory, we refer the reader to
[2, 5].

Clearly, G(X) contains subsemigroups that are not groups. For example, if X = Z
and nα = n + 1 for all n ∈ Z, then the cyclic semigroup 〈α〉 is a subsemigroup of G(X)
but α−1 � 〈α〉, and this idea can be extended to any infinite X. The next result provides
infinitely many examples of nongroup maximal subsemigroups of G(X).

PROPOSITION 2.1. Let Y be a subset of X such that ℵ0 ≤ |Y | ≤ |X \ Y |. Then the set

H(Y) = {π ∈ G(X) : |Yπ \ Y | < |Y |}
is a maximal subsemigroup of G(X) that is not a group.

PROOF. Let |Y | = m ≤ n = |X \ Y | and write X = Y ∪̇ Z. Clearly,

H(Y) = {π ∈ G(X) : |Yπ ∩ Z| < m}.
Suppose that α, β ∈ H(Y). Since Yα = (Yα ∩ Y) ∪ (Yα ∩ Z), we have

Yαβ ∩ Z ⊆ (Yβ ∩ Z) ∪ ((Yα ∩ Z)β ∩ Z).

So, |Yαβ ∩ Z| ≤ |Yβ ∩ Z| + |Yα ∩ Z| < m + m = m and αβ ∈ H(Y).
Write Y = {ak} ∪̇ {aj} = {bj} ∪̇ {cj} and Z = {xj} ∪̇ {xi} = {yk} ∪̇ {yi}, where |K| < m =

|J| and |I| = n. Define α ∈ G(X) by

α =
(ak aj xj xi
yk bj cj yi

)
. (2.1)

Clearly, Yα ∩ Y = {bj} and Yα ∩ Z = {yk}, so α ∈ H(Y). But Yα−1 ∩ Z = {xj}, so
α−1 � H(Y). That is, H(Y) is a subsemigroup of G(X) that is not a group.

To show that H(Y) is maximal, we let h ∈ G(X) \ H(Y) and show that every
g ∈ G(X) \ H(Y) belongs to 〈H(Y), h〉, the semigroup generated by H(Y) ∪ {h}: in other
words, G(X) = 〈H(Y), h〉. To do this, we consider four cases.

First, note that if h, g � H(Y), then |Yh ∩ Z| ≥ m and |Yg ∩ Z| ≥ m. But
|Yh| = |Yg| = |Y | = m, and so |Yh ∩ Z| = m = |Yg ∩ Z|. In addition, h can be written as

h =
(Y ∩ Zh−1 Y ∩ Yh−1 Z ∩ Zh−1 Z ∩ Yh−1

Yh ∩ Z Yh ∩ Y Zh ∩ Z Zh ∩ Y

)
.

By this, we mean that, for each set in the first row, there is a bijection (determined by
the permutation h) between it and the set below it. Note that, in general, one or more
of the intersections may be empty. However, if Zh ∩ Y = ∅, then Zh = Zh ∩ Z, and so
Z = Z ∩ Zh−1 and Y = Y ∩ Yh, and likewise for other possibilities.

Case 1. Suppose that |Z ∩ Yg−1| < m and |Z ∩ Yh−1| < m. Since |Z| = n ≥ m, we have
|Z ∩ Zg−1| = n = |Z ∩ Zh−1|. Also, |Yg−1| = |Yh−1| = |Y | = m implies that |Y ∩ Yg−1| =
m = |Y ∩ Yh−1|. Write

Y ∩ Yg−1 = B1 ∪̇B2, |B1| = m, |B2| = |Z ∩ Yh−1|,
Y ∩ Yh−1 = C1 ∪̇C2, |C1| = m, |C2| = |Z ∩ Yg−1|,
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and consider π1, π2 ∈ G(X), defined as follows:

π1 =

(Y ∩ Zg−1 B1 Z ∩ Yg−1 Z ∩ Zg−1 B2
Y ∩ Zh−1 C1 C2 Z ∩ Zh−1 Z ∩ Yh−1

)
,

h =
(Y ∩ Zh−1 C1 C2 Z ∩ Zh−1 Z ∩ Yh−1

Yh ∩ Z C1h C2h Zh ∩ Z Zh ∩ Y

)
,

π2 =

(Yh ∩ Z C1h C2h Zh ∩ Z Zh ∩ Y
Yg ∩ Z B1g Zg ∩ Y Zg ∩ Z B2g

)
.

Clearly, π1 and π2 are well-defined permutations of X (this depends, in part, on our
choice of sets and their cardinals). Now Yπ1 ∩ Z = Z ∩ Yh−1, which has cardinal less
than m by supposition, so π1 ∈ H(Y). Also, Yπ2 ∩ Z = ∅, so π2 ∈ H(Y). Moreover,
g = π1hπ2 provided we define π2 as follows. If, for example, x ∈ B1, then π2 maps
C1h to B1g via xπ1h �→ xg, and likewise for each set in the first row of π2.

Case 2. Suppose that |Z ∩ Yg−1| < m and |Z ∩ Yh−1| = m. Then |Y ∩ Yg−1| = m and
|Z ∩ Zg−1| = n, but now |Y ∩ Yh−1| and |Z ∩ Zh−1| may be unequal and less than m and
n, respectively. In fact, this case is more complicated than the others. Clearly, if m < n,
then |Z ∩ Zh−1| = n. On the other hand, if m = n, then |Z ∩ Zg−1| = m ≥ |Z ∩ Zh−1|.
Write

Y ∩ Yg−1 = B1 ∪̇B2, |B1| = m, |B2| = |Y ∩ Yh−1|,
Z ∩ Zg−1 = C1 ∪̇C2, |C1| = m, |C2| = |Z ∩ Zh−1|,
Z ∩ Yh−1 = E1 ∪̇E3, |E1| = m, |E3| = |Z ∩ Yg−1|,
Y ∩ Zh−1 = D1 ∪̇D2, |D1| = |D2| = m,

= F1 ∪̇F2 ∪̇F3, |F1| = |F2| = m, |F3| = |E3|.

Now define π1, π2, π3 ∈ G(X) as follows:

π1 =

(Y ∩ Zg−1 B1 B2 C2 C1 Z ∩ Yg−1

D2 D1 Y ∩ Yh−1 Z ∩ Zh−1 E1 E3

)
,

h =
( D2 D1 Y ∩ Yh−1 Z ∩ Zh−1 E1 E3
D2h D1h Yh ∩ Y Zh ∩ Z E1h E3h

)
,

π2 =

(D2h D1h Yh ∩ Y Zh ∩ Z E1h E3h
F2 Z ∩ Yh−1 Y ∩ Yh−1 Z ∩ Zh−1 F1 F3

)
,

h =
( F2 Z ∩ Yh−1 Y ∩ Yh−1 Z ∩ Zh−1 F1 F3
F2h Zh ∩ Y Yh ∩ Y Zh ∩ Z F1h F3h

)
,

π3 =

( F2h Zh ∩ Y Yh ∩ Y Zh ∩ Z F1h F3h
Yg ∩ Z B1g B2g C2g C1g Zg ∩ Y

)
.

Clearly, π1, π2 and π3 are well-defined permutations of X. Note that Yπ1 ∩ Z = ∅, so
π1 ∈ H(Y). Also, E1h ⊆ Y and F1 ⊆ Y (and likewise for E3h and F3), so Yπ2 ∩ Z = ∅
and π2 ∈ H(Y). In addition, Fih ⊆ Z and Bjg ⊆ Y for i = 1, 2, 3 and j = 1, 2. Therefore,
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Yπ3 ∩ Z = ∅ and π3 ∈ H(Y). Furthermore, by defining π3 in a suitable manner, we have
g = π1hπ2hπ3.

Case 3. Suppose that |Z ∩ Yg−1| = m and |Z ∩ Yh−1| < m. In this event, |Y ∩ Yh−1| = m
and |Z ∩ Zh−1| = n, whereas |Z ∩ Zg−1| and |Y ∩ Yg−1| are unknown. As before, if
m < n, then |Z ∩ Zg−1| = n; if m = n, then |Z ∩ Zh−1| = m ≥ |Z ∩ Zg−1|. Write

Z ∩ Yg−1 = B1 ∪̇B2 ∪̇B3, |B1| = |B2| = m, |B3| = |Z ∩ Yh−1|,
Y ∩ Zh−1 = C1 ∪̇C2, |C1| = m, |C2| = |Y ∩ Yg−1|,
Z ∩ Zh−1 = D2 ∪̇D1, |D2| = m, |D1| = |Z ∩ Zg−1|.

Now define π1, π2 ∈ G(X) as follows:

π1 =

(Y ∩ Zg−1 Y ∩ Yg−1 B1 B2 Z ∩ Zg−1 B3
C1 C2 Y ∩ Yh−1 D2 D1 Z ∩ Yh−1

)
,

h =
( C1 C2 Y ∩ Yh−1 D2 D1 Z ∩ Yh−1

C1h C2h Yh ∩ Y D2h D1h Zh ∩ Y

)
,

π2 =

( C1h C2h Yh ∩ Y D2h D1h Zh ∩ Y
Yg ∩ Z Yg ∩ Y B1g B2g Zg ∩ Z B3g

)
.

Clearly, π1 and π2 are permutations of X. Also, Yπ1 ∩ Z = ∅ = Yπ2 ∩ Z, so
π1, π2 ∈ H(Y). As before, g = π1hπ2 if π2 is defined suitably.

Case 4. Suppose that |Z ∩ Yg−1| = m and |Z ∩ Yh−1| = m. In this case, each of the
cardinals |Y ∩ Yg−1|, |Z ∩ Zg−1| and |Y ∩ Yh−1|, |Z ∩ Zh−1| is unknown. If m = n, write

Z ∩ Yg−1 = B1 ∪̇B2 ∪̇B3, |B1| = |Y ∩ Yh−1|, |B2| = |Z ∩ Zh−1|, |B3| = m,

Y ∩ Zh−1 = C1 ∪̇C2 ∪̇C3, |C1| = m, |C2| = |Y ∩ Yg−1|, |C3| = |Z ∩ Zg−1|,

and define π1, π2 ∈ G(X) as follows:

π1 =

(Y ∩ Zg−1 Y ∩ Yg−1 Z ∩ Zg−1 B1 B2 B3
C1 C2 C3 Y ∩ Yh−1 Z ∩ Zh−1 Z ∩ Yh−1

)
,

h =
( C1 C2 C3 Y ∩ Yh−1 Z ∩ Zh−1 Z ∩ Yh−1

C1h C2h C3h Yh ∩ Y Zh ∩ Z Zh ∩ Y

)
,

π2 =

( C1h C2h C3h Yh ∩ Y Zh ∩ Z Zh ∩ Y
Yg ∩ Z Yg ∩ Y Zg ∩ Z B1g B2g B3g

)
.

On the other hand, if m < n, then |Z ∩ Zg−1| = |Z ∩ Zh−1| = n. In this case, write

Z ∩ Yg−1 = B1 ∪̇B2, |B1| = m, |B2| = |Y ∩ Yh−1|,
Y ∩ Zh−1 = C1 ∪̇C2, |C1| = m, |C2| = |Y ∩ Yg−1|,
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and define π1, π2 ∈ G(X) as follows:

π1 =

(Y ∩ Zg−1 Y ∩ Yg−1 Z ∩ Zg−1 B1 B2
C1 C2 Z ∩ Zh−1 Z ∩ Yh−1 Y ∩ Yh−1

)
,

h =
( C1 C2 Z ∩ Zh−1 Z ∩ Yh−1 Y ∩ Yh−1

C1h C2h Zh ∩ Z Zh ∩ Y Yh ∩ Y

)
,

π2 =

( C1h C2h Zh ∩ Z Zh ∩ Y Yh ∩ Y
Yg ∩ Z Yg ∩ Y Zg ∩ Z B1g B2g

)
.

In both cases, π1, π2 ∈ G(X) and Yπ1 ∩ Z = ∅ = Yπ2 ∩ Z. Hence, π1, π2 ∈ H(Y) and, as
before, g = π1hπ2 for a suitably defined π2. �

We note that the α defined in (2.1) belongs to H(Y) but

α � H(Z) = {β ∈ G(X) : |Zβ ∩ Y | < n},

even when n = m. Also, there are 2n subsets of X with cardinal n, and hence there are
2n partitions of X into two subsets, each with cardinal n. Consequently, there are at
least 2n distinct nongroup subsemigroups of G(X) that are maximal.

Hotzel’s claim follows easily from Proposition 2.1.

THEOREM 2.2. Let A be a subset of X. Then the set

H(A) = {π ∈ G(X) : |Aπ \ A| < |A|}

is a maximal subsemigroup of G(X) if and only if |A| = 1 or ℵ0 ≤ |A| ≤ |X \ A|.

PROOF. First, suppose that |A| = m for some m ∈N \ {1}, and write A= {a1, a2, . . . , am}.
Let X \ A = {x1, x2, . . . , xm} ∪̇ {yi}, with |I| = n ≥ ℵ0 > m, and define α, β ∈ G(X) by

α =
(a1 a2 . . . am x1 x2 . . . xm yi
a1 x2 . . . xm x1 a2 . . . am yi

)
,

β =
(a1 a2 . . . am x1 x2 . . . xm yi
x1 a2 . . . am a1 x2 . . . xm yi

)
.

It is easy to verify that |Aα \ A| = m − 1 and |Aβ \ A| = 1, and hence α, β ∈ H(A).
But |A(αβ) \ A| = m, and so αβ � H(A). Therefore, H(A) is not a semigroup when
2 ≤ |A| < ℵ0.

On the other hand, if A is infinite but |A| > |X \ A|, then |A| = |X|. Given that
π ∈ G(X), Aπ \ A ⊆ X \ A. Therefore, |Aπ \ A| ≤ |X \ A| < |A|, and so H(A) = G(X).
Thus, we have just proved that |A| = 1 or ℵ0 ≤ |A| ≤ |X \ A| when H(A) is a maximal
subsemigroup of G(X).

Conversely, assume that |A| = 1 and write A = {a}. Clearly,

H(A) = {π ∈ G(X) : Aπ \ A = ∅} = {π ∈ G(X) : aπ = a}.
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It is not difficult to see that H(A) is a subsemigroup of G(X). In fact, it is a subgroup
of G(X). Next, we prove that H(A) is a maximal subsemigroup. To do this, we let
h ∈ G(X) \ H(A) and we show that g ∈ 〈H(A), h〉 for every g ∈ G(X) \ H(A). Since
h, g � H(A), it follows that ah = b and ag = c for some b, c ∈ X \ {a}. Also, there exist
d, e ∈ X \ {a} such that dh = a and eg = a. Write X = {a, e} ∪̇ Y = {a, d} ∪̇ Z and define
π1, π2 in G(X) by

π1 =

(a e Y
a d Z

)
, π2 =

(a b Zh
a c Yg

)
.

Clearly, π1, π2 ∈ H(A) and g = π1hπ2 if π2 is suitably defined. Thus, H(A) is a maximal
subsemigroup of G(X) if |A| = 1. By Proposition 2.1, this is also true if ℵ0 ≤ |A| ≤
|X \ A|. �

3. An isomorphism problem

In [9], the authors proved that the Baer–Levi semigroup BL(p, q) of type (p, q)
defined on an infinite set is never isomorphic to its linear counterpart GS(m, n) defined
on an infinite-dimensional vector space (for the definitions, see [9]). This is surprising
since BL(p, q) and GS(m, n) have many algebraic properties in common. Likewise,
in [10], the same authors showed that the symmetric inverse semigroup I(X) defined
on an arbitrary set is almost never isomorphic to the analogous semigroup I(V) defined
on an arbitrary vector space V over a field F. In Section 2, we provided a family
of nongroup maximal subsemigroups of G(X). Before we do the same for G(V) in
Section 4, we observe that, although G(X) and G(V) are similar in character, these
groups are almost never isomorphic. In fact, it is well known that the centre of G(X)
is {idX} and the centre of G(V) is {k idV : k ∈ F \ {0}}. Thus, G(X) and G(V) are never
isomorphic if |F| > 2.

THEOREM 3.1. Any semigroup S can be embedded in T(V), the semigroup of all linear
transformations of some vector space V with dimension |S|, if S contains an identity (or
|S| + 1 if S does not contain an identity).

PROOF. Write S1 = {ai}. Let F be any field and let Fi be a copy of F for each i ∈ I. As
in [6, page 182, Remark (c)], we let V be the vector space

∑
Fi over F whose basis

can be identified in a natural way with {ai}: that is,
∑

Fi is the set of all (ri)i∈I , where
ri ∈ Fi and at most finitely many ri are nonzero.

For each x ∈ S, let ρx : S1 → S1, ai �→ aix, be a mapping of the basis {ai} into itself
(note that ρx may not be injective). Hence, ρx can be extended by linearity to an element
of T(V) that we also denote by ρx. Clearly, for each x, y ∈ S, ρxy and ρx ◦ ρy agree on
the basis {ai}, and hence they agree on all of V. That is, the mapping ρ : S→ T(V),
x→ ρx, is a homomorphism. Moreover, since 1 ∈ {ai}, ρx = ρy implies that x = y, so ρ
is injective and the result follows. �

It is well known that, if |X| = m ≥ ℵ0, then |G(X)| = 2m (compare [9, page 479]). To
determine the cardinal of G(V) when dim V = n ≥ ℵ0, we first recall [7, Volume II,
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page 245]: if V is a vector space over a field F and dim V = n ≥ ℵ0, then |V | = n × |F|.
From this, we deduce (as in [9, page 480]) that |T(V)| = |V |n and thus

|T(V)| =
⎧⎪⎪⎨⎪⎪⎩

2n if |F| ≤ n,
|F|n if |F| > n.

LEMMA 3.2. If dim V = n ≥ ℵ0, then the cardinal of G(V) is |V |n.

PROOF. Suppose that {ai} is a basis for V and |F| ≥ 3. In this case, if ki ∈ F \ {0, 1} for
each i, then {kiai} is a basis for V that differs from {ai}. Now each bijection kiai �→ ai
extends by linearity to some πk ∈ G(V), and πk � πk′ for k � k′. Note that there are |F|n
bases for V of the form {kiai}. Since |G(A)| = 2n for each basis A of V,

|G(V)| ≥ 2n.|F|n = (n.|F|)n = |V |n.

But |V |n = |T(V)| ≥ |G(V)|, and equality follows. Now suppose that |F| = 2. For each
fixed i0 ∈ I, write I′ = I \ {i0} and choose j0 ∈ I′. Then {ai : i ∈ I′} ∪̇ {ai0 + aj0} is a basis
for V and so the number of bases for V is at least n. Hence,

|G(V)| ≥ n.2n = (n.2)n = |V |n,

and thus we also have equality in the case |F| = 2. �

In passing, we observe that, if |F| = 2 and 2m � 2n, where m, n ≥ ℵ0 as above, then
G(X) is not isomorphic to G(V).

4. General linear group

In Section 2, we provided a family of nongroup maximal subsemigroups of the
symmetric group G(X) on an infinite set X. Here, we do the same for G(V), the general
linear group on an infinite-dimensional vector space V. When α ∈ G(V), we take the
notation displayed at the start of Section 2 to mean that α is the extension by linearity
to the whole of V of a bijection between bases {ai} and {xi} for V. The subspace U of
V generated by a linearly independent subset {ui} of V is denoted by 〈ui〉, and we write
dim U = |I|. Observe that, given that α ∈ G(V) and U ≤ V ,

U = 〈ui〉 ⊕ 〈uj〉 if and only if Uα = 〈uiα〉 ⊕ 〈ujα〉.

Our next result is the linear analogue of Proposition 2.1. In the set case, the
complement of Y in X is unique and this makes the definition of appropriate mappings
in G(X) and the proof of maximality simpler. But the problem here is that, given a
subspace W of V, we may not fix a complementary subspace U of W in V and define
all linear mappings in G(V) necessary for the proof of our result by considering the
images of W and of the fixed U. The concept of quotient space plays an important role,
since it simplifies the task, given all possible choices of complementary subspaces. In
fact, we are mainly concerned with codimensions of subspaces in a vector space, and
we know that codim W = dim V/W.
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PROPOSITION 4.1. Let W be a subspace of V with ℵ0 ≤ dim W = m ≤ codim W. If

H(W) = {α ∈ G(V) : dim Wα/(Wα ∩W) < m},

then H(W) is a maximal subsemigroup of G(V) that is not a group.

PROOF. Suppose that α, β ∈ H(W) and let Wα ∩W = 〈ai〉. Write Wα = 〈ai〉 ⊕ 〈bj〉,
where |J| = dim Wα/(Wα ∩W) < m. Since α ∈ G(V), there exist unique wi, wj in
W such that ai = wiα and bj = wjα for every i and every j. It is not difficult to see
that W = 〈wi〉 ⊕ 〈wj〉. On the other hand, 〈ai〉 ⊆ W and we may write W = 〈ai〉 ⊕ 〈a�〉.
Moreover, {ai} ∪̇ {a�} ∪̇ {bj} is a linearly independent subset of V and

V = 〈ai〉 ⊕ 〈a�〉 ⊕ 〈bj〉 ⊕ 〈bt〉,

where T may be empty. Also, if v�, vt ∈ V are such that v�α = a� and vtα = bt, for each
� and each t, then V = 〈wi〉 ⊕ 〈wj〉 ⊕ 〈v�〉 ⊕ 〈vt〉. Note that

α =
(wi wj v� vt
ai bj a� bt

)
.

Write 〈aiβ〉 ∩W = 〈cr〉 and 〈aiβ〉 = 〈cr〉 ⊕ 〈cs〉. Similarly, let 〈bjβ〉 ∩W = 〈dx〉 and
〈bjβ〉 = 〈dx〉 ⊕ 〈dy〉. Then

Wβ = 〈aiβ〉 ⊕ 〈a�β〉 = 〈cr〉 ⊕ 〈cs〉 ⊕ 〈a�β〉

and

Wαβ = 〈aiβ〉 ⊕ 〈bjβ〉 = 〈cr〉 ⊕ 〈cs〉 ⊕ 〈dx〉 ⊕ 〈dy〉.

Since 〈cr〉 ⊕ 〈dx〉 ⊆ W, we have dim Wαβ/(Wαβ ∩W) ≤ |S| + |Y |. But we also have
|J| = dim Wα/(Wα ∩W) < m and |Y | ≤ |J|. Also,

|S| = dim 〈aiβ〉/(〈aiβ〉 ∩W) ≤ dim Wβ/(Wβ ∩W) < m.

Thus, |S| + |Y | < m + m = m, and αβ ∈ H(W).
Now write W = 〈wk〉 ⊕ 〈wj〉= 〈vj〉 ⊕ 〈uj〉 and V =W ⊕ 〈aj〉 ⊕ 〈ai〉=W ⊕ 〈bk〉 ⊕ 〈bi〉,

where |K| < |J| = m ≤ n = |I| = codim W. Define α ∈ G(V) by

α =
(wk wj aj ai
bk vj uj bi

)
.

Clearly, Wα = 〈bk〉 ⊕ 〈vj〉 and so dim Wα/(Wα ∩W) = |K| < m. Thus, α ∈ H(W). But
Wα−1 = 〈wj〉 ⊕ 〈aj〉, and hence dim Wα−1/(Wα−1 ∩W) = |J| = m and α−1 � H(W).
In other words, we have just shown that H(W) is a subsemigroup of G(V) that is not a
group.

To show that H(W) is maximal, we let h ∈ G(V) \ H(W) and we show that, for
every g ∈ G(V) \ H(W), we have g ∈ 〈H(W), h〉. Given that h, g ∈ G(V) \ H(W), we
have dim Wh/(Wh ∩W) ≥ m and dim Wg/(Wg ∩W) ≥ m. But dim Wh = dim Wg =
dim W = m, since h, g ∈ G(V). Therefore,

dim Wh/(Wh ∩W) = dim Wg/(Wg ∩W) = m.
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Write Wg−1 ∩W = 〈aig−1〉 and Wg−1 = 〈aig−1〉 ⊕ 〈b�g−1〉. Then W = 〈ai〉 ⊕ 〈b�〉.
Also, we may write W = 〈aig−1〉 ⊕ 〈ujg−1〉 and V = 〈aig−1〉 ⊕ 〈ujg−1〉 ⊕ 〈b�g−1〉 ⊕
〈ukg−1〉. Clearly, |L| + |K| = codim W and |I| + |J| = |I| + |L| = m. Since W = 〈ai〉 ⊕ 〈b�〉
and Wg = 〈(aig−1)g〉 ⊕ 〈(ujg−1)g〉 = 〈ai〉 ⊕ 〈uj〉,

m = dim Wg/(Wg ∩W) ≤ |J| ≤ dim Wg = m,

and hence |J| = m.
Proceeding similarly, write Wh−1∩W = 〈cph−1〉, Wh−1 = 〈cph−1〉 ⊕ 〈dqh−1〉 and

W = 〈cph−1〉 ⊕ 〈vrh−1〉. Then W = 〈cp〉 ⊕ 〈dq〉 and we may write

V = 〈cph−1〉 ⊕ 〈vrh−1〉 ⊕ 〈dqh−1〉 ⊕ 〈vsh−1〉.

As before, we may conclude that |P| + |Q| = |P| + |R| = m, |Q| + |S| = codim W and
|R| = m.

Case 1. Suppose that dim Wh−1/(Wh−1 ∩W) < m and dim Wg−1/(Wg−1 ∩W) < m.
Then |L| = dim Wg−1/(Wg−1 ∩W) < m ≤ codim W, so |K| = codim W and |I| = m.
Since |J| = |I|, we may write {ujg−1} as {uig−1}.

Analogously, |Q| < m = |P| = |R| and |S| = codim W. Therefore, we may write
{cph−1}, {vrh−1} and {vsh−1} as {cih−1}, {vih−1} and {vkh−1}, respectively. Since |Q| < |I|,
|L| < |I| and |I| = m ≥ ℵ0, we may write

〈aig−1〉 = 〈wig−1〉 ⊕ 〈wqg−1〉, 〈cih−1〉 = 〈yih−1〉 ⊕ 〈y�h−1〉.

Now define π1, π2 in G(V) by

π1 =

(uig−1 wig−1 b�g−1 ukg−1 wqg−1

vih−1 yih−1 y�h−1 vkh−1 dqh−1

)
, π2 =

( vi yi y� vk dq
ui wi b� uk wq

)
.

Clearly, g = π1hπ2. It is not difficult to see that Wπ1 = 〈vih−1〉 ⊕ 〈yih−1〉 ⊕ 〈dqh−1〉.
But 〈vih−1〉 ⊕ 〈yih−1〉 ⊆ W, and so dim Wπ1/(Wπ1 ∩W) ≤ |Q| < m. On the other
hand, Wπ2 = 〈wi〉 ⊕ 〈b�〉 ⊕ 〈wq〉 ⊆ W, and so dim Wπ2/(Wπ2 ∩W) = 0 < m. Thus,
π1, π2 ∈ H(W).

Case 2. Suppose that dim Wh−1/(Wh−1 ∩W) = m and dim Wg−1/(Wg−1 ∩W) < m.
Then |Q| = m, |L| < m, and this inequality implies that |I| = m ≤ codim W = |K|, but
|P| is unknown (at most m). Also, |Q| + |S| = |I| + |S| = codim W and we may write
{ujg−1}, {vrh−1} and {dqh−1} as {uig−1}, {vih−1} and {dih−1}, respectively. Also, let

〈aig−1〉 = 〈wig−1〉 ⊕ 〈wpg−1〉,
〈ukg−1〉 = 〈yig−1〉 ⊕ 〈ysg−1〉,
〈dih−1〉 = 〈xih−1〉 ⊕ 〈x�h−1〉,
〈vih−1〉 = 〈zih−1〉 ⊕ 〈z∗i h−1〉 = 〈z′ih

−1〉 ⊕ 〈z′′i h−1〉 ⊕ 〈z′′′� h−1〉,
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and define π1, π2, π3 in G(V) by

π1 =

(uig−1 wig−1 wpg−1 ysg−1 yig−1 b�g−1

z∗i h−1 zih−1 cph−1 vsh−1 xih−1 x�h−1

)
,

π2 =

( z∗i zi cp vs xi x�
z′′i h−1 dih−1 cph−1 vsh−1 z′ih

−1 z′′′� h−1

)
,

π3 =

(z′′i di cp vs z′i z′′′�
ui wi wp ys yi b�

)
.

Clearly, g = π1hπ2hπ3. Also,

Wπ1 = 〈z∗i h−1〉 ⊕ 〈zih−1〉 ⊕ 〈cph−1〉,
Wπ2 = 〈cph−1〉 ⊕ 〈z′ih−1〉 ⊕ 〈z′′′� h−1〉,
Wπ3 = 〈wi〉 ⊕ 〈wp〉,

and so, for i = 1, 2, 3, Wπi ⊆ W and dim Wπi/(Wπi ∩W) = 0 < m, that is, πi ∈ H(W).

Case 3. Suppose that dim Wh−1/(Wh−1 ∩W) < m and dim Wg−1/(Wg−1 ∩W) = m.
In this event, |I| ≤ m = |J| = |L| ≤ codim W = |L| + |K|. On the other hand, |Q| < m =
|P| = |R| ≤ codim W = |S|. Thus, we may write {b�g−1}, {cph−1} and {vrh−1} as {bjg−1},
{cjh−1} and {vjh−1}, respectively. Also, write

〈bjg−1〉 = 〈wjg−1〉 ⊕ 〈zjg−1〉 ⊕ 〈wqg−1〉,
〈vjh−1〉 = 〈xjh−1〉 ⊕ 〈xih−1〉,
〈vsh−1〉 = 〈yjh−1〉 ⊕ 〈ykh−1〉,

and define π1, π2 in G(V) by

π1 =

(ujg−1 aig−1 wjg−1 zjg−1 ukg−1 wqg−1

xjh−1 xih−1 cjh−1 yjh−1 ykh−1 dqh−1

)
,

π2 =

(xj xi cj yj yk dq
uj ai wj zj uk wq

)
.

Clearly, g = π1hπ2. Also,

Wπ1 = 〈xjh−1〉 ⊕ 〈xih−1〉,
Wπ2 = 〈wj〉 ⊕ 〈wq〉,

and hence dim Wπ1/(Wπ1 ∩W) = dim Wπ2/(Wπ2 ∩W) = 0 < m. In other words,
π1, π2 ∈ H(W).

Case 4. Suppose that dim Wh−1/(Wh−1 ∩W) = m and dim Wg−1/(Wg−1 ∩W) = m.
Then |I| ≤ m = |L| = |J| ≤ |L| + |K| = codim W and |P| ≤ m = |Q| = |R| ≤ |Q| + |S| =
codim W. Thus, we may write {b�g−1}, {dqh−1} and {vrh−1} as {bjg−1}, {djh−1} and
{vjh−1}, respectively.

If m < codim W, then |K| = codim W = |S|. Write {vsh−1} as {vkh−1} and

〈bjg−1〉 = 〈wjg−1〉 ⊕ 〈wpg−1〉, 〈vjh−1〉 = 〈xjh−1〉 ⊕ 〈xih−1〉.
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Now define π1, π2 in G(V) by

π1 =

(ujg−1 aig−1 ukg−1 wpg−1 wjg−1

xjh−1 xih−1 vkh−1 cph−1 djh−1

)
,

π2 =

( xj xi vk cp dj
uj ai uk wp wj

)
.

If m = codim W, then |K| ≤ m and |S| ≤ m. Write

〈bjg−1〉 = 〈wpg−1〉 ⊕ 〈wsg−1〉 ⊕ 〈wjg−1〉,
〈vjh−1〉 = 〈xjh−1〉 ⊕ 〈xih−1〉 ⊕ 〈xkh−1〉,

and define π1, π2 in G(V) by

π1 =

(ujg−1 aig−1 ukg−1 wpg−1 wsg−1 wjg−1

xjh−1 xih−1 xkh−1 cph−1 vsh−1 djh−1

)
,

π2 =

(xj xi xk cp vs dj
uj ai uk wp ws wj

)
.

It is easy to see that, in both cases, Wπ1, Wπ2 ⊆ W, and so π1, π2 ∈ H(W). Moreover,
g = π1hπ2. �

As for the set case, it is not difficult to see that H(W) is a nongroup maximal
subsemigroup of G(V) if and only if ℵ0 ≤ dim W ≤ codim W. In fact, as we prove
in our next result, the linear version of Hotzel’s claim holds.

THEOREM 4.2. Let W be a subspace of V. Then the set

H(W) = {π ∈ G(V) : dim Wπ/(Wπ ∩W) < dim W}

is a maximal subsemigroup of G(V) if and only if dim W = 1 or ℵ0 ≤ dim W ≤
codim W.

PROOF. By Proposition 4.1, if ℵ0 ≤ dim W ≤ codim W, then H(W) is a maximal
subsemigroup of G(V). Now assume that dim W = 1 and let W = 〈w〉, with w � 0.
Since dim Wπ = 1 for each π ∈ G(V), it follows that dim Wπ/(Wπ ∩W) < 1 if and
only if Wπ = W, and hence

H(W) = {π ∈ G(V) : wπ = kπ for some k ∈ F \ {0}}.

It is easy to see that H(W) is a subsemigroup of G(V) that is a group. Given h, g ∈
G(V) \ H(W),

Wh ∩W = {0} = Wg ∩W.

Therefore, there exist nonzero u, v, a, b � 〈w〉 such that wh = u, wg = v, ah = w and
bg = w. Write V = 〈w〉 ⊕ 〈a〉 ⊕ 〈ai〉 = 〈w〉 ⊕ 〈b〉 ⊕ 〈bi〉, and define π1, π2 ∈ G(V) by

π1 =

(w b bi
w a ai

)
, π2 =

(w u aih
w v big

)
.
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Clearly, π1, π2 ∈ H(W), since wπi = w for i = 1, 2. Also,

π1hπ2 =

(w b bi
v w big

)
= g.

Thus, if dim W = 1, then H(W) is a maximal subsemigroup of G(V).
Conversely, suppose that dim W = m with m ∈ N \ {1}, and write W = 〈w1, . . . , wm〉.

Since V is infinite-dimensional, we may write V = 〈w1, . . . , wm〉 ⊕ 〈u1, . . . , um〉 ⊕ 〈vi〉,
where |I| = dim V . Now define α, β ∈ G(V) by

α =
(w1 w2 . . . wm u1 u2 . . . um vi
w1 u2 . . . um u1 w2 . . . wm vi

)
,

β =
(w1 w2 . . . wm u1 u2 . . . um vi
u1 w2 . . . wm w1 u2 . . . um vi

)
.

Clearly, dim Wα/(Wα ∩W) = dim 〈u2, . . . , um〉 = m − 1 and dim Wβ/(Wβ ∩W) =
dim 〈u1〉 = 1, so α, β ∈ H(W). But

αβ =
(w1 w2 . . . wm u1 u2 . . . um vi
u1 u2 . . . um w1 w2 . . . wm vi

)
,

and hence dim Wαβ/(Wαβ ∩W) = dim 〈u1, u2, . . . , um〉 = m. Therefore, αβ � H(W)
and H(W) is not a semigroup. Next, assume that W is infinite-dimensional and
dim W > codim W. Given that π ∈ G(V), dim Wπ/(Wπ ∩W) ≤ codim W < dim W.
Thus, H(W) = G(V). In other words, we have just proved that H(W) is not a
maximal subsemigroup of G(V) when dim W ∈ N \ {1} or W is infinite-dimensional
but dim W > codim W. �
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