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If p and ¢q are cardinal numbers and E is a topological space, then the following property
may or may not hold:

Every cover of E by fewer than ¢ open sets has a subcover by fewer than p of them. (1)

Clearly these properties, for various numbers p and ¢, are far from being independent; in
this paper, we investigate some of the interrelationships between them.

Properties like (1) were originally considered by Alexandroff and Urysohn in [1]. An
account of some of them is given by I. S. G4l in {2], [3] and [4]. Gal defines a space to be
(m, n)-compact if every cover by at most » open sets has a subcover by at most m of them. We
consider also the properties excluded by Gal’s definition; that is, in (1) we allow p or g to be
of the form ;, where A is a limit ordinal. Although, as we shall see, the possession or other-
wise of these properties for p = X, is determined by what happens for p < X;, we may obtain
extra information about the space E by allowing ¢ to be of the form N;..

We assume the axiom of choice, so that every infinite cardinal number is an aleph. For
typographical reasons, we shall write No instead of the customary N,.

DerINITION 1. A topological space E will be said to be [, al-compact if and only if every
cover of E by fewer than Na open sets has a subcover by fewer than Rf of them.

Then Gél's (N4, NX,)-compactness is our [f+1,a+1]-compactness. Clearly, these
properties, for various « and f, are not independent: for, given the space E, Definition 1
establishes a relation R on the ordinal numbers, according to which aRf if and only if E is
[B, a]-compact; and this relation is evidently reflexive and transitive, and has the property
that

if ya and f<d6 and oRf, then yR. )
DerintTION 2. If E is a topological space and « is an ordinal number, then we shall write
pge=min{B: E is [B, a)-compact}.
We shall abbreviate ug to ¢ when only one space is in question.

It is easy to see that the ordinal function u contains all the information about E given

by the relation R defined above; for from (2) there follows at once

THEOREM 1. E is (B, a]-compact if and only if yx £ f.

The problem that we begin to study in this paper may now be stated as: Characterise
functions on the ordinals that arise as u for some topological space E.

THEOREM 2. The function p is (non-strictly) increasing, and p0 = 0.

Proof. Suppose that y £ «. Then (2) implies that yRua, and Theorem 1 then says that
wy £ pa. That 40 = 0 is immediate from the definitions.
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THEOREM 3. The function p is idempotent: u® = u.

Proof. As aRa, we know that ux < a and hence, by Theorem 2, p?x < pa. However
poeRu(ue) and aRua; so, as R is transitive, aRu’x, whence pa < p®a by Theorem 1. Thus
pa = po for all a, '

The property of transitivity may be expressed in terms of u as follows.

THEOREM 4. For each a, u(e+1) is equal either to o+ 1 or to po.

Proof. Clearly uo < p(e+1) £ a+1. Suppose that u(e+1) <a+1. Then p(x+1) L a,
and so u(a+1) = u*(@+1) £ pa < p(e+1). Thus, if u(e+1) # a+1, then p(a+1) = pa.

Theorem 4 tells us what happens at successor-ordinals. The behaviour of p at limit-
ordinals is given by

THEOREM 5. The function p is continuous.

Proof. Suppose that 4 is a limit-ordinal. Then every cover of E by fewer than N1 open
sets comprises in fact fewer than Na open sets for some a < A, and so has a subcover by fewer
than Nuox of them. Thus A £ lim pa, and the reverse inequality holds since p is an increasing
function. a<d

So far, u has been regarded as a function defined on the class of all ordinals; but in fact
it is determined by its values on a set of ordinals, for we have the following theorem.

THEOREM 6. The function p is eventually constant.

Proof. Every open cover of E has a subcover of cardinality at most that of E itself.

If f is any ordinal function, we shall write foo = x to mean that f is eventually constant,
with fo = k for all large enough a.

The description of u given by Theorems 2 to 6 is complete provided that E is of cardinality
less than Nw,. We shall prove

THEOREM 7. If f is a continuous increasing ordinal function with f0 =0, and, for each
o, f(a+1) = either a+1 or fa, and with foo < w,, then there is a completely regular space E
with = .

The proof of this theorem is given after that of Theorem 9.

The space E will be constructed as a discrete union of spaces of ordinals. We observe
first that the class of all § with f(8+1) = B+ 1is finite; for each such f is at most equal to foo,
which is finite. Moreover, each f is finite, and hence w, is regular. E will be the discrete
union of the spaces {y:y < wg}, one for each g with f(f+1) = p+1. To calculate u; we
shall use

THEOREM 8. If E is the discrete union of its subspaces E; (1 < i £ k), then

pgo = max pgo for alla.
15isk

Proof. Let ® be a covering of E by fewer than Na open sets; then, for each i, there is a
subclass ¥, of @ covering E; and of cardinality less than ¥ug,a. Then U{¥,: 1 Sisk}isa
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cover of E of cardinality at most the sum of the cardinalities of the \¥;. Since there are only
finitely many summands, this is less than ¥max g «. Thus gga £ max ug, o On the other

hand, suppose that max pg, « is attained for i =j. Then, for each y less than pg a, there is a
cover of E; by fewer than Na open sets which has no subcover by fewer than Ny of them.
This cover, together with {E; : i # j}, makes a cover of E by fewer than Na open sets with no
subcover by fewer than Ny of them. Thus max Mg, 0= pg,a < pga, and so Theorem 8 is
proved.

THEOREM 9. If E is the space of all ordinal numbers less than wy, with order-topology,
where wy is regular, then pg is given by

g =0 for a<p, and pga=p+1 for f+1=ga.

Proof. Since w, is regular, every increasing sequence of type less than w, consisting of
ordinals less than w; has limit less than wg.

Consider any infinite cover ® of E by R¢ open sets, with ¢ < §, and suppose that ® has
no subcover of cardinality smaller than X¢. Let @ be well-ordered as a sequence {U, : y < w,}.
Then, for each 6 < wy, the subset (I>,, of @ defined by

={U,:y <8}

fails to cover E, for its cardinality is less than N¢. Let &5 be the least member of E\Uo,.
Then ({;: 6 < w,) is an increasing sequence of type w,, (which is less than w,), consisting of
ordinals in E, each of which is thus less than wg, and so (&;) has a limit, £ say, less than wj.
That is, e E. But now £ belongs to some member U, of @, and thus, since w, is a limit
ordinal, so do all the ¢; from some 6 onwards. In particular, there is a 6, greater than y,
with ¢;€U,. However, we then have U,e®;, so that ;e U®d,, which contradicts the
definition of ;.

Thus the supposition that ® had no subcover by fewer than N¢ of its members was false,
and so every infinite cover ® of E by fewer than Xf open sets has a subcover of cardinality

smaller than that of ®. If the subcover is still infinite, the argument can be repeated, yielding
a strictly decreasing sequence of cardinalities. Since the cardinal numbers are well-ordered,

every descending sequence of them is finite (see [5], p. 259, Theorem 1). Thus our process
must terminate, necessarily with a subcover of ® which is no longer infinite. So every cover
of E by fewer than RS open sets has finite subcover.” That is, uf = 0, from which it follows
that pa =0 foralla £ 6. '

Finally, the cover of E by all open initial segments {a : « < y}, which is of cardinality N,
has no subcover by fewer than Nf sets; for if it had, then the corresponding numbers y
would form a sequence of type less than wg, consisting of ordinals less than w;, and with limit
wg. Thus p(f+1) = p+1. However, E is of cardinality N, so that

poo S f+1=p(f+1) < poo,

from which it follows that po = f+1 for all & greater than g.
Theorem 9 is thus proved.
E
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Proof of Theorem 7. We now construct a space E by forming the discrete union of
spaces of ordinals as in Theorem 9, one for each § with f(f+1) = f+1. Let these f be
B <By<...<PB: and let the corresponding spaces of ordinals be E(1 £i<k), with
E=U{E;:15i<k}. Now, for each a, we have y; a =0 if « £ B, and pg a=g;+1 if
Bi+1 = a, and so pg,a < fa, since, if f;+1 £ a, then B;+1=f(B;+1) £ fa. Thus yga < fa
for all a.

On the other hand, f takes only the values 0 or f(8;+1). For there is either no f; satisfying
Bi < a, or there is a greatest such, say f, since there are only finitely many f; in all. If there is
no such B, then clearly fa = 0. Otherwise, {y: B; <y < a} contains no B, and so, for every
y in this set, f(y+1) = fy. Since fis continuous, it follows that fy = f(B;+1) for every y, and
hence that fa = f(B;+1). Thus, for every a, either fa =0 = pga or there is a j with fu =
f(B;+1) = B;+1. However, the function f clearly satisfies fx < « for all «, so that 8;+1 < «,
and so, by Theorem 9, pg,a = B;+1. So, for each a, either fu < pga or there is a j with
Jo = pg,a < ppa. This completes the proof that ug = f.

The space E is completely regular since each E; is a subspace of a compact Hausdorff
space. Thus Theorem 7 is proved.

Theorem 7 gives a complete account of the ordinal functions that can occur as pg for

spaces E of cardinality less than Xw,. For larger spaces, there are more restrictions on u.
THEOREM 10. If ul =0, then p(wy+1) < w,.

Proof. Let @ be a cover of E by exactly Nw, open sets. Then, as Nwy, = NO+NI1+N2+...,
the cover @ can be divided into the disjoint union of subsets @, of cardinality Ri (for i < w,).
Then {U®;:i < w,} is a cover of E by X, open sets, which, since u1 = 0, has finite subcover,
corresponding to the set N of indices, say. But then U{®,:ie N} is a subcover of ® of
cardinality N max N, which is certainly less than N,

THEOREM 11. Let f be an ordinal function satisfying the following conditions:

(i) f is continuous,
(i) f0=0,
(iii) for each a, f(o+1) is either a+1 or fa,
@iv) if f1 =0, then f(wo+1) < o,
(V) foo S wo+1,
(Vi) if foo = wo+1, then fwy = w,.
Then there is a completely regular space E with pg = f.

Proof. 1t follows at once from (i) and (iii) that fa < « for all a, and that fis (non-strictly)
increasing. Condition (v) allows three possibilities: foo < wy, or foo = wy, or foo = wy+1.
If foo < wy, then Theorem 7 provides what is required.

If foo = w,, suppose that y is the least ordinal with fy = w,. Then condition (jii) implies
that y cannot be a successor. We consider intervals of the form {x:8 <« <7y}. If f were
constant on such an interval, the constant value would be less than w,, and then, since f is
continuous, we should have fy < w,. Thus there is no such interval on which f is constant;
and so, by condition (iii), every such interval contains some « with f(a+1) =a+1. Hence
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lim fa = y. But this limit is f; so in fact y = w,. Thus in this case fw, = w,; and then, as f
a<
is éontinuous at w,, there must be infinitely many values of « less than w, with f(e+1) = a+1.
Moreover, condition (iv) is vacuously fulfilled, and so imposes no restriction on f1. So we
have to consider functions f, with f0 = 0, f(x+ 1) = a+ 1 when a belongs to an infinite sequence
(B) of ordinals with 0 < 8, < B8, <... <w,, f(a+1) =fu for all other finite ordinals, and
Jou = w, for all « from w, onwards. We construct the appropriate space E in Lemma 1 below.
If, on the other hand, foo = w,+1, and if y is the least ordinal with fy = wy+ 1, then, for
every a < y we have fa < w,, so that, as f'is continuous, y cannot be a limit. Thus 7 is a suc-
cessor, and condition (iii) gives y = wy+ 1. So wg < wy+1 = f(wy+ 1), and condition (iv) now
implies that f'1 = 1. Condition (vi) gives also fw, = w,; and hence, as before, there are infinitely
many «a less than @, with f(«+1) = a+1. We have then to consider functions f with f0 = 0,
f(@+1) =a+1 when « belongs to an infinite sequence (8;) with 0 =8, < f, <... < w,,
S(e+1) = fu for all other finite ordinals, fow, = w, and fa = wy+ 1 whenever wo+1 < o, We
construct a space E with such an f as its function pg in Lemma 2 below.

LeMMA 1. Let (B;) be an infinite sequence of ordinals with 0 < B, < B, < ... <w, Let
the space X be the disjoint union of its subspaces S, Xy, X5, ..., where each X, is homeomorphic
to the space of all ordinals less than wy,, with order-topology, and S is a singleton {s}; and let
the topology of X be specified by the requirement that G is open in X if and only if

either s¢ G and, for each i, GnX, is open in X,

or seG and GnX, is open in X, for each i, and X; = G for nearly all i.
Then

#x0=0,

ux(B;+1) = B, +1 for each i,

ux(a+1) = pya for all finite « except the B,
and

Uy 0 = @y for all o from w, onwards.

Proof. For each i, the space X is the discrete union of its two subspaces X, and
SUU{X;:j+#i}. Then Theorems 8 and 9 imply that uiy, < pix, and so f;+1 = px (B;+1) S
ux(B;+1). Hence also wg £ py .

Now let @ be any open cover of X. Then seG for some Ge®, and so there is an i, such
that X; « G whenever i, <i. Then ® clearly has a subcover comprising at most Xf;, members.
Thus every open cover of X has a subcover by fewer than 8w, members, so that uy00 < wy <
Ix Wo < uyo0. Hence puya = w, whenever @, < a.

We now assume, further, that @ is of cardinality less than N«, where « < ;. Then, by
Theorem 9, each subspace X for j < i £ i, is covered by finitely many members of ®. Hence
there is a subcover of ® for X of cardinality at most the sum of a finite number and
N, +Npy+...+8B;_. If 2 £ this subcover has cardinality N§;_;. If j=1 the sum of
cardinals just written down is empty and the subcover is finite. Hence, if & < §,, then pya = 0;
if B; <a < Bisy, then pya < py(a+1) < Bi+1, and py(Bi+1) < px(Bir ) S Bit 1.

Thus, as we have already shown that §;+1 < ux(8;+1), we have puy(B;+1) = ,+1, and
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hence, if B; <a < B4, then pya < uy(a+1) £ B;+1 = uy(B;+1). But, as uy is increasing
and as B,+1 = o, we have also uy(8,+1) < pya. Thus py(a+1) = pyo whenever « is finite
"but not a B,.

Finally, it is easy to see that any space constructed as in the statement of the lemma
from completely regular spaces X is itself completely regular.

LemMA'2. Let0=f,<B,<...<w, Foreachi, let Y, be the space of all ordinals less
than wy,, and let Y be the discrete union of its subspaces Y; for i=1,2,3,... . Then

py0=0,
uy(Bi+1) = B,+1 for each i,
uy(a+1) = uya for all finite a except the B,,
Hy Wp = Wy,
and
Hya = o+ 1 whenever wy+1 < o,

Proof. For each i, Y is the discrete union of ¥, and U{Y;:; # i}, and so Theorems 8
and 9 imply that the values of uy« for finite o are at least those stated. Hence pywy = w,.

The cover of Y by all initial segments of all Y; has no subcover of smaller cardinality, and so
u{wo+1) = wo+1. As Yis of cardinality Xw,, we have also pyo0 = wy+1.

Now let @ be a covering for Y by fewer than Na open sets, where « < B;. Then, whenever
J £ i, the subspace Y; is covered by finitely many members of @, and so @ has a subcover of
cardinality at most Nf, +Nf,+...+N8B;_;+N0. If 2 <j, this number is Nf;_;. On the
other hand, if j=1 and « < f;, then = 0, and py 0 = 0. Hence the values of uya for finite
o are at most those stated.

The space Y, being a discrete union of completely regular spaces, is itself completely regular.

This completes the proof of Theorem 11. All the hypotheses of this theorem have been
shown to be necessary, except conditions (v) and (vi). Whether condition (vi) is necessary
remains an open question.

Problem. Does there exist a space E with both the following two properties?
(a) There is a cover of E by Nw, open sets with no smaller subcover.
(b) For every n < w,, every cover of E by Nn open sets has a countable subcover,
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