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Abstract
Chen-Gounelas-Liedtke recently introduced a powerful regeneration technique, a process opposite to specialization,
to prove existence results for rational curves on projective 𝐾3 surfaces. We show that, for projective irreducible
holomorphic symplectic manifolds, an analogous regeneration principle holds and provides a very flexible tool to
prove existence of uniruled divisors, significantly improving known results.

1. Introduction

Rational curves on 𝐾3 surfaces have now been studied for decades, with motivations also coming
from arithmetic geometry, (non-)hyperbolicity questions and general conjectures on 0-cycles. A natural
generalization of 𝐾3 surfaces is given by irreducible holomorphic symplectic (IHS) manifolds, which
are compact, simply connected Kähler manifolds with 𝐻2,0 generated by a symplectic form. In any even
dimension 2𝑛, 𝑛 ≥ 2, there are two known deformation classes (cf. [Bea83]), one is given by Hilbert
schemes of points on 𝐾3 surfaces and their deformations (called varieties of 𝐾3[𝑛] type), and the
other is given by deformations of an analogous construction using abelian surfaces (called varieties of
generalized Kummer type). Two more deformation classes discovered by O’Grady exist in dimension 6
and 10 (cf. [O’G99, O’G03]). For the basic theory of IHS manifolds we refer the reader to, for example,
[Bea83, Huy99].

In recent years, rational curves on projective IHS manifolds have been actively investigated with
different objectives and techniques; cf., for example, [AV15, BHT15, Voi16, LP19, MP18, CMP24,
KLCM19a, OSY19, Ber21] and the references therein. Rational curves covering a divisor on an IHS
manifold behave very well with respect to deformation theory (i.e., they deform in their Hodge locus
inside the parameter space of deformations of the IHS manifold and keep covering a divisor). This
has been one of the main properties used to prove existence results and, at the same time, one of the
main limitations. Indeed, to produce a uniruled divisor in an ample linear system of a polarized IHS
(𝑋, 𝐻), one would try and exhibit such an example on a special point (𝑋0, 𝐻0) in the same connected
component of the corresponding moduli space. As proved in [OSY19], in some cases, it is impossible to
do it with primitive rational curves. However, in [CMP24, MP18, MP21], this approach was successfully
implemented to prove that outside at most a finite number of connected components (precisely those
not satisfying the necessary conditions given in [OSY19]) of the moduli spaces of projective IHS
manifolds of 𝐾3[𝑛] or generalized Kummer type, for all the corresponding points (𝑋, 𝐻), there exists
a positive integer m such that the linear system |𝑚𝐻 | contains a uniruled divisor covered by rational
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curves of primitive homology class Poincaré-dual to that of |𝐻 |. For a completely different proof (based
on Gromov-Witten theory) of the existence of uniruled divisors covered by primitive rational curves
on deformations of 𝐾3[𝑛] , see [OSY19, Theorem 0.1]. Due to the cases left out by [CMP24, OSY19],
respectively [MP18, MP21], one could reasonably wonder whether uniruled divisors on such manifolds
do always exist.

More recently, Chen-Gounelas-Liedtke introduced in [CGL22] a new viewpoint to prove existence
results for rational curves on projective 𝐾3 surfaces: regeneration, a process opposite to specialization.
In this article, we show that for projective irreducible holomorphic symplectic manifolds, an analogous
regeneration principle holds for uniruled divisors and provides a new and flexible tool to prove existence
results. Combining this new viewpoint with results from [CMP24, MP18, MP21], we are able to improve
significantly the available results, in some cases passing from no known existence result at all to density
of uniruled divisors in the classical topology.

To state our results, we start with the following.
Definition 1.1. Let X → 𝐵 be a family of IHS manifolds over a connected base. Let 0 ∈ 𝐵 and let
𝑋0 be the corresponding fibre. Let 𝐷0 ⊂ 𝑋0 be an integral uniruled divisor. A regeneration of 𝐷0 is a
flat family D′ ⊂ X𝐵′ of uniruled and generically integral divisors D′ → 𝐵′, where 𝐵′ → 𝐵 is a finite
cover,1 such that 𝐷0 is a component of the fiber D′

0 of D′ over (one preimage of) the central fibre 0.
A reducible divisor is called uniruled if all of its components are.

Hypothesis 1.2. Let X be a projective IHS manifold. There exists a constant 𝑑 ≥ 0 such that all primitive
ample curve classes [𝐶] ∈ 𝐻2 (𝑋,Z) satisfying 𝑞(𝐶) > 𝑑 have a connected and rational representative
𝑅 ∈ [𝐶] such that R rules a prime divisor of class proportional to [𝐶]∨.

Here, [𝐶]∨ denotes the divisor [𝐷] ∈ NS(𝑋) ⊗Q such that 𝐶 ·𝐸 = 𝑞(𝐷, 𝐸) for all divisors E, where
q is the Beauville-Bogomolov-Fujiki form on X. A curve is said to be ample if its dual divisor is ample.
Analogously, we define the curve dual to a divisor.

The above hypothesis, which may look slightly unnatural, is the higher dimension analogue of
[CGL22, Theorem A.1] and, as we will see below, can be shown to hold for IHS manifolds of 𝐾3[𝑛] and
generalized Kummer type, thanks to previous work done in [CMP24, MP18, MP21]. Our main novel
contribution is the following result which, despite the simplicity of its proof, seems to provide the right
viewpoint to tackle these kinds of questions.
Regeneration principle 1.3. Let X → 𝐵 be a family of projective IHS manifolds with a central fibre
X0 satisfying hypothesis 1.2. Let 𝐷0 ⊂ X0 be an integral uniruled divisor on the central fibre. Then 𝐷0
admits a regeneration.

The regeneration principle works perfectly on IHS manifold of 𝐾3[𝑛] or generalized Kummer type.
Theorem 1.4. Any integral uniruled divisor in a fiber of any family of projective IHS manifolds of 𝐾3[𝑛]

or generalized Kummer type admits a regeneration.
Our first application is to show existence of ample uniruled divisors also for the connected components

of the moduli spaces left out by [CMP24, MP18, MP21].
Theorem 1.5. Let (𝑋, 𝐻) be a polarized IHS manifold of 𝐾3[𝑛] or generalized Kummer type. Then
there exists 𝑚 ∈ N and a uniruled divisor in |𝑚𝐻 |.

In particular, the applications to zero-cycles pointed out in [CMP24, Theorems 1.7 and 1.8] now
hold for all polarized IHS manifolds of 𝐾3[𝑛] or generalized Kummer type.

At the very general point in any component of the moduli space of polarized IHS manifolds of 𝐾3[𝑛]

or generalized Kummer type, we can significantly improve Theorem 1.5.
Theorem 1.6. Let M be an irreducible component of the moduli space of polarized IHS manifolds of
𝐾3[𝑛] or generalized Kummer type.

1See the comment at the end of the proof of the Regeneration principle 1.3 for the need of this base change.
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1) In the 𝐾3[𝑛]-type case, any polarized IHS manifold X outside a possibly countable union of subva-
rieties of M verifies the following: any pair of points 𝑥1, 𝑥2 ∈ 𝑋 and any 𝜖 > 0, there exists a chain
C of at most 2𝑛 rational curves, each of which deforms in a family covering a divisor, such that C
intersects euclidean balls of radius 𝜖 centered in 𝑥𝑖 , 𝑖 = 1, 2.

2) In the generalized Kummer type case, any polarized IHS manifold X outside a possibly countable
union of subvarieties of M contains infinitely many distinct ample uniruled divisors.

Theorem 1.6, item 1) result can be seen as an effective non-hyperbolicity statement. The study
of non-hyperbolicity of IHS manifolds dates back to Campana [Cam92], with more recent important
contributions by Verbitsky [Ver15] and Kamenova-Lu-Verbitsky [KLV14]. We refer the interested reader
to [KL22] for a thorough discussion and a complete list of references.

We can also show the following less strong but more precise result, which was previously known
only in dimension 2 by [BT00, Theorem 4.10].

Theorem 1.7. Let X be a projective IHS manifold of 𝐾3[𝑛] or Kummer type such that 𝐵𝑖𝑟 (𝑋) is infinite.
Then X has infinitely many uniruled divisors.

We hope that this new viewpoint via regenerations could also lead to progress towards the existence
of higher codimension algebraically coisotropic subvarieties.

2. Regenerations

Proof of the Regeneration principle 1.3. We can suppose that X0 has Picard rank at least two and that
𝐷0 is not proportional to the polarization; otherwise, by [CMP24, Corollary 3.5], we can deform a curve
ruling 𝐷0 over all of B, and obtain in this way a regeneration of 𝐷0.

Let 𝐶0 be the class of a minimal curve ruling 𝐷0. Let H ∈ Pic(X ) be a relative polarization and 𝐻0
its restriction to the central fibre X0. Let 𝐻∨

0 be the (ample) class of a curve dual to 𝐻0. We can choose
𝑚 ∈ N big enough so that 𝑚𝐻∨

0 − 𝐶0 is ample, primitive and of square bigger than 𝑑0. Therefore, by
Hypothesis 1.2, we have a rational curve 𝑅0 ∈ [𝑚𝐻∨

0 − 𝐶0] which rules an ample divisor 𝐹0 inside X0.
As the divisor 𝐹0 is ample, we have 𝐶0 · 𝐹0 > 0. Hence, we can fix a point in 𝐶0 ∩ 𝐹0 and pick a

curve 𝑅0 in the ruling of 𝐹0 passing through this point. Notice that 𝐶0 cannot coincide with the ruling
of 𝐹0, as 𝐶0 and 𝑅0 are not proportional (because the divisors they rule are not). In this way, we obtain
a connected rational curve of class [𝐶0 + 𝑅0]. By abuse of notation, we denote this curve by 𝐶0 + 𝑅0.
By [Ber21, Corollary 6.3], which generalizes [CMP24, Corollary 3.5] to the reducible case, the curve
𝐶0 + 𝑅0 deforms in its Hodge locus Hdg[C0+R0 ] of the class [𝐶0 + 𝑅0] = [𝑚𝐻∨

0 ] and keeps ruling a
divisor on each point of Hdg[C0+R0 ] . By construction, this Hodge locus coincides with B, as 𝐶0 + 𝑅0
is a multiple of 𝐻∨

0 , and the result follows. Notice that here we might have to take a base change to a
finite cover of B, in order to ensure the existence of a global family of divisors, whence the base change
appearing in Definition 1.1. �

Notice that the proof of the Regeneration principle works as well in the surface case, where of course
it has to be attributed to [CGL22].

The following can be seen as a concentration of some of the main contributions of [CMP24, MP18,
MP21] – namely, the study of the monodromy orbits, constructions of examples and deformation theory.

Proposition 2.1. Hypothesis 1.2 holds for any family of manifolds of 𝐾3[𝑛] and Kummer type, and the
constant 𝑑0 is (2𝑛 − 2)2(𝑛 − 1) and (2𝑛 + 2)2(𝑛 + 1), respectively.

Proof. Let (𝑆, ℎ𝑆) be a polarized K3 of genus p and (𝐴, ℎ𝐴) a polarized abelian surface of type
(1, 𝑝 − 1). We denote by 𝑟𝑛 the class of an exceptional rational curve which is the general fiber of the
Hilbert-Chow morphism 𝑆 [𝑛] → 𝑆 (𝑛) (resp. 𝐾𝑛 (𝐴) ⊂ 𝐴 [𝑛+1] → 𝐴(𝑛+1) ) and by ℎ𝑆 ∈ 𝐻2 (𝑆

[𝑛] ,Z) (resp.
ℎ𝐴 ∈ 𝐻2(𝐾𝑛 (𝐴),Z)) the image of the class ℎ𝑆 ∈ 𝐻2(𝑆,Z) (resp. ℎ𝐴 ∈ 𝐻2(𝐴,Z)) under the inclusion
𝐻2 (𝑆,Z) ↩→ 𝐻2(𝑆

[𝑛] ,Z) (resp. 𝐻2(𝐴,Z) ↩→ 𝐻2(𝐾𝑛 (𝐴),Z)). Recall that 𝑞(ℎ𝑆) = 2𝑝 − 2 = 𝑞(ℎ𝐴) and
𝑞(𝑟𝑛) equals 1/(2𝑛 − 2) in the 𝐾3[𝑛] case and 1/(2𝑛 + 2) in the Kummer case.
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We take a primitive ample curve class 𝐶 ∈ 𝐻2 (𝑋,Z) such that 𝑞(𝐶) > 𝑛 − 1 (resp. 𝑛 + 1 for
Kummer type). By [CMP24, Corollary 2.8] and [MP18, Theorem 4.2], the pair (𝑋, 𝐶) is deformation
equivalent to the pair (𝑆 [𝑛] , ℎ𝑆 − 2𝑔𝑟𝑛) with 2𝑔 ≤ 𝑛 − 1 or (𝑆 [𝑛] , ℎ𝑆 − (2𝑔 − 1)𝑟𝑛) with 2𝑔 ≤ 𝑛 (resp.
(𝐾𝑛 (𝐴), ℎ𝐴 − 2𝑔𝑟𝑛) or (𝐾𝑛 (𝐴), ℎ𝑎 − (2𝑔 − 1)𝑟𝑛) with 2𝑔 ≤ 𝑛 − 1).

If 𝑝 ≤ 𝑔, we would get a contradiction since

𝑛 − 1 ≤ 𝑞(𝐶) = 𝑞(ℎ𝑆) − 4𝑔2 1
2(𝑛 − 1)

= 2(𝑝 − 1) − 4𝑔2 1
2(𝑛 − 1)

≤ 2(𝑔 − 1) − 4𝑔2 1
2(𝑛 − 1)

≤ 𝑛 − 2.

Notice that the class of C equals 𝐷∨

𝑚 with 𝑚 ≤ 2𝑛 − 2; hence, the condition 𝑞(𝐷) ≥ (2𝑛 − 2)2(𝑛 ± 1)
ensures 𝑞(𝐶) ≥ 𝑛 ± 1 (where the sign is according to the deformation type).

Therefore, 𝑝 ≥ 𝑔, and by [CMP24, Section 4.1] and [MP21, Proof of Proposition 2.1], the curves
we obtain in 𝑆 [𝑛] (resp. in 𝐾𝑛 (𝐴)) have a rational representative which covers a divisor by [CMP24,
Proposition 4.1] and [MP21, Proposition 1.1]. Such rational curves then deform in its Hodge locus by
[CMP24, Corollary 3.5], while still covering a divisor, and the proposition follows. �

Proof of Theorem 1.4. The result follows immediately from the combination of Proposition 2.1 and the
Regeneration principle 1.3. �

3. Applications

In this section, we provide the proofs of the applications of the Regeneration principle to IHS manifolds
of 𝐾3[𝑛]-type or generalized Kummer type.

Proof of Theorem 1.5. Again, the result follows from the combination of Proposition 2.1 and the Re-
generation principle 1.3. Indeed, suppose that (𝑋, 𝐻) is a polarized IHS manifold of 𝐾3[𝑛]-type, and
let us consider a connected component M of the moduli space of polarized IHS manifolds containing
(𝑋, 𝐻). By [CMP24, Theorem 2.5], there exists a point in M which parametrizes the Hilbert scheme
over a very general projective 𝐾3(𝑆, 𝐻𝑆). Let us choose any rational curve C in S, whose existence is
guaranteed by Bogomolov-Mumford [MM06] (see also [BHPVdV04, Section VIII.23]), and let us con-
sider the uniruled divisor 𝐷𝐶 = {𝑍 ∈ 𝑆 [𝑛] such that 𝑠𝑢𝑝𝑝(𝑍) ∩𝐶 ≠ ∅}. We then apply the Regeneration
principle 1.3 to 𝐷𝐶 and obtain a regeneration of it on all IHS manifolds corresponding to points of M.
As the very general element of M has Picard rank one, the class of this regeneration is proportional to
this unique class; hence, our regeneration has class 𝑚𝐻 on X, for some m. For the generalized Kummer
type, we proceed the same way, by using [MP18, Theorem 4.2] and [KLCM19b, Theorem 1.1] instead
of the analogous results in the 𝐾3[𝑛]-type case. �

Notice that the uniruled divisors we produce are not necessarily irreducible.
More generally, we have the following result.

Proposition 3.1. Let (𝑋, 𝐻) be a projective IHS manifold of 𝐾3[𝑛] or Kummer type, and let 𝐷 ∈ Pic(𝑋)
be a divisor with 𝑞(𝐷) ≥ 0 and (𝐷, 𝐻) > 0. Then there exists a uniruled divisor in |𝑚𝐷 | for some
𝑚 ∈ N.

Proof. The proof is analogous to Theorem 1.5, with an extension to the case of square zero classes. If
D has positive square, instead of the moduli space of polarized IHS manifolds, we consider the moduli
space M of lattice polarized IHS manifolds such that Pic(𝑋) contains a divisor of square 𝑞(𝐷), and
pick the connected component containing (𝑋, 𝐷). Let us choose a parallel transport operator 𝛾 on M
such that 𝛾(𝑋) has Picard rank 1. Therefore, 𝛾(𝐷) is ample on 𝛾(𝑋). By Theorem 1.5, a multiple
of 𝛾(𝐷) is uniruled by a rational curve 𝛾(𝐶), which has class proportional to 𝛾(𝐷)∨. Therefore, by
[CMP24, Proposition 3.1], 𝛾(𝐶) deforms in its Hodge locus, which by construction contains (𝑋, 𝐷),
and we obtain a rational curve C covering a multiple of D. If 𝑞(𝐷) = 0, we can suppose that D is nef by
[Mar11, Proposition 5.6]; otherwise, we follow the same reasoning as above to reduce to the nef case.
As X is projective, we have an ample divisor 𝐻 ∈ Pic(𝑋). Let L be the saturated lattice generated by D
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and H, and let us consider the component M of the moduli space of L lattice polarized IHS manifolds
containing (𝑋, 𝐿). Inside of M, by [MP23, Theorem 3.13], we can pick a point 𝛾(𝑋) such that 𝛾(𝐷)

stays nef and there exists a prime exceptional divisor E on 𝛾(𝑋) such that 𝑞(𝛾(𝐷), 𝐸) > 0.2 Let R
be a curve ruling E. As 𝛾(𝐷) is nef, there exists an 𝑚 ∈ N such that 𝑚𝛾(𝐷)∨ − 𝑅 is an ample curve.
Therefore, by Proposition 2.1, we produce a rational curve C of class 𝑚𝛾(𝐷)∨ −𝑅 which rules an ample
divisor and attach to it a rational tail R, so that the connected curve 𝐶 + 𝑅 of class 𝑚𝛾(𝐷)∨ rules a
divisor and deforms in its Hodge locus by [Ber21, Corollary 6.3]. By construction, this Hodge locus
contains (𝑋, 𝐷∨), and the result follows. �

To prove Theorem 1.6, we will use the following result of Chen and Lewis on 𝐾3 surfaces. Let F𝑔 be
the moduli space of polarized genus g K3 surfaces, and let S𝑔 be the universal surface over F𝑔. Let C𝑔,𝑛
be the scheme of relative dimension one whose fibre over a point (𝑆, 𝐿) ∈ F𝑔 consists of all irreducible
rational curves contained in |𝑛𝐿 |. Recall the following result.
Theorem 3.2 (Theorem 1.1, [CL13]). The set ∪𝑛∈NC𝑔,𝑛 is dense in the strong topology inside S𝑔, for
all 𝑔 ≥ 2.

From this, one easily obtains the following.
Corollary 3.3. Let S be a general projective 𝐾3 surface. Then for any pair of points 𝜉1, 𝜉2 on 𝑆 [𝑛]

and any 𝜖 > 0, there exists a chain C of at most 2𝑛 rational curves, each of which deforms in a family
covering a divisor, such that C intersects balls of radius 𝜖 centered in 𝜉𝑖 , 𝑖 = 1, 2.
Proof. Without loss of generality, we can suppose that the two points 𝜉𝑖 , 𝑖 ∈ {1, 2} correspond to reduced
subschemes and that supp(𝜉1) ∩ supp(𝜉2) = ∅; otherwise, we can take arbitrarily close approximations
by reduced subschemes with such property. Therefore, we write

𝜉𝑖 = 𝑝𝑖1 + . . . 𝑝𝑖𝑛,

with 𝑝𝑖1, . . . , 𝑝𝑖𝑛 distinct points on S for 𝑖 = 1, 2. By Theorem 3.2, we have two ample irreducible
curves 𝑅1

1, 𝑅2
1 arbitrarily near 𝑝1

1 and 𝑝2
1, respectively. As these curves are ample, the rational curve

𝑅1 = 𝑅1
1 ∪ 𝑅2

1 is connected. Let us consider the rational curve 𝑅1 + 𝑝1
2 + . . . 𝑝1

𝑛 inside 𝑆 [𝑛] : this can
be used to approximate the subschemes 𝑝1

1 + 𝑝1
2 + . . . 𝑝1

𝑛 and 𝑝2
1 + 𝑝1

2 + . . . 𝑝1
𝑛. Iterating the argument,

one obtains a rational curve (union of two irreducible ample curves) 𝑅 𝑗 for all 𝑗 ∈ {1, . . . 𝑛} which
approximates the two points 𝑝1

𝑗 and 𝑝2
𝑗 . Considering the curve 𝑝2

1 + · · · + 𝑝2
𝑗−1 + 𝑅 𝑗 + 𝑝1

𝑗+1 + · · · + 𝑝1
𝑛, one

can approximate the points 𝑝2
1 + · · · + 𝑝2

𝑗−1 + 𝑝1
𝑗 + 𝑝1

𝑗+1 + · · · + 𝑝1
𝑛 and 𝑝2

1 + · · · + 𝑝2
𝑗−1 + 𝑝2

𝑗 + 𝑝1
𝑗+1 + · · · + 𝑝1

𝑛.
Therefore, by taking the union of these curves, we obtain a chain of 2𝑛 rational irreducible curves which
approximate the two points 𝜉1 and 𝜉2. By construction, each of these rational curves C deforms in a
family which covers the divisor {𝑍 ∈ 𝑆 [𝑛] , such that supp(𝑍) ∩𝐶 ≠ ∅}, and the corollary follows. �

Proof of Theorem 1.6. 1) Let X be a very general IHS manifold in M. Let 𝑥1, 𝑥2 ∈ 𝑋 be two points
on it. Thanks to [MP23, Corollary 1.2], we can pick a point in M which parametrizes the punctual
Hilbert scheme of a very general projective 𝐾3(𝑆, 𝐻) arbitrarily close to X and two points 𝜉1, 𝜉2 ∈ 𝑆 [𝑛]

approximating 𝑥1 and 𝑥2, respectively. We take the chain R of 2𝑛 rational curves approximating 𝜉1 and
𝜉2 given by Corollary 3.3. We can now apply the Regeneration principle 1.3 to regenerate the union of
the divisors ruled by the deformations of the irreducible components of R to obtain a chain of rational
curves on X satisfying the statement.

2) Let A be an abelian surface, 𝜄 the −(1)-involution and 𝑆 → 𝐴/𝜄 the associated projective Kummer
K3 surface. On S, we have infinitely many (ample) rational curves by [CGL22]. These rational curves
yield infinitely many (singular) hyperelliptic curves on the abelian surface A. By taking the fibers of
the degree two map onto P1 to these infinitely many hyperelliptic curves, we associate infinitely many

2By the above cited theorem, the locus where a given extra class is algebraic is dense in M, and the locus where this class E
has a fixed intersection with 𝛾 (𝐷) is a proper Zariski closed subset of M; therefore, the locus where the intersection is positive
is non-empty.
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rational curves in 𝐾𝑢𝑚2(𝐴). Notice that, by translation, deformations of each of these rational curves
cover a uniruled divisor. By adding (𝑛−2) arbitrary points, we obtain the same conclusion on 𝐾𝑢𝑚𝑛 (𝐴),
for all 𝑛 ≥ 2. These divisors have positive square. Regenerating these infinitely many uniruled divisors,
we obtain the conclusion on the very general deformation of 𝐾𝑢𝑚𝑛 (𝐴). �

Remark 3.4. Actually, using [CGL22, Theorem A] and the Regeneration principle, a simpler version
of the proof of Theorem 1.6 yields the existence of infinitely many uniruled divisors for the very general
point of any family X → 𝐵 of projective IHS manifolds such that one of the fibres is the Hilbert scheme
over a projective 𝐾3.

Proof of Theorem 1.7. To prove the theorem, we will show the existence of an ample uniruled divisor
with infinite Bir(𝑋)-orbit. By [Ogu06, Theorem 1.1], as Bir(𝑋) is infinite, there exists an element
𝑔 ∈ Bir(𝑋) of infinite order. Let D be an ample uniruled divisor, whose existence is granted by
Theorem 1.5. We claim that the orbit of D via g is infinite, as otherwise, a multiple of g would give
an isometry of the lattice 𝐷⊥ ⊂ NS(𝑋). The latter is negative definite as D is ample and has therefore
finite isometry group. Hence, g would act with finite order on both D and 𝐷⊥, which is absurd, and the
claim follows. �

We recall now the following well-known result for the reader’s convenience. This tells us that
Theorem 1.7 yields its conclusion only for a codimension at least one locus in the moduli space of
projective IHS manifolds.

Lemma 3.5. Let X be a projective IHS manifold with 𝜌(𝑋) = 1. Then Aut(𝑋) = Bir(𝑋), and it is a
finite group.

Proof. First of all, recall that a birational map between two IHS manifolds sending an ample class into
an ample class can be extended to an isomorphism. As such, when 𝜌(𝑋) = 1, we have Aut(𝑋) = Bir(𝑋).
By [Fuj78, Theorem 4.8] the group of automorphisms of a compact Kähler manifold that fix a Kähler
class has only finitely many connected components. On the other hand the group of automorphisms of
an IHS manifold X is discrete, since ℎ0 (𝑋, 𝑇𝑋 ) = ℎ0 (𝑋,Ω1

𝑋 ) = 0. Hence Aut(𝑋) must be finite. �
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