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Abstract

We study the problem of detecting the community structure from the generalized
stochastic block model with two communities (G2-SBM). Based on analysis of the
Stieljtes transform of the empirical spectral distribution, we prove a Baik–Ben Arous–
Péché (BBP)-type transition for the largest eigenvalue of the G2-SBM. For specific
models, such as a hidden community model and an unbalanced stochastic block model,
we provide precise formulas for the two largest eigenvalues, establishing the gap in the
BBP-type transition.
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1. Introduction

One of the most fundamental and natural problems in data science is understanding an
underlying structure from data sets that can be viewed as networks. The problem is known as
clustering or community detection, and it appears in diverse study fields involving real-world
networks.

The stochastic block model (SBM) is one of the most fundamental mathematical models for
understanding the community structure in networks. An SBM is a random graph with N nodes,
partitioned into K disjoint subsets, called the communities, C1,C2, . . . ,CK . An SBM can be
characterized via its adjacency matrix consisting of 0 and 1, which is a symmetric (random)
matrix M̃, whose (i, j)-entry M̃ij is an independent Bernoulli random variable with parameters
depending only on the communities to which the nodes i and j belong. For the clustering of an
SBM, it is often useful to analyze the eigenvalues of the adjacency matrix and their associated
eigenvectors, known as a spectral method.

One of the most prominent examples of spectral methods is principal component analysis
(PCA), in which the behavior of the eigenvectors associated with the extremal eigenvalues is
considered to obtain the community structure of the SBM. For an SBM with two communities,
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the expectation of its adjacency matrix M̃ has a block structure:

E[M̃] =
(

P11 P12

P21 P22

)
. (1.1)

In the simplest case of a balanced SBM with P11 = P22 = p, P12 = P21 = q (p �= q), with the
two communities of equal size, it can be easily checked that E[M̃] has at most two non-zero
eigenvalues, N(p + q)/2 and N(p − q)/2. Thus, if N(p − q)/2 is sufficiently large, the perturba-
tion M̃ −E[M̃] is negligible for the two largest eigenvalues M̃, and it is possible to determine
the community structure from the eigenvector associated with the second-largest eigenvalue
of M̃. After subtracting (p + q)/2 from each entry, the shifted adjacency matrix becomes the
sum of a rank-1 deterministic matrix and a random matrix with centered entries, and we can
use the eigenvector associated with the largest eigenvalue of the shifted adjacency matrix for
clustering. The subtraction can work effectively as (p + q)/2 can be estimated by the overall
density of the matrix for sufficiently large N.

The sum of a deterministic matrix and a random matrix has been extensively studied in
random matrix theory. When the deterministic matrix is rank-1, and the random matrix is
a Wigner matrix, it is called a (rank-1) spiked Wigner matrix. The behavior of the largest
eigenvalue of a spiked Wigner matrix is known to exhibit a sharp phase transition depending
on the ratio between the spectral norms of the deterministic part and the random part. This type
of phase transition is called the BBP transition after the seminal work of Baik, Ben Arous, and
Péché [6] for spiked (complex) Wishart matrices. From the BBP transition, we can immediately
see that detection of the signal is possible via PCA when the signal-to-noise ratio (SNR) is
above a certain threshold.

While the BBP transition has been proved for spiked Wigner matrices under various
assumptions [9, 10, 17, 24], it is not directly applicable to the SBM, since the entries in
a Wigner matrix are independent and identically distributed (up to a symmetry constraint)
whereas those in the adjacency matrix of an SBM are not. The proof of the BBP transition
with an SBM is substantially harder. For example, unless the SBM is balanced, the empirical
spectral distribution (ESD) of M̃ does not even converge to the semi-circle distribution, which
is the limiting ESD of a Wigner matrix; the limiting ESD, in this case, is not given by a simple
formula as the semi-circle distribution but by an implicit formula via its Stieltjes transform.

1.1. Main contribution

In this paper we consider a model that generalizes the SBM, called the generalized two-
community stochastic block model (G2-SBM), with two communities. In this model, the mean
of the matrix has the same block structure as that of the SBM in (1.1), but the entries are not
necessarily Bernoulli random variables. With the structure in (1.1), we consider a model with
three parameters p1, p2, and q. See Definition 2.1 for the precise definition of the G2-SBM.

For the G2-SBM, We prove the BBP-type transition for its largest eigenvalue
(Theorem 2.1). The proof is based on analysis of the Stiejtes transform of the ESD, which
involves the resolvent of the random part of the G2-SBM. Due to the community structure,
the random part is not a Wigner matrix but a generalization of a Wigner matrix, known as a
Wigner-type matrix. The local properties of eigenvalues of Wigner-type matrices are now well
established by recent developments in random matrix theory; see, e.g., [4, 5, 13].

In our main result, Theorem 2.1, we only state the existence of the critical values and the
limiting gap between the two largest eigenvalues but refrain from writing precise formulas for
them. We instead apply our results to specific examples naturally arising in applications, the
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hidden community model and unbalanced stochastic block model, and present the results from
numerical experiments. (In terms of the edge probability, the former corresponds to the case
P11 = p and P12 = P21 = P22 = q, while the latter P11 = P22 = p and P12 = P21 = q (p �= q),
but the sizes of the submatrices are different.)

1.2. Related works

The local law for Wigner-type matrices and the behavior of quadratic vector equations,
which are crucial in the analysis for Wigner-type matrices, were thoroughly investigated in
[4, 5]. A related result on the local law at the cusp for a Wigner-type matrix has also been
proved [15]. For more results on general Wigner-type matrices, we refer to [13, 16, 27] and
references therein.

The phase transition of the largest eigenvalue was first proved by Baik, Ben Arous, and
Péché [6] for spiked Wishart matrices and later extended to other models, including the spiked
Wigner matrix under various assumptions [9, 10, 17, 24]. If the SNR is below the threshold
given by the BBP transition, the largest eigenvalue has no information on the signal and we
cannot use the PCA to detect the signal. For this case, the PCA can be improved by an entry-
wise transformation that effectively increases the SNR [8, 25]. Reliable detection is impossible
below a certain threshold [25], and it is only possible to consider a weak detection, which is a
hypothesis testing between the null model (without spike) and the alternative (with spike). We
refer to [12, 14, 21] for more detail about weak detection.

The problem of recovering a hidden community from a symmetric matrix for two important
cases, Bernoulli and Gaussian entries, was discussed in [19]. A threshold for exact recovery
in the SBM was discussed in [1, 2, 11, 18]. The Kesten–Stigum threshold for the SBM was
considered in [1, 20, 22, 23]. Similarly, the information-theoretic threshold for community
detection in the SBM was considered in [1, 3, 7]; it can be achieved for a large number of
communities. For more results and applications relating to the SBM, we refer to [26] and
references therein.

1.3. Organization of the paper

The rest of the paper is organized as follows: In Section 2 we define the model and state the
main result. In Sections 2.1 and 2.2 we introduce the hidden community model and unbalanced
stochastic block model to provide results from numerical experiments around the transition
threshold. In Section 3 we prove the main theorem. A summary of our results and future
research directions is discussed in Section 5. Appendix A contains the definition of the Wigner-
type matrices and preliminary results on this model. The detailed analysis for the specific
models can be found in Section 4.

2. Main results

In this section, we precisely define the matrix model we consider in this paper and state our
main theorem. We introduce a shifted, rescaled matrix for a generalized stochastic block model
with two communities.

Definition 2.1. (Generalized two-community stochastic block model.) An N × N matrix M
is a generalized two-community stochastic block model if M = H + λuu�, where λ≥ 0 is a
constant, u = (u1, u2, . . . , uN) ∈R

N with ‖u‖ = 1, and H = [Hij] is an N × N real symmetric
random matrix satisfying the following:
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• There exist S ⊂ [N] := {1, 2, . . . ,N} and constants θ1, θ2 such that

ui =
{
θ1 if i ∈ S,

θ2 if i /∈ S.

We further assume that |S|/N, (1 − (|S|/N))> c> 0 for some (N-independent)
constant c.

• The upper diagonal entries Hij(i ≤ j) are centered independent random variables such
that:

• there exist (N-independent) constants α1 and α2 such that

E
[
H2

ij

]=
⎧⎪⎨⎪⎩
α1N−1 if i, j ∈ S,

α2N−1 if i, j /∈ S,

N−1 otherwise;

• for any (N-independent) D> 0, there exists a constant CD such that, for all i ≤ j,
E
[|Hij|D

]≤ CDN−D/2.

For an adjacency matrix M̃ as in (1.1), if P11 = p1, P22 = p2, and P12 = P21 = q, then after
shifting and rescaling, we find that

α1 = p1(1 − p1)

q(1 − q)
, α2 = p2(1 − p2)

q(1 − q)
. (2.1)

(See Section 4 for more detail.)
We remark that the Hij are not necessarily Bernoulli random variables. The assumption

of a finite moment means that the model is in the dense regime. The most typical balanced
stochastic block model with two communities corresponds to the choice of parameters |S| =
N/2 and α1 = α2 > 1.

Our main theorem is the following result on the phase transition for the spectral gap of the
G2-SBM.

Theorem 2.1. Let M be a generalized two-community stochastic block model as defined in
Definition 2.1. Denote by λ1 and λ2 the largest and the second-largest eigenvalues of M.
Assume that γ := N1/N is fixed. Then, there exists a constant λc, depending only on θ1, θ2, α1,
α2, and γ , such that:

• (subcritical case) if λ< λc, then λ1 − λ2 → 0 as N → ∞, almost surely;

• (supercritical case) if λ> λc, then λ1 − λ2 → g as N → ∞, almost surely, for some
(N-independent) positive constant g ≡ g(λ).

We do not include precise formulas for the critical value λc and the gap g in the statement
of Theorem 2.1 for the general cases since they are lengthy but not particularly informative.
In the rest of the section, we focus on two specific models and check how the main result,
Theorem 2.1, applies to them. Since two models defined in Sections 2.1 and 2.2 are symmetric
stochastic block models with two communities, the transition occurs above the Kesten–Stigum
threshold discussed in [1, 23].

Conjecture 2.1. (Kesten–Stigum threshold.) Let (X, G) be drawn from an N × N symmet-
ric SBM with k communities with probability p inside the communities and q across. Define
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SNR = N(p − q)2/k(p + (1 − k)q). Then, for any k ≥ 2, it is possible to solve weak recovery
effectively if and only if SNR> 1.

Thus, we obtain the regime p = q + w/
√

N, where w =�(1) and p = p1 in the following
two models.

2.1. Hidden community model

In the hidden community model, only one of the intra-community connection probabilities
is larger than the inter-community connection probability, and the other intra-connection prob-
ability coincides with the inter-community connection. The precise definition for such a model
is as follows.

Definition 2.2. (Hidden community model.) Let C ⊂ [n] such that |C| = K. Let O be an N × N
symmetric matrix with Oii = 0, where the Oij are independent for 1 ≤ i ≤ j ≤ N and

Oij ∼
{

P if i, j ∈ C,

Q otherwise

for given probability measures P and Q.

We consider the BBP-type transition of the hidden community model with Bernoulli entries,
i.e. P = Bernoulli(p) and Q = Bernoulli(q) with p �= q, which also corresponds to the case α2 =
1 or p2 = q in (2.1). It is not hard to find that the transition occurs in the regime p1 := p =
w/

√
N + q for some (possibly N-dependent) w =�(1). After shifting and rescaling, we find

that λ2 → 2 and

λ1 →

⎧⎪⎪⎨⎪⎪⎩
γw√

q(1 − q)
+

√
q(1 − q)

γw
if w>

√
q(1 − q)

γ
,

2 if w<

√
q(1 − q)

γ
.

See Section 4.1 for the detail.
We perform a numerical simulation for the hidden community model. We set N = 2500,

γ = 1/4, and q = 0.2 for the sparse model and q = 0.7 for the dense model. Following the
analysis in Section 4.1, we find that an outlier eigenvalue occurs if

p> q +
√

q(1 − q)

γ
√

N
.

Thus, we can show an outlier if p> 0.232 for the sparse model and p ≥ 0.737 for the dense
model. In Figure 1, we compare histograms of the eigenvalues of the shifted, rescaled adja-
cency matrices with p = 0.21 and p = 0.25 for the sparse model, and p = 0.71 and p = 0.75
for the dense model. For each case, we show a histogram of the two largest eigenvalues, λ1
and λ2, after 100 iterations. As predicted by the analysis, the outlier appears only for the cases
p = 0.25 and p = 0.75. We can check the gap between λ1 and λ2 in Figure 1.

2.2. Unbalanced stochastic block model

We next consider the case p1 = p2 or α1 = α2 with γ �= 1/2 to refer to an unbalanced
stochastic block model. As in the hidden community model, the transition occurs in the regime
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FIGURE 1. Histograms of the two largest eigenvalues of hidden community models generated after 100
iterations for sparse cases (top) and density cases (bottom). In each histogram, dark blue represents
the largest eigenvalues, and light green represents the second-largest eigenvalues. The gap between two

eigenvalues exists in (b) and (d).

p1 = p2 := p = w/
√

N + q. After shifting and rescaling, we find that λ2 → 2 and

λ1 →
⎧⎨⎩

w

2
√

q(1 − q)
+ 2

√
q(1 − q)

w
if w> 2

√
q(1 − q),

2 if w< 2
√

q(1 − q).

See Section 4.2 for the detail. Note that the transition does not depend on γ .
We perform a numerical simulation for the unbalanced stochastic block model. As in the

hidden community model, we set N = 2500, γ = 1/4, and q = 0.2 for the sparse model and
q = 0.7 for the dense model. An outlier eigenvalue occurs if

p> q + 2
√

q(1 − q)√
N

.

Thus, we can show an outlier if p> 0.216 for the sparse model and p ≥ 0.719 for the dense
model. In Figure 2, we compare histograms of the eigenvalues of the shifted, rescaled adja-
cency matrices with p = 0.21 and p = 0.23 for the sparse model, and p = 0.71 and p = 0.73 for
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FIGURE 2. Histograms of the two largest eigenvalues of unbalanced stochastic block models generated
after 100 iterations for sparse cases (top) and density cases (bottom). In each histogram, dark blue repre-
sents the largest eigenvalues, and light green represents the second-largest eigenvalues. The gap between

two eigenvalues exists in (b) and (d).

the dense model. Again, for each case, we show histograms of the two largest eigenvalues, λ1
and λ2, after 100 iterations. As predicted by the analysis, the outlier appears only for the cases
p = 0.23 and p = 0.73. We can check the gap between λ1 and λ2 in Figure 2.

3. Proof of Theorem 2.1

Proof of Theorem 2.1. Recall that we denote by λ1 and λ2 the two largest eigenvalues of
M. Let μ1 and μ2 be the two largest eigenvalues of H. From Corollary 1.11 and its proof
in [4] on Wigner-type matrices, we find that μ1 and μ2 converge to L+, the rightmost edge
of the limiting ESD of H. More precisely, there exists an N-independent constant δ > 0 such
that |μ1 − L+|, |μ2 − L+| ≤ N−δ with overwhelming probability. (See Definition A.2 for the
definition of the overwhelming probability.) By the Cauchy interlacing formula, we have the
inequality μ2 ≤ λ2 ≤μ1 ≤ λ1, which shows that λ2 also converges to the rightmost edge of the
limiting ESD of H.

To prove the limit of λ1 − λ2, we first notice that λ1 is an increasing function of λ due to
the following equation:

λ1 = max‖x‖=1
〈x,Mx〉 = max‖x‖=1

(〈x,Hx〉 + λ|〈x, u〉|2).
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Choose ε ∈ (0, 1), which is not necessarily independent of N. (At the end of the proof, we will
let ε→ 0.) Since λ1 ≥μ1 and λ−μ1 ≤ λ1 ≤ λ+μ1, we find that λ1 −μ1 ≤ ε whenever λ<
ε. On the other hand, λ1 >μ1 + 1 if λ> 2μ1 + 1> 2μ1 + ε. Thus, since λ1 is a continuous
function of λ and λ2 ≤μ1, we find that there exists a unique random variable λ̃c ≡ λ̃c(N,H, ε)
such that

• if λ< λ̃c, then λ1 − λ2 ≤ ε;
• if λ> λ̃c, then λ1 − λ2 ≥ ε.

We now consider λ1 by applying the Stieltjes transform method in random matrix theory,
for which we use the following definition.

Definition 3.1. (Stieltjes transform.) Let μ be a probability measure on the real line. The
Stieltjes transform of μ is defined by

Sμ(z) =
∫
R

1

x − z
dμ(x)

for z ∈C \ supp(μ).

For the noise H, we consider its resolvent G(z) defined by G(z) := (H − zI)−1 for z ∈C \
spec(H). Note that the normalized trace m := N−1Tr G is equal to the Stieltjes transform of
the ESD of H.

Suppose that z is an eigenvalue of M such that z> L+ + ε. (In particular, z is not an eigen-
value of H with overwhelming probability.) By definition, det

(
H + λuu� − zI

)= 0, which can
be further decomposed into

0 = det(H + λuu� − zI) = det(H − zI)
(
I + (H − zI)−1λuu�)

= det(H − zI) · det
(
I + (H − zI)−1λuu�). (3.1)

Thus, if z is not an eigenvalue of H, we find that det(H − zI) �= 0, and hence

det
(
I + (H − zI)−1λuu�)= 0.

Since uu� is a rank-1 matrix, (H − zI)−1uu� also has rank one. Therefore, it has only
one non-zero eigenvalue, which we call λ0. Then, λ0 is −1, for otherwise every eigenvalue
of I + (H − zI)−1λuu� is non-zero, contradicting (3.1). Furthermore, it is also obvious that
(H − zI)−1λu is an eigenvector associated with the eigenvalue −1. Thus,

(H − zI)−1λuu�(H − zI)−1u = −(H − zI)−1u,

which leads us to the equation

u�(H − zI)−1u = 〈u,G(z)u〉 = −1

λ
. (3.2)

For the noise matrix H, which is a Wigner-type matrix as considered in [4], we have

〈u,G(z)u〉 �
N∑

i=1

mi(z)u2
i (3.3)
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for any z outside the support of the limiting ESD of H, where m := (m1,m2, . . . ,mN) is the
solution to the quadratic vector equation (QVE)

− 1

mi(z)
= z +

N∑
j=1

E
[
H2

ij

]
mj(z) (3.4)

for i, j = 1, 2, . . . ,N. (See Appendix A for a precise statement of (3.3).) We remark that the
uniqueness of the solution m for (3.4) is also known [5].

To solve (3.2) using (3.4), we need to estimate m(z) from the assumption on the community
structure in Definition 2.1. From the symmetry, we have an ansatz:

m1(z) = m2(z) = · · · = mN1 (z), mN1+1(z) = · · · = mN(z).

Then, we can rewrite (3.4) as

− 1

mi(z)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
z +

N1∑
j=1

α1

N
mj(z) +

N∑
j=N1+1

1

N
mj(z) if 1 ≤ i ≤ N1,

z +
N1∑
j=1

1

N
mj(z) +

N∑
j=N1+1

α2

N
mj(z) if N1 + 1 ≤ i ≤ N,

which can be further simplified to

−1 = zm1(z) + α1γ (m1(z))2 + (1 − γ )m1(z)mN(z),

−1 = zmN(z) + γm1(z)mN(z) + α2(1 − γ )(mN(z))2.
(3.5)

We can thus conclude that, if there exists a real ẑ that solves (3.5) under the assumption

N1m1( ẑ )θ2
1 + (N − N1)mN( ẑ )θ2

2 = N
(
γm1( ẑ )θ2

1 + (1 − γ )mN( ẑ )θ2
2

)= −1

λ
(3.6)

obtained from (3.2) and (3.3), then |λ1 − ẑ| ≤ N−δ for some (N-independent) δ > 0 with over-
whelming probability. On the other hand, if (3.5) has no real solution under the assumption in
(3.6), then |λ1 − L+| ≤ N−δ for some (N-independent) δ > 0 with overwhelming probability.

We now consider the behavior of the random critical value λ̃c(ε) via the deterministic equa-
tions (3.5) and (3.6). While it is possible to find the deterministic critical value λc for the
existence of a real solution ẑ for (3.5) and (3.6), we take an indirect approach as follows. First,
we notice from the existence of the critical value λ̃c and the local law (3.3) that there also exists
a deterministic constant λc(ε) such that, for any λ> λc(ε), there exists real ẑ that solves (3.5)
and (3.6). Note that such a solution ẑ also satisfies a bound such as ẑ − L+ > ε− N−δ for some
δ from the definition of λ̃c. Considering the limit ε→ 0, we find that λc is determined as the
largest number such that when λ= λc, z = L+ solves (3.5) and (3.6).

So far, we have seen that λ1 and λ2 can be approximated by deterministic numbers ẑ and L+
with overwhelming probability, depending on whether λ is larger than another deterministic
number λc, again with overwhelming probability. In order to show that these deterministic
numbers are N-independent, we notice that the vector ‖u‖ = 1 and hence there exist θ̂1 and
θ̂2, independent of N, such that Nθ2

i = θ̂2
i for i = 1, 2. This, in particular, implies that (3.6) is

independent of N as well. Since (3.5) is also N-independent, we can conclude that ẑ, L+, and
λc are N-independent. This completes the proof of Theorem 2.1. �
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As a remark, we explain how to find λc. First, we change (3.5) to a single equation involving

z and m ≡ m(z) := ∑N
i=1 mi(z)u2

i only, i.e. f (z,m) = 0. We have that the upper edge L+ of the
ESD of H is the largest real number such that f (L+,m) = 0 has a double root when considered
as an equation for m, which is a consequence of the square-root decay of the limiting ESD at
the edge. (For more detail about the behavior of the limiting ESD of Wigner-type matrices, see
[4, Theorem 4.1].) The condition can be technically checked easily by solving f (L+, m̄) = 0
and (∂/∂m)f (L+, m̄) = 0 simultaneously.

4. Examples from stochastic block models

This section considers stochastic block models corresponding to the G2-SBMs with
Bernoulli distribution in our setting. Suppose that Ĥ = [Ĥij]N

i,j=1 is an SBM such that

Ĥ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ĥij ∼ Bernoulli(p1) if 1 ≤ i, j ≤ N1,

Ĥij ∼ Bernoulli(p2) if N1 + 1 ≤ i, j ≤ N,

Ĥij ∼ Bernoulli(q) otherwise.

In what follows, we will say that the (i, j)-entry is in the diagonal block if 1 ≤ i, j ≤ N1 or
N1 + 1 ≤ i, j ≤ N, and otherwise it is in the off-diagonal block. In the block matrix form, it can
also be expressed as follows:

Ĥ =
N1︷ ︸︸ ︷ N−N1︷ ︸︸ ︷(

Bernoulli(p1) Bernoulli(q)

Bernoulli(q) Bernoulli(p2)

) }
N1}
N−N1

Our goal is to shift and rescale Ĥ to convert it into a G2-SBM M = H + λuu� as in
Definition 2.1. We first notice that the variances of the entries of Ĥ are p1(1 − p1) and
p2(1 − p2) for the diagonal block and q(1 − q) for the off-diagonal block. Since we assume
that the variance of entry Hij in the off-diagonal block is N−1, we find that the matrix must be
divided by

√
Nq(1 − q). It is then immediate that

α1 = p1(1 − p1)

q(1 − q)
, α2 = p2(1 − p2)

q(1 − q)
,

as in (2.1).
The mean matrix

E[Ĥ] =
(

p1 q

q p2

)
is a rank-2 matrix, and thus we need to subtract from each entry a deterministic number that
depends on the parameters p1, p2, and q. We continue the calculation in Sections 4.1 and 4.2
with two specific cases to obtain the G2-SBM form.

4.1. Hidden community model

Suppose that p1 = p and p2 = q. It is then easy to find that E[Ĥ] becomes a rank-1 matrix
after subtracting q from each entry, i.e. if we let E0 be the N × N matrix all of whose entries
are q, then

E[Ĥ] − E0 =
(

p − q 0

0 0

)
.
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Thus, we find that

M = 1√
Nq(1 − q)

(Ĥ − E0),

E[M] = 1√
Nq(1 − q)

(
p − q 0

0 0

)
.

Recall that N1 = γN and p = w/
√

N + q. Since λuu� =E[M], we get

u =
(

1/
√
γN

0

) }
N1}
N−N1

i.e. θ1 = 1/
√
γN and θ2 = 0. We also find that

λ= N1(p − q)√
Nq(1 − q)

= γw√
q(1 − q)

.

Following the proof of Theorem 2.1 in Section 3, we solve the system of equations in (3.5),

−1 = zm1 + p(1 − p)

q(1 − q)
γ (m1)2 + (1 − γ )m1mN,

−1 = zmN + γm1mN + (1 − γ )(mN)2.
(4.1)

Since p − q = O
(
N−1/2

)
, we consider the ansatz mN = m1 + O

(
N−1/2

)
, which shows, for m =

γm1 + (1 − γ )mN , that 1 + zm + m2 = O
(
N−1/2

)
. Following the analysis in the last paragraph

of Section 3, we find that the upper edge L+ = 2 + O
(
N−1/2

)
. By Theorem 2.1, it also implies

that λ2 → 2 as N → ∞.
In order to determine the location of the largest eigenvalue λ1, we consider (4.1) under the

assumption in (3.6),

N
(
γm1θ

2
1 + (1 − γ )mNθ

2
2

)= m1 = −1

λ
= −

√
q(1 − q)

γw
. (4.2)

We remark that the ansatz mN = m1 + O
(
N−1/2

)
can be directly checked in this case by

plugging (4.2) into (4.1) and eliminating z,(
p(1 − p)

q(1 − q)
− 1

)
γ

(√
q(1 − q)

γw

)2

mN + mN +
√

q(1 − q)

γw
= 0,

whose solution is

mN = −
√

q(1 − q)/(γw)

1 +
(

p(1 − p)

q(1 − q)
− 1

)
γ

(√
q(1 − q)

γw

)2

= −
√

q(1 − q)

γw

(
1 −

√
N(1 − 2q) − w

Nγw + √
N(1 − 2q) − w

)
.
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To find the location of the largest eigenvalue, we need to check whether the assumption in (4.2)
is valid. However, we can instead find the value of z by first assuming that the solution exists.
Then,

z = γw√
q(1 − q)

+
√

q(1 − q)

γw
+ O

(
N−1/2).

At the critical λc for the phase transition in Theorem 2.1, the location of the largest eigen-
value coincides with the location of the upper edge L+ in the limit N → ∞, or, equivalently,
γw/

√
q(1 − q) = 1. Thus, we conclude that

λ1 →

⎧⎪⎪⎨⎪⎪⎩
γw√

q(1 − q)
+

√
q(1 − q)

γw
if w>

√
q(1 − q)

γ
,

2 if w<

√
q(1 − q)

γ
.

4.2. Unbalanced stochastic block model

Suppose that p1 = p2 = p. Following the strategy in Section 4.1, we let E1 be the N × N
matrix all of whose entries are (p + q)/2. Then,

E
[
Ĥ
]− E1 =

(
(p − q)/2 (q − p)/2

(q − p)/2 (p − q)/2

)
.

Thus, we find that

M = 1√
Nq(1 − q)

(Ĥ − E1),

E[M] = 1√
Nq(1 − q)

(
(p − q)/2 (q − p)/2

(q − p)/2 (p − q)/2

)
.

From λuu� =E[M], we get

u =
(

1/
√

N

−1/
√

N

) }
N1}
N−N1

i.e., θ1 = 1/
√

N and θ2 = −1/
√

N. Also,

λ= N(p − q)

2
√

Nq(1 − q)
= w

2
√

q(1 − q)
.

With α1 = α2 = p(1 − p)/q(1 − q), we solve the system of equations in (3.5),

−1 = zm1 + p(1 − p)

q(1 − q)
γ (m1)2 + (1 − γ )m1mN,

−1 = zmN + γm1mN + p(1 − p)

q(1 − q)
(1 − γ )(mN)2.

(4.3)
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Again, we consider the ansatz mN = m1 + O
(
N−1/2

)
, which leads us to the result that the upper

edge L+ = 2 + O
(
N−1/2

)
and λ2 → 2 as N → ∞. The assumption in (3.6) becomes

γm1 + (1 − γ )mN = −1

λ
= −2

√
q(1 − q)

w
.

If the solution to (4.3) exists, it would be

z = w

2
√

q(1 − q)
+ 2

√
q(1 − q)

w
+ O

(
N−1/2).

At the critical λc, w/2
√

q(1 − q) = 1, and thus we conclude that

λ1 →
⎧⎨⎩

w

2
√

q(1 − q)
+ 2

√
q(1 − q)

w
if w> 2

√
q(1 − q),

2 if w< 2
√

q(1 − q).

5. Conclusion and future work

We have considered the generalized stochastic block model with two communities. We
showed the phase transition for the G2-SBM where the random part is a Wigner-type matrix,
which extends the BBP transition. For the precise formulas, we discussed a hidden community
model and an unbalanced stochastic block model with Bernoulli distribution and Gaussian
distribution at the Kesten–Stigum threshold. Moreover, referring to [25], along with suitable
assumptions on the signal, our theorem can be adapted to both models with a non-Gaussian
case.

We believe it is possible to prove the phase transition for the sparse matrix in which the data
matrix is not necessarily symmetric, and most elements are composed of zeros. We also hope
to extend our result to the G2-SBM with more than two communities.

Appendix A. Local law for Wigner-type matrices

In this section we provide a precise statement of the local law for Wigner-type matrices that
was used in (3.3) in Section 3. Wigner-type matrices are defined as follows.

Definition A.1. (Wigner-type matrix.) We say an N × N random matrix H = (Hij) is a Wigner-
type matrix if the entries of H are independent real symmetric variables satisfying the following
conditions:

• E(Hij) = 0 for all i, j.

• The variance matrix s = (sij), where sij =E|Hij|2, satisfies (sL)ij ≥ ρ/N and sij ≤ s∗/N,
1 ≤ i, j ≤ N, for finite parameters ρ, s∗, and L.

For the precise statement of the local law, we use the following definitions, which are
frequently used in analysis involving rare events in random matrix theory.

Definition A.2. (Overwhelming probability.) An event� holds with overwhelming probability
if, for any big enough D> 0, P(�) ≤ N−D for any sufficient large N.

Definition A.3. (Stochastic domination.) Let ψ (N)(v) and φ(N)(v) be non-negative random
variables parametrized by elements v. Consider two families of non-negative random variables,
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ψ = {ψ (N)(v) | N ∈N, v ∈ U(N)}, φ = {φ(N)(v) | N ∈N, v ∈ U(N)},
where U(N) is an N-dependent parameter set. Suppose N0 : (0,∞)2 →N is a given function
depending on the model parameters CD, γ , α1, and α2. If, for ε > 0 small enough and D> 0
big enough, we have P

(
φ(N) >Nεψ (N)

)≤ N−D for N ≥ N0(ε,D), then φ is stochastically
dominated by ψ , which is denoted by φ ≺ψ .

The following definition of a QVE and its solution uniqueness is discussed on the complex
upper half plane H, where H= {z ∈C | Im z> 0}, in [5].

Definition A.4. (Quadratic vector equation.) Consider a Banach space R := {w : X →C |
supx∈� |wx|<∞} and its subset R+ := {w ∈R | Im wx > 0 for all x ∈ X }, where X is an
abstract set of labels. Let S : R→R be a non-zero bounded linear operator, and a ∈R a real
bounded function. For all z ∈H, −1/m(z) = z + a + S[m(z)], and its solution is m : H→R+.

Theorem A.1. (Solution of QVE (5).) Let m := (m1,m2, . . . ,mN) : H→HN be a func-
tion on H. If a matrix s satisfies the conditions in Definition A.1, the QVE −1/mi(z) =
z +∑N

j=1 sijmj(z) for i = 1, 2, . . . ,N and z ∈H has a unique solution.

We are now ready to state the local law. Let ρ be the density defined as

ρ(τ ) := lim
ρ↘0

1

πN

N∑
i=1

Im mi(τ + ıη).

(See also [4, Corollary 1.3] for more detail.)

Theorem A.2. (Local law [4].) Let H be a Wigner-type matrix and fix an arbitrary γ ∈ (0, 1).
Then, uniformly for all z = a + bi with b ≥ Nγ−1, the resolvent G(z) = (H − zI)−1 satisfies

maxi,j|Gij(z) − mi(z)δij| ≺ 1 + √
ρ(z)√

bN
+ 1

bN
.

Furthermore, for any deterministic vector w ∈C
N with maxi |wi| ≥ 1,∣∣∣∣∣

N∑
i,j=1

wi(Gij(z) − mi(z))

∣∣∣∣∣≺ 1√
bN

.

The local law can be generalized to the anisotropic local law as follows.

Theorem A.3. (Anisotropic law [4].) Suppose the assumptions in Theorem A.2 hold. Then, uni-
formly for all z = a + bi with b ≥ Nγ−1, and for any two deterministic �2-normalized vectors
w, v ∈C

N, ∣∣∣∣∣
N∑

i,j=1

wiGij(z)vi −
N∑

i=1

mi(z)wivi

∣∣∣∣∣≺ 1 + √
ρ(z)√

bN
+ 1

bN
.
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