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If p and q are cardinal numbers and £ is a topological space, then the following property
may or may not hold:

Every cover of E by fewer than q open sets has a subcover by fewer than p of them. (1)

Clearly these properties, for various numbers p and q, are far from being independent; in
this paper, we investigate some of the interrelationships between them.

Properties like (1) were originally considered by Alexandroff and Urysohn in [1]. An
account of some of them is given by I. S. Gal in [2], [3] and [4]. Gal defines a space to be
(m, «)-compact if every cover by at most n open sets has a subcover by at most m of them. We
consider also the properties excluded by Gal's definition; that is, in (1) we allow/? or q to be
of the form KA, where A is a limit ordinal. Although, as we shall see, the possession or other-
wise of these properties for/> = KA is determined by what happens for p < KA, we may obtain
extra information about the space E by allowing q to be of the form K r .

We assume the axiom of choice, so that every infinite cardinal number is an aleph. For
typographical reasons, we shall write Not instead of the customary Ka.

DEFINITION 1. A topological space E will be said to be \fi, a]-compact if and only if every
cover of E by fewer than Not open sets has a subcover by fewer than K/? of them.

Then Gal's (Xp, Ka)-compactness is our [/?+l,a+l]-compactness. Clearly, these
properties, for various a and /?, are not independent: for, given the space E, Definition 1
establishes a relation R on the ordinal numbers, according to which ixRfi if and only if E is
[/?, a]-compact; and this relation is evidently reflexive and transitive, and has the property
that

if y g a and j? g 5 and <x.Rj3, then yR5. (2)

DEFINITION 2. If E is a topological space and a is an ordinal number, then we shall write

HEa. = min {/?: E is |jS, <x]-compact}.

We shall abbreviate fiE to n when only one space is in question.
It is easy to see that the ordinal function /i contains all the information about E given

by the relation R defined above; for from (2) there follows at once

THEOREM 1. E is [/?, a]-compact if and only if /m ^ jS.

The problem that we begin to study in this paper may now be stated as: Characterise
functions on the ordinals that arise as nE for some topological space E.

THEOREM 2. The function n is (non-strictly) increasing, and fiO = 0.

Proof. Suppose that y ^ a. Then (2) implies that yitya, and Theorem 1 then says that
Hy ^ ^a. That (i0 = 0 is immediate from the definitions.
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THEOREM 3. The function n is idempotent: n2 = /*.

Proof. As a/fa, we know that fia^a and hence, by Theorem 2, H2OL ^ /za. However
H<xR[i(ji(x) and aRfia; so, as /? is transitive, xRfi2x, whence /ia ^ /i2a by Theorem 1. Thus
H2<x = /xa for all a.

The property of transitivity may be expressed in terms of \i as follows.

THEOREM 4. For each a, n(x+l) is equal either to a+l or to fix.

Proof. Clearly \ia. g n(ct+1) ^ a + 1 . Suppose that n(<x+1) < a + 1 . Then /i(a +1) ^ a,
and so fi(a+1) = /*2(<*+1) ^ /*<* ^ A*(«+!)• Thus, if /i(a+1) 5* a + l , then n(a + l) = na.

Theorem 4 tells us what happens at successor-ordinals. The behaviour of \i at limit-
ordinals is given by

THEOREM 5. The function fi is continuous.

Proof. Suppose that A is a limit-ordinal. Then every cover of E by fewer than XA open
sets comprises in fact fewer than Xa open sets for some a < A, and so has a subcover by fewer
than X/ta of them. Thus /U ^ lim/ia, and the reverse inequality holds since ft is an increasing
function. *<x

So far, n has been regarded as a function defined on the class of all ordinals; but in fact
it is determined by its values on a set of ordinals, for we have the following theorem.

THEOREM 6. The function \i is eventually constant.

Proof. Every open cover of E has a subcover of cardinality at most that of E itself.
If / i s any ordinal function, we shall write/oo = K to mean t h a t / i s eventually constant,

with/a = K for all large enough a.
The description of fiE given by Theorems 2 to 6 is complete provided that E is of cardinality

less than Kcu0. We shall prove

THEOREM 7. If f is a continuous increasing ordinal function with / 0 = 0, and, for each
a , / (a+1) = either a + l or fix, and with /oo < a>0, then there is a completely regular space E
withf=nE.

The proof of this theorem is given after that of Theorem 9.
The space E will be constructed as a discrete union of spaces of ordinals. We observe

first that the class of all /? with/(/?+1) = 0+1 is finite; for each such ft is at most equal to/oo,
which is finite. Moreover, each /? is finite, and hence co^ is regular. E will be the discrete
union of the spaces {y : y < cop], one for each /? with /(/?+1) = /?+1. To calculate /iE we
shall use

THEOREM 8. If E is the discrete union of its subspaces Et (1 ^ i ^ k), then

= max /i£ia for all a.

Proof. Let $ be a covering of E by fewer than Xa open sets; then, for each i, there is a
subclass *P, of O covering Et and of cardinality less than K^£(a. Then U { ^ j : 1 ̂  i ^ k} is a
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cover of E of cardinality at most the sum of the cardinalities of the *P,. Since there are only
finitely many summands, this is less than Kmax//£)a. Thus fiEx£ max^£(a. On the other

hand, suppose that max^£)<x is attained for i =j. Then, for each y less than /i£ya, there is a
cover of Ej by fewer than Xa open sets which has no subcover by fewer than Ky of them.
This cover, together with {Et: i #_/}, makes a cover of E by fewer than Ka open sets with no
subcover by fewer than Ky of them. Thus max^£(a = /i£ja ^ nEa, and so Theorem 8 is
proved. '

THEOREM 9. If E is the space of all ordinal numbers less than cop, with order-topology,
where (Op is regular, then fiE is given by

HEa. = 0 for &SP, and nE<x = P +1 for fi+1 <; a.

Proof. Since (Op is regular, every increasing sequence of type less than cop consisting of
ordinals less than a>p has limit less than a>p.

Consider any infinite cover $ of E by N<£ open sets, with <j> < /?, and suppose that $ has
no subcover of cardinality smaller than X</>. Let <D be well-ordered as a sequence {Uy: y < co^}.
Then, for each 5 < co ,̂ the subset <5>s of O defined by

3>a = {U7 : y < 5 }

fails to cover E, for its cardinality is less than N$. Let fa be the least member of E\ U ^ .
Then (f 4 : 8 < co^) is an increasing sequence of type co^, (which is less than (ofi), consisting of
ordinals in E, each of which is thus less than cop, and so (^a) has a limit, ^ say, less than cop.
That is, £eE. But now £, belongs to some member Uy of <D, and thus, since 00$ is a limit
ordinal, so do all the £a from some 8 onwards. In particular, there is a 8, greater than y,
with ZteUy. However, we then have Uy€$>s, so that { j e U $ j , which contradicts the
definition of £,s.

Thus the supposition that <& had no subcover by fewer than N<£ of its members was false,
and so every infinite cover O of E by fewer than K/? open sets has a subcover of cardinality
smaller than that of <J>. If the subcover is still infinite, the argument can be repeated, yielding
a strictly decreasing sequence of cardinalities. Since the cardinal numbers are well-ordered,
every descending sequence of them is finite (see [5], p. 259, Theorem 1). Thus our process
must terminate, necessarily with a subcover of $ which is no longer infinite. So every cover
of E by fewer than K/J open sets has finite subcover. That is, nfl = 0, from which it follows
that n<x = 0 for all a g p.

Finally, the cover of £ by all open initial segments {a : a < y}, which is of cardinality K/?,
has no subcover by fewer than K/? sets; for if it had, then the corresponding numbers y
would form a sequence of type less than cop, consisting of ordinals less than a>p, and with limit
cop. Thus fi(fi +1) = P +1. However, E is of cardinality K/?, so that

from which it follows that (ice = p+1 for all a greater than p.
Theorem 9 is thus proved.
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Proof of Theorem 7. We now construct a space E by forming the discrete union of
spaces of ordinals as in Theorem 9, one for each /? with/( /?+l) = jS+1. Let these /? be
Pi < Pi < • • • < Pk> and let the corresponding spaces of ordinals be Et(l ^ i ^ k), with
E = U {Et: 1 ̂  i ^ k}. Now, for each a, we have fiEi<x = 0 if a g /?,, and /xE|a = /?, +1 if
/J»+l ^ a, and so /z£|a £ / a , since, if j8,+ l g a, then & + 1 = / ( f t + l ) ^ / a . Thus ji£a g / a
for all a.

On the other hand./takes only the values 0 or/(/}; +1). For there is either no /?; satisfying
Pi < a, or there is a greatest such, say ftJ} since there are only finitely many /?, in all. If there is
no such ph then clearly/a = 0. Otherwise, {y : fij < y < a} contains no /?,, and so, for every
V in this set,/(y +1) —fy. Since/is continuous, it follows that/y =f(Pj+1) for every y, and
hence that / a =f(Pj + l). Thus, for every a, either / a = 0 = nEa. or there is a j with /a =
f(Pj+1) = Pj + l. However, the function/clearly satisfies fx ^ a for all a, so that Pj+l ^ a,
and so, by Theorem 9, iiEja. = Pj+1. So, for each a, either fx ^ /i£a or there is a y with
/ a = fiEj<x :g ̂ £ a . This completes the proof that /JE = / .

The space E is completely regular since each E( is a subspace of a compact Hausdorff
space. Thus Theorem 7 is proved.

Theorem 7 gives a complete account of the ordinal functions that can occur as nE for
spaces E of cardinality less than Kcoo. For larger spaces, there are more restrictions on \i.

T H E O R E M 1 0 . If \ i \ = 0 , then n(co0 + l ) S «<>•

Proof. Let O be a cover of £ by exactly Xcoo open sets. Then, as Xcu0 = K0+N1 + X2 + . . . ,
the cover O can be divided into the disjoint union of subsets Oj of cardinality KJ (for / < co0).
Then { LJOj: / < ft)0} is a cover of E by Ko open sets, which, since jtl = 0, has finite subcover,
corresponding to the set TV of indices, say. But then U l ^ j : ieN} is a subcover of O of
cardinality K max JV, which is certainly less than Kcoo.

THEOREM 11. Let f be an ordinal function satisfying the following conditions:

(i) fis continuous,
(ii) / 0 = 0,

(iii) for each a , / (a +1) is either a + 1 or fx,
(iv) iff I = 0, thenf(a>Q + l) ^ co0,
(v)/oo ^(wo + l,

(vi) iffoo = co0 +1, thenfa>0 = co0.

Then there is a completely regular space E with fiE = / .

Proof. It follows at once from (i) and (iii) that/a g a for all a, and tha t / i s (non-strictly)
increasing. Condition (v) allows three possibilities: /oo < (OQ, or/oo = «u0, or/oo = coo + 1 .
If/oo < (o0, then Theorem 7 provides what is required.

If/oo = co0, suppose that y is the least ordinal with/y = co0. Then condition (iii) implies
that y cannot be a successor. We consider intervals of the form {a : 5 < a < y). I f /were
constant on such an interval, the constant value would be less than co0, and then, since / is
continuous, we should have/y < co0. Thus there is no such interval on which/is constant;
and so, by condition (iii), every such interval contains some a with/(a +1) = a + 1 . Hence
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lim/oc = y. But this limit is/y; so in fact y = co0. Thus in this case/a>0 = <oQ; and then, a s /

is continuous at co0, there must be infinitely many values of a less than co0 with/(a +1) = a + 1 .
Moreover, condition (iv) is vacuously fulfilled, and so imposes no restriction o n / I . So we
have to consider functions/, with/0 = 0,/(<x +1) = a + 1 when a belongs to an infinite sequence
(/?,) of ordinals with 0 ^ /?! < p2 < . . . < co0, / ( a + 1 ) = / a for all other finite ordinals, and
fa. = co0 for all a from co0 onwards. We construct the appropriate space E in Lemma 1 below.

If, on the other hand,/oo = co0+1, and if y is the least ordinal with/y = a>0 +1, then, for
every a < y we have/a ^ co0, so that, a s / i s continuous, y cannot be a limit. Thus y is a suc-
cessor, and condition (iii) gives y = a>0 +1. So co0 < co0 +1 =/(coo+1), and condition (iv) now
implies t ha t / I = 1. Condition (vi) gives also/coo = coo; and hence, as before, there are infinitely
many a less than co0 with/(a +1) = a + 1 . We have then to consider functions/ with/0 = 0,
/ ( a + l ) = a + l when a belongs to an infinite sequence (/?;) with 0 = pt < fi2 < . . . < co0,
/ ( a + 1 ) = /x for all other finite ordinals, f(o0 = ct)0 and/a = coo +1 whenever co0+1 ^ a. We
construct a space E with such a n / a s its function fiE in Lemma 2 below.

LEMMA 1. Let (/?,) be an infinite sequence of ordinals with 0 ̂  pt < p2 < ... < co0. Let
the space X be the disjoint union of its subspaces S,XUX2,..., where each Xf is homeomorphic
to the space of all ordinals less than tu^(, with order-topology, and S is a singleton {s}; and let
the topology ofXbe specified by the requirement that G is open in X if and only if

either s$G and, for each i, GnXt is open in Xh

or seG and Gr>Xt is open in Xtfor each i, and Xt c G for nearly all i.

Then

for each i,

= Hxafor all finite a. except the /?,,

and

Hxx — ®ofor °H O-from co0 onwards.

Proof. For each i, the space X is the discrete union of its two subspaces X, and
Su\J{Xj :j &i}. Then Theorems 8 and 9 imply that nXl g nx, and sop{+1 = nXl(Pi+l) ^
Hx(fli+1). Hence also a>0 ^ \ixa>0.

Now let O be any open cover of X. Then 56 G for some GeO, and so there is an i0 such
that Xt<=G whenever i0 < i. Then O clearly has a subcover comprising at most X/?,o members.
Thus every open cover of X has a subcover by fewer than K<u0 members, so that ^xoo ^ coo ^
fixco0 ^ nxoo. Hence fixa = co0 whenever cw0 ̂  a.

We now assume, further, that $ is of cardinality less than Ka, where a ^ /?;. Then, by
Theorem 9, each subspace Xt fory ^ ir ^ /0 is covered by finitely many members of O. Hence
there is a subcover of O for X of cardinality at most the sum of a finite number and
X01 + N£2 + . . . + Kj?,_1. If 2 ̂ j this subcover has cardinality Hf}j-t. If j = 1 the sum of
cardinals just written down is empty and the subcover is finite. Hence, if a < pu then nxa = 0;
if pt < a < Pi+1, then nx<x £ nx(a+1) ^ p,+1, and n ^ + l) £ nx(Pi+l) ^ ]8,+1.

Thus, as we have already shown that pt +1 ^ l*x(Pi+1), we have nx(Pi+1) = & +
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hence, if /?f < a < /J,+1, then nxa, ^ fix(oc+1) ^ /?,+1 = nx(fit+1)- But, as fix is increasing
and as /?j +1 ^ a, we have also fix(Pi + l) ^ fea- Thus /ix(a+ 0 = fea whenever a is finite
but not a &.

Finally, it is easy to see that any space constructed as in the statement of the lemma
from completely regular spaces X, is itself completely regular.

LEMMA 2. Let 0 = j3t < /?2 < . . . < co0. For each i, let Y( be the space of all ordinals less
than cop,, and let Y be the discrete union of its subspaces Ytfor i = 1, 2, 3 Then

= Pt + l for each t,
a+1) = nYa.for all finite a except the /J,,

= coQ,

and

fiY a = ca0 + 1 whenever co0 + l ^ a.

Proof. For each /, Y is the discrete union of Yt and \J{Yj :j =£ i}, and so Theorems 8
and 9 imply that the values of fiyot. for finite a are at least those stated. Hence fiYco0 = <a0.
The cover of Y by all initial segments of all Y{ has no subcover of smaller cardinality, and so
HY(coo + l) = a»0 + l. As Fis of cardinality Kcoo, we have also fiYco = coo + l.

Now let O be a covering for Y by fewer than Ka open sets, where a ^ ps. Then, whenever
j g i, the subspace Yt is covered by finitely many members of <S>, and so O has a subcover of
cardinality at most K ^ + K/^ + .-. + K/^-t + KO. If 2 ^y, this number is K^_! . On the
other hand, if j = 1 and a ^ pp then a = 0, and ^y 0 = 0. Hence the values of nY<x for finite
a are at most those stated.

The space Y, being a discrete union of completely regular spaces, is itself completely regular.
This completes the proof of Theorem 11. All the hypotheses of this theorem have been

shown to be necessary, except conditions (v) and (vi). Whether condition (vi) is necessary
remains an open question.

Problem. Does there exist a space E with both the following two properties?
(a) There is a cover of E by Kcoo open sets with no smaller subcover.
(b) For every n < co0, every cover of E by Xw open sets has a countable subcover.
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