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Expansion of supraglacial lake area, volume and extent on the 

Greenland Ice Sheet from 1985 to 2023 

Abstract 

Supraglacial lakes (SGLs) are widespread across the Greenland Ice Sheet  and cause 

transient changes in ice flow. Here, we produce the first annual ice-sheet wide 

database of maximum summer SGL extents spanning 1985 to 2023 using all July and 

August Landsat images. Lake visibility percentages were calculated to estimate the 

uncertainty induced by variable image data coverage. SGLs were mainly distributed 

between 1000–1600 m elevation, with large lake area observed in northwestern, 

northeastern, and southwestern basins. Lake area increased at a rate of 50.5 km2 a-1 

across the entire Greenland, and lakes advanced to higher elevations at an average rate 

of 10.2 m a-1 during 1985-2023. We leveraged spatiotemporally-matched ICESat-2 

and Landsat 8 reflectance data to develop a deep learning model for lake depth 

inversion for the period 2014-2023. This model demonstrates the highest accuracy 

among all image-based methods, albeit with an underestimation of approximately 

15% when compared to ICESat-2 data. A significant positive correlation between lake 

volume and area is used to up-scale the approach to the entire time-period, indicating 

a lake volume increase of 221.9±63.6 x106 m3 a-1. Increasing air/ land surface 

temperature, surface pressure, and decreasing snowfall were the most important 

contributing factors in driving lake variability. 
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1. Introduction 

Supraglacial lakes (SGLs) play an important role in the response of the 

Greenland Ice Sheet (GrIS) to climate warming. The presence of SGLs reduces ice 

sheet albedo, providing a positive feedback with ice sheet ablation (Hubbard and 

others, 2016). Large volumes of meltwater stored in SGLs can rapidly (hours to a few 

days) drain into the ice sheet via moulins and crevasses, resulting in transient ice-flow 

perturbations (Das and others, 2008; Stevens and others, 2022). SGLs are expected to 

become more abundant and extend further inland toward higher elevations due to 

increases in surface melt extent and duration (Leeson and others, 2015; Ignéczi and 

others, 2016). It is, therefore, essential to have a comprehensive understanding of their 

spatiotemporal distribution and evolution to evaluate their potential future impacts. 

Remote sensing can be used to reveal the spatial and temporal evolution of SGLs 

at the ice-sheet scale. Understanding of lake variability has improved due to more 

frequent (weekly and seasonal) and larger-scale observations (Benedek and Willis, 

2021; Yang and others, 2021). However, only a few studies have detected SGLs 

across the entire GrIS (Selmes and others, 2011; Hu and others, 2022; Zhang and 

others, 2023), while regional studies have primarily focused on the southwestern and 

northeastern regions (e.g., Rowley and others, 2020; Lu and others, 2021; Turton and 

others, 2021; Yang and others, 2021). Therefore, regional differences in lake evolution 
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(e.g., Noël and others, 2019) and underlying controls remain poorly understood. 

Finally, studies utilizing medium to high-resolution imagery have mainly focused on 

lake changes in the recent decade (Liang and others, 2012; Miles and others, 2017; 

Williamson and others, 2018); long-term (multi-decadal) variations in lake evolution 

are less well constrained.  

Although most studies typically monitor changes in lake area (e.g., Gledhill and 

Williamson, 2018; Turton and others, 2021; Hu and others, 2022), their depth and 

volume are of crucial significance in quantifying changes in stored surface meltwater, 

the amount of water entering the ice sheet through crevasses and moulins, and the 

water lost through subglacial systems (Smith and others, 2015). Depth inversion from 

optical imagery includes empirical-based (Liang and others, 2012) and 

physically-based methods (Pope and others, 2016; Williamson and others, 2017; 

Arthur and others, 2022). ICESat-2 laser altimetry can also detect the bathymetry of 

lakes up to 11.55 m deep using the ATL03 photon data to differentiate the double 

reflection of the water surface and bottom (Datta and Wouters, 2021). These methods 

exhibit strengths and limitations in estimating lake depths. Empirical methods 

typically require substantial in-situ data as reference values for deriving 

depth-reflectance curves. Physically-based methods can offer continuous spatial 

coverage with high temporal resolution, but their applicability is limited to lakes < 5 

m deep (Pope and others, 2016). Although ICESat-2 has the capability to accurately 

measure lake depths, it is confined to its tracks, which are spatially distant and exhibit 
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a coarse temporal sampling interval of 91 days at cloud-free conditions. This makes it 

challenging to assess lake depths on weekly or monthly timescales.  

To capture the interannual variability of SGLs, we first mapped the maximum 

summer SGL extent across the entire GrIS using all Landsat images acquired between 

July and August from 1985 to 2023 with cloud cover less than 50%. Interannual 

variations in the location, area and elevation of SGLs were quantified. 

Spatiotemporally-matched ICESat-2 and Landsat 8 band reflectance data were used to 

construct a deep learning model for lake depth inversion to calculate lake 

depth/volume for the period 2014-2023, which aligns with the operational period of 

Landsat 8. The relationship between lake area and volume were used to construct a 

linear relationship to estimate lake volume from 1985 to 2013. Finally, relationships 

between climatic factors and lake development were investigated. 

2. Methods 

2.1 Identification of supraglacial lakes 

Given the 16-day temporal resolution of Landsat images and frequent cloud 

cover, it becomes extremely challenging to observe SGLs on monthly or weekly 

timescales at a large scale. Consequently, we focused on lake area around the peak of 

the melt season (July-August) to analyze interannual variability (following Arthur and 

others, 2022). To fully leverage the Landsat Collection 2 Tier 1 Top-Of-Atmosphere 

Reflectance data in the Google Earth Engine (GEE) platform, we used all available 
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Landsat images during July and August each year to provide continuous and 

comprehensive SGL observations. We filtered to only include images with cloud 

cover less than 50% and sun elevation angles larger than 20° (Moussavi and others, 

2020). We used a relatively high cloud cover filter as images still provided partial 

cloud-free observations.  

To fill data gaps caused by the Landsat 7 ETM+ Scan Line Corrector (SLC)-off 

data, we employed interpolation techniques using the focal statistics function in the 

GEE platform (Tedstone and Machguth, 2022), which utilizes a circular buffer with a 

radius of approximately 8 pixels to calculate the mean value of non-void pixels and 

took this mean value as the reflectance of the void pixel. All Landsat images have a 

spatial resolution of 30 m.  

For all Landsat images, we first used the ice sheet boundary from Tedstone and 

Machguth (2022) to mask rock, land and sea regions. Additionally, the boundary data 

provided by them (100k_boxes.shp) represent the upper limit of meltwater areas. This 

shapefile was used to define the boundary for our lake extraction operations, helping 

to focus the analysis on regions with SGL influence. In this paper, we refer to the 

unmasked areas as the study area. Clouds were masked out using a shortwave infrared 

band (SWIR) threshold of <0.1. The Normalized Difference Snow Index (NDSI) 

of >0.8 (Equation 1) was used to mask snow (Moussavi and others, 2020).  

                               (1) 

where Green and SWIR bands correspond to the reflectance in the green and 
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SWIR bands, respectively. 

Overall, 1935 Landsat 5 images, 3550 Landsat 7 images and 8179 Landsat 8 

images across the study area were used in this study, with an average of 350 images 

per year (Fig. 1a). The sensing times of these images varied between years, but most 

images were obtained in July (Fig. 1b). A composite image of the study area was 

obtained each year, with each pixel taken from the image with the highest Normalized 

Difference Water Index (NDWIice, Equation 2) in the image collection (using the 

qualityMosaic function in GEE). The NDWIice was then used to extract SGLs:  

                      (2) 

where Blue and Red correspond to the reflectance in the blue and red bands, 

respectively. In order to capture as many shallow SGLs as possible, a threshold of 0.2 

was applied to segment water (Datta and Wouters, 2021). 

Following Pope and others (2016) and Williamson and others (2018), regions 

with areas less than 5 pixels (4500 m2) and widths less than 2 pixels were removed to 

avoid potential misclassifications caused by mixed slush and supraglacial rivers. 

However, slush zones often comprise large connected areas that would not be 

removed by these thresholds. Hill and cloud shadows also caused misclassification. 

Therefore, as a final check, the results were manually inspected to remove or correct 

misclassifications. Misclassified objects caused by shadows tended to be identified in 

the NO basin, whereas misclassifications due to slush were found in the SW basin 

(Fig. S1). To quantify the accuracy of using NDWIice to identify SGLs, we compared 
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the automatic classification and manually-corrected results, resulting in a kappa 

coefficient of 0.84, a mean Intersection over Union of 0.82 and F1-score of 0.88. 

These results suggest the automatic NDWIice classification has an accuracy of 

approximately 84% highlighting the importance of manual checking to improve 

identification accuracy. 

2.2 Lake visibility percentage calculation 

As the coverage of the composite image varied from year to year, particularly 

prior to the Landsat 8 mission, we calculated the coverage of the Landsat 5 and 7 data 

compared to the year of 2014 (complete coverage) to provide an indication of data 

gaps. For these gaps, mapped lakes represent minimum estimates of the true lake area. 

To account for uncertainty in lake area due to visibility issues, we followed the 

method of Tuckett and others (2021), which uses the “lake visibility percentage” (LVP) 

to evaluate the impact of variable data coverage on lake area. 

The calculation of the Lake Visibility Proportion (LVP) involves the 

determination of Image Visibility Scores (IVSs) and Lake Pixel Contribution Scores 

(LPCSs). IVSs represent the percentage of visible ice cover (i.e. cloud free) within 

each individual image. Subsequently, the frequency of lake pixels contributed by each 

image within the mosaicked imagery was calculated using the 

ee.Reducer.frequencyHistogram function in GEE. The LPCS for each image was 

obtained by multiplying its lake pixel frequency by the corresponding IVS. The LVP 

for a given year is then calculated by summing the LPCSs of all images. For Landsat 
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7 images, we did not perform gap-filling before calculating the LVP to avoid 

introducing additional uncertainty. A comprehensive description of the methodology 

can be found in Tuckett and others (2021). By performing this assessment of lake 

coverage, we could scale mapped lake area results up to 100%, thereby attaching an 

upper uncertainty bound to the minimum mapped lake areas. Years with no image 

coverage in certain basins were excluded from further analysis. We used the scaled 

maximum summer SGL extents to analyze the lake variability and climatic factors 

controlling lake development in this paper.  

2.3 Lake depth data from ATL03 data 

ICESat-2 ATL03 data can estimate lake bathymetry of SGLs based on the 

distinct photon returns received from the lake surface (air-water) and bottom 

(water-ice) interfaces (Fair and others, 2020; Datta and Wouters, 2021; Xiao and 

others, 2023). The Watta automated depth detection algorithm (Datta and Wouters, 

2021) was employed to estimate lake depth as it exhibits good agreement with the 

original photon data, meeting the requirements for large-scale lake depth extraction 

(Fricker and others, 2021).  

To acquire an extensive set of lake depth training samples, ICESat-2 ATL03 data 

that were temporally (± 3 days) and spatially concurrent with Landsat 8 imagery from 

July to August during 2019-2021 were selected. Given the impact of cloud cover on 

laser altimetry data and the absence of clear double reflection characteristics in all 

SGLs, we applied the sliderule technique (Shean and others, 2023) to pre-generate 
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photon profiles for lake locations, which offers an open-source framework for 

processing the archive of low-level data products from the ICESat-2 mission in the 

cloud. ICESat-2 data with double reflection characteristics, indicating the ability to 

detect lake depth, were manually selected (Fig. 2). As the Watta algorithm operates at 

the photon scale, we averaged depths within the same Landsat 8 pixel to 

spatially-match the resolution, and both the average depth and Landsat 8 band 

reflectance were utilized as samples for the deep learning model. 

2.4 Depth inversion using deep learning 

To build a depth inversion model, we initially evaluated the correlation between 

Landsat 8 reflectance in different bands and the depth of SGLs derived from ICESat-2 

(Table 1). The findings revealed a strong correlation between lake depth and 

reflectance in the visible, near-infrared, and panchromatic bands, while the correlation 

is comparatively lower in the shortwave infrared band. Consequently, the depth 

inversion model was constructed using reflectance from coastal, blue, green, red, NIR, 

and panchromatic bands, excluding the shortwave infrared band to enhance model 

precision during training.  

A Multi-layer Perceptron (MLP) was employed for data training (Fig. S2), which 

is an artificial neural network designed for supervised learning (Gaudart and others, 

2004). It consisted of multiple layers of nodes or neurons, organized in an input layer, 

one or more hidden layers, and an output layer. Each connection between nodes was 

associated with a weight, and the network learned to adjust these weights during 
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training to optimize its performance on data classification and regression. The depth 

dataset was partitioned, with 70% allocated to the training set, 20% to the validation 

set, and 10% to the test set. The Adam optimization algorithm was selected as the 

optimizer (Zhang, 2018). Through iterative experimentation involving different 

configurations of hidden layers and neurons per layer, we identified the configuration 

that yielded the smallest RMSE in the validation set. Specifically, a model comprising 

3 hidden layers with respective neuron counts of 12, 25, and 12 is chosen. The 

rectified linear unit (relu) was adopted as the activation function for feedforward. 

Parameters such as batch size (16), iteration count (100), and learning rate (0.001) 

were set to establish the depth inversion model. We treated RMSE between lake 

depths derived from deep learning and ICESat-2 in the validation dataset as the 

inversion uncertainty. 

Three other typical approaches for determining lake depth were used for 

comparison with the deep learning approach. The physically-based method was 

approximated as follows (Pope and others, 2016): 

                     (3) 

where  represents the lake bottom albedo, estimated through the average 

reflectance in a circular buffer of three pixels around the lake.  is the reflectance 

of deep water (>40 m), which is calculated as the average value of the dark ocean 

areas in four Landsat 8 images from 2019-2020,  is the reflectance of the lake 

water, and g is the bidirectional attenuation coefficient, g=0.7507 in the red band, and 
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g=0.3817 in the panchromatic band. The lake depth is equal to the mean value of the 

red band and panchromatic band. 

The logarithm ratio of blue and green band reflectance (Moussavi and others, 

2016) was calculated using:  

                    (4) 

where  and  represents the reflectance of blue and green band, a, b, and c 

are the coefficients of its quadratic polynomial fit of . 

Finally, depth was calculated using multi-variable linear regression based on 

reflectance bands 1 to 5 and band 8 for comparison with the results of deep learning. 

2.5 Climatic factors controlling SGL development 

Fifth generation of European Centre for Medium-Range Weather Forecasts 

(ECMWF) atmospheric reanalysis (ERA5) offers high-resolution, continuous data 

from 1950 to present, with higher accuracy in simulating downward solar and infrared 

radiation fluxes compared to ERA-Interim and Modèle Atmosphérique Régional 

(MAR) (Delhasse and others, 2020). Therefore, climatic factors from ERA5 

reanalysis data, comprising 2-m air temperature, skin temperature, snowfall, surface 

net thermal radiation, surface net solar radiation, and wind speed, were utilized to 

analyze potential controls governing lake development. These factors have been 

detected as key controls governing SGL reoccurrence at the GrIS and the Antarctic Ice 

Sheet (Rowley and others, 2020; Turton and others, 2021; Arthur and others, 2022). 

The July-August mean of each basin was calculated using the cumulative lake areas 
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over the entire study period , and Pearson’s correlation analysis was performed 

between lake areas and mean climatic factors to investigate relationships.  

3. Results 

3.1 Impact of variable data coverage on SGL area 

LVPs ranged from 33.13% to 86.27%, with an average of 72.08% and a median 

of 73.73% across the entire GrIS from 1985 to 2013 (Fig. 3b). However, notable 

differences were observed between LVPs from Landsat 5 (66.56%) and Landsat 7 

(77.23%) images, with the latter exhibiting higher mean values. The discrepancies in 

Landsat 7 data can be mainly attributed to gaps caused by the SLC failure despite gap 

filling. The ice sheet basins with the lowest LVPs were primarily located in the 

southwest, particularly in the SO and SW basins from 1985 to 1991 (Fig. 3b). 

Additionally, the NO basin exhibited low LVPs in the years 1986, 1996, 1997, 2000, 

and 2001, while the CE basin experienced significant data loss only in 1996. By using 

LVPs to estimate maximum lake areas, we were able to address lake area 

underestimations due to data gaps in early images. On average, incorporating LVPs 

into lake area estimates resulted in a 50.29% increase in lake area for Landsat  5 and a 

29.76% increase for Landsat 7 images. 

3.2 Distribution of Greenland SGLs 

Using 14064 Landsat images, we mapped for the first-time ice-sheet-wide 

distribution of maximum summer SGL extents during the melt season and evolution 
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peak from 1985 to 2023. Over this time period, an average of 8791±2388 SGLs were 

mapped annually across the GrIS. Generally, SGLs were found to be widespread 

within 150 km of the ice sheet margin, with large lake area observed in NW, NE, and 

SW basins.  

Approximately 90% of the total number of SGLs had relatively small areas, 

ranging from 0.045 to 0.5 km2 (Fig. S3a), consistent with the findings of Hu and 

others (2022). Despite their abundance, these smaller SGLs represent ~30% of the 

total lake area. In contrast, lakes of larger area (0.5-20 km2) account for only ~10% of 

the total number but are a substantial proportion (~65%) of the total lake area. 

Maximum lake area exhibited a significant increase of 0.4 km2 a-1 (p<0.01) from 1985 

to 2023 (Fig. S3b). The distribution of SGLs on the GrIS is predominantly 

concentrated within the elevation bin of 1000-1600 m (Fig. 4a). Larger lakes were 

mainly observed in the SW and NE basins of Greenland within the elevation range of 

900–1100 m (Fig. 4b&S4), while smaller lakes are prevalent across the ablation zone, 

consistent with Ignéczi and others (2018). 

3.3 Variability and trends in SGL area development 

SGLs on the GrIS exhibit significant interannual variation between 1985 and 

2023, but with an overall positive trend in lake area of 50.5 km2 a-1 (R2=0.81, p<0.01) 

(Fig. 5e). The northern basins exhibited increases in lake area of 7.4 km2 a-1 to 7.6 

km2 a-1, which is a relatively higher rate of increase compared to the central and 

southern basins. The SW basin exhibited the highest increase in lake area (15.8 km2 
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a-1, R2=0.41), whereas the SE and SO basins had relatively lower rates of 0.02 km2 a-1 

and 0.9 km2 a-1, respectively (Fig. 5a&c). Regions with higher rates of change also 

exhibited larger interannual variations. For example, the NE basin had a total lake 

area exceeding 645.44 km2 in 2019, compared to only 228.85 km2 in 2013. The rate at 

which lake area increased was not uniform across the different elevation bins, with the 

greatest increase between 1000-1800 m, particularly after 2004 (Figure 4a). Lake 

elevation increased at a rate of 10.2 m a-1 over the 39-year period (Fig. 5f), with the 

magnitude of different basins ranging from 4.1 to 14.3 m a-1 (Fig. 5b&d). Overall, 

after calculating the LVP, the trend decreased from 60.8 to 50.4 km2 a-1 for the entire 

GrIS (Figure S5). Most basins show a decreased slope after the LVP calculation, with 

the SW basin, exhibiting the most significant decrease of 7.2 km2 a-1. This indicates 

that not accounting for data gaps can lead to an overestimation of lake growth rates. 

SGL reoccurrence refers to the number of times lakes occur at each pixel. At the 

ice-sheet scale, SGLs reoccur more often at low ice-surface elevations (600-1800 m) 

near the ice sheet margin where surface meltwater is prevalent each melt season 

enabling basins to be re-filled (Fig. S6). In the north, both the average reoccurrence 

and maximum reoccurrence rate of SGLs is higher compared to the south suggesting a 

more stable surface hydrological system. Conversely, the SE basin exhibits lower 

reoccurrence rates, indicating a higher likelihood of new lakes forming in these areas, 

and greater sensitivity to variations in melt (Fig. 6). The average reoccurrence is 

approximately 5 years, with ~70% of pixels having relatively low reoccurrence values 
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of less than 5 years. Regions with high reoccurrence rates (>10 years) were 

concentrated at a surface elevation of 600–1500 m, with a mean surface elevation of 

approximately 1068 m. This elevation spectrum aligns with zones characterized by 

the presence of deep and large lakes (see also Zhu and others, 2022). Differences in 

reoccurrence rate is likely related to variations in lake filling due to the amount of 

melt, variations in the extent of melting, and the timing of lake draining.  

3.4 Temporal Evolution of lake depth and volume  

Deep learning demonstrates excellent performance in lake depth inversion (Fig. 

7), with a correlation (r value) of 0.92, a mean absolute deviation is 0.85 m and an 

RMSE of 1.26 m (depth inversion uncertainty) for the validation sets. The RMSE of 

depth inversion for lakes with very shallow depths (0-1 m) is 1.17 m, which is 

relatively high, as also noted by Xiao and others (2023). The errors may be partly 

attributed to the limited number of samples available for shallow water, as indicated 

by the data sparsity at these shallow depths (0-1 m), observed in Lv and others (2024). 

The accuracy of depth inversion remains consistent for lakes with depths from 1 to 10 

m, yielding an RMSE of 1.02 m and a mean absolute deviation of 0.70 m. However, 

for deeper lakes, the accuracy experiences a notable decline, resulting in an RMSE of 

2.26 m and a mean absolute deviation of 1.79 m. However, by performing the method 

over large scales, this uncertainty is minimized.  

The average depths of lakes remained consistent from 2014 to 2023, ranging 

from a minimum of 2.06 m in 2019 to a maximum of 2.58 m in 2016. Overall, 65% of 
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lakes have an average depth below 2 m, 24% fall within the 2-4 m depth range, and 

only 2% exceed depths of 7 m. This distribution is consistent with findings from 

Fitzpatrick and others (2014), although it likely underestimates the deepest lakes due 

to saturation of the signal of Landsat 8 or ICESat-2 in our deep learning method. 

Despite minor interannual variations among different basins, distinct spatial 

characteristics emerge, with northern basins generally exhibiting higher lake depths 

than southern basins (Fig. 8).  

The NO and NE basin stand out with the highest average depths, reaching 

2.4-2.7 m, while SO basins typically have lower average depths ranging from 1.5-2 m 

(Fig. 8). This is likely due to a high basal slip ratio in the NO and NE basins 

facilitating the transfer of longer basal wavelengths to the surface at higher elevations, 

favouring the formation of larger and deeper SGLs (Ignéczi and others, 2016). 

Lakes >50 m deep have been observed in NE Greenland (Neckel and others, 2020), 

which both supports our findings, whilst also highlighting how the depth inversions 

based on Landsat images or ICESat-2 have an upper limit on depth estimation, 

probably leading to an underestimation of the true depth/ volume of lakes here. 

We multiplied the lake depth of each pixel by the area of that pixel and summed 

them to get lake volume. Lake volume on the GrIS demonstrates notable interannual 

variations from 2014 to 2023. On average, the lake volume is 8.7 km3, reaching a 

maximum of 10.6 km3 in 2015, and a minimum of 5.8 km3 in 2018 (Fig. 9). The SW, 

NW, and NE basins generally exhibit larger lake volumes, while the SO basin displays 
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a smaller volume, consistent with findings from Ignéczi and others (2016). In 2018, 

all basins experienced a negative volume anomaly, with a substantial volume decrease 

in the SW, NW, and NE basins, ranging up to -60%. All basins except the SW basin 

exhibited positive anomalies in 2019. There is a robust positive correlation between 

lake volume and area (Fig. 10), characterized by the equation (RMSE = 1.299*106 m3, 

R2=0.83, p=0.000): 

SGL Volume (106 m3) = 4.396* SGL area (km2)      (5) 

This relationship aligns with the findings of Gledhill and Williamson (2018), 

who reported that SGL volume (106 m3) is 4.71 times the SGL area (km2). We 

therefore scaled up lake area to estimate volume over our entire time-period, revealing 

an average estimated lake volume of 4.8 km3 during 1985-1989 increasing to 11.7 

km3 over 2019-2023. Overall, lake volume increased at a rate of 221.9±63.6*106 m3 

a-1 from 1985 to 2023. 

4. Discussion 

4.1 Comparison with other SGL area studies 

The distribution of SGLs is consistent with previous studies (e.g. Selmes and 

others, 2011; Hu and others, 2022; Zhang and others, 2023), with largest total lake 

area in NW, NE, and SW basins. These regions exhibit significant negative surface 

mass balance (Khan and others, 2022), indicating a strong link between lake presence 

and ice sheet melting processes. There was a general paucity of lakes in the SE basin 
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of Greenland, which is characterised by steep ice-surface slopes and thick firn making 

it difficult for meltwater to accumulate and form SGLs (MacFerrin and others, 2019).  

Existing research on lake area change at the ice sheet scale has generally focused 

on a limited 5-year period (Lu and others, 2021; Hu and others, 2022; Zhang and 

others, 2023), making it difficult to directly compare with our study. Nevertheless, our 

results suggest that during this 5-year period (2016-2020) lake area was relatively 

consistent in 2016, 2017 and 2020, smaller in 2018 (~1965 km2) but expanded 

significantly to ~2997 km2 in 2019. This finding aligns with previous studies, and 

directly reflects the impact of surface melt intensity on lake area. The distribution of 

lake elevations (1000-1600 m) is consistent with the findings of Ignéczi and others 

(2018) who demonstrated that lakes tend to form in regions of moderate ice-surface 

relief where depressions that can hold lakes are most abundant. The elevation of lakes 

also varies with latitude, with SGLs on the northern GrIS approximately 300-400 m 

lower than in the SW. 

Regional mapping of lake evolution over longer periods are of the same 

magnitude as previous studies. For example, Gledhill and Williamson (2018) found 

that in the northwestern GrIS (74.1-74.7° N), and lakes advanced to higher elevations 

at a rate of ~13.5 m a-1 and area increased at a rate of 1.4 km2 a-1 from 1985-2016, 

with a noticeable acceleration after the year 2000. Using the same study area as 

Gledhill and Williamson (2018), our approach approximately reproduces the pattern 

and magnitude of change, with an increase in lake elevation of 8.5 m a-1, and an 
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increase in lake area of 1.2 km2 a-1. In the southwestern GrIS, Zhu and others (2022) 

found that lake elevation increased at a rate of approximately 12.5 m a-1 from 2000 to 

2020. Our data for the same period revealed a comparable elevation increase of 11.8 

m a-1. The similarity of our results with more regional-scale analyses gives us 

confidence in our results.  

4.2 Comparison with other depth inversion methods  

We first analyzed the relationship between band reflectance and lake depth. Blue, 

green, and red band reflectance all decrease with increasing lake depth (Fig. 11). This 

absorption of light is apparent for lake depths >7.5 m for the blue and green channels, 

but most pronounced for the red band. The reflectance is similar when the lake depth 

exceeds 5 m due to the signal saturation, which is consistent with Pope and others 

(2016) and Moussavi and others (2016). Shallow lakes have quite large differences of 

0.4 in reflectance values, while medium-depth lakes typically exhibit similar 

reflectance values. 

To evaluate the performance of deep learning method, comparisons were 

conducted with three alternative methods. The multi-variable linear regression model 

displayed a notable underestimation of approximately 25% compared to ICESat-2 

measurements (Fig. 7b). The difference between the multiple linear regression and 

deep learning methods demonstrates that the accuracy of the deep learning method 

surpasses that of multiple linear regression in lakes with depths exceeding 5 m, while 

multiple linear regression performs well for lakes with depth less than 5 m. Our 
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approach demonstrated a marked improvement in accuracy compared to the 

logarithmic ratio of blue and green band reflectance (Moussavi and others, 2016), 

with an RMSE of 1.26 m for the deep learning method compared to 1.93m for the 

logarithmic method (Fig. 7c). In comparison to physically-based methods, deep 

learning exhibited a considerable improvement. Physically-based methods were 

limited to lake depths not exceeding 5 m (Fig. 7d), indicating a significant deviation 

from lake depths detected by ICESat-2. In summary, deep learning proves to be well 

suited for long time-series studies focusing on the inversion of lake depth and volume.  

4.3 Factors affecting SGL variability 

We analyzed the influence of climatic factors on the inter-annual variability of 

lake area (Fig. 12 & Fig. S7). Lake areas of northern basins have a significant positive 

correlation with 2-m air temperature (0.62 to 0.66), and a slight positive correlation in 

the SE and SO basins (0.04 to 0.15), consistent with regions with enhanced negative 

mass balance (Medley and others, 2022), as reported by other studies (e.g., Sundal 

and others, 2009; Turton and others, 2021). Snowfall generally shows a negative 

correlation across all basins (-0.08 to -0.59), implying that decreased snowfall is 

associated with increased lake areas. Surface pressure shows a range of correlations 

with lake area, with statistically significant positive correlations in the central and 

northern basins. Positive correlations in the SO and SW basins are also significant but 

at a lower level, while the correlation in the SE is not significant. Wind speed is only 

significantly positively correlated in the NW basin. Surface net solar radiation and 

https://doi.org/10.1017/jog.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.87


surface net thermal radiation show no significant correlation, while land surface 

temperature shows positive correlations (0.06 to 0.65). The negative correlation with 

snowfall in the SE and SO basins is likely linked to the thick permeable firn and 

relatively steep surface slopes in these regions that favour meltwater infiltration and 

aquifer formation (Miller and others, 2022). Reduced snowfall and increased melt in 

this setting would act to increase firn saturation, with refreezing of melt also creating 

impermeable ice lenses, enabling meltwater to more easily form lakes.  

The SW basin, with the largest lake area, showed no obvious link with climatic 

factors. This lack of correlation might reflect the limited number of depressions above 

the Equilibrium Line Altitude compared to other basins (Ignéczi and others, 2016). As 

most depressions in the SW basin are likely already filled, this leaves limited capacity 

for further lake expansion with increased warming. In contrast, regions with more 

available depressions, such as the central and northern basins, show a strong 

correlation with temperature. Ice slabs up to several meters thick can be also found in 

the SW basin, which reduce vertical percolation pathways, and encourage further ice 

aggregation at their horizon (MacFerrin and others, 2019; Jullien and others, 2023). 

Recent increases in the area drained by surface rivers align closely with the extent of 

the ice slabs on the ice sheet (Jullien and others, 2023), and therefore likely play a 

significant role in controlling lake area in this basin. 

5. Conclusions 

Here, for the first time, maximum summer SGL extents are mapped across the 
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entire Greenland Ice Sheet during July and August and from 1985 to 2023 using the 

Landsat catalogue. The NE and SW basins have the largest lake areas and greatest 

interannual variability. All eight basins experienced lake area gains from 1985 to 2023, 

with the southwestern GrIS experiencing the most significant increasing trend of 15.8 

km2 a-1. Lakes exhibited an average rate of inland advance of 10.2 m a-1, with largest 

rate of 14.3 m a-1 found in the SO basin. These lake expansion rates are consistent 

with previous regional-scale studies, helping to provide confidence in the reliability of 

our results. Lakes tend to re-occur near the ice sheet margin where higher rates of 

surface melting at lower surface elevations enable basins to be repeatedly filled. 

ICESat-2 measurements and the expansive spatial coverage of Landsat 8 images were 

used to employ a deep learning method to invert lake depths from 2014 to 2023. 

Compared with other image-based methods, this approach exhibited substantial 

improvement, with only a 15% underestimation compared with ICESat-2 data. Lake 

volume exhibited a minimum volume in 2018 during a period of weak surface melt.  

The relationships between common climatic factors and lake area differ 

regionally, with the key contributing factors being increasing air and land surface 

temperature except in the southern basins. The presence of thick ice slabs in these 

southern regions reduces vertical percolation pathways, potentially limiting further 

expansion of lakes, whilst the number of available depressions is generally lower than 

the central and northern basins, further constraining the potential for lake formation. 

These findings imply that, as ice sheet melting intensifies, both the area and volume 
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of lakes will continue to expand, gradually extending their distribution towards the 

inland regions of Greenland but could become limited by the presence of thick ice 

slabs and available depressions. 

More robust relationships between climatic factors and supraglacial conditions 

remain to be developed to constrain the interplay between climatic factors and lakes. 

Depth inversion accuracy can be improved by optimizing the deep learning model and 

integrating multi-source data for improved spatiotemporal resolution. This will 

contribute to a more comprehensive and continuous record of lake area/volume 

changes, advancing our understanding of lake evolution.  

 

Data. The codes for mapping lake extents, and the lake boundary data from 1985 to 

2023 can be downloaded from the National Tibetan Plateau/Third Pole Environment 

Data Center, Institute of Tibetan Plateau Research, Chinese Academy of Sciences at 

https://data.tpdc.ac.cn/en/data/77528408-ee3e-4322-88ce-0d69f68c5a63. 

Acknowledgments. This work is supported financially by the Science and Technology 

Plan Project of Jiangsu Province (BZ2024032), Chizhou University High level Talent 

Research Start up Fund (CZ2024YJRC12) and the Improvement Project of Anhui 

Province (Nos. 2022xjzlts029). SXY’s contribution to this work was supported by 

National Natural Science Foundation of China (Nos. 42206174). JML’s contribution 

to this work was supported by UKRI Future Leaders Fellowship (MR/S017232/1 and 

MR/X02346X/1). 

https://doi.org/10.1017/jog.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.87


References 

Arthur JF, Stokes CR, Jamieson SS, Rachel CJ, Leeson AA and Verjans V (2022) 

Large interannual variability in supraglacial lakes around East Antarctica. Nature 

communications 13, 1711. doi:10.1038/s41467-022-29385-3 

Benedek CL and Willis IC (2021) Winter drainage of surface lakes on the Greenland 

Ice Sheet from Sentinel-1 SAR imagery. The Cryosphere 15, 1587-1606. 

doi:10.5194/tc-15-1587-2021 

Das SB and 7 others (2008) Fracture propagation to the base of the Greenland Ice 

Sheet during supraglacial lake drainage. Science 320, 778-781. 

doi:10.1126/science.1153360 

Datta RT and Wouters B (2021) Supraglacial lake bathymetry automatically derived 

from ICESat-2 constraining lake depth estimates from multi-source satellite imagery. 

The Cryosphere 15, 5115-5132. doi:10.5194/tc-15-5115-2021 

Delhasse A and 6 others (2020): Brief communication: Evaluation of the 

near-surface climate in ERA5 over the Greenland Ice Sheet, The Cryosphere 14, 

957–965. doi:10.5194/tc-14-957-2020 

Fair Z, Flanner M, Brunt KM, Fricker HA and Gardner A (2020) Using ICESat-2 

and Operation IceBridge altimetry for supraglacial lake depth retrievals. The 

Cryosphere 14, 4253-4263. doi:10.5194/tc-14-4253-2020 

Fitzpatrick AAW and 9 others (2014) A decade (2002-2012) of supraglacial lake 

volume estimates across Russell Glacier, West Greenland. The Cryosphere 8, 107-121. 

https://doi.org/10.1017/jog.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.87


doi:10.5194/tc-8-107-2014 

Fricker HA and 12 others (2021) ICESat-2 meltwater depth estimates: application to 

surface melt on Amery Ice Shelf, East Antarctica. Geophysical Research Letters 48, 

e2020GL090550. doi:10.1029/2020GL090550 

Gaudart J, Giusiano B and Huiart L (2004) Comparison of the performance of 

multi-layer perceptron and linear regression for epidemiological data. Computational 

Statistics & Data Analysis 44, 547-570. doi.:10.1016/S0167-9473(02)00257-8 

Gledhill LA and Williamson AG (2018) Inland advance of supraglacial lakes in 

north-west Greenland under recent climatic warming. Annals of Glaciology 59, 66-82. 

doi:10.1017/aog.2017.31 

Hu J and 9 others (2022) Distribution and Evolution of Supraglacial Lakes in 

Greenland during the 2016–2018 Melt Seasons. Remote Sensing 14, 55. 

doi:10.3390/rs14010055 

Hubbard B and 12 others (2016) Massive subsurface ice formed by refreezing of 

ice-shelf melt ponds. Nature communications 7, 11897. doi:10.1038/ncomms11897 

Ignéczi Á and 7 others (2016) Northeast sector of the Greenland Ice Sheet to 

undergo the greatest inland expansion of supraglacial lakes during the 21st century. 

Geophysical Research Letters 43, 9729-9738. doi:10.1002/2016GL070338 

Ignéczi Á, Sole AJ, Livingstone SJ, Ng FS and Yang K (2018) Greenland Ice Sheet 

surface topography and drainage structure controlled by the transfer of basal 

variability. Frontiers in Earth Science 6, 101. doi:10.3389/feart.2018.00101 

https://doi.org/10.1017/jog.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.87


Jullien N, Tedstone AJ, Machguth H, Karlsson NB and Helm V (2023) Greenland 

ice sheet ice slab expansion and thickening. Geophysical Research Letters 50, 

e2022GL100911. doi:10.1029/2022GL100911 

Khan SA and 13 others (2022) Greenland mass trends from airborne and satellite 

altimetry during 2011–2020. Journal of Geophysical Research: Earth Surface 127, 

e2021JF006505. doi:10.1029/2021JF006505 

Leeson A and 6 others (2015) Supraglacial lakes on the Greenland ice sheet advance 

inland under warming climate. Nature climate change 5, 51-55. 

doi:10.1038/NCLIMATE2463 

Liang YL and 7 others (2012) A decadal investigation of supraglacial lakes in West 

Greenland using a fully automatic detection and tracking algorithm. Remote Sensing 

of Environment 123, 127-138. doi:10.1016/j.rse.2012.03.020 

Lu Y and 6 others (2021) Response of supraglacial rivers and lakes to ice flow and 

surface melt on the northeast Greenland ice sheet during the 2017 melt season. 

Journal of Hydrology 602, 126750. doi:10.1016/j.jhydrol.2021.126750 

Lv J, Li S, Wang X, Qi C and Zhang M (2024) Long-term Satellite-derived 

Bathymetry of Arctic Supraglacial Lake from ICESat-2 and Sentinel-2. The 

International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences 13-17. doi:10.5194/isprs-archives-XLVIII-1-2024-469-2024 

MacFerrin M and 13 others (2019) Rapid expansion of Greenland’s 

low-permeability ice slabs. Nature 573, 403-407. doi:10.1038/s41586-019-1550-3 

https://doi.org/10.1017/jog.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.87


Medley B, Neumann TA, Zwally HJ, Smith BE and Stevens CM (2022) 

Simulations of firn processes over the Greenland and Antarctic ice sheets: 1980–2021. 

The Cryosphere, 16, 3971–4011. doi:10.5194/tc-16-3971-2022, 2022. 

Miles KE, Willis IC, Benedek CL, Williamson AG and Tedesco M (2017) Toward 

monitoring surface and subsurface lakes on the Greenland ice sheet using Sentinel-1 

SAR and Landsat-8 OLI imagery. Frontiers in Earth Science 5, 58. 

doi:10.3389/feart.2017.00058 

Miller JZ, Long DG, Shuman CA, Culberg R, Hardman MA and Brodzik MJ 

(2022) Mapping firn saturation over Greenland using NASA’s Soil moisture active 

passive satellite. IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing 15, 37591 14-3729. doi:10.1109/JSTARS.2022.3154968 

Moussavi M, Pope A, Halberstadt ARW, Trusel LD, Cioffi L and Abdalati W 

(2020) Antarctic supraglacial lake detection using Landsat 8 and Sentinel-2imagery: 

Towards continental generation of lake volumes. Remote Sensing 12, 134. 

doi:10.3390/rs12010134 

Moussavi MS and 6 others (2016) Derivation and validation of supraglacial lake 

volumes on the Greenland Ice Sheet from high-resolution satellite imagery. Remote 

Sensing of Environment 183, 294-303. doi:10.1016/j.rse.2016.05.024 

Neckel N, Zeising O, Steinhage D, Helm V and Humbert A (2020) Seasonal 

observations at 79 N glacier (Greenland) from remote sensing and in situ 

measurements. Frontiers in Earth Science 8, 142. doi:10.3389/feart.2020.00142 

https://doi.org/10.1017/jog.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.87


Noël B, van de Berg WJ, Lhermitte S and van den Broeke MR (2019) Rapid 

ablation zone expansion amplifies north Greenland mass loss. Science advances 5, 

eaaw0123. doi:10.1126/sciadv.aaw0123 

Pope A and 6 others (2016) Estimating supraglacial lake depth in West Greenland 

using Landsat 8 and comparison with other multispectral methods. The Cryosphere 10, 

15-27. doi:10.5194/tc-10-15-2016 

Rowley NA, Carleton AM and Fegyveresi J (2020) Relationships of West 

Greenland supraglacial melt lakes with local climate and regional atmospheric 

circulation. International Journal of Climatology 40, 1164-1177. 

doi:10.1002/joc.6262 

Selmes N, Murray T and James T (2011) Fast draining lakes on the Greenland Ice 

Sheet. Geophysical Research Letters 38. doi:10.1029/2011GL047872 

Shean D and 7 others (2023) SlideRule: Enabling rapid, scalable, open science for 

the NASA ICESat-2 mission and beyond. The Journal of Open Source Software 8, 

4982. doi:10.21105/joss.04982 

Smith LC and 15 others (2015) Efficient meltwater drainage through supraglacial 

streams and rivers on the southwest Greenland ice sheet. Proceedings of the National 

Academy of Sciences 112, 1001-1006. doi:10.1073/pnas.1413024112 

Stevens LA and 6 others (2022) Tidewater-glacier response to supraglacial lake 

drainage. Nature Communications 13(1), 6065. doi:10.1038/s41467-022-33763-2 

Sundal A, Shepherd A, Nienow P. Hanna E, Palmer S and Huybrechts P  (2009) 

https://doi.org/10.1017/jog.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.87


Evolution of supra-glacial lakes across the Greenland Ice Sheet. Remote Sensing of 

Environment 113, 2164–2171. doi:10.1016/j.rse.2009.05.018 

Tedstone AJ and Machguth H (2022) Increasing surface runoff from Greenland’s 

firn areas. Nature Climate Change 12, 672-676. doi:10.1038/s41558-022-01371-z 

Tuckett PA and 6 others (2021) Automated mapping of the seasonal evolution of 

surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica. The 

Cryosphere 15, 5785–5804. doi: 10.5194/tc-15-5785-2021 

Turton JV, Hochreuther P, Reimann N and Blau MT (2021) The distribution and 

evolution of supraglacial lakes on 79 N Glacier (north-eastern Greenland) and 

interannual climatic controls. The Cryosphere 15, 3877-3896. 

doi:10.5194/tc-15-3877-2021 

Williamson AG, Arnold NS, Banwell AF and Willis IC (2017) A Fully Automated 

Supraglacial lake area and volume Tracking (“FAST”) algorithm: Development and 

application using MODIS imagery of West Greenland. Remote Sensing of 

Environment 196, 113-133. doi:10.1016/j.rse.2017.04.032 

Williamson AG, Banwell AF, Willis IC and Arnold NS (2018) Dual-satellite 

(Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland. The 

Cryosphere 12, 3045-3065. doi:10.5194/tc-12-3045-2018 

Xiao W, Hui F, Cheng X and Liang Q (2023) An automated algorithm to retrieve the 

location and depth of supraglacial lakes from ICESat-2 ATL03 data. Remote Sensing 

of Environment 298, 113730. doi:10.1016/j.rse.2023.113730 

https://doi.org/10.1017/jog.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.87


Yang K and 7 others (2021) Seasonal evolution of supraglacial lakes and rivers on 

the southwest Greenland Ice Sheet. Journal of glaciology 67, 

592-602.doi:10.1017/jog.2021.10 

Zhang W and 7 others (2023) Pan-Greenland mapping of supraglacial rivers, lakes, 

and water-filled crevasses in a cool summer (2018) and a warm summer (2019). 

Remote Sensing of Environment 297, 113781. doi:10.1016/j.rse.2023.113781 

Zhang Z (2018) Improved adam optimizer for deep neural networks. In, 2018 

IEEE/ACM 26th international symposium on quality of service (IWQoS) (pp. 1-2): 

Ieee. doi:10.1109/IWQoS.2018.8624183 

Zhu D, Zhou C, Zhu Y and Peng B (2022) Evolution of supraglacial lakes on 

Sermeq Avannarleq glacier, Greenland using Google Earth Engine. Journal of 

Hydrology: Regional Studies 44, 101246. doi:10.1016/j.ejrh.2022.101246 

Zwally HJ, Giovinetto MB and Beckley MA (2012) In: Antarctic and Greenland 

drainage systems. NASA GSFC Cryospheric Sciences Laboratory, Greenbelt, 

Maryland USA 

https://doi.org/10.1017/jog.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.87


Figures 

 

Fig. 1. (a) The total number of used Landsat images taken in individual years from 1985 to 

2023 in the study area of Greenland Ice Sheet. (b) Number of available Landsat images on 

individual days in the months of July and August from 1985 to 2023. 
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Fig. 2. An example of the Watta algorithm for supraglacial lake depth detection. (a) ICESat-2 

ATL06 track overlaid on a Landsat 8 image acquired on 03 August 2020, showing a 

supraglacial lake. (b) Original ICESat-2 ATL03 photon data collected over the lake on 02 

August 2020. The top (blue line) and bottom (red line) of the double reflection correspond to 

the lake surface and bed derived from Watta.  
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Fig. 3. (a) Location of Greenland and the division of 8 basins delineated by Zwally and others 

(2012). Gray lines represent contour lines with a contour interval of 500 m, produced from the 

1 km ArcticDEM. (b) Lake visibility percentage (LVP) for Greenland basins from 1985 to 

2013. 
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Fig. 4. Distribution and variation of total lake area (a) and maximum lake area with a log 

scale (b) with elevation in the study area of the Greenland Ice Sheet from 1985 to 2023. 
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Fig. 5. Interannual variability in maximum summer supraglacial lake extents (a, c, e) and lake 

elevation of 95th percentile (b, d, f) of the Greenland Ice Sheet (GrIS) from 1985 to 2023. The 

first row represents the northern region, the second row represents the central and southern 

regions, and the third row represents the entire GrIS. The trend of mapped lake area results 

can be found in Fig. S5.  
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Fig. 6. Supraglacial lake reoccurrence on the Greenland Ice Sheet (GrIS) and selected basins, 

i.e., (a) NO, (b) NW, (c) CW, (d) SW, and (e) NE basin. Reoccurrence was calculated by 

summing the number of times lakes occur at each pixel. The Greenland panel shows the 

spatial density of the lake with reoccurrence>2 over 5 km grids, indicating the proportion of 

this grid covered by lakes from 1985 to 2023. The pie chart indicates reoccurrence class 

distribution in the 8 basins in GrIS, and the circle size is scaled according to the average lake 

area from 1985 to 2023.  
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Fig. 7. Comparison of supraglacial lake depths obtained by ICESat-2 and (a) deep learning, (b) 

multiple linear regression, (c) logarithm ratio of blue and green band reflectance, and (d) 

physically-based method. The red line represents its linear regression line, and grey dotted 

lines denote the range within three standard deviations of the mean, the text at the top left of 

each panel gives different statistical metrics for difference, and MAD indicates the mean 

absolute deviation. 
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Fig. 8. Violin plots showing the depth distribution of lakes in the eight Greenland basins from 

2014 to 2023. The shape of each violin plot represents the kernel density estimation of depth 

data for each year. The black diamond markers in the centre are the mean depths. 
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Fig. 9. Interannual variations in supraglacial lake volume on the Greenland Ice Sheet. (a) 

absolute lake volume and its uncertainty, (b) to (h) represents the anomalies (lake volume 

relative to the average from 2014 to 2023) in lake volume for each basin. The average values 

and uncertainty are indicated in the text, and positive and negative anomalies are 

distinguished by blue and red respectively. 
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Fig. 10. Density scatter plot between supraglacial lake area and volume from 2014 to 2023. 

The black dashed line shows an ordinary least-squares linear regression. The equation of the 

line and its statistical parameters are shown in panel. Relationships between lake area and 

volume for different basins can be found in Table S1. 
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Fig. 11. Density plots of depth-reflectance observations for blue (a), green (b) and red (c) 

bands.
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Fig. 12. Pearson's correlation coefficients between supraglacial lake area and 2-m air 

temperature, snowfall, surface pressure, wind speed, surface net thermal radiation, surface net 

solar radiation, and land surface temperature from the ERA5 reanalysis dataset. The X-axis 

indicates different basins, shown in Figure 2. The • and •• symbols indicate that the 

relationships are significant at the 95% and 99% significance levels, respectively, according to 

a two-tailed Student’s t tests. 
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Tables 

Table 1. Correlation between supraglacial lake depth from ICESat-2 and Landsat 8 

reflectance in each band (all significance levels less than 0.01).  

Band Coastal Blue Green Red NIR SWIR1 SWIR2 Pan Cirrus 

Correlation -0.61 -0.66 -0.68 -0.53 -0.39 -0.24 -0.23 -0.62 -0.16 
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