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Abstract

Dung’s abstract Argumentation Framework (AF) has emerged as a key formalism for argumenta-
tion in artificial intelligence. It has been extended in several directions, including the possibility
to express supports, leading to the development of the Bipolar Argumentation Framework
(BAF), and recursive attacks and supports, resulting in the Recursive BAF (Rec-BAF). Different
interpretations of supports have been proposed, whereas for Rec-BAF (where the target of
attacks and supports may also be attacks and supports) even different semantics for attacks
have been defined. However, the semantics of these frameworks have either not been defined in
the presence of support cycles or are often quite intricate in terms of the involved definitions.
We encompass this limitation and present classical semantics for general BAF and Rec-BAF
and show that the semantics for specific BAF and Rec-BAF frameworks can be defined by very
simple and intuitive modifications of that defined for the case of AF. This is achieved by pro-
viding a modular definition of the sets of defeated and acceptable elements for each AF-based
framework. We also characterize, in an elegant and uniform way, the semantics of general BAF
and Rec-BAF in terms of logic programming and partial stable model semantics.

Keywords: abstract argumentation, argumentation semantics, partial stable models

1 Introduction

Formal argumentation has emerged as one of the important fields in Artificial Intelligence

(Rahwan and Simari, 2009). In particular, Dung’s abstract Argumentation Framework

(AF) is a simple, yet powerful formalism for modeling disputes between two or more

agents (Dung 1995). An AF consists of a set of arguments and a binary attack relation

over the set of arguments that specifies the interactions between arguments: intuitively,
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Fig 1. BAF (left) and Rec-BAF (right) of Example 1.

if argument a attacks argument b, then b is acceptable only if a is not. Hence, arguments

are abstract entities whose role is entirely determined by the interactions specified by

the attack relation.

Dung’s framework has been extended in many different ways, including the introduc-

tion of new kinds of interactions between arguments and/or attacks. In particular, the

class of Bipolar Argumentation Frameworks (BAFs) is an interesting extension of AF

that allows for also modelling supports between arguments (Nouioua and Risch 2011;

Villata et al . 2012). Different interpretations of supports have been proposed in the lit-

erature. Further extensions consider second-order interactions (Villata et al . 2012), for

example, attacks to attacks/supports, as well as more general forms of interactions such as

recursive AFs where attacks can be recursively attacked (Baroni et al . 2011; Cayrol et al .

2017) and recursive BAFs, where attacks/supports can be recursively attacked/supported

(Gottifredi et al . 2018). The next example shows two extensions of AF, whereas an

overview of the extensions of AF studied in this paper is provided at the end of this

section.

Example 1.

Consider a scenario regarding a restaurant and the possible menus to be suggested to

customers. The arguments denote elements that are available and that can occur in

a menu, whereas attacks denote incompatibility among elements. Consider the scenario

shown in Figure 1 (left), where the attacks αi (1≤ i≤ 4) denote incompatibilities, whereas

the support β1 from fish to white states that a menu may have white wine only if it

also contains fish. Regarding the attacks, they state that the menu cannot contain both

meat and fish as well as both white and red wine.

Assume now there exist two arguments sorbet and sorbet (no sorbet), attacking

each other, stating that the menu may contain or not contain the sorbet. The resulting

framework is shown in Figure 1 (right). The (recursive) attacks α7 and α8 from sorbet

to α1 and α2 state that if sorbet is in the menu, then the incompatibility between fish

and meat is not valid anymore.

While the semantics of argumentation is universally accepted, for the frameworks

extending AF with supports and recursive attacks/supports, several interpretations of

their role have been proposed, giving rise to different semantics (Rahwan and Simari

2009; Cohen et al . 2014; Cayrol et al . 2021). Following Dung’s approach, the meaning

of recursive AF-based frameworks is still given by relying on the concept of extension.

However, the extensions of an AF with recursive attacks and supports also include the

(names of) attacks and supports, which intuitively contribute to determine the set of

accepted arguments (Cayrol et al . 2017, 2018).
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Fig 2. AF-based frameworks investigated in the paper. Rec-BAF frameworks are in the corners.

1.1 AF-based frameworks

Among the different frameworks extending AF some of them share the same struc-

ture, although they have different semantics. Thus, in the following, we distinguish

between framework and class of frameworks. Two frameworks sharing the same syntax

(i.e., the structure) belong to the same (syntactic) class. For instance, BAF is a syntac-

tic class, whereas Argumentation Framework with Necessities (AFN) and Argumentation

Framework with Deductive Supports (AFD) are two specific frameworks sharing the same

BAF syntax; their semantics differ because they interpret supports in different ways.

Figure 2 overviews the frameworks extending AF studied in this paper. Horizontal

arrows denote the addition of supports with two different semantics (necessary seman-

tics in the left direction and deductive semantics in the right direction), whereas vertical

arrows denote the extension with recursive interactions (i.e., attacks and supports); the

two directions denote two different semantics proposed in the literature for determin-

ing the acceptance status of attacks. The frameworks Attack-Support Argumentation

Framework (ASAF) and Recursive Argumentation Framework with Necessities (RAFN)

(as well as Argumentation Framework with Recursive Attacks-Supports (AFRAD) and

Recursive Argumentation Framework with Deductive Supports (RAFD)) belong to the

same class, called Recursive BAF (Rec-BAF), combining AFN (resp., AFD) with AFRA

and RAF, respectively. The differences between ASAF and RAFN (resp., AFRAD and

RAFD) semantics are not in the way they interpret supports, both based on the necessity

(resp., deductive) interpretation, but in a different determination of the status of attacks

as they extend AFRA and RAF, respectively. Clearly, the frameworks in the corners are

the most general ones. However, for the sake of presentation, before considering the most

general frameworks, we also analyze the case of BAFs.

So far, the semantics of BAF and Rec-BAF frameworks has been defined only for

restricted classes, called acyclic. Although recently two new semantics have been pro-

posed for general AFN and RAFN, these semantics extending the ones defined for acyclic

frameworks are quite involved. Thus, in this paper, we propose simple extensions of the

semantics defined for acyclic BAF and Rec-BAF that apply to all specific frameworks

in these classes (e.g., AFN, AFD, ASAF, RAFN, etc.) and show that, as for the acyclic

case, the semantics of a framework can be also computed by considering an “equivalent”

logic program under partial stable model semantics.
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1.2 Contributions

The main contributions are as follows:

• We propose classical semantics for general BAF and Rec-BAF and show that the

semantics for specific BAF and Rec-BAF frameworks can be defined by very simple

and intuitive modifications of that defined for the case of AF;

• We show that any general (Rec-)BAF Δ can be mapped into an equivalent logic

program PΔ under (partial) stable model semantics;

• We investigate the complexity of the verification and credulous and skeptical accep-

tance problems for (Rec-)BAF under semantics σ ∈ {gr, co, st, pr}. It turns

out that BAF and Rec-BAF are as expressive as AF, though more general relations

(i.e., supports and recursive relations) can be easily expressed.

2 Preliminaries

2.1 Argumentation frameworks

An abstract Argumentation Framework (AF) is a pair 〈A,Ω〉, where A is a set of argu-

ments and Ω⊆A×A is a set of attacks . An AF can be seen as a directed graph, whose

nodes represent arguments and edges represent attacks; an attack (a, b)∈Ω from a to b

is represented by a→ b.

Given an AF Δ= 〈A,Ω〉 and a set S⊆A of arguments, an argument a∈A is said

to be i) defeated w.r.t. S iff ∃b∈ S such that (b, a)∈Ω, and ii) acceptable w.r.t. S iff

for every argument b∈A with (b, a)∈Ω, there is c∈ S such that (c, b)∈Ω. The sets of

defeated and acceptable arguments w.r.t. S (where Δ is understood) are next defined.

Definition 1.

For any AF Δ= 〈A,Ω〉 and set of arguments S⊆A, the set of arguments defeated by S

and acceptable w.r.t. S is defined as follows:

• def(S) = {a∈A | ∃ b∈ S . b→ a};
• acc(S) = {a∈A | ∀ b∈A . b→ a implies b∈ def(S)}.

Given an AF 〈A,Ω〉, a set S⊆A of arguments is said to be (i) conflict-free iff S∩
def(S) = ∅ and (ii) admissible iff it is conflict-free and S⊆ acc(S). Moreover, S is a

• complete extension iff it is conflict-free and S= acc(S);

• preferred extension iff it is a ⊆-maximal complete extension;

• stable extension iff it is a total (i.e., S∪ def(S) =A) preferred extension;

• grounded extension iff it is the ⊆-smallest complete extension.

The set of complete (resp., preferred, stable, grounded) extensions of a framework Δ will

be denoted by co(Δ) (resp., pr(Δ), st(Δ), gr(Δ)). We often denote extensions by pairs

denoting both accepted and defeated elements using the notation σ̂(Δ) instead of σ(Δ)

(with σ ∈ {co, st, pr, gr}), where σ̂(Δ) = {Ŝ= 〈S, def(S)〉 | S∈ σ(Δ)}.
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Example 2.

Let Δ= 〈A,Ω〉 be an AF, where A= {a, b, c, d} and Ω= {(a,b), (b,a), (a,c),

(b,c), (c,d), (d,c)}. The set of complete extensions of Δ is co(Δ) = {∅, {d},
{a, d}, {b, d}}. Consequently, pr(Δ) = st(Δ) = {{a, d}, {b, d}}, gr(Δ) = {∅}.

Two main problems in formal argumentation are verification and acceptance (Dvorák

et al. 2023; Fazzinga et al . 2022; Alfano et al . Alfano et al., 2023, 2023a,b,c,d, 2024b,c;

Dvorák et al . 2022,2024). Given an AF Δ= 〈A,Ω〉, a set S ⊆A of arguments, and a

semantics σ ∈ {gr, co, st, pr}, the verification problem is the problem of deciding S is

a σ-extension of Δ (i.e., S ∈ σ(Δ)). Given an AF Δ= 〈A,Ω〉, an argument a∈A, and
a semantics σ ∈ {gr, co, st, pr}, the credulous ( resp., skeptical) acceptance problem is

the problem of deciding whether argument a is credulously (resp., skeptically) accepted

under semantics σ, that is, deciding whether a belongs to at least one (resp., all) σ-

extension of the framework Δ. Clearly, for the grounded semantics, which admits exactly

one extension, these problems become identical. The complexity of acceptance and verifi-

cation problems for AF has been thoroughly investigated (see Dvorák and Dunne (2017)

for a survey). The semantics of an AF Δ can be also computed by considering the

logic program PΔ, under partial stable model (PSM) semantics, derived from Δ= 〈A,Ω〉
as follows:

PΔ =

⎧⎨
⎩a←

∧
(b,a)∈Ω

¬b | a∈A

⎫⎬
⎭

.

(1)

Partial stable models are 3-valued. A partial interpretation M is a partial stable model

of a ground program P if it is the minimal model of the program PM obtained from

replacing negated literals in the rules’ body with their truth values in M . The set of

partial stable models of a program P is denoted as PS(P ). It has been shown that for

any AF Δ, ĉo(Δ) =PS(PΔ). More information on partial stable model semantics can be

found in Appendix A.

2.2 Bipolar argumentation frameworks

A Bipolar Argumentation Framework (BAF) is a triple 〈A,Ω, Γ〉, where A is a set of

arguments , Ω⊆A×A is a set of attacks , and Γ⊆A×A is a set of supports . A BAF can

be represented by a directed graph with two types of edges: attacks and supports , denoted

by → and ⇒, respectively. A support path a0
+⇒an from argument a0 to argument an is a

sequence of n edges ai−1⇒ ai with 0< i≤ n. We use Γ+ = {(a, b) | a, b∈A ∧ a +⇒b} to
denote the set of pairs (a, b) such that there exists a support path from a to b. A BAF is

said to be acyclic if it does not have support cycles; that is, there is no argument a such

that a
+⇒a.

Different interpretations of the support relation have been proposed in the literature

(Rahwan and Simari 2009; Cayrol et al . 2021). In this paper, we concentrate on the

necessity and deductive interpretations (Nouioua and Risch 2011; Villata et al . 2012).

Necessary support is intended to capture the following intuition: if argument a supports

argument b, then the acceptance of b implies the acceptance of a and the non-acceptance

of a implies the non-acceptance of b, whereas the deductive interpretation states that the

acceptance of a implies that b is also accepted.
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The two BAF frameworks obtained by interpreting the supports as necessities or as

deductive are, respectively, called Argumentation Framework with Necessities (AFN) and

Argumentation Framework with Deductive Supports (AFD).

It is worth noting that for AFN, the following implication holds: (i) a→ b and b
+⇒c

imply a→ c (called secondary or derived attack). Similarly, for AFD, the following

implication holds: (ii) a→ b and c
+⇒b imply a→ c (called mediated or derived attack).

Considering Example 1, under the necessary interpretation of supports, there exists a

secondary attack from meat to white.

There has been a long debate on the fact that the support relation should be acyclic

as it is inherently transitive. On the other side, a framework represents a situation where

several agents may act, and, thus, support cycles could be present. In this subsection

we assume that the support relation is acyclic, as originally defined by Nouioua and

Risch (2011). A semantics for the general AFN, albeit a bit involved, has been recently

proposed by Nouioua and Boutouhami (2023).

The aim of this paper, explored in Section 4, is the definition of intuitive semantics for

general Recursive BAF, which extend both semantics defined for BAF and acyclic BAF.

To this end, in the rest of this subsection, we discuss semantics for acyclic BAF, whereas

in Section 3, we present an intuitive semantics for general BAF. For BAF with supports

interpreted as necessities (AFN), the new semantics is equivalent to that proposed by

Nouioua and Boutouhami (2023).

2.2.1 AF with necessary supports (AFN)

The semantics of AFN with acyclic supports can be defined by first redefining the

definition of defeated and acceptable sets as follows.

Definition 2.

For any AFN 〈A,Ω, Γ〉 and set of arguments S⊆A:

• def(S) = {a∈A | (∃b∈ S . b→ a) ∨ (∃c∈ def(S) . c⇒ a};
• acc(S) = {a∈A|(∀b ∈A.b→ a implies b∈def(S))∧ (∀c∈A. c⇒ a implies c∈acc(S)}.

It is worth noting that def(S) and acc(S) are defined recursively. The definitions of

conflict-free and admissible sets, as well as the definitions of complete, preferred, stable,

and grounded extensions are the same as those introduced for AF.

Example 3.

Let Δ= 〈{fish, meat, white, red}, {(fish,meat), (meat,fish), (white,red),

(red,white)}, {(fish,white)}〉 be the AFN shown on Figure 1(left). Then,

def({fish,white}) = {meat,red} and acc({fish,white}) = {fish, white}. Δ has six

complete extensions, which are E0 = ∅, E1 = {red}, E2 = {fish}, E3 = {fish, red},
E4 = {fish, white}, and E5 = {meat,red}. Moreover, E3, E4, and E5 are preferred

(and also stable), while E0 is the grounded extension.

An alternative and equivalent way to define the semantics of acyclic AFN is to

rewrite them in terms of “equivalent” AF, by introducing secondary attacks and deleting

supports. The derived AF of the AFN 〈A,Ω, Γ〉 of Example 3 is 〈A,Ω∪ {(meat,white)}〉.
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2.2.2 AF with deductive supports (AFD)

The semantics of AFD is dual w.r.t. that of AFN; that is, we can transform a BAF with

deductive supports into an equivalent BAF with necessary supports by simply reversing

the direction of the support arrows (Cayrol et al . 2021). Equivalently, the semantics of

acyclic AFD can be defined in terms of AF by adding mediated attacks and removing the

supports. Alternatively, it can be presented as in Definition 2 by replacing the support

c⇒ a with the support a⇒ c.

2.3 Recursive BAF

By combining the concepts of bipolarity and recursive interactions, more general argu-

mentation frameworks have been defined. A Recursive Bipolar Argumentation Framework

(Rec-BAF) is a tuple 〈A, R, T, s, t〉, where A is a set of arguments, R is a set of attack

names, T is a set of support names, and s (resp., t) is a function from R ∪ T to A (resp.,

to A ∪ R ∪ T ), which is mapping each attack/support to its source (resp., target).

Considering AF with recursive attacks, that is, AF in which the target of an attack

can also be an attack, two different semantics have been defined, giving rise to two

specific frameworks: Recursive Abstract Argumentation Framework (RAF) (Cayrol et al .

2017) and Abstract Argumentation Framework with Recursive Attacks (AFRA) (Baroni

et al . 2011). We do not further discuss these two frameworks as they are just special

cases of Rec-BAF. We mention them only for the fact that they were proposed before

Rec-BAF frameworks, and the differences in their semantics, combined with different

interpretations of supports, give rise to different specific Rec-BAF frameworks, namely,

the ones appearing at the corner of Figure 2. We first discuss the two frameworks where

supports are interpreted as necessities: RAFN (extending RAF) (Cayrol et al . 2018)

and ASAF (extending AFRA) (Gottifredi et al . 2018). Regarding the extensions of RAF

and AFRA with deductive supports, called Recursive Argumentation Framework with

Deductive Supports (RAFD), and Argumentation Framework with Recursive Attacks-

Supports (AFRAD) (Alfano et al . 2020b), their semantics will be recalled at the end of

this section.

We now discuss semantics for “acyclic” Rec-BAF, although recently there have been

two contributions defining the semantics of general RAF and RAFN (Lagasquie-Schiex

2023). We do not further discuss these semantics as they are quite involved, and in

the next two sections, we present our main contribution, consisting of the definition of

new semantics for general BAF and Rec-BAF, extending in a natural way the semantics

defined for acyclic BAF and acyclic Rec-BAF. As the underlying structure representing

a Rec-BAF is not a graph, the definition of (a)cyclicity has been formulated in terms

of the acyclicity of the BAF obtained by replacing every attack a→α b with a⇒ α and

α→ b and every support a⇒β b with a⇒ β and β⇒ b. Note that the so-obtained auxiliary

BAF is only used to formally define and check acyclicity in Rec-BAF, not to provide the

semantics, which is instead recalled next.

2.3.1 Recursive AF with necessities (RAFN)

The RAFN framework has been proposed by Cayrol et al . (2018). The semantics combines

the RAF interpretation of attacks in RAF with the necessary interpretation of supports
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of AFN. Here we consider a simplified version, where supports have a single source and

the support relation is acyclic. Differences between RAFN and ASAF semantics are

highlighted in blue.

Definition 3.

For any acyclic RAFN 〈A,Σ, T, s, t〉 and set S⊆A∪R ∪ T , we have that:

• def(S) = {X ∈A∪R ∪ T | (∃α∈R ∩ S . t(α) =X ∧ s(α)∈ S) ∨
(∃ β ∈ T ∩ S . t(β) =X ∧ s (β)∈ def(S))};

• acc(S) = {X∈A∪R ∪ T | (∀α∈R . t(α) =X implies (α∈ def(S)∨ s(α)∈def(S)))∧
(∀β∈T . t(β) =X implies (β ∈ def(S)∨ s(β)∈ acc(S)))}.

2.3.2 Attack-support AF (ASAF)

The semantics combines the AFRA interpretation of attacks with that of BAF under the

necessary interpretation of supports (i.e., AFN). For the sake of presentation, we refer

to the formulation presented by Alfano et al . (Alfano et al., 2020a, 2024a), where attack

and support names are first-class citizens, giving the possibility to represent multiple

attacks and supports from the same source to the same target. For any ASAF Δ and

S⊆A∪R ∪ T , the defeated and acceptable sets (given S) are defined as follows.

Definition 4.

Given an acyclic ASAF 〈A, R, T, s, t〉 and a set S⊆A∪R ∪ T , we define:

• def(S) = {X ∈A∪R ∪ T | (X ∈R ∧ s(X)∈ def(S)) ∨
(∃α∈R ∩ S . t(α) =X) ∨
(∃β ∈ T ∩ S . t(β) =X ∧ s(β)∈ def(S))};

• acc(S) = {X∈A∪R ∪ T | (X ∈R implies s(X)∈ acc(S))∧
(∀α∈R. t(α) =X implies α∈ def(S))∧
(∀β ∈ T . t(β) =X implies (β ∈ def(S)∨ s(β)∈ acc(S)))}.

Again, the notions of conflict-free, admissible sets , and the different types of extensions

can be defined in a standard way (see Section 2.1) by considering S⊆A∪R ∪ T and by

using the definitions of defeated and acceptable sets reported above. It is worth noting

that the differences between ASAF and RAFN semantics (highlighted in blue) are not

in the way they interpret supports (both based on the necessity interpretation) but

in a different determination of the status of attacks as they extend AFRA and RAF,

respectively. Moreover, for each semantics, the RAFN extensions can be derived from

the corresponding ASAF extensions and vice versa.

Example 4.

Consider the Rec-BAF Δ with the necessary supports of Figure 1(right), and assume

arguments are denoted by their initials. The preferred (and also stable) extensions pre-

scribing sorbet in the menu under RAFN (resp., ASAF) semantics are E0 = {s,m,f,w,
β1, α3, . . . , α8} and E1 = {s,m,f,r, β1, α3, . . . , α8}, (resp., E′

0 = {s,m,f,w, β1, α4,

α6, α7, α8} and E′
1 = {s,m,f,r, β1, α3, α6, α7, α8}). Note that under ASAF semantics,

attacks α3 (resp., α4) and α6 are not part of the extension E′
0 (resp., E′

1) as their sources

(i.e., r, w, and s̄, respectively) are defeated.
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2.3.3 Recursive AF with deductive supports (RAFD)

For BAFs, necessary support and deductive support are dual (i.e., it is possible to trans-

form a BAF with necessity into an equivalent BAF with deductive supports by simply

reversing the direction of the support arrows) (Cayrol et al . 2021). However, in the case

of Rec-BAFs that are not BAFs, this duality no longer holds. This happens because the

target of supports and attacks in Rec-BAF may also be other supports and attacks. For

this reason, we next explicitly recall the semantics for Rec-BAF with deductive supports.

Definition 5.

For any acyclic RAFD 〈A, R, T, s, t〉 and set S⊆A∪R ∪ T , we have that:

• def(S) = {X ∈A∪R ∪ T | (∃α∈R ∩ S . t(α) =X ∧ s(α)∈ S) ∨
(∃ β ∈ T ∩ S . s(β) =X ∧ t(β)∈ def(S))};

• acc(S) = {X ∈A∪R ∪ T | (∀α∈R . t(α) =X implies (α∈ def(S)∨ s(α)∈def(S)))∧
(∀β∈T . s(β) =Ximplies (β ∈ def(S)∨ t(β)∈ acc(S)))}.

We have highlighted in blue the differences between the RAFN and the RAFD

definitions of defeated and acceptable arguments.

2.3.4 AF with recursive attacks and deductive supports (AFRAD)

Definition 6.

Given an acyclic AFRAD 〈A, R, T, s, t〉 and a set S⊆A∪R ∪ T , we define:

• def(S) = {X ∈A∪R ∪ T | (X ∈R ∧ s(X)∈ def(S)) ∨
(∃α∈R ∩ S . t(α) =X) ∨
(∃β ∈ T ∩ S . s(β) =X ∧ t(β)∈ def(S))};

• acc(S) = {X∈A∪R ∪ T | (X ∈R implies s(X)∈ acc(S))∧
(∀α∈R. t(α) =X implies α∈ def(S))∧
(∀β ∈ T . s(β) =X implies (β ∈ def(S)∨ t(β)∈ acc(S)))}.

Again, we have highlighted in blue the differences between the ASAF and the

AFRAD definitions of defeated and acceptable arguments. Analogously to the case of

RAFN versus ASAF, RAFD and AFRAD semantics may differ only in the status of

attacks.

2.3.5 Mappings to other formalisms

It has been shown that any acyclic Rec-BAF Δ can be mapped to (i) an “equivalent” AF

Λ so that co(Δ)≡ co(Λ) (i.e., co(Δ) = co(Λ) modulo meta-arguments introduced in the

rewriting), and (ii) a logic program PΔ so that ĉo(Δ) =PS(PΔ) (Alfano et al . 2020b).

We next extend these results to general Rec-BAF.

3 A new semantics for BAF

In this section, we present a new and intuitive semantics for general BAF. In the rest

of this section, whenever we refer to a BAF, we intend either an AFN (i.e., a BAF

where supports are intended as necessities) or an AFD (where supports are intended as

deductive).
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Fig 3. AFN Δ of Example 5.

We start by introducing new definitions for defeated and acceptable sets that extend

the ones recalled in the previous section. To distinguish the defeated and acceptable sets

defined for general BAF from those defined for acyclic BAF, we introduce new functions

DEF and ACC.

Definition 7.

For any general AFN 〈A,Ω, Γ〉 and set of arguments S⊆A:

• DEF (S) = {a∈A | (∃b∈ S . b→ a) ∨ (∃c∈DEF (S) . c⇒ a)∨ a +⇒a};
• ACC(S)={a∈A|(∀b∈A.b→ a implies b∈DEF (S))∧(∀c∈A.c⇒a implies c∈ACC(S)}.

As for the acyclic case, the semantics of general AFD is dual w.r.t. that of general

AFN. Thus, we can transform any AFD into an equivalent AFN by reversing supports.

The main difference between the definitions of defeated and acceptable sets for acyclic

and general BAF (highlighted in blue) consists in the fact that the new definition of

acceptable set ACC explicitly excludes self-supported arguments (i.e., arguments in a

support cycle or supported by an argument in a support cycle), which have been assumed

to be defeated. This means that self-supported arguments are always defeated, indepen-

dently from the specific set S. Thus, to compute the BAF semantics, it is possible to first

state that all arguments belonging to some support cycle are defeated (i.e., they are false

arguments), and then, after removing them from the framework, we can compute the

semantics of a support-acyclic BAF. Intuitively, this is in line with the self-supportless

principle in logic programs that ensures no literal in an answer set is supported exclu-

sively by itself or through a cycle of dependencies that lead back to itself. As an example,

consider the BAF 〈{a}, ∅, {(a, a)}〉. According to our semantics, argument a is always

defeated. Any alternative semantics prescribing a as true would be in contrast with the

logic formulation of the AF, that according to our semantics, is rewritten as a rule a← a

(literally, a if a), whose unique minimal model is ∅ (where a is false). Notably, as dis-

cussed in more detail in Section 6, this intuition is also reflected in the stable semantics

of Abstract Dialectical Framework (ADF) (Brewka et al . 2013). We now give another

example to illustrate our semantics.

Example 5.

Let Δ= 〈{a,b,c,d,e,f}, {(c,d), (d,e)}, {(a,b), (b,a), (b,c), (e,f)}〉 be the

AFN shown on Figure 3. Then, DEF ({d}) = {a,b,c,e,f} and ACC({d}) = {d}. The
AFN Δ has a unique complete extension E = {d} that is grounded, preferred, and stable.

As stated next, the semantics introduced extend those defined for acyclic BAF.

Proposition 1.

For any acyclic AFN Δ= 〈A,Ω, Γ〉 and semantics σ ∈ {co, gr, pr, st}, σ(〈A,Ω, Γ〉) com-

puted by means of Definition 7 coincides with σ(Δ) computed by means of Definition 2 .
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Proof.

The result follows by observing that, for any set S⊆A, we have that DEF (S) = def(S)

and ACC(S) = acc(S) as there is no argument a∈A s.t. a
+⇒a.

As AFD semantics is dual to the one of AFN, a similar result holds for acyclic AFD.

3.1 LP mapping

As done by Alfano et al . (2020b) for acyclic BAF, the semantics here presented can be

defined even in terms of logic programs under partial stable model semantics.

To this end, we now provide the mappings from general BAF to propositional programs,

so that the set of σ-extensions of any general BAF Δ is equivalent to that of partial stable

models of the corresponding logic program PΔ. The logic rules of PΔ are derived from the

topology of the AF. Basically, the rules in PΔ extend the ones defined for AF (Equation 1)

as the body of a rule defining an argument a also contains the (positive) conjunction of

arguments supporting it.

Definition 8.

Given an AFN (resp., AFD) Δ= 〈A,Ω, Γ〉, then PΔ (the propositional program derived

from Δ) contains, for each argument a∈A, a rule

a←
∧

(b,a)∈Ω

¬b ∧
∧

(c,a)∈Γ

c

⎛
⎝resp. a←

∧
(b,a)∈Ω

¬b ∧
∧

(a,c)∈Γ

c

⎞
⎠ . (2)

Again, we have highlighted in blue the difference between the two mappings. The next

theorem states the equivalence between (general) BAF Δ and logic program PΔ under

partial stable model semantics. As already stated, whenever we use the term BAF, we

intend either AFN or AFD.

Theorem 1.

For any BAF Δ, ĉo(Δ) =PS(PΔ).

Proof.

We denote with sup(Δ) = {a|a +⇒a} ∪ {b|∃a∈ sup(Δ). a⇒ b} when Δ is an AFN;

sup(Δ) = {a|a +⇒a} ∪ {b|∃a∈ sup(Δ). b⇒ a} when Δ is an AFD.

• ĉo(Δ)⊆PS(PΔ). We prove that for any Ŝ∈ ĉo(Δ), Ŝ∈PS(PΔ). Indeed, PΔ con-

tains, for each atom a∈A, a rule a←
∧

(b,a)∈Ω ¬b∧
∧

(c,a)∈Γ c (or a←
∧

(b,a)∈Ω ¬b∧∧
(a,c)∈Γ c if Δ is an AFD). Moreover, P

̂S
Δ (the positive instantiation of PΔ w.r.t. Ŝ)

contains positive rules defining exactly the arguments in S, whose bodies contains

only (positive) arguments in S. Since the arguments a∈A∩ sup(Δ) do not appear

in S by construction (they are false in the rules’ body as appearing in DEF (S)), we

have that P
̂S
Δ does not contain cycles of positive literals, and thus Tω

P
̂S
Δ

(∅) = S and

S is a PSM for P
̂S
Δ.

• PS(PΔ)⊆ ĉo(Δ). Consider a PSM M ∈PS(PΔ), pos(M) = Tω
PM

Δ
(∅). pos(M)⊆A is

conflict-free w.r.t. Δ. Indeed, assuming that there are two arguments a, b∈ pos(M)

such that (a, b)∈Ω, this means that the rule defining b in PΔ contains in the body
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a literal ¬a. This is not possible as in such a case b �∈ Tω
PM

Δ
(∅). Assuming that Δ is

an AFN, and that a attacks b indirectly through a supported attack a→ a1⇒ · · ·⇒
an⇒ b. In such a case a1, . . . , an, b �∈ Tω

PM
Δ
(∅). Assuming that Δ is an AFD, and that

a attacks b indirectly through a mediated attack a→ a1⇐ · · ·⇐ an⇐ b. In such

a case a1, . . . , an, b �∈ Tω
PM

Δ
(∅). Thus, pos(M) is conflict-free. pos(M)⊆A does not

contain any argument a∈ sup(Δ). Indeed, assuming for contradiction that such an

argument a∈ pos(M) exists, then there must exist at least one other argument literal

b in the body of the rule defining a s.t. (i) b∈ pos(M) and b∈ sup(Δ). The same holds

for any argument of the form of b. Thus, M is not a minimal model, contradicting

the assumption. Moreover, from Definition 7, considering that pos(M) = Tω
PM

Δ
(∅),

we derive that pos(M) =ACC(pos(M)).

The previous theorem states that the set of complete extensions of any BAF Δ coincides

with the set of PSMs of the derived logic program PΔ. Consequently, the set of stable

and preferred extensions (resp., the grounded extension) coincide with the set of total

stable and maximal-stable models (resp., the well-founded model) of PΔ (Van Gelder

et al . 1991; Saccà 1997).

Example 6.

The propositional program PΔ derived from the AFN Δ of Example 5 is {a← b; b← a;

c← b; e←¬d; d←¬c; f← e;}, where PS(PΔ) = ĉo(Δ) = {{¬a,¬b,¬c, d,¬e,¬f}}.

It is worth noting that, from the above result and the fact that any LP can be converted

into an “equivalent” AF (Caminada et al . 2015), it is also possible to convert any BAF

into an “equivalent” AF in polynomial time.

3.2 Computational complexity

The complexity of verification and acceptance problems for acyclic BAF are well-known

and coincide with the corresponding ones on AF, as any acyclic BAF can be rewritten

into an AF. In this section, we show that the same holds also for general BAF; that is,

the complexities of the verification and acceptance problems for general BAF are the

same as those known for AF.

Proposition 2.

For any BAF Δ= 〈A,Ω, Γ〉, and semantics σ ∈ {co, gr, pr, st}, checking whether a set

of arguments S⊆A is a σ-extension for Δ is (i) in PTIME for σ ∈ {gr, co, st} and

(ii) coNP -complete for σ= pr.

Proof.

Lower bounds derive from the complexity results of the same problems for AF (Dvorák

and Dunne, 2017), as BAF is a generalization of AF. As for upper bounds, the proof

can be carried out by writing PΔ (in PTIME) and check that (PΔ, Ŝ= S∪ {¬x | x∈
DEF (S)}, σ∗) is a true instance of the verification problem in LP (Saccà 1997), where

σ∗ = WF (resp., PS, T S,MS) iff σ= gr (resp., co, st, pr). As for Theorem 1 we have

that ĉo(Δ) =PS(PΔ), the result follows.
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Fig 4. Rec-BAF of Example 7.

Proposition 3.

For any BAF Δ= 〈A,Ω, Γ〉 and semantics σ ∈ {co, gr, pr, st}, checking whether an

argument g ∈A is

• credulously accepted under σ is: (i) in PTIME for σ= gr; and (ii) NP -complete for

σ ∈ {co, st, pr};
• skeptically accepted under σ is: (i) in PTIME for σ= gr; (ii) coNP -complete for

σ ∈ {co, st}; and (iii) ΠP
2 -complete for σ= pr.

Proof.

Same strategy used in the proof of Proposition 2 can be used, where we check that

(PΔ, g, σ
∗) is a true instance of the credulous/skeptical acceptance problem in LP

(Saccà 1997).

4 A new semantics for recursive BAF

In this section, we present new semantics for Recursive BAF (Rec-BAF) frameworks.

Analogously to the case of BAF, we assume that self-supported arguments (w.r.t. a

set S), that is arguments a s.t. there exists a cycle a
β1⇒a1

β2⇒ · · · βn⇒a .{β1, . . . , βn} ⊆ S,

are always defeated. Thus, the definition of defeated elements can be accomplished by

adding such a condition.

Definition 9.

For any general RAFN 〈A, R, T, s, t〉 and set S⊆A∪R ∪ T , we have that:

• DEF (S) = {X ∈A∪R ∪ T | (∃α∈R ∩ S . t(α) =X ∧ s(α)∈ S) ∨
(∃ β ∈ T ∩ S . t(β) =X ∧ s (β)∈DEF (S))∨
(∃ cycle X

β1⇒a1
β2⇒ · · · βn⇒X .{β1, . . . , βn} ⊆ S)};

• ACC(S) = {X ∈A∪R ∪ T |(∀α∈R . t(α) =X implies

(α∈DEF (S)∨ s(α)∈DEF (S))) ∧
(∀β∈T . t(β) =X implies (β ∈DEF (S)∨ s(β)∈ACC(S)))}.

Again, we have highlighted in blue the differences between the definition of defeated

and accepted arguments for general and acyclic RAFN. As for the case of BAF we

assume as defeated those arguments that “depends” on a cycle of support β1, . . . , βn

and all supports β1, . . . , βn are part of the candidate extension S.

Example 7.

Consider the RAFN Δ (shown in Figure 4) obtained from that of Figure 1 by adding

the support β2 with s(β2) = white and t(β2) = fish, and assume arguments are denoted

by their initials. The preferred (and also stable) extensions under RAFN semantics are

E1 = {m,r, s̄, α1, . . . , α8, β1, β2} and E2 = {m,r,s, α3, . . . , α8, β1, β2}. Observe that,

for E3 = {f,w, s̄, α1, . . . , α8, β1, β2} (resp., E4 = {f,m,w,s, α3, . . . , α8, β1, β2}), it holds
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that f,w∈ DEF (E3) (resp., f,w∈ DEF (E4)), and thus, E3 and E4 are not stable (and

preferred) extensions.

Definition 10.

For any general ASAF 〈A, R, T, s, t〉 and set S⊆A∪R ∪ T , we have that:

• DEF (S) = {X ∈A∪R ∪ T | (X ∈R ∧ s(X)∈DEF (S)) ∨
(∃α∈R ∩ S . t(α) =X) ∨
(∃β ∈ T ∩ S . t(β) =X ∧ s(β)∈DEF (S))∨
(∃ cycle X

β1⇒a1
β2⇒ · · · βn⇒X .{β1, . . . , βn} ⊆ S)};

• ACC(S) = {X∈A∪R ∪ T | (X ∈R implies s(X)∈ACC(S))∧
(∀α∈R. t(α) =X implies α∈DEF (S))∧
(∀β ∈ T . t(β) =X implies (β ∈DEF (S)∨ s(β)∈ACC(S)))}.

Again, we have highlighted in blue the differences between the definition of defeated

and accepted arguments for general and acyclic ASAF. As for the case of BAF, we

assume as defeated those arguments that ”depends” on a cycle of support β1, . . . , βn

and all supports β1, . . . , βn are part of the candidate extension S.

Example 8.

Consider the ASAF Δ shown in Figure 4, and assume arguments are denoted by

their initials. The preferred (and also stable) extensions under ASAF semantics are:

E1 = {m,r, s̄, α2, α3, α6, β1, β2} and E2 = {m,r,s, α3, α5, α7, α8, β1, β2}. Observe that,

for E3 = {f,w, s̄, α1, α4, α6, β1, β2} (resp., E4 = {f,m,w,s, α4, α5, α7, α8, β1, β2}) it holds
that f,w∈ DEF (E3) (resp., f,w∈ DEF (E4)) and thus E3 and E4 are not stable (and

preferred) extensions.

As for BAF our Rec-BAF semantics coincide with that of acyclic Rec-BAF defined in

Section 2 whenever the Rec-BAF is support-acyclic, as stated in the following proposition.

Proposition 4.

Let Δ be a RAFN (resp., ASAF) and σ ∈ {co, gr, pr, st} a semantics. If Δ is acyclic,

then σ(Δ) computed by means of Definition 3 (resp., Definition 4) coincides with σ(Δ)

computed by means of Definition 9 (resp., Definition 10).

Proof.

The result follows by observing that, for any acyclic Rec-BAF Δ= 〈A, R, T, s, t〉 and set

S⊆A∪R ∪ T , we have that DEF (S) = def(S) and ACC(S) = acc(S).

The semantics of general Rec-BAFs under deductive support (i.e., RAFD, and

AFRAD) are obtained from the definition of defeated and acceptable elements in acyclic

Rec-BAF (i.e., def, acc) by (i) replacing def and acc with DEF and ACC and (ii) adding

the condition ∃ cycle X
β1⇒a1

β2⇒ · · · βn⇒X .{β1, . . . , βn} ⊆ S in the disjunct condition of

DEF , as done in Definition 9 for RAFN and Definition 10 for ASAF.

4.1 LP mapping

We now provide the mappings from general Rec-BAF to ground logic programs, so that

the set of σ-extensions of any general Rec-BAF Δ is equivalent to that of partial stable

models of the corresponding logic program PΔ. Basically, the logic rules of the program
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PΔ are derived from the topology of Δ. The main difference w.r.t. the rules generated for

BAF is that we now have rules defining all elements (arguments, attacks, and supports)

denoted by X. Thus, for instance, regarding RAFN, a target element X is true if (i) for

every attack α, either α or the source of α is false, and (ii) for every support β, either β

is false, or the source of β is true.

Definition 11.

Given an RAFN (resp., RAFD) Δ= 〈A, R, T, s, t〉, then PΔ (the propositional program

derived from Δ) contains, for each element X ∈A∪R ∪ T , a rule

X←
∧

α∈R∧t(α)=X

(¬α∨¬s(α))∧
∧

β∈T∧t(β)=X

(¬β ∨ s(β)).

⎛
⎝resp. X←

∧
α∈R∧t(α)=X

(¬α∨¬s(α))∧
∧

β∈T∧s(β)=X

(¬β ∨ t(β)).

⎞
⎠

Definition 12.

For any ASAF (resp., AFRAD) Δ= 〈A, R, T, s, t〉, PΔ (the propositional program

derived from Δ) contains, for each X ∈A∪R ∪ T , a rule of the form

X←ϕ(X) ∧
∧

α∈R∧t(α)=X

¬α ∧
∧

β∈T∧t(β)=X

(¬β ∨ s(β))

⎛
⎝resp. X←ϕ(X)∧

∧
α∈R∧t(α)=X

¬α ∧
∧

β∈T∧s(β)=X

(¬β ∨t(β))

⎞
⎠

where ϕ(X) = s(X) if X ∈R; otherwise, ϕ(X) =true.

The set of complete extensions of any Rec-BAF Δ coincides with the set of PSMs of

the derived propositional program PΔ.

Theorem 2.

For any Rec-BAF Δ, ĉo(Δ) =PS(PΔ).

Proof.

The proof is similar to that of Theorem 1. The only difference is that complete extensions

also contain attacks and supports, whereas the logic program also contains rules defining

attacks and supports and, consequently, the partial stable models contain arguments,

attacks, and supports.

Example 9.

Consider the RAFN Δ shown in Figure 4, and assume arguments are denoted by their

initials. The propositional program PΔ derived from Δ is as follows:

m←¬α1 ∨¬f; f← (¬α2 ∨¬m)∧ (¬β2 ∨ w); s←¬α6 ∨¬s̄; s̄←¬α5 ∨¬s;
r←¬α4 ∨¬w; w← (¬α3 ∨¬r)∧ (¬β1 ∨ f); α1←¬α7 ∨¬s; α2←¬α8 ∨¬s;
α3←; α4←; α5←; α6←; α7←; α8←; β1←; β2←;

where PS(PΔ) = ĉo(Δ) = {E0, E1, E2, E3, E4, E5}, with: E0 = {α3, . . . , α8, β1, β2}, E1 =

E0 ∪ {m,r}, E2 =E0 ∪ {m,s}, E3 =E0 ∪ {m,r,s}, E4 =E0 ∪ {s̄, α1, α2}, and E5 =E0 ∪
{m,r, s̄, α1, α2}.
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Observe that, from the above result and the fact that any LP can be converted into

an “equivalent” AF (Caminada et al . 2015), it is also possible to convert any Rec-BAF

into an “equivalent” AF in polynomial time.

4.2 Computational complexity

The complexity of verification and acceptance problems for acyclic Rec-BAF are well-

known and coincide with the corresponding ones on AF, as any acyclic Rec-BAF can

be rewritten into an AF. In this section we show that the same holds also for general

Rec-BAF, that is the complexities of the verification and acceptance problems for general

BAF are the same of those known for AF, as stated in the following two propositions.

Proposition 5.

For any Rec-BAF 〈A, R, T, s, t〉 and semantics σ ∈ {co, gr, pr, st}, checking whether a

set of arguments S⊆A is a σ-extension for Δ is (i) in PTIME for σ ∈ {gr, co, st}; and
(ii) coNP -complete for σ= pr.

Proof.

Lower bounds derive from the complexity results of the same problems for AF (Dvorák

and Dunne 2017), as Rec-BAF is a generalization of AF. Regarding upper bounds, the

proof can carried out by writing PΔ (in PTIME) and check that (PΔ, Ŝ= S∪ {¬x | x∈
DEF (S)}, σ∗) is a true instance of the verification problem in LP (Saccà 1997), where

σ∗ = WF (resp., PS, T S,MS) iff σ= gr (resp., co, st, pr). As for Theorem 2 we have

that ĉo(Δ) =PS(PΔ), the result follows.

Proposition 6.

For any Rec-BAF 〈A, R, T, s, t〉 and semantics σ ∈ {co, gr, pr, st}, checking whether an

argument g ∈A is

• credulously accepted under σ is: (i) in PTIME for σ= gr; and (ii) NP -complete for

σ ∈ {co, st, pr};
• skeptically accepted under σ is: (i) in PTIME for σ= gr; (ii) coNP -complete for

σ ∈ {co,st}; and (iii) ΠP
2 -complete for σ= pr.

Proof.

Same strategy used in the proof of Proposition 5 can be used, where we check that

(PΔ, g, σ
∗) is a true instance of the credulous/skeptical acceptance problem in LP

(Saccà 1997).

It turns out that general Rec-BAF are as expressive as BAF and AF, though more

general relations (i.e., cyclic supports and recursive relations) can be easily expressed.

5 Related work

Bipolarity in argumentation is discussed by Amgoud et al . (2004), where a formal def-

inition of bipolar argumentation framework (BAF) extending Dung’s AF by including

supports is provided. A survey on different approaches to support in argumentation,

as well as on different recursive AF-based frameworks is provided by Cohen et al .

(2014) and Cayrol et al . (2021), respectively. However, a semantics for AFNs with cyclic
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supports have been recently defined in the literature by Nouioua and Boutouhami (2023).

Essentially, it is based on avoiding considering the contribution of incoherent (set of)

arguments, that are those occurring in support -cycles or (transitively) supported by

arguments in support cycles. In the same spirit, our approach ensures that incoherent

arguments are always defeated (i.e., appearing in DEF ). A semantics for general RAFNs

has been recently defined by Lagasquie-Schiex (2023). We believe their proposal is quite

intricate as it relies on numerous definitions, whereas ours seamlessly extends the defi-

nitions of defeated and acceptable elements, previously defined for AF(N) in an elegant

and uniform way.

There has been an increasing interest in studying the relationships between argumenta-

tion frameworks and logic programming (LP) (Caminada et al . 2015; Alfano et al . 2020b).

In particular, the semantic equivalence between complete extensions in AF and 3-valued

stable models in LP was first established by Wu et al . (2009). Then, the relationships of

LP with AF have been further studied by Caminada et al . (2015). A one-to-one correspon-

dence between extensions of general AFN and corresponding normal logic program (LP)

has been proposed by Nouioua and Boutouhami (2023), under complete-based semantics.

A logical encoding able to characterize the semantics of general RAFN has been proposed

by Lagasquie-Schiex (2023). However, the rules defining the acceptability of arguments

are a bit involved, as they require several predicate symbols. Nevertheless, Nouioua and

Boutouhami (2023); Lagasquie-Schiex (2023) devoted no attention to deductive supports.

Efficient mappings from AF to Answer Set Programming (ASP) (i.e., LP with Stable

Model semantics (Gelfond and Lifschitz, 1988)) have been investigated as well by Sakama

and Rienstra (2017); Gaggl et al . (2015). The well-known AF system ASPARTIX (Dvorák

et al . 2020) is implemented by rewriting the input AF into an ASP program and using

an ASP solver to compute extensions.

Our work is complementary to approaches providing the semantics for an AF-based

framework by using meta-argumentation, that is, by relying on a translation from a

given AF-based framework to an AF (Cohen et al . 2015; Alfano et al . 2018a,b). In this

regard, we observe that meta-argumentation approaches have the drawback of making

it a bit difficult to understand the original meaning of arguments and interactions, once

translated into the resulting meta-AF. In fact, those approaches rely on translations

that generally require adding several meta-arguments and meta-attacks to the resulting

meta-AF in order to model the original interactions. Concerning approaches that provide

the semantics of argumentation frameworks by LPs (Caminada et al . 2015), we observe

that a logic program for an AF-based framework can be obtained by first flattening

the given framework into a meta-AF and then converting it into a logic program. The

so-obtained program contains the translation of meta-arguments and meta-attacks that

make the program much more verbose and difficult to understand (because not straightly

derived from the given extended AF framework) in our opinion, compared with the direct

translation we proposed. Moreover, the proposed approach uniformly deals with several

AF-based frameworks. Other extensions of the Dung’s framework not explicitly discussed

in this paper are also captured by our technique as they are special cases of some of those

studied in this paper. This is the case of Extended AF (EAF) and hierarchical EAF , which

extend AF by allowing second order and stratified attacks, respectively (Modgil 2009),

that are special cases of recursive attacks.
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Three-valued semantics have been also explored in the Abstract Dialectical Framework

(ADF (Brewka et al . 2013; Strass and Wallner 2015; Brewka et al . 2020; Baumann and

Heinrich 2023), that allows to explicit acceptance conditions over arguments in the form

of propositional logic formulae. Recently, it has been shown that its semantics can be

captured by the (monotonic three-valued) possibilistic logic (Heyninck et al . 2022). In

particular, the semantics of an ADF relies on a characteristic operator which takes as an

input a three-valued interpretation ν and returns an interpretation by considering all pos-

sible two-valued completions of ν. We point out that (general) Rec-BAF can be modeled

by ADF, and in particular that verification and acceptance reasoning in Rec-BAF can

be reduced to ADF. This is backed by the computational complexity of the two frame-

works (Strass and Wallner 2015) as ADF is strictly more expressive than Rec-BAF under

complete, preferred and stable semantics (one level higher in the polynomial hierarchy).

Moreover, less expressive subclasses of ADF have been also explored. For instance, the

subclass called bipolar ADFs has been shown to exhibit complexity comparable to that

of AF (and to that of Rec-BAF), as is it possible to avoid considering all the possible

two-valued completions through the application of Kleene logic (Baumann and Heinrich

2023). Exploring the connection between subclasses of ADF and Rec-BAF is a possible

direction for future work.

6 Conclusions

In this paper, we jointly tackled two relevant aspects that were so far considered sep-

arately by the community of argumentation: extending Dung’s abstract argumentation

framework with recursive attacks and (general) supports, and show that the semantics

for specific BAF and Rec-BAF frameworks can be defined by very simple and intuitive

modifications of that defined for the case of AF. We presented in an elegant and uniform

way the semantics of several (possibly cyclic) AF-based frameworks, including those for

which a semantics has never been proposed.

Our semantics is inspired by the self-supportless principle in logic programs, which

ensures no literal in an answer set is supported exclusively by itself or through a cycle

of dependencies that lead back to itself. This principle is essential for maintaining the

integrity of the answer set, ensuring that it is grounded in the logic rules provided and

does not rely on circular reasoning. It is worth noting that this intuition is also reflected

in the stable semantics of ADF (Brewka et al . 2013). Indeed, the basic intuition is that all

elements of a stable model should have a non-cyclic justification. For instance, considering

the (bipolar) ADF having two statements a and b where the acceptance condition of a is

b and vice versa, the set {a, b} is not a stable model. Thus, similarly to answer-set and

ADF stable semantics, a principle of our semantics is that arguments cannot be circularly

justified.

Finally, we believe that our approach is also complementary to that using intermediate

translations to AF to define the Rec-BAF semantics. Indeed, our approach can also be

used to provide additional tools for computing complete extensions using answer set

solvers (Gebser et al . 2018) and program rewriting techniques (Janhunen et al . 2006;

Sakama and Rienstra 2017).

https://doi.org/10.1017/S1471068424000310 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000310


Cyclic Support in Recursive Bipolar Argumentation Framework 939

Supplementary material

To view supplementary material for this article, please visit http://doi.org/10.1017/

S1471068424000310.

References

Alfano, G., Calautti, M., Greco, S., Parisi, F. and Trubitsyna, I. 2023a. Explainable
acceptance in probabilistic and incomplete abstract argumentation frameworks. Artificial
Intelligence 323a, 103967.

Alfano, G., Cohen, A., Gottifredi, S., Greco, S., Parisi, F. and Simari, G. R. 2020a.
Dynamics in abstract argumentation frameworks with recursive attack and support relations.
In Proc. of the 24th European Conference on Artificial Intelligence (ECAI), IOS Press, 577–
584.

Alfano, G., Cohen, A., Gottifredi, S., Greco, S., Parisi, F. and Simari, G. R. 2024a.
Credulous acceptance in high-order argumentation frameworks with necessities: An incre-
mental approach. Artificial Intelligence 333a, 104159.

Alfano, G., Greco, S., Mandaglio, D., Parisi, F. and Trubitsyna, I. 2024b. Abstract
argumentation frameworks with strong and weak constraints. Artificial Intelligence 336b,
104205.

Alfano, G., Greco, S. and Parisi, F. 2018a. Computing extensions of dynamic abstract argu-
mentation frameworks with second-order attacks. In Proc. of the 22nd International Database
Engineering and Application Symposium (IDEAS), ACM, 183–192.

Alfano, G., Greco, S. and Parisi, F. 2018b. A meta-argumentation approach for the efficient
computation of stable and preferred extensions in dynamic bipolar argumentation frameworks.
Intelligenza Artificiale 12b, 2, 193–211.

Alfano, G.,Greco, S., Parisi, F. and Trubitsyna, I. 2024c.Complexity of credulous and skep-
tical acceptance in epistemic argumentation framework. In Proc. of the 38th AAAI Conference
on Artificial Intelligence, AAAI Press, 10423–10432.

Alfano, G., Greco, S., Parisi, F. and Trubitsyna, I. 2020b. On the semantics of abstract
argumentation frameworks: A logic programming approach. Theory and Practice of Logic
Programming 5, 703–718.

Alfano, G., Greco, S., Parisi, F. and Trubitsyna, I. 2022. On preferences and priority rules
in abstract argumentation. In Proc. of the 31st International Joint Conference on Artificial
Intelligence, ijcai.org pub., 2517–2524.

Alfano, G., Greco, S., Parisi, F. and Trubitsyna, I. 2023c. On acceptance conditions in
abstract argumentation frameworks. Information Sciences 625c, 757–779.

Alfano, G., Greco, S., Parisi, F.AND Trubitsyna, I. 2023d. Preferences and constraints
in abstract argumentation. In Proc. of the 32nd International Joint Conference on Artificial
Intelligence, ijcai.org, 3095–3103.

Alfano, G., Greco, S., Parisi, F. and Trubitsyna, I. 20203b. Epistemic abstract argumen-
tation framework: Formal foundations, computation and complexity. In Proc. of the 2023
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), ACM,
409–417.

Amgoud, L., Cayrol, C. and Lagasquie-Schiex, M.-C. 2004. On the bipolarity in argumen-
tation frameworks. In Proc. of 10th International Workshop on Non-Monotonic Reasoning
(NMR), 1–9.

Baroni, P., Cerutti, F.,Giacomin, M. andGuida, G. 2011. AFRA: Argumentation framework
with recursive attacks. International Journal of Approximate Reasoning 52, 1, 19–37.

https://doi.org/10.1017/S1471068424000310 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000310


G. Alfano et al.940

Baumann, R. and Heinrich, M. 2023. Bipolar abstract dialectical frameworks are covered by
Kleene’s three-valued logic. In Proc. of the 32nd International Joint Conference on Artificial
Intelligence (IJCAI), ijcai.org, 3123–3131.

Brewka, G.,Diller, M.,Heissenberger, G., Linsbichler, T. andWoltran, S. 2020. Solving
advanced argumentation problems with answer set programming. Theory and Practice of Logic
Programming 20, 3, 391–431.

Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J. P. and Woltran, S. 2013. Abstract
dialectical frameworks revisited. In Proc. of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI), AAAI Press, 803–809.

Caminada, M., Sa, S., Alcantara, J. F. L. and Dvorak, W. 2015. On the equivalence
between logic programming semantics and argumentation semantics. International Journal
of Approximate Reasoning 58, 87–111.

Cayrol, C., Cohen, A. and Lagasquie-Schiex, M.-C. 2021. Higher-order interactions (bipolar
or not) in abstract argumentation: A state of the art. FLAP 8, 6, 1339–1436.

Cayrol, C., Fandinno, J., Del Cerro, L. F. and Lagasquie-Schiex, M. 2017. Valid attacks in
argumentation frameworks with recursive attacks. In Proc. of COMMONSENSE conference,
CEUR-WS.org.

Cayrol, C., Fandinno, J., Del Cerro, L. F. and Lagasquie-Schiex, M. 2018. Structure-
based semantics of argumentation frameworks with higher-order attacks and supports. In
Proc. of COMMA, 29–36.

Cohen, A., Gottifredi, S., Garcia, A. J. and Simari, G. R. 2014. A survey of different
approaches to support in argumentation systems. The Knowledge Engineering Review 29, 5,
513–550.

Cohen, A., Gottifredi, S., Garcia, A. J. and Simari, G. R. 2015. An approach to abstract
argumentation with recursive attack and support. Journal of Applied Logic 13, 4, 509–533.

Dung, P. M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77, 2, 321–358.

Dvorak, W. and Dunne, P. E. 2017. Computational problems in formal argumentation and
their complexity. FLAP 4, 8.

Dvorak, W., Gaggl, S. A., Rapberger, A., Wallner, J. P. and Woltran, S. 2020. The
ASPARTIX system suite. In Proc. of COMMA conference, IOS Press, 461–462.

Dvorak, W.,GreßLer, A., Rapberger, A. andWoltran, S. 2023. The complexity landscape
of claim-augmented argumentation frameworks. Artificial Intelligence 317, 103873.

Dvorak, W., Hecher, M., Konig, M., Schidler, A., Szeider, S. and Woltran, S. 2022.
Tractable abstract argumentation via backdoor-treewidth. In Proc. of the 36th AAAI
Conference on Artificial Intelligence, AAAI Press, 5608–5615.

Dvorak, W., Konig, M., Ulbricht, M. and Woltran, S. 2024. Principles and their computa-
tional consequences for argumentation frameworks with collective attacks. Journal of Artificial
Intelligence Research 79, 69–136.

Fazzinga, B., Flesca, S. and Furfaro, F. 2022. Abstract argumentation frameworks with
marginal probabilities. In Proc. of the 31st International Joint Conference on Artificial
Intelligence, ijcai.org, 2613–2619.

Gaggl, S. A., Manthey, N., Ronca, A., Wallner, J. P. and Woltran, S. 2015. Improved
answer-set programming encodings for abstract argumentation. Theory and Practice of Logic
Programming 15, 4-5, 434–448.

Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F. and Schaub, T. 2018. Evaluation
techniques and systems for answer set programming: A survey. In Proc. of the 27th
International Joint Conference on Artificial Intelligence, ijcai.org, 5450–5456.

https://doi.org/10.1017/S1471068424000310 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000310


Cyclic Support in Recursive Bipolar Argumentation Framework 941

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
Proc. of the 1st International Logic Programming Conference and Symposium, MIT Press,
1070–1080.

Gottifredi, S., Cohen, A.,Garcia, A. J. and Simari, G. R. 2018. Characterizing acceptability
semantics of argumentation frameworks with recursive attack and support relations. Artificial
Intelligence 262, 336–368.

Heynick, J., Kern-Isberner, G., Rienstra, T., Skiba, K. and Thimm, M. 2022. Possibilistic
logic underlies abstract dialectical frameworks. In Proc. of the 31st International Joint
Conference on Artificial Intelligence, ijcai.org, 2655–2661.

Janhunen, T., Niemela, I., Seipel, D., Simons, P. and You, J.-H. 2006. Unfolding partiality
and disjunctions in stable model semantics. ACM Transactions on Computational Logic 7, 1,
1–37.

Lagasquie-Schiex, M. 2023. Handling support cycles and collective interactions in the log-
ical encoding of higher-order bipolar argumentation frameworks. Journal of Logic and
Computation 33, 2, 289–318.

Modgil, S. 2009. Reasoning about preferences in argumentation frameworks. Artificial
Intelligence 173, 901–934.

Nouioua, F. and Boutouhami, S. 2023. Argumentation frameworks with necessities and their
relationship with logic programs. Argument & Computation 14, 1, 17–58.

Nouioua, F. and Risch, V. 2011. Argumentation frameworks with necessities. In SUM, 163–176.

Rahwan, I. and Simari, G. R. 2009. Argumentation in Artificial Intelligence. Springer.

Sacca, D. 1997. The expressive powers of stable models for bound and unbound DATALOG
queries. Journal of Computer and System Sciences 54, 3, 441–464.

Sakama, C. and Rienstra, T. 2017. Representing argumentation frameworks in answer set
programming. Fundamenta Informaticae 155, 3, 261–292.

Strass, H. and Wallner, J. P. 2015. Analyzing the computational complexity of abstract
dialectical frameworks via approximation fixpoint theory. Artificial Intelligence 226, 34–74.

Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general
logic programs. Journal of the ACM 38, 3, 620–650.

Villata, S., Boella, G.,Gabbay, D. M. andVan Der Torre, L. W. N. 2012. Modelling defea-
sible and prioritized support in bipolar argumentation. Annals of Mathematics and Artificial
Intelligence 66, 1-4, 163–197.

Wu, Y., Caminada, M. and Gabbay, D. M. 2009. Complete extensions in argumentation
coincide with 3-valued stable models in logic programming. Studia Logica 93, 2-3, 383–403.

https://doi.org/10.1017/S1471068424000310 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000310

	Introduction
	1.1 AF-based frameworks
	1.2 Contributions

	2 Preliminaries
	Argumentation frameworks
	Bipolar argumentation frameworks
	2.2.1 AF with necessary supports (AFN)
	2.2.2 AF with deductive supports (AFD)

	Recursive BAF
	2.3.1 Recursive AF with necessities (RAFN)
	2.3.2 Attack-support AF (ASAF)
	2.3.3 Recursive AF with deductive supports (RAFD)
	2.3.4 AF with recursive attacks and deductive supports (AFRAD)
	2.3.5 Mappings to other formalisms


	3 A new semantics for BAF
	LP mapping
	Computational complexity

	4 A new semantics for recursive BAF
	LP mapping
	Computational complexity

	5 Related work
	Conclusions
	References

