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Desargues' involution theorem: from history to
applications

ALEXANDRU GÎRBAN

Desargues' Involution Theorem is a powerful problem solving tool to
anyone interested in projective geometry and its contemporary applications.
To give a better understanding of this fundamental result, we present the
history of the idea and we illustrate several direct applications.

1.  History
The origin of Desargues' inquiries in the realm of projective geometry

dates back to the remote time when most of Europe was embroiled in the
turmoil of the Thirty Years' War.

Girard Desargues (1591-1661) used the concept of Involution for the
first time in his most important work Rough Draft on Conics (1639). Its
content can be found in [1], where he first studied sets of three pairs of
points on a line  and then defined that they form a
‘tree’ if there is a point  on the same line such that

(B, H) ; (C, G) ; (D, F)
A

AB · AH = AC · AG = AD · AF. (1)
Furthermore, he defined that those three pairs of points are in involution

if

GD
CD

 · 
GF
CF

=
GB
CB

 · 
GH
CH

. (2)

As relation (2) suggests, Desargues was aware of earlier results known
by Greek mathematicians. Indeed, he had available Commandino's Latin
edition of Euclid's Elements, the first four books on conics by Apollonius
and two editions of Pappus' Collection [1]. He exploits the invariant of the
ratio of the ratios in which the straight line joining two points is divided by
another two points, known but not emphasised, in Greek literature. He is
mostly ignored, if not ridiculed, by his contemporaries due to the language
he used. His manuscript, Rough Draft on Conics was forgotten, but
discovered by Michel Chasles (1793-1880) in 1845 and published in 1864
together with an explanation of the terms used by Desargues. Despite being
neglected, his ideas were preserved by many disciples, among them Bosse,
Pascal and de la Hire. The recognition of his work came from Charles Julien
Brianchon (1783-1864) in his Mémoire sur les lignes du second ordre
(1817) and Jean-Victor Poncelet (1788-1867) in Traité des proprietes
projective (1822) [2]. The latter contains fundamental ideas such as the
cross-ratio, perspective and involution, which boosted the development of
projective geometry during the nineteenth century, with Poncelet making his
own contribution.

Desargues' approach to Involution was not projective; he defined it as a
relation of distances between different pairs of points (see relations (1) and (2)).
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An equivalent definition more closely related to the current concept of
Involution was given by Karl von Staudt (1798-1867): An involution is a
projectivity of period two, that is, a projectivity which interchanges pairs of
points [3].

Poncelet brought the ‘principle of duality’ to light, claiming that it is his
own discovery. However, its nature was more clearly understood by Joseph
Diaz Gergonne (1771-1859). This principle, used in projective geometry,
asserts that every definition remains significant, and every theorem remains
true, when we interchange the words point and line [3]. The dual principle
will be used subsequently in the Article.

At the end of this brief historical introduction, it is important to note the
reason behind the expansion of Projective Geometry during the Renaissance
period, which is art-related, as artists were trying to achieve a sense of depth
and three-dimensional view in their plane paintings.

2.  Development
For a brief introduction to the basic terminology used in projective

geometry see [4, p. 242].
We now state von Staudt's definition of involution, mentioned in the

previous section, and we put it into perspective with respect to the other
forms of the concept of involution:

Definition 1: Involution (von Staudt). An involution is a projectivity of
period two, that is, a projectivity which interchanges pairs of points.

The above definition suggests that we may look at involution as a
function which intercharges pairs of points on a line in the projective plane.
Recalling that projectivity preserves the cross-ratio of four points on a line

(see [5, Chapter 9]), denoted in this Article by ,

the following definition will be more intuitive:

(A, B; C, D) =
AC
AD

÷
BC
BD

Definition 2: Involution (as function). Denote by � the set of all points on a
line in the projective plane (thus including the point at infinity on the line).
Then if an involution is a function  such that  for
all , and for any four points 

f : � → � f (f (X)) = X
X ∈ � (A, B, C, D) ∈ �

(A, B; C, D) = (f (A) , f (B) ; f (C) , f (D)) .
The pair of points  is called a point-pair.(X, f (X))

Definition 3: Involution (on a pencil). Denote by  the set of all lines in the
projective plane containing a point . Then an involution is a function

 for which , for all  and for any four lines
 we have .

Similarly, pairs of lines  are called line-pairs.

�
P

f : � → � f (f (l)) = l l ∈ �
(l1, l2, l3, l4) ∈ � (l1, l2; l3, l4) = (f (l1) , f (l2) ; f (l3) , f (l4))

(l, f (l1))
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In order to unify Desargues' definition of Involution with the projective
definition, we will write his condition again for three pairs of points in
involution; with some manipulation (2) becomes

GD
CD

 · 
GF
CF

=
GB
CB

 · 
GH
CH

⇔
GD
CD

 ÷  
GB
CB

=
GH
CH

 ÷  
GF
CF

⇔ (G, C; D, B) = (G, C; H, F) .
So, renaming the previous pairs conveniently with ,
the equation above becomes .

(A, A1); (B, B1); (C, C1)
(A, A1; B, C) = (A, A1; C1, B1)

3.  Main theorem and its variants
A very special characteristic of Desargues' Involution Theorem is the

fact that it has many variants, generated both by duality and by degenerate
cases of quadrilaterals/quadrangles. In this section, we state these variants.

Let us start with a preliminary result which is part of Desargues'
Involution Theorem, but which was first presented by Pappus in his book
VII, prop. 130; see ([6, pp. 106-108}. Pappus' statement of this result was
expressed in terms of collinearity of points having a particular metric
relation. Desargues proved this part using Menelaus' theorem.

Proofs for all these results may be found in [7].

Theorem 1: The three pairs of opposite sides of a complete quadrilateral are
cut by any line (not through a vertex) in three pairs of conjugate points on an
involution.

B

R
P

Q

T

A
C1

C

S

A1

B1

FIGURE 1

Theorem 2: (Desargues' Involution Theorem [7]). If a quadrangle is
inscribed in a conic and if a line  not passing through a vertex of the
quadrangle intersects the conic at two points, these points are a point-pair of
the involution on  determined by the pairs of opposite sides of the
quadrangle, i.e. the involution described in the previous theorem.

l

l
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B

R
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A1 A C T

B1

FIGURE 2

Theorem 3: (Dual of Desargues' Involution Theorem [7]). If we consider a
quadrilateral circumscribed to a conic and if, from a point  not on a side of
quadrilateral, we draw the two tangents to the conic, these tangents
constitute a pair of the involution of the pencil from  determined by the
pairs of opposite vertices of the quadrilateral.

P

P

Both forms of Desargues' Involution Theorem can be stated for
degenerate cases of a quadrangle/quadrilateral, when some vertices
coincide. We present the theorem for three points. Statements for the two-
points cases are obtained analogously.

Theorem 4: (Desargues Involution Theorem - three points). Let  be a
triangle inscribed in a conic. A line  intersects sides ,  and  of the
triangle at ,  and  respectively. The same line intersects the tangent to
the conic at  in  and the conic in two points , . Then the pairs of
points ,  and  are pairs of some involution on .

ABC
l AB AC BC

X1 X2 Y2
A Y1 Z1 Z2

(X1, X2) (Y1, Y2) (Z1, Z2) l

B

A

C

Y1

Z
X1

X2
Z2

Y2

FIGURE 3
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Theorem 5: (Dual of Desargues Involution Theorem - three points). Let
be a triangle and let  be a point in the plane. If a conic inscribed in triangle

 touches side  at , and ,  are the tangents from  to that
conic, then ,  and  are pairs of some involution
of the pencil of lines passing through .

ABC
P

ABC BC D PX1 PX2 P
(PA, PD) (PB, PC) (PX1, PX2)

P

A

B CD

P

X1

X2

FIGURE 4

4.  Examples
Desargues' Involution Theorem is one of the most productive tools in

elementary geometry. Here we only scratch the surface of its wide
applications, but we believe the examples selected are very instructive and
demonstrate the utility of this beautiful theorem.

Example 1: (Papelier - [8] page 129). Let  be a triangle and let
be its circumscribed circle. If diameter  of circle  intersects the sides of
the triangle at  and if  are the reflections of  in

, prove that ,CC' are concurrent at a point of the circle .

ABC �(O, R)
d �

A1, B1, C1 A′, B′, C′ A1, B1, C1
O AA′, BB′ �

Proof: Let  be the intersection points of  with  and let  be the
second intersection of  and . Let  be the intersections of  and

 with , respectively. By Desargues' Involution Theorem applied to the
quadrangle  and line  we get an involution with pairs

, , . However, pairs , ,
also form an involution, namely the one determined by reflection about
point . Since the last two involutions share the pairs , , they
are in fact the same involution, meaning that  and ,
implying the desired concurrency on .

D1, D′ d � M
AA′ � B″, C″ MB

MC d
ABCM d (A1, A′) ,

(B1, B′) (C1C′) (D1, D′) (A1, A′) ,(B1, B″) (C1C″) (D1, D′)

O (A1, A′) (D1, D′)
B′ = B″ C′ = C″

�
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FIGURE 5

Example 2: (Butterfly Theorem). Let  be the midpoint of a chord  of a
circle, through which two other chords  and  are drawn.  and
intersect chord  at  and  respectively. Then  is the midpoint of .

M XY
AB CD AD BC

XY Q P M QP

Proof: By Desargues' Involution Theorem, pairs , ,  will be
in involution, call it . Let  denote the point at infinity on the support line.
Because , the midpoint of , is a fixed point under the involution, the
other fixed point under the involution must be at infinity, as 

(XY) (PQ) (MM)
f ∞

M XY

(X, Y ; ∞, M) = −1 = (X, Y ; f (∞) , M)
by the involution condition, so that . Now, since
are pairs, it means that the involution is in fact the reflection about ,
meaning that  is the midpoint of .

f (∞) = ∞ (MM) , (∞ ∞)
M

M PQ

X

C

Q

B

D

YPM

A

FIGURE 6

Example 3: (Newton-Gauss). The midpoints of diagonals of a complete
quadrilateral are collinear.

Proof: Let , ,  be the pairs of opposite vertices in the
quadrilateral and let  be one of the intersection points of the circles with

(AA1) (BB1) (CC1)
S
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diameters  and . Suppose  is a real point. If we consider the pencil
of perpendicular rays , , by the dual of Desargues'
Involution Theorem it follows that  is also a pair in this involution.
However, each ray is perpendicular to its conjugate in this involution (see
Lemma 1 below). Hence  lies on the circle with diameter . As a result,
we can deduce that circles with diameters ,  and  are coaxial,
meaning that their centres are collinear, and the conclusion follows. We still
have to establish the following result.

AA1 CC1 S
(SC, SC1) (SA, SA1)

(SB, SB1)

S BB1
AA1 BB1 CC1

A

B

C

C1

S
A1

B1

FIGURE 7

Lemma 1: (See [9, p. 33]). If in a pencil in involution, there are two pairs of
conjugate rays which are perpendicular to each other, then every ray in this
involution is perpendicular to its corresponding ray.

Proof: Let ,  and ,  be two pairs of perpendicular lines from a pencil in
involution through . Consider a circle through  and let it meet , , ,
again at , , ,  respectively. Then  and  are diameters of the
circle, meeting at its centre . So, for any other pair ,  of the involution
(which is well-determined) meeting the circle again at  and ,  passes
through , meaning that ,  are orthogonal.

a a′ b b′
S S a a′ b b′

A A′ B B′ AA′ BB′
O c c′

C C′ CC′
O c c′

Example 4: (USAMO 2012). Let  be a point in the plane of , and  a
line passing through . Let , ,  be the points where the reflections of
lines , ,  with respect to  intersect lines , ,  respectively.
Prove that , ,  are collinear.

P �ABC γ
P A1 B1 C1

PA PB PC γ BC AC AB
A1 B1 C1

Proof: Let . Considering the quadrilateral , by the
dual of Desargues' Involution Theorem, the line-pairs ,
and  belong to an involution on the pencil with vertex . But the
reflection in  also determines an involution on the same pencil, with line-
pairs ,  and . Since the two involutions share
two pairs, they coincide, whence .

C″ = A1B1 ∩ AB CAC″A1
(PA, PA1) (PB, PB1)

(PC, PC″) P
γ

(PA, PA1) (PB, PB1) (PC, PC1)
C″ = C1
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C1

A

B C

P

A1

B1

FIGURE 8

Example 5: (IMO Shortlist 2005). Let  be a triangle, and let  be the
midpoint of side . Let  be the incircle of triangle . The median
of triangle  intersects the incircle  at two points  and . Let the lines
passing through  and , parallel to , intersect the incircle  again at two
points  and . If the lines  and  intersect  at points  and , prove
that .

ABC M
BC γ ABC AM

ABC γ K L
K L BC γ

X Y AX AY BC P Q
BP = CQ

A V

K X

E

U
F

I

Y L

B Q D M P C

FIGURE 9

Proof: Define  the point at infinity on . Let , ,  be the contact
points of  with sides ,  and  respectively, and let ,

. It is easy to prove that , ,  are concurrent (see
Lemma 2 below). Obviously, their intersection point is  (  is an
isosceles trapezium). It follows that  belongs to the polar of , so by
La Hire's Theorem, the polar of  passes through . On the other hand,
lies on the polar of  by construction, meaning that  lies on the polar of .
Thus  is the polar of . But the polar of  is a line parallel to
because . Hence .

P∞ BC D E F
γ BC AB AC U = KL ∩ XY

V = LX ∩ KY AM EF DI
U KXLY

U A
U A U

V V U
AV U U BC

UI⊥BC AV // BC
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By the dual of Desargues' Involution Theorem in quadrilateral ,
the pairs of lines ;  and  are in involution.
Projecting this pencil on  we have an involution of pairs of points

; ; , so that  is the midpoint of .

KXLY
(AK, AL) (AX, AY) (AV , AP∞)

BC
(M, M) (P, Q) (P∞, P∞) M PQ

Lemma 2: Let  be a triangle, and let , ,  be the points of contacr of
the incircle with , , . Consider  the midpoint of  and  the
incentre of . Then, , ,  are concurrent.

ABC D E F
BC AB AC M BC I

ABC AM DI EF

Proof: Denote by  the incircle and by the  the point at infinity on .
Consider  the line through  parallel to , so that  and  meet at . Let

, . As  is the polar of  with respect to
the incircle of  and  lies on it, by La Hire's theorem,  lies on the polar
of  with respect to . Since  is perpendicular to ,  is perpendicular
to , meaning that  is the polar of  with respect to . The last observation
implies that  and projecting onto  we obtain

, meaning that  and we are done.

Γ ∞ BC
l A BC l BC ∞

U = ID ∩ EF M′ = AU ∩ BC EF A
ABC U A

U Γ UI BC UI
l l U Γ

(AE, AF; AU , A∞) = −1 BC
(B, C; M′, ∞) = −1 M′ = M

Example 6: (Taiwan Team Selection Test for the IMO). Let  be any point
on the circumcircle of triangle . Suppose that the tangents from  to the
incircle meet  at two points  and . Prove that the circumcircle of
triangle  intersects the circumcircle of  again at the -mixtilinear
point of contact. (The -mixtilinear incircle of a triangle  is defined as
the unique circle tangent internally to the circumcircle of  and to the
sides  and , respectively. The -mixtilinear point of contact represents
the tangency point between the -mixtilinear incircle and the circumcircle of
triangle .)

M
ABC M

BC X1 X2
MX1X2 ABC A

A ABC
ABC

AB AC A
A

ABC

Proof: Suppose without loss of generality that  lies on the same side as
with respect to . Let  be the incircle of  and let . The
tangency point of the -mixtilinear incircle and the circumcircle will be
denoted by . By the dual of Desargues' Involution Theorem (the three
points variant), there is an involution swapping ; ;

. If , projecting the involution on , we get
another involution ; ; . This is an elliptic involution
because  and  will lie on opposite sides of , and circles passing
through pairs of points in the involution and  will be coaxial. Hence all
such circles pass through another common point. We want to show that this
point is in fact .

M A
BC γ ABC γ ∩ BC = D

A
T

(MX1; MX2) (MB; MC)
(MA; MD) MA ∩ BC = N BC

(D, N) (B, C) (X1, X2)
M T BC

M

T
To this end, it is enough to show that points  lie on the same

circle. If , then  (see Lemma 3 below), so
 and the conclusion follows.

M, D, T , N
TD ∩ �ABC = A1 AA1 // BC

∠MTD = ∠MTA1 = ∠MAA1 = ∠MND
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A

M

A1

N X2 B D X1
C

T

FIGURE 10

Lemma 3: (See [5, p. 69]) Let  be a triangle. Let  be the -mixtilinear
point of contact and let  be the tangency point of the incircle and .
Then, if  is the second intersection of  and the circumcircle of ,

 is parallel to .

ABC T A
D BC

A1 TD ABC
AA1 BC

Example 7: (Author) Consider a triangle  and let  be the
tangency points of the -excircle with sides ,  and  respectively. Let

 be the tangency point of the incircle of triangle  with side . Let
lines  and  intersect the altitude from  of the triangle  at
and  respectively. If  intersects the -excircle of  at , prove that
line  bisects segment .

ABC A1, B1, C1
A BC AB AC

D ABC BC
A1C1 A1B1 A ABC M

N AD A ABC R
A1R [MN]

Proof: Denote by  the foot of the altitude from  on , and by  and
the intersection points of this altitude with the -excircle.

Z A BC X Y
A

 By Desargues' Involution theorem (the two points variant) for line
and points ,  on the circle, it follows that pairs , ,  are
in involution on the line . Similarly, for points  and  on the circle, it
follows that pairs , ,  are in involution on the same line.

AZ
A1 C1 (A, Z) (N, N) (X, Y)

AZ A1 B1
(A, Z) (M, M) (X, Y)

Thus there is an involution interchanging the pairs of points ,
,  and . But any involution on a line is an inversion of

some non-zero power (see the lemma below), so this involution is an
inversion centred at the midpoint of segment , because these points
are their own mates in this involution. Moreover, the centre of the
involution, say , lies on the radical axis of the -excircle,  and

.

(A, Z)
(M, M) (N, N) (X, Y)

[M, N]

P A �A1XY
�A1AZ
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D A1 C
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X
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B1

Y
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FIGURE 11

Let  meet  in , and let  be diametrically opposite to  on the
excircle. By homothety, , ,  and  are collinear. Then , so

 as well. Since , the point  lies on . Thus
 is the radical axis of  and , and it follows that  is

another pair of the involution on . So , whence the
result.

A1R AZ P D A1
A D D′ R ∠D′RA1 = π

2
∠ARA1 = π

2 ∠AZA1 = π
2 R �AZA1

A1R �AZA1 �XYA1 (P, ∞)
AZ (M, N; P, ∞) = −1

Lemma 4: Any involution on a line is an inversion of some non-zero
(possibly negative) power.

Proof: Solution by AoPS user Tina Sprout. Let  be some
points in involution on a line  such that  and  are reciprocal pairs.
If we choose  such that its reciprocal point is , the cross-ratio of the
previous points will be

P, X, X1, Y , Y1
l X, X1 Y , Y1

P P∞

(P, P∞; X, Y) = (P∞, P; X1, Y1)

⇒
PX
PY

=
PY1

PX1
⇒ PX · PX1 = PY  · PY1

which means that this involution is an inversion around .P
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