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Abstract
As a heavy load is applied to the parallel manipulators, it causes inaccuracies while positioning the end-effector or
unbalanced dynamic forces in the legs. Various load-balancing techniques overcome this. However, the disadvantage
of most load-balancing mechanisms is that they add inertia to the assembly and decrease the speed of motion. This
article studies a new load-balancing method (a passive damper mechanism). The passive balancing mechanism
is proposed to negate the inertia effects while countering the static inaccuracies in the parallel mechanism. This
is verified by the structural analysis of the mechanism. The impact of the damper element on the dynamics of the
mechanism is unknown. Hence, a complete mathematical model for the balancing mechanism has been developed to
study its impact on the dynamics of the entire structure. Laplace transformations characterize the system response.
The inclusion of a passive damper in a 3-prismatic-prismatic-revolute-spherical system was examined and found
to be stable and critically damped. Such a passive damper was envisaged to facilitate additional force transmission
for the actuators, and the DC gain from the system response validates the torque support for the actuators.

1. Introduction
Spatial parallel manipulators should be balanced properly, that is, stable in all configurations. Different
balancing mechanisms were developed by researchers two decades back. Examples are counterweight
[1, 2], pneumatic or hydraulic cylinders [3], mechanical balancing like gear train [4], helical/torsional
spring [5, 6], and cam mechanism [7]. Most of the above-mentioned balancing mechanisms were used
for planar mechanisms. However, when it comes to spatial mechanisms where the center of mass is high
above the platform, parallelogram mechanisms [8, 9] are used for gravity compensation. Arakelian [10]
used the pantograph mechanism, a special case of parallelogram mechanism, to address the balancing
of a spatial parallel manipulator. A geometric method for the static balancing of spatial mechanisms was
proposed by Wang [11]. Dynamic balancing methods were categorized as balancing before kinematic
synthesis and balancing after the design by Zhang [12].

All the above-mentioned balancing mechanisms solely address the balancing issue. While incorpo-
rating balancing mechanisms, an increase in the mass of the assembly cannot be avoided with the above
methods, and hence the actuator force requirements are increased subsequently. If the mass of the bal-
ancing mechanism is reduced, the damping of forces becomes challenging. Hence, while designing a
balancing mechanism, damping needs to be also taken into account. This article proposes a lightweight
balancing mechanism that does not sacrifice damping. In addition to load balancing, it can also address
force requirements.

1.1. Three-legged decoupled parallel manipulators
Decoupled parallel manipulators with three legs have two active joints and two passive joints in
each leg, leading to six actuators and hence 6-degrees of freedom (DOF). For example, the first
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Figure 1. The 3-PPRS parallel manipulator (equipment developed in-house).

two joints are actuated in each leg in the case of a 3-prismatic-prismatic-revolute-spherical (PPRS)
manipulator.

The first actuator from each leg collectively produces a 3-DOF planar motion, either translational
along the X-Y plane or rotational motion about the Z axis. Similarly, the second actuator from each leg
collectively produces a 3-DOF spatial motion which is either translational motion along the Z axis or
rotational motion about the X and Y axes (Fig. 1). Hence, the set of actuators that are causing translation
in X-Y plane and rotational motion in X-Y plane are grouped as planar motion actuators. Similarly, the
set of actuators causing rotational motion about the X and Y axes and translation along the Z axis are
grouped as spatial motion actuators [13].

The 3-PPRS parallel manipulator without the load-balancing mechanism is shown in Fig. 1. It is a
three-legged decoupled parallel manipulator having a fixed platform connected to a mobile platform
through three identical actuator legs. Each leg comprises a horizontal motion actuator, a vertical motion
actuator, and a link with a revolute joint at one end and a spherical joint at the other.

Such manipulators are called decoupled because the manipulator can exhibit planar and spatial
motion separately, using a limited number of actuators (three actuators in each case). The role of trans-
mission links in this parallel manipulator is mainly for transmitting the planar motion in the X-Y plane.
However, the planar links cause cantilever action, which affects the stiffness and result in inaccuracies
due to the thrust forces on the mobile platform. It is a common load-balancing challenge experienced
by planar manipulators, similar to the load-balancing issue in serial manipulators.

Hence, the links are made spatial as in the case of general spatial manipulators (Stewart platform or
delta manipulators), where the transmission links elevate the mobile platform from the base platform.
The spatial links are created without changing the axes of the joints. It means the force transmission will
still be retained in the X-Y plane (Fig. 1). Due to spatial links, the improvement in translational stiffness
was reported in [14] despite the reduced force transmission in the X-Y plane.

However, such inclusion of spatial links was insufficient and resulted in deflection due to the heavy
payload. The deflection of the entire assembly of the developed in-house prototype is displayed in
Fig. 2. Such deflections can be vastly subdued by removing the manufacturing and assembly toler-
ances. However, the loading impact affecting the stiffness is evident, causing strain on the actuators
and producing errors due to lateral deformations of actuator assemblies [15].

From the above argument and based on the discussion in Section 1.1, it can be well established that
any improvement in the method of balancing upsurges the torque of the actuator. To address this issue,
it has been proposed to add a passive damper in the load-balancing UPS leg (Fig. 3), which provides
force compensation along with load balancing. While adding a damper element with reduced mass, it is
essential to verify the structural analysis results.
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Figure 2. (a) Deflection of entire assembly on the application of external load on top of the mobile plat-
form of 3-PPRS manipulator and (b) entire assembly without external load on mobile platform-without
deflection (prototype developed in-house).

Figure 3. (a) Festo shock absorber as a passive damper element and (b) the 3-PPRS manipulator with
passive damper element.

A passive damper element is used for the prismatic link in the UPS configuration. Adding the damper
element to the parallel manipulator resembles a semi-active damper in the suspension system [16]. The
main functioning difference between an actuator in the suspension system and the damper in parallel
manipulators is as follows. The role of the actuator in the suspension system is to provide timely reaction
forces to counteract the input forces and additionally dissipates part of the vibration energy. A damper’s
main role in a shake table is to suppress/dissipate vibrations due to reactive forces and additionally
provide counteracting forces to the gravity load. However, the forces are non-linear in the case of the
damper.

Many configurations of serial structures can be utilized as a load-balancing leg [17]. The universal-
prismatic-universal (UPU) leg is preferred among such configurations due to minimal interference and
avoids singularities. However, the drawback of UPU leg assembly is that it constrains the workspace
and the DOF [18]. Hence, a UPS configuration is preferred, and singularity point in the workspace is
carefully avoided [19].

In what follows, the Denavit–Hartenberg methodology for the UPS leg in Section 2 followed by the
demonstration of stiffness addition to the parallel mechanism through Jacobian analysis of the UPS leg
configuration in Section 3. Structural analysis is also done to verify the improvement in the load balanc-
ing, and the results are compared with three different architectures of the 3-PPRS parallel manipulator
in Section 4. The impact of the damper mechanism on the passive leg is studied using detailed dynamic
system modeling in Section 5. The system modeling is done for a single-leg assembly to illustrate the
concept.
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Figure 4. Frame assignment for (a) a single leg and (b) passive load-balancing UPS leg.

Table I. D-H table for passive UPS leg of the 3-PPRS manipulator.

D-H parameters θ d α a
0T1 θ1 + 90 0 90 0
1T2 θ2 + 90 0 90 0
2T3 90 d3 90 0
3T4 θ4 + 90 0 90 0
4T5 θ5 + 90 0 90 0
5T6 θ6 0 0 0

2. D-H methodology
In this section, the inverse kinematics is solved using the D-H methodology. The geometric description
of the single leg and a UPS leg is shown in Fig. 4a. The d1i and d2i are the displacements of the linear
actuators, and l1 is the link length of the transmission link. θ1i and θ2i are the angle of rotational joints C
and D, respectively.

The frame assignment for the passive load-balancing UPS leg is shown in Fig. 4b. The first universal
joint is assigned with frame 0 and frame 1, followed by the prismatic joint assigned with frame 2,
followed by the second universal joint, which is assigned with frames 3 and 4. The final frame 5 is
assigned to the mobile platform. There are five joints serially connected, starting from two rotational
joints with the same origin, then a prismatic joint and two rotational joints with the same origin. The
respective joint axes xn and zn, are assigned to the joints. The angle for the rotational joint is θn, and the
displacement for the linear joint is dn. The D-H link and joint parameters are listed in Table I.
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The following equation gives the basic link transformation matrix,

i−1Ti =

⎡
⎢⎢⎣

Cθi −SθiCαi SθiSαi aiCθi

Sθi CθiCαi −CθiSαi aiSθi

0 Sαi Cαi di

0 0 0 1

⎤
⎥⎥⎦ (1)

The D-H transformation matrices are derived by substituting the D-H parameters in the fundamental
link transformation matrix. The D-H transformation matrices are as follows:

0T3 = 0T2 × 2T3 =

⎡
⎢⎢⎣

Cθ1 −Sθ1Cθ2 Sθ1Sθ2 −Sθ1Cθ2d3

Sθ1 Cθ1Cθ2 −Cθ1Sθ2 Cθ1Cθ2d3

0 Sθ2 Cθ2 Sθ2d3

0 0 0 1

⎤
⎥⎥⎦ (2)

The stiffness analysis was carried out on the manipulator in its home position, with the mobile plat-
form at zero orientation. In other words, without any tilt. As a result, the θ4; θ5; and θ6 influences on
end-effector orientation were considered to be zero.

0T6 = 0T3 × 3T6 =

⎡
⎢⎢⎣

Sθ1Sθ2 Cθ1 −Sθ1Cθ2 −Sθ1Cθ2d3

−Cθ1Sθ2 Sθ1 Cθ1Cθ2 Cθ1Cθ2d3

Cθ2 0 Sθ2 Sθ2d3

0 0 0 1

⎤
⎥⎥⎦ (3)

The directions of the joint axes, Pi−1, derived using the equation Pi−1 = 0Ri−1

⎡
⎣ 0

0
1

⎤
⎦, are as follows:

The rotation matrix,

0R0 =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ ; P0 = 0R0̂u = 0R0

⎡
⎣ 0

0
1

⎤
⎦ =

⎡
⎣ 0

0
1

⎤
⎦ ; (4)

0R1 =
⎡
⎣−Sθ1 0 Cθ1

Cθ1 0 Sθ1

0 1 0

⎤
⎦ ; P1 = 0R1̂u = 0R1

⎡
⎣ 0

0
1

⎤
⎦ =

⎡
⎣ Cθ1

Sθ1

0

⎤
⎦ ; (5)

0R2 =
⎡
⎣ Sθ1Sθ2 Cθ1 −Sθ1Cθ2

−Cθ1Sθ2 Sθ1 Cθ1Cθ2

Cθ2 0 Sθ2

⎤
⎦ ; P2 = 0R2̂u = 0R2

⎡
⎣ 0

0
1

⎤
⎦ =

⎡
⎣−Sθ1Cθ2

Cθ1Cθ2

Sθ2

⎤
⎦ ; (6)

0R3 =
⎡
⎣ Cθ1 −Sθ1Cθ2 Sθ1Sθ2

Sθ1 Cθ1Cθ2 −Cθ1Sθ2

0 Sθ2 Cθ2

⎤
⎦ ; P3 = 0R3̂u = 0R3

⎡
⎣ 0

0
1

⎤
⎦ =

⎡
⎣ Sθ1Sθ2

−Cθ1Sθ2

Cθ2

⎤
⎦ ; (7)

0R4 =
⎡
⎣−Sθ1Cθ2 Sθ1Sθ2 Cθ1

Cθ1Cθ2 −Cθ1Sθ2 Sθ1

Sθ2 Cθ2 0

⎤
⎦ ; P4 = 0R4̂u = 0R4

⎡
⎣ 0

0
1

⎤
⎦ =

⎡
⎣ Cθ1

Sθ1

0

⎤
⎦ ; (8)

0R5 =
⎡
⎣ Sθ1Sθ2 Cθ1 −Sθ1Cθ2

−Cθ1Sθ2 Sθ1 Cθ1Cθ2

Cθ2 0 Sθ2

⎤
⎦ ; P5 = 0R5̂u = 0R5

⎡
⎣ 0

0
1

⎤
⎦ =

⎡
⎣−Sθ1Cθ2

Cθ1Cθ2

Sθ2

⎤
⎦ ; (9)
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The position vectors i−1P6, derived by applying the equation, nPi = 0TiOi − 0TnOi, are listed below

0P6 = 0T6O6 − 0T0O6 =

⎡
⎢⎢⎣

−Sθ1Cθ2d3

Cθ1Cθ2d3

Sθ2d3

1

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−Sθ1Cθ2d3

Cθ1Cθ2d3

Sθ2d3

0

⎤
⎥⎥⎦ ; (10)

1P6 = 0T6O6 − 0T1O6 =

⎡
⎢⎢⎣

−Sθ1Cθ2d3

Cθ1Cθ2d3

Sθ2d3

1

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−Sθ1Cθ2d3

Cθ1Cθ2d3

Sθ2d3

0

⎤
⎥⎥⎦ ; (11)

The Jacobian matrix does not require the position vector 2P6. Because it corresponds to the prismatic
joint, only the direction of the joint axis P2 is required.

Also,

3P6 = 4P6 = 5P6 =
⎡
⎣ 0

0
0

⎤
⎦ ; (12)

3. Stiffness analysis using Jacobian matrix
The Jacobian matrix for a manipulator with non-planar links is obtained using the screw theory principle.
The input/actuator velocities are transformed to the end-effector output velocity using a Jacobian velocity
matrix. The Jacobian matrix can also be used to find singular configurations of the manipulator in which
it gains one or more DOF.

The end-effector’s twist is related to the joint rate vector θ̇ by

Jθ̇ = t (13)

θ̇ = [
ḋ1i ḋ2i θ̇1i θ̇4i θ̇5i θ̇6i

]T
;idenotes leg i, t =

[
ω

ċ

]
(14)

where J is the screw-based velocity Jacobian matrix for UPS configuration

J =
[

P0 × 0P6 P1 × 1P6 P2 P3 × 3P6 P4 × 4P6 P5 × 5P6

P0 P1 0 P3 P4 P5

]
(15)

Pi is the joint i’s direction vector. nPi is the position vector pointing from the ith joint to the end-
effector. The values of position vectors and the direction of joint axes are imported from Section 2 for
Jacobian calculations.

For the 1st joint (revolute),

J1 =
[

P0 × 0P6

P0

]
(16)

J1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ 0

0
1

⎤
⎦ ×

⎡
⎣−Sθ1Cθ2d3

Cθ1Cθ2d3

Sθ2d3

⎤
⎦

⎡
⎣ 0

0
1

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−Cθ1Cθ2d3

−Sθ1Cθ2d3

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)
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The 3rd joint (prismatic),

Ji =
[

Pi−1

0

]
; J3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Sθ1Cθ2

Cθ1Cθ2

Sθ2

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

Similarly, the Jacobian for the other joints J4, J5, and J6 is computed.

J2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

Sθ1Sθ2d3

−Cθ1Sθ2d3

Cθ2d3

Cθ1

Sθ1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

J4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

Sθ1Sθ2

−Cθ1Sθ2

Cθ2

⎤
⎥⎥⎥⎥⎥⎥⎦

; J5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

Cθ1

Sθ1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

; J6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

−Sθ1Cθ2

Cθ1Cθ2

Sθ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(19)

The Jacobian matrix for the UPS configuration is given below, J = [
J1 J2 J3 J4 J5 J6

]

JUPS =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Cθ1Cθ2d3

−Sθ1Cθ2d3

0
0
0
1

Sθ1Sθ2d3

−Cθ1Sθ2d3

Cθ2d3

Cθ1

Sθ1

0

−Sθ1Cθ2

Cθ1Cθ2

Sθ2

0
0
0

0
0
0

Sθ1Sθ2

−Cθ1Sθ2

Cθ2

0
0
0

Cθ1

Sθ1

0

0
0
0

−Sθ1Cθ2

Cθ1Cθ2

Sθ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(20)

3.1. Stiffness map results
The parallel manipulator configuration proposed in this article comprises two main components: the
constraining leg, which can be considered a serial (passive), and the 3-PPRS manipulator as a parallel
(active) mechanism. As a result, the overall stiffness matrix of the parallel mechanism with a constraining
leg can be obtained by adding the stiffness matrices of the parallel and serial mechanisms [20]. The
stiffness matrix for the manipulator, including the UPS constraining leg, is given by,

K = KUPS + Kparallel; (21)

where

KUPS = (
J′

UPS

)−T
Kdia

(
J′

UPS

)−1 (22)

By the principle of the virtual joint method [21], the diagonal stiffness matrix Kdia is given as follows:

Kdia = diag [0, K6, 0, 0, 0, 0] (23)

Within the workspace, the stiffness of the UPS leg KUPS in the X-Y plane is determined. The D-H
methodology discussed in Section 2 is used to solve the inverse kinematics of the UPS configuration.
With the solved UPS parameters (joint angles and displacement), the Jacobian JUPSis computed, and
hence the stiffness of the UPS leg.

As the spatial motion actuators of the 3-PPRS manipulator are aligned along Z axis, the configuration
has high torsional stiffness. Hence, the translational stiffness alone is studied. The stiffness values Kx
and Kz in the X-Y plane are plotted in Fig. 5. The stiffness values Kx are high around the region of the
home position, and the values are five times larger compared to Kz values. The stiffness in X-axis is a
valuable addition to this parallel manipulator (3-PPRS) because the existing parallel manipulator has
one of the planar motion actuators aligned along the X-axis. Including UPS leg in the 3-PPRS parallel
manipulator will enhance its translational stiffness.
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Figure 5. Stiffness plot for Kx and Kz in the X-Y plane for the UPS configuration.

4. Static structural analysis of 3-PPRS parallel manipulator
Using ANSYS Workbench software, the structural analysis of the three different 3-PPRS parallel
manipulator architectures, namely the 3-PPRS manipulator with planar transmission links, the 3-PPRS
manipulator with spatial transmission links, and the 3-PPRS manipulator with spatial transmission links
in addition to the passive load-balancing UPS leg, is compared. In this article, the load balancing of the
entire manipulator is of prime interest. The vertical hydraulic actuators predominantly carrying the load
against gravity are only considered for static structural analysis. On the other hand, the horizontal elec-
trical actuators not carrying any load against gravity are excluded from the analysis, simplifying the
computer-aided design (CAD) model.

Three architectures are structurally compared in the static structural analysis [22] using total defor-
mation and equivalent stress (Von Mises). In the ANSYS Workbench Static Structural tool, the CAD
models of the 3-PPRS manipulator are imported from SolidWorks as step files, and the manipulator’s
material was set to mild steel (MS). The fixed platform is fastened to the ground, and a load of 5000 N
is applied to the center of the mobile platform. The results of the static structural simulation are shown
in Figs. 6–7.

4.1. Results of structural analysis
From Tables II-III, it is clear that compared to the other two 3-PPRS manipulator architectures, the
one with both spatial transmission links and a passive load balancing leg has the least total deformation
value (0.02581 mm) and the lowest Von Mises equivalent stress (72.30 MPa). The proposed architecture
is designed safe because the selected material (MS) has a tensile yield strength of 250 MPa [23]. Thus,
the architecture of a 3-PPRS manipulator with spatial transmission links and a passive load-balancing
UPS leg is determined to be effective based on the analytical results and selected for manufacturing.

5. Dynamic system modeling
Due to the manipulator assembly’s symmetrical nature, a single-leg assembly model is considered [24].
The specimen model includes the model of the transmission link, push rod, and specimen. Hence, the
stiffness of the link, push rod, and specimen are added, as shown in Fig. 8. Specimen stiffness indicates
the stiffness of the specimen, connecting link, and the pushrod, and it is represented as Ksp. Similar is the
case with specimen damping Csp. The oil column in the cylinder is compressible, and it is represented
by a stiffness of Ka and damping of Ca.
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planar transmission links

spatial transmission links

combination of spatial transmission links and a passive UPS load-balancing leg

(a)

(b)

(c)

Figure 6. The total deformation for the three different architectures of the 3-PPRS manipulator.
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a combination of spatial transmission links and a passive UPS load-balancing leg  

planar transmission links

 spatial transmission links

(a)

(b)

(c)

Figure 7. The equivalent stress for three different architectures of the 3-PPRS manipulator.
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Table II. Total deformation of the 3-PPRS manipulator.

Architecture: 3-PPRS Minimum[mm] Maximum[mm]
With planar links 0 0.608
With spatial links 0 0.439
With spatial links and UPS leg 0 0.026

Table III. Equivalent stress of 3-PPRS manipulator.

Architecture: 3-PPRS Minimum [MPa] Maximum [MPa]
With planar links 2.92 × 10−8 273.60
With spatial links 1.75 × 10−8 232.63
With spatial links and UPS leg 4.12 ×10−9 72.30

Figure 8. The mechanical model of a single actuator leg and a passive hydraulic cylinder.

The UPS leg is modeled as a passive hydraulic cylinder in Case 1 and a passive damper in Case 2. In
the case of a passive damper, it is modeled as a non-linear spring. It means the spring force will be larger
at the compressed state and minimum at the extended state [25]. The spring force is proportional to the
displacement by the passive damper, which will be the difference between the total spring length and
actual displacement, that is, (zmax − zt). The mass is considered negligible because of its passive nature.

5.1. Case 1 modeling of UPS leg as a passive hydraulic cylinder
The mechanical model of the single actuator leg and the UPS leg as a passive hydraulic cylinder is shown
in Fig. 8. The passive hydraulic cylinder contains a linear spring (Kb) and damper (Cb).

The free-body diagram of the above mechanical model is shown in Fig. 9.
Upward direction is the positive sign convention for displacements zp and zt. Summing all external

forces with an upward direction as the positive sign convention and applying Newton’s second law, for

Mass (Mp):+ ↑
∑

F = −Ksp(zp − zt) − Csp(żp − żt) − Kazp − Cażp + Fh = Mpz̈p (24)

Mass (Mt):+ ↑
∑

F = Ksp(zp − zt) + Csp(żp − żt) − Ksazt − Csażt = Mtz̈t (25)
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Figure 9. The free-body diagram of the mechanical model with UPS leg as a passive hydraulic cylinder.

Rearranging these equations with dynamic variables (zp and zt) on the left-hand side and the input
variable Fh on the right-hand side,

Mpz̈p + Csp

(
żp − żt

) + Ksp

(
zp − zt

) + Kazp + Cażp = Fh (26)

Mtz̈t + Csp

(
żt − żp

) + Ksp

(
zt − zp

) + Ksazt + Csażt = 0 (27)

Equations (26) and (27) represent the mathematical model of the single actuator leg and the load-
balancing UPS leg. As there are two inertia elements, Mt&Mp, the model consists of two second-order
ordinary differential equations (ODEs). Since both ODEs are coupled, solving one ODE separately
from the other is impossible. In Case 1, the model is linear because we have assumed linear stiffness
and damper elements. In general, this condition is suitable for an inherently stable system. Intuition tells
us that the shake table model is stable and will always return to static equilibrium when input hydraulic
force Fh is stopped.

Writing equation (27) in the Laplace form,

Mts
2zt + Csps

(
zt − zp

) + Ksp

(
zt − zp

) + Ksazt + Csaszt = 0 (28)

zt

(
Mts

2 + Csps + Ksp + Ksa + Csas
) = −zp

(−Csps − Ksp

)
(29)

By rearranging the above equation, the relation between pushrod displacement and table displace-
ment is obtained in equation (30),

zt

zp

= Csps + Ksp(
Mts2 + (

Csp + Csa

)
s + (

Ksp + Ksa

)) (30)

Writing equation (26) in the Laplace form,

Mps
2zp + Csps

(
zp − zt

) + Ksp

(
zp − zt

) + Kazp + Caszp = Fh (31)

zp

(
Mps2 + Csps + Ksp + Cas + Ka

) + zt

(−Csps − Ksp

) = Fh (32)

zp = zt

(
Csps + Ksp

) + Fh

Mps2 + (
Csp + Ca

)
s + (

Ksp + Ka

) (33)

Substituting zp value in equation (30), and upon simplification, the following relations between
displacements zt & zp and the hydraulic force (Fh) applied to the piston are obtained

zt

Fh

= A′(
Mps2 + C′) B′ − A′2 (34)
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Figure 10. The conceptual realization of the passive hydraulic cylinder transfer function is shown in
equation (30).

Figure 11. The mechanical model of a single actuator leg and a passive hydraulic damper.

Similarly,
zp

Fh

= B′(
Mps2 + C′) B′ − A′2 (35)

where

A′ = Csps + Ksp (36)

B′ = Mts
2 + (

Csp + Csa

)
s + (

Ksp + Ksa

)
(37)

C′ = (
Csp + Ca

)
s + (

Ksp + Ka

)
(38)

The graphical representation of equation (30) is shown in Fig. 10.

5.2. Case 2 modeling of UPS leg as a passive damper
The mechanical model of the single actuator leg and the UPS leg as a passive damper is shown in
Fig. 11. The passive damper contains the non-linear spring (Kn) and damper (Cn). The non-linear spring
and damper are differentiated structurally from linear spring and damper, as shown in Fig. 11.

The free-body diagram of the above mechanical model is given in Fig. 12. The initially compressed
spring and damper of the passive damper element are indicated in the free-body diagram by blue dotted
lines. The displacement offered by the passive damper will be (zmax − zt). Since stroke length is constant
( ˙zmax = 0).

Equation (27) becomes

Mtz̈t + Csp

(
żt − żp

) + Ksp

(
zt − zp

) − Ksa (zmax − zt) − Csa ( ˙zmax − żt) = 0 (39)
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Figure 12. The free-body diagram of the mechanical model with UPS leg as a passive damper.

Figure 13. The conceptual realization of the passive damper model transfer function is shown in
equation (43).

Writing the above equation in the Laplace form,

Mts
2zt + Csps

(
zt − zp

) + Ksp

(
zt − zp

) − Ksazmax + Ksazt + Csaszt = 0 (40)

zt

(
Mts

2 + (
Csp + Csa

)
s + Ksp + Ksa

) − Ksazmax = zP

(
Csps + Ksp

)
(41)

On further simplification, the relation between the table displacement (zt) and the pushrod displace-
ment (zP) is obtained in equation (43).

ztB
′ = zPA′ + Ksazmax (42)

zt = zP

A′

B′ + Ksazmax

B′ (43)

The inclusion of a passive damper causes an additional term in the transfer function model, Ksazmax,
which appears to be a disturbance in equation 42. The passive damper element comprises a non-linear
spring [26] which is initially compressed to provide high spring force. This nonlinearity in the model
provides force compensation during the upward displacement of the mobile platform zt (load against
gravity) which was captured as DC gain in Fig. 17.

The graphical representation of equation (43) is shown in Fig. 13.

5.3. Stability results and damping analysis
The following sections present the stability results and damping analysis for Cases 1 and 2.
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Figure 14. The Simulink transfer function model for the passive cylinder.

Table IV. The parameter values for the transfer functions.

Parameter Value
Csp 3 × 105Ns/m
Csa 3.18 × 106Ns/m
Kl 2 × 106N/m
Ksp 5 × 108N/m
Ksa 5 × 107N/m
Mt 2700 Kg

Figure 15. The response plot of the passive hydraulic cylinder.

5.3.1. For Case 1: passive hydraulic cylinder
From equation (30), it can be inferred that Ksa appears on the denominator of the transfer function. Hence,
the value of Ksa should be chosen 0.1 times the value of Ksp. This will ensure that the DC gain remains
unaffected. A step signal is given as input to the transfer function of the passive hydraulic cylinder given
by equation (30). The Simulink model for the transfer function is displayed in Fig. 14.

The parameter values for the transfer functions are chosen from Table IV.
In the case of a passive hydraulic cylinder as the load-balancing UPS leg, the output displacement of

the specimen/table shows overshoot and vibrations, as illustrated in Fig. 15.
As shown in Table V, the system is stable (since all the complex poles of the transfer function are in

the left half of the s-plane), but it is underdamped (damping ratio ζ < 1).
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Table V. Transfer function parameter table for the passive hydraulic cylinder.

Pole Damping ratio Frequency (rad/s) Time constant (s)
−58.9 + 452i 0.129 456 0.017
−58.9 − 452i 0.129 456 0.017
−58.9 + 452i 0.129 456 0.017
−58.9 − 452i 0.129 456 0.017

Figure 16. The Simulink transfer function model for the passive damper.

5.3.2. For Case 2: passive damper element
Equation (43) represents the transfer of the passive damper element. The Ksa value is (Kn + Kb), where
Kn represents the non-linear part of the damper (Fig. 11). After estimating the non-linear value of Kn, the
Ksa value was determined to be 1×108 N/m. Similarly, the Csa value is estimated to be 3.18×106 Ns/m
(Table IV), which is ten times larger than Csp. Due to this, the damping of the model improved, as shown
in Fig. 17.

A step signal is given as input to the transfer function of the passive damper model given by equation
(43). The Simulink model for the transfer function is displayed in Fig. 16.

With the inclusion of a passive hydraulic damper in the model, the vibrations are suppressed, and the
DC gain factor increases, as shown in Fig. 17.

As shown in Table VI, the system is stable (the two complex poles and two real poles of the transfer
function are in the left half of the s-plane) and critically damped (damping ratio ζ = 1).

6. Conclusion
Including a passive damper element (a UPS leg) in the 3-PPRS parallel manipulator is proposed in
this article, which addresses both the load balancing and force compensation issues common in parallel
spatial manipulators. The UPS leg is analyzed using a passive hydraulic cylinder (linear) and a passive
damper (non-linear). For the first time, such damper elements were introduced in the parallel manipula-
tor, and its nonlinearity was captured in the detailed mathematical modeling. A comparative study was
performed using standard balancing mechanisms such as a passive hydraulic cylinder.

The following specific conclusions can be drawn:
1. From the stiffness map results, adding a UPS-load balancing leg to the 3-PPRS parallel

manipulator improves the overall stiffness of the load-bearing assembly.
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Figure 17. The response plot of the passive damper model.

Table VI. Transfer function parameter table for passive damper model.

Pole Damping ratio Frequency (rad/s) Time constant (s)
−195 + 6.27 × 10−6 i 1 195 0.005
−195 + 6.27 × 10−6 i 1 195 0.005
−1100 1 1100 0.005
−1100 1 1100 0.005

2. The architecture of a 3-PPRS manipulator with spatial transmission links and a passive load-
balancing UPS leg is effective in terms of total deformation and equivalent stress.

3. From the detailed dynamic system modeling, the inclusion of a passive damper to a 3-PPRS sys-
tem is found to be stable and critically damped. This damping is highly desirable for applications
such as seismic simulation and flight simulation. On the other hand, including a passive hydraulic
cylinder in a 3-PPRS system is found to be stable but underdamped, which is undesirable.

4. The DC gain in the response indicates that the passive damper element aided the force compen-
sation during the upward displacement of the mobile platform zt (against gravity). For future
study, the downward displacement of the mobile platform zt will be considered.

As a result, the improved configuration of the 3-PPRS parallel manipulator with a passive damper
proposed in this article is desirable for enhanced system stiffness and damping and force compensation
for counteracting the load against gravity.
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Appendix: Symbols and Notations

Ca Internal cylinder damping
Cb Internal damping of passive cylinder or damper
Cd Piston damping of passive cylinder or damper
Cp Pushrod damping of the hydraulic actuator
Cs Damping of table and specimen
Csa Damping of UPS leg
Csp Specimen damping
dn Displacement of the linear joint
Fh The hydraulic force is given to the piston
J Jacobian matrix
Ka Cylinder oil stiffness
Kb Passive cylinder or damper oil stiffness
Kd Piston stiffness of passive cylinder or damper
Kl Link stiffness
Kp Pushrod stiffness of the hydraulic actuator
Ks Stiffness of table and specimen
Ksp Specimen stiffness
Mp Piston mass
Mt Table and specimen mass
nPi Position vectors
iRi−1 Rotation matrix
i−1Ti Transformation matrix
xn & zn Joint frames
Zmax Total spring length
Zp Pushrod displacement
Zt Table displacement
˙zmax The first derivative of the total spring length

żp The linear velocity of the pushrod
żt The linear velocity of the table
z̈p Acceleration of pushrod
z̈t Acceleration of table
θn The angle of the rotational joint
θ̇ Joint rate vector
ζ Damping ratio

Cite this article: A. X. Reni Prasad and M. Ganesh (2023). “Design, static analysis, and dynamic system modeling of 3-PPRS
parallel manipulator with load-balancing UPS leg”, Robotica 41, 2735–2753. https://doi.org/10.1017/S0263574723000632
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