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Abstract

Background. Despite increasing knowledge on the neuroimaging patterns of eating disorder
(ED) symptoms in non-clinical populations, studies using whole-brain machine learning to
identify connectome-based neuromarkers of ED symptomatology are absent. This study
examined the association of connectivity within and between large-scale functional networks
with specific symptomatic behaviors and cognitions using connectome-based predictive mod-
eling (CPM).

Methods. CPM with ten-fold cross-validation was carried out to probe functional networks
that were predictive of ED-associated symptomatology, including body image concerns,
binge eating, and compensatory behaviors, within the discovery sample of 660 participants.
The predictive ability of the identified networks was validated using an independent sample
of 821 participants.

Results. The connectivity predictive of body image concerns was identified within and
between networks implicated in cognitive control (frontoparietal and medial frontal), reward
sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the
positive network related to body image concerns identified in one sample was generalized to
predict body image concerns in an independent sample, suggesting the replicability of this
effect.

Conclusions. These findings point to the feasibility of using the functional connectome to
predict ED symptomatology in the general population and provide the first evidence that
functional interplay among distributed networks predicts body shape/weight concerns.

Introduction

Eating disorders (EDs), including anorexia nervosa (AN), bulimia nervosa (BN), and binge
eating disorder (BED), are disabling, critical, and high costing mental disorders that consider-
ably impair physical health and disrupt psychosocial functioning (Mitchison et al., 2020;
Treasure, Duarte, & Schmidt, 2020). EDs are characterized by excessive concerns about
body shape and weight, and symptoms of disordered eating [i.e. eating disorder symptoms
(EDSs)], including dietary restriction, binge eating, and purging. Varying combinations of
these EDSs occur in different EDs and across the weight spectrum, from severely underweight
to obese (Bartholdy et al., 2019; Zhang et al., 2021). Crucially, subclinical EDSs, whose preva-
lence is particularly high (22.2-31.6%) in children and adolescents, can predict the develop-
ment of full-syndrome EDs in later life (He, Cai, & Fan, 2017; Sparti, Santomauro, Cruwys,
Burgess, & Harris, 2019; Stice, Gau, Rohde, & Shaw, 2017; Tanofsky-Kraff, Schvey, & Grilo,
2020). Thus, probing the underlying neural bases of EDS subtypes, especially their brain-based
predictors, would be key to identifying vulnerable individuals (who are at heightened risk for
dysregulated eating behaviors and associated cognitive patterns) and developing more targeted
prevention strategies (Smith, Luo, & Mason, 2021).

Neurobiological alterations in brain connectivity have been demonstrated in patients with
EDs (Domakonda, He, Lee, Cyr, & Marsh, 2019; Frank, Shott, Stoddard, Swindle, & Pryor,
2021; Gaudio, Wiemerslage, Brooks, & Schiéth, 2016; Haynos et al., 2021). These findings
point to the key role of neurofunctional alterations involved in executive functioning, reward
processing, self-referential thinking, and body/interoceptive perception in the origin and per-
sistence of EDs. As early symptomatic behaviors (e.g. bulimic symptoms) are predictive of the
later development of clinical disorders (e.g. BN; Bartholdy et al., 2019; Kotler, Cohen, Davies,
Pine, & Walsh, 2001) and identifying the full range of adaptive/healthy to maladaptive/
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unhealthy phenomena is essential for a comprehensive under-
standing of the full dynamic range and means for the promotion
of well-being in as many individuals as possible (for a review, see
Cuthbert, 2015), it is of critical importance to investigate the
neural underpinnings of EDSs in the general population.
Regarding nonclinical samples (ie. individuals without an ED
diagnosis), Oliva, Morys, Horstmann, Castiello, and Begliomini
(2020) found decreased resting-state functional connectivity
(rsFC) between the right middle frontal gyrus (MFG) and the
right insula in normal-weight binge eaters. Our recent study on
young adults has shown that more frequent EDSs (e.g. bulimic
symptoms) are associated with weaker intra- and inter-network
rsFC (i.e. executive control, basal ganglia, and default mode net-
works) (Chen et al., 2021). In addition, overeating in healthy chil-
dren has been found to be positively associated with rsFC within
the basal ganglia network (Shapiro et al., 2019). Despite increas-
ing knowledge about the neuroimaging patterns of EDSs in non-
clinical samples, no previous study has used a whole-brain
machine learning approach to examine the connectome-based
neuromarkers of specific EDSs. The identification of brain-based
predictors of specific symptomatic behaviors and cognitive
patterns will advance our understanding of the specificity of
neuromarkers of different ED-related symptomatologies.

Connectome-based predictive modeling (CPM) is a recently
developed whole-brain machine learning approach for generating
brain-behavior models from whole-brain functional connectivity
(FC) data (i.e. ‘connectomes’) (Finn et al., 2015; Shen et al.,
2017). Unlike traditional correlation/regression approaches,
CPM with cross-validation is designed to protect against overfit-
ting, increasing the likelihood that the identified brain-behavior
relationships will be generalized in novel samples (Shen et al.,
2017). As CPM is entirely data-driven and allows one-to-one
mapping back to brain anatomy, it is a powerful tool for identify-
ing complex networks subserving multifaceted behaviors -
referred to as ‘neural fingerprints’ (Finn et al., 2015; Shen et al,,
2017). Using whole-brain FC data acquired during neurocognitive
task performance and at rest, CPM has been successfully used to
predict attention (Rosenberg et al., 2016, 2020; Yoo et al., 2018),
processing speed (Gao et al., 2020), creativity (Beaty et al., 2018),
anxiety (He et al, 2021; Wang et al, 2021), perceived stress
(Liu et al., 2021), personality traits (Hsu, Rosenberg, Scheinost,
Constable, & Chun, 2018), and clinical outcomes (cocaine abstin-
ence, opioid use disorder, and major depressive disorder)
(Ju et al., 2020; Lichenstein, Scheinost, Potenza, Carroll, & Yip,
2021; Yip, Scheinost, Potenza, & Carroll, 2019). However, this
technique remains to be used in the identification of neural
fingerprints of EDSs in non-clinical conditions.

In this study, we applied the CPM with 10-fold cross-
validation (10F-CV) and used whole-brain rsFC to predict indi-
vidual differences in ED-associated symptomatology (i.e. body
image concerns, binge eating, and compensatory behaviors)
within a discovery sample of 660 participants (dataset 1).
Testing and reporting performance in independent samples facili-
tate the evaluation of the generalizability of results and the even-
tual development of useful neuroimaging-based biomarkers with
real-world applicability (Shen et al., 2017). Thus, we performed
external validation analyses in an independent sample of 821 par-
ticipants (dataset 2) to assess the predictive power of these neural
models. Based on regions/networks associated with eating distur-
bances identified in previous resting-state functional magnetic
resonance imaging (rs-fMRI) studies (Chen et al., 2021;
Domakonda et al., 2019; Haynos et al., 2021; Oliva et al., 2020;

https://doi.org/10.1017/50033291722003026 Published online by Cambridge University Press

5787

Shapiro et al, 2019), we hypothesized that connectivity within
and between the frontoparietal, medial frontal, subcortical, and
ventral attention networks would be most predictive of individual
variations in specific EDSs, especially binge eating.

Methods
Participants

Two independent undergraduate student datasets (discovery data-
set: N =673; validation dataset: N=831) were included in this
study, and all participants were recruited from the Southwest
University in Chongging, China. Participants were recruited via
on-campus advertisements (e.g. posters and flyers). These two
datasets comprised individuals in our ongoing project, the
Behavioral Brain Research Project of Chinese Personality (BBP),
which was used to examine the predictive performance of the
functional connectome on disordered eating, as well as to identify
connectome-based neuromarkers of specific EDSs. Psychiatric
history was obtained via self-report; participants met the require-
ments for magnetic resonance imaging (MRI) scanning [for
further details, see Supplementary Materials (SM)]. All partici-
pants in both datasets completed the same behavioral measures
and underwent the same brain scanning protocols (online
Supplementary Fig. S1). Information pertaining to the data collec-
tion periods [September-December 2019 (dataset 1); September—
December 2020 (dataset 2)] and EDS scores for the two samples is
summarized in Table 1. All participants volunteered to participate
in this study without coercion and signed a written informed con-
sent form after receiving full written and verbal explanations
regarding this study prior to enrollment. Participants were paid
50 Yuan as compensation for their time. The research protocol
was reviewed for compliance with the standards for the ethical
treatment of human participants and approved by the Ethical
Committee for Scientific Research at the university to which the
authors are affiliated.

Dataset 1 was used as the discovery sample and comprised
840 participants. A total of 124 participants were excluded
from analysis since they did not complete the Eating Disorder
Diagnosis Scale (EDDS), and an additional 43 were excluded
due to excessive head motion during scanning [i.e. with a
mean framewise displacement (FD) larger than 0.2 mm and
more than 10% of outlier volumes in scanning session] (see
‘Head Motion Controls’ section below), resulting in a final sam-
ple of 673 participants [females, 462 (68.65%); mean age, 18.51
years, standard deviation (s.p.), 1.04; range, 16-32 years].
Dataset 2 was used as the external validation sample and com-
prised 1122 participants. A total of 175 participants were
excluded from the final data analysis due to a missing behavior
index (EDDS), while another 116 participants were excluded
due to severe head motion during MRI scanning. Finally, 831
participants were included in the data analysis [females, 563
(67.75%); mean age, 17.93 years, s.0., 1.04; range, 14-25 years]
(online Supplementary Fig. S1).

Measures

Demographics

Information was solicited about participants’ age, sex, ethnicity,
highest education level, and handedness. Weight was measured
using a medical body composition analyzer (M515; seca,
Hamburg, Germany), and height was measured using a seca
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Table 1. Demographic information for samples and correlations between the studied variables

Samples/Measures Mean (s.n.) Range 3 4 5 6 7 8
Discovery Dataset (N =660; data collection period: September-December 2019)

1. Sex (male/female) 210/450 - - - - - - -

2. Ethnicity (Han/Tujia/Hmong/other) 571/16/15/58 - - - - - - -

3. Age (years) 18.51 (1.03) 16~32 1

4. Education (years) 12.49 (0.92) 10~19 0.96***@ 1

5. BMI (kg/m?) 21.10 (2.75) 14.25~35.69 0.05° 0.06° 1

6. Head motion (mean FD, mm) 0.09 (0.03) 0.030~0.199 —0.04* —0.04 0.17***@ 1

7. Body image concerns 10.42 (6.87) 0~24 0.003" 0.001° 0.48***> 0,13 1

8. Binge eating frequency 1.00 (1.57) 0~14 0.06° 0.06° 0.07° 0.01° 0.24***P 1

9. Compensatory behaviors 1.59 (3.05) 0~32 0.07° 0.07° 0.17****  0.03° 0.31***P 0.28***P

External Validation Dataset (N =821; data collection period: September-December 2020)

1. Sex (male/female) 265/556 - - - - - - -

2. Ethnicity (Han/Tujia/Hmong/other) 671/33/12/105 - - - - - - -

3. Age (years) 17.93 (1.04) 14~25 1

4. Education (years) 11.94 (1.04) 10~19 0.99***@ 1

5. BMI (kg/m?) 21.68 (3.14) 15.43~35.56  —0.02° —0.02° 1

6. Head motion (mean FD, mm) 0.09 (0.03) 0.033~0.201 —0.01? —0.01? 0.17***@ 1

7. Body image concerns 11.19 (6.98) 0~24 @S —0.11**0 Qe 0.02° 1

8. Binge eating frequency 1.25 (1.84) 0~14 —0.09*° —0.09*° 0.10**® 0.01° 0.25**** 1

9. Compensatory behaviors 2.23 (3.19) 0~33 —0.04° —0.04° @I 0.04° 0.28***P 0.45***P

s.n., standard deviation; BMI, body mass index; FD, framewise displacement.
2Pearson’s correlation coefficients (r).

bSpearman’s correlation coefficients (p)-

*p<0.05. **p <0.01. ***p <0.001.

360° stadiometer (287 dp). Body mass index (BMI) was then cal-
culated using the seca M515.

Eating disorder-associated symptomatology scoring

The EDDS is a 22-item self-report screen that corresponds with
the Diagnostic and Statistical Manual of Mental Disorders
(4th ed.) ED diagnostic criteria (Stice, Telch, & Rizvi, 2000).
This scale has high internal consistency, satisfactory test-retest
reliability, excellent concordance with structured clinical inter-
views and convergence with validated measures of eating distur-
bances (e.g. weight/shape concerns and disinhibited eating), ED
risk factors, and social impairment (Stice, Fisher, & Martinez,
2004, 2000). Principal components analyses of Chinese samples
of each sex showed that all items loaded on one a priori factor,
suggesting that the EDDS composite has a gender-equivalent uni-
variate structure comprising all 18 items (Jackson & Chen, 2008).
Validity support for the EDDS used for Chinese samples has been
found for adolescent and adult samples from Chongqing (Jackson
& Chen, 2010; Luo, Jackson, Niu, & Chen, 2020) and different
regions of mainland China (Chen & Jackson, 2008; Jackson &
Chen, 2007). In this study, we used the EDDS to evaluate three
specific cognitive symptoms and maladaptive eating behaviors:
body image concerns, binge eating frequency, and compensatory
behaviors (i.e. purging via self-induced vomiting or laxative use,
restrictive eating, and compulsive exercise). The scoring informa-
tion of the sub-dimensions is shown in online Supplementary
Tables S1 and S2 (SM Methods).

https://doi.org/10.1017/50033291722003026 Published online by Cambridge University Press

Following the EDDS scoring algorithm (Stice et al., 2000),
0.00% (n=0) of the participants in dataset 1 (N=673) met the
diagnostic criteria of AN, 1.49% [n=10; females, 9 (1.34%)]
met the diagnostic criteria of BN, and 0.45% [n=3; females,
3 (0.45%)] met the diagnostic criteria of BED. Furthermore,
0.12% [n=1; females, 1 (0.12%)], 1.08% [n=9; females,
6 (0.72%)], and 0.00% (n=0) of the participants in dataset 2
(N=831) met the diagnostic criteria of AN, BN, and BED,
respectively. Therefore, it should be noted that the samples may
not be entirely healthy, though none of them reported any history
of psychiatry or mental disorders.

Neuroimaging data acquisition and preprocessing

All blood oxygen level-dependent (BOLD) scans were collected
using a 3-T Trio scanner (Siemens Prisma, Erlangen, Germany)
at the Brain Imaging Center, Southwest University. Data were
obtained during an 8-min scan using rs-fMRI and a gradient
echo planar imaging sequence (parameters: repetition time,
2000 ms; echo time, 30 ms; slices, 62; slice thickness, 2 mm;
field of view, 224 x 224 mm?; flip angle, 90°% resolution matrix,
112 x 112; voxel size, 2 x 2 x 2mm?; phase encoding direction,
posterior commissure >> anterior commissure). Each section con-
tained 240 volumes. High-resolution T1-weighted structural
images were acquired for coregistration purposes (parameters:
repetition time, 2530 ms; echo time, 2.98 ms; field of view,
256 x 256 mm?; flip angle, 7° base resolution, 256 x 256; slice
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per slab, 192; slice oversampling, 33.3%; voxel size, 0.5 % 0.5 X
1 mm’; phase encoding direction, anterior commissure > poster-
ior commissure). All participants were instructed to simply rest
with their eyes closed, and not to think of anything in particular.
The experimenter verified that participants did not fall asleep
during MRI scanning via verbal confirmation. Foam pads and
earplugs were used to minimize head movement and scanning
noise.

The publicly available CONN functional connectivity toolbox
(version 20.b; https://www.nitrc.org/projects/conn), in con-
junction with SPM12 (Wellcome Department of Cognitive
Neurology, London, UK; http://www.filLion.ucl.ac.uk/spm), was
used to perform all preprocessing steps on all collected neuroima-
ging data. The images of each subject were first corrected for slice
timing to reduce the within-scan acquisition time differences
between slices and then realigned to eliminate the influence of
head motion. The realigned images were spatially normalized to
the Montreal Neurological Institute (MNI) space with a resolution
voxel size of 2x2x2mm’ (e.g. Jiang et al, 2020). Spatial
smoothing was further applied with a 6-mm full-width at half-
maximum Gaussian kernel (e.g. Goldfarb, Rosenberg, Seo,
Constable, & Sinha, 2020). Additional denoising steps were per-
formed for FC analysis (e.g. Hakamata et al., 2020; Yang et al.,
2021). Using the anatomical component-based correction
(aCompCor) method (Behzadi, Restom, Liau, & Liu, 2007;
Muschelli et al., 2014), noise signals, such as signals from cerebro-
spinal fluid and white matter (WM) (5 principal components),
and movement parameters (6 motion parameters, 6 temporal
derivatives, and their squares) were removed from the images as
confounds (Friston, Williams, Howard, Frackowiak, & Turner,
1996; Satterthwaite et al., 2013). Subsequently, data scrubbing
was implemented to address head motion concerns. The bad
time points were regarded as regressors defined as volumes with
FD power >0.5 mm as well as the two succeeding volumes and
one preceding volume to reduce the spillover effect of head
motion (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012).
Linear trends of time courses were removed and a bandpass tem-
poral filtering (0.008, 0.09 Hz) was used to remove the effects of
very-low-frequency drifts and high-frequency noises.

Head motion controls

To ensure that head motion artifacts were not driving observed
effects, we first adopted a widely used criterion of head motion
to exclude participants if the mean FD was larger than 0.2 mm
and the number of volumes with a FD >0.5 mm was more than
10% of the total number of volumes (Power et al., 2012; Yan,
Wang, Zuo, & Zang, 2016; Yang et al., 2021). Accordingly, 159
participants were excluded from the entire sample due to severe
head motion. Finally, in the discovery dataset (N = 673), the num-
ber of volumes with FD >0.5 mm ranged from 0 to 25, with a
mean of 2.89 (the percentage of volumes with FD >0.5mm
ranged from 0% to 10%, with a mean of 1.00%). In the external
validation dataset (N =831), the number of volumes with FD
>0.5 mm ranged from 0 to 25, with a mean of 3.78 (the percentage
of volumes with FD >0.5 mm ranged from 0% to 10%, with a
mean of 2.00%). Large amounts of head motion create robust,
but spurious, patterns of connectivity. These motion patterns
can artifactually increase prediction performance if motion and
behavioral data are correlated (Shen et al., 2017). As such, we fur-
ther assessed Spearman’s correlation coefficients (p) between the
mean FD and the observed behavior scores to verify that the
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behavioral measure of interest was not significantly correlated
with head micromovements prior to the CPM pipeline. To further
control for possible head motion confounds, we also performed a
prediction analysis with the mean FD as an additional covariate
(see ‘Control Analyses’ section below).

Functional network construction

Whole-brain FC was assessed for each subject using GRETNA
(Ren et al., 2021; Wang et al., 2015). Network nodes were defined
using the Shen 268-node brain atlas spanning cortical, subcor-
tical, and cerebellar regions (Shen, Tokoglu, Papademetris, &
Constable, 2013), as in previous CPM work (Gao et al., 2020;
Ibrahim et al,, 2021; Yip et al., 2019). For each participant, the
BOLD time course of each node was extracted by taking the
mean across voxels. The FC (or ‘edge’) was then calculated as
the Pearson’s correlation coefficient (r) between the mean time
series of each pair of nodes. A Fisher’s r-to-z transformation
was then implemented to improve the normality of the correlation
coefficients, resulting in a 268 x 268 symmetric connectivity
matrix with 35778 ((268 x267)/2) edges for each participant.
These edges/connections (i.e. connectivity strength) measured as
Fisher-transformed correlations were used as features in the pre-
dictive models described below.

Connectome-Based predictive modeling

Ten-fold cross-validation

CPM, a recently developed technique introduced by Shen et al.
(Finn et al. 2015; Rosenberg et al., 2016; Shen et al., 2017), was
performed to investigate functional networks that were predictive
of EDSs using a 10F-CV approach within the discovery sample
(dataset 1) (e.g. Cai, Chen, Liu, Zhu, & Yu, 2020; Feng, Wang,
Li, & Xu, 2019; Gao et al. 2020; Lu et al. 2019). The CPM steps
included (i) feature selection, (ii) model building, and
(iii) model validation (Fig. 1). These steps were implemented in
MATLAB (R2017b, MathWorks). We performed the same steps
for each behavioral variable (ie. body image concerns, binge
eating frequency, and compensatory behaviors). We briefly
explain each step as follows. For a detailed description of the
CPM technique, refer to Shen et al. (2017).

(i) Feature selection: To obtain the networks used in the predic-
tion, Spearman’s correlation coefficients were calculated
between the edges and the observed behavior score. As sug-
gested by Shen et al. (2017), we used Spearman’s rank correl-
ation rather than Pearson’s correlation because the observed
behavior scores in our sample did not follow a normal
distribution as assessed by the Kolmogorov-Smirnov test
(p<0.05). We obtained p and p values for each edge.
Next, we extracted a positive network and a negative network
by selecting edges that were positively and negatively
associated with the behavior scores, respectively, using a
threshold of p <0.01, which was widely adopted in previous
CPM studies (e.g. Gao et al, 2020; Liu et al., 2021; Takagi
et al, 2018; Wang et al, 2021; Zhang et al, 2022).
Subsequently, we summed the edge values in the positive
and negative networks, respectively, to characterize the
network strength (a single summary statistic) for each
participant.

(if) Model building: The network strength indices extracted from
the positive and negative networks were fitted to three linear
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Data Preprocessing and Functional Network Construction
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Fig. 1. The schematic flow of connectome-based predictive modeling. rsFC, resting-state functional connectivity; EDS, eating disorder symptom; 10F-CV, 10-fold
cross-validation.
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regressions to generate three slopes and three intercepts. The
first (i.e. positive network model) predicted the behavior
scores with positive network scores, the second (i.e. negative
network model) with negative network scores, and the third
(i.e. combined network model) with the difference between
the positive and negative network scores as an independent
variable (i.e. positive score minus negative score; Greene,
Gao, Scheinost, & Constable, 2018; Rosenberg et al., 2020).
Specifically, participants were randomly divided into 10 sub-
sets: nine folds (90% of participants) were used as the train-
ing set, and the remaining fold (10% of participants) was
used as the testing set. The training set was used to build
the linear prediction model, and the model parameters
were applied to predict the behavior scores of the testing set.

(iii) Model validation: Spearman’s correlation coefficient p and
explained variance R? (in percentage) between the observed
and predicted scores were calculated for the positive, nega-
tive, and combined network models (Poldrack, Huckins, &
Varoquaux, 2020). This procedure was repeated ten times
so that each subset was used as a testing set. Ten p and R*
values were averaged to obtain prediction performance.
The 10F-CV was repeated 100 times, and the final prediction
performance was generated by averaging all the p and R*
values. The significance of the model was tested using
1000 permutations.

Multiple comparisons correction

Since three predictive outcomes were tested in this study, a
Bonferroni correction was applied to account for multiple testing
(Scheinost et al., 2019; Yip, Kiluk, & Scheinost, 2020), with the
threshold for significance was set t0 ppermu < 0.05/3=0.017
(Ppermu Values were based on 1000 permutation tests). The pre-
dictive efficacy of the network is considered statistically significant
if the ppermyu Value of the network is less than 0.017.

Control analyses

Age and sex have been found to be associated with FC (Feng et al.,
2018; Hsu et al, 2018), and since in-scanner motion has been
identified as a prominent factor influencing FC (Horien et al.,
2018; Power et al., 2014), we corrected for age, sex, and head
movements (i.e. mean FD) at the model evaluation stage of
CPM on the discovery dataset (i.e. when testing whether pre-
dicted scores generated by CPM significantly correlated with
observed scores) (e.g. Lu et al., 2019; Ren et al.,, 2021). We also
controlled for BMI in our predictions, given that BMI is an
important factor associated with eating-related psychopathologies
(Smith et al., 2021; Treasure et al., 2020) and that the current data
showed significant correlations between BMI and specific EDSs
(Table 1). Thus, the predictive networks used in this study were
further constructed by calculating the partial Spearman’s correl-
ation between the behavior scores predicted by the CPM frame-
work and the actual behavior scores when adjusting for the
effects of age, sex, head motion, and BML

External validation

Testing whether the results found in one sample are applicable in
another sample is an especially powerful method to assess the
generalizability of CPM-based findings (Shen et al., 2017). To
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evaluate the external predictive validity of the set of eating
symptom-related edges identified in the discovery sample, we
additionally tested whether these edges were effectively predictive
of EDSs in an independent external validation sample (dataset 2).
The current study applied the positive and negative EDS brain
networks and the model’s parameters derived from the discovery
dataset to the external validation dataset. Model performance
using the external validation dataset was quantified as the corres-
pondence between the predicted and actual EDS values (here,
Spearman’s p was used to account for the non-normal distribu-
tion of EDS). More details can be found in SM Methods.

Results
Behavioral data

We excluded participants with AN, BN, and BED based on the
EDDS [n=13/10 (dataset 1/2)] given that the aim of this study
was the early identification in non-clinical samples. To ensure
that the behavioral measure of interest was not significantly cor-
related with motion before the CPM process (Shen et al., 2017; see
also ‘Head Motion Controls’ section), we calculated Spearman’s
correlation coefficients between head motion and behavioral
variables (Table 1). The current data showed a significant associ-
ation between motion (i.e. mean FD) and body image concerns
(p=0.13, p<0.01); therefore, we treated mean FD as a control
measure and regressed the effect of mean FD values on body
image concern scores to address this concern. We used the result-
ant residualized body image concern scores for subsequent data
analysis.

The demographic information for the two datasets and correla-
tions between the studied variables are presented in Table 1. In the
discovery sample [N = 660; females, 450 (68.18%)], females had sig-
nificantly higher body image concerns (t=6.94; p <0.001) and
binge eating frequency (t=2.26; p =0.02) than males. There were
no significant sex differences in mean FD (¢ =0.28; p =0.78) and
BMI (t=-1.84; p=0.07), except for age (mean: females, 18.40 +
0.82; males, 18.73+1.36; t=-3.22; p<0.01) and education
level (mean: females, 12.40 + 0.82; males, 12.69 + 1.10; t = -3.40;
p<0.01). In the external validation sample [N=821; females,
556 (67.72%)], females reported higher body image concerns
(t = 4.32; p<0.001) than males. There were no sex differences in
mean FD (t=-0.92; p = 0.36), age (t = -1.46; p = 0.14), and educa-
tion level (f = -1.43; p = 0.15), except for BMI (mean: females, 21.22
+2.69; males, 22.64 + 3.75; t = -5.53; p < 0.01). The distributions of
the demographic data of the samples are shown in online
Supplementary Fig. S2.

Predictive efficacy of the model

Body image concerns'

The rsFC-based predictive models showed significant correlations
between the predicted and true scores (positive network: p =0.11,
R® =1.20%, Ppermu = 0.018; negative network: p = 0.11, R* = 1.50%,
Ppermu = 0.010; combined network: p = 0.14, R*=2.10%, Ppermu =
0.002; see online Supplementary Fig. S3), with both negative and
combined networks surviving a stringent Bonferroni correction
for multiple comparisons (i.e. ppermu <0.05/3 =0.017). Similar
prediction patterns were also found at the edge selection threshold
of p<0.005 (online Supplementary Fig. $4).

"The notes appear after the main text.
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Binge eating frequency

CPM failed to predict binge eating of the novel participants using
rsFC features (positive network: p =0.06, R?=0.20%, Ppermu =
0.140; negative network: p=0.01, R*=0.01%, Ppermu = 0.450;
combined network: p=0.04, R*=0.14%, ppermy=0.227). The
binge eating models were not included in the following analyses.

Compensatory behaviors

The negative and combined networks could predict individual
variations in compensatory behaviors (positive network: p = 0.07,
R*=0.21%, Ppermu =0.087; negative network: p=0.09, R*=
0.05%, Ppermu = 0.047; combined network: p =0.10, R*=0.15%,
Ppermu = 0.044); however, the two networks did not survive
Bonferroni correction (ppermy <0.017) and were therefore not
included in subsequent analyses.

Network neuroanatomy

Body image concerns

The spatial extent of both positive and negative networks together
included 202 edges (64 positive, 138 negative; Figure 2b) or less
than 1.5% of possible connections (i.e. the 35778 total edges
defined by the atlas used in this work; Shen et al., 2013). The
highest-degree nodes (i.e. nodes with the most connections) for
the positive network included a cerebellar node with connections
to the temporal, prefrontal, and motorstrip nodes. The highest-
degree nodes for the negative network included a subcortical
node with connections to the occipital, temporal, and prefrontal
nodes. Table 2 presents the top 10 nodes with the most connec-
tions contributing to the predictive models (e.g. Liu et al., 2021;
Lu et al,, 2019; Ren et al,, 2021; Wu et al., 2022). Figure 2a repre-
sents networks based on the connectivity between macroscale
brain regions. Brain regions are presented in an approximate ana-
tomical order, such that longer-range connections are represented
by longer lines. To facilitate the characterization of the identified
body image concern networks, Fig. 2c summarizes the connectiv-
ity based on the number of connections within and between
canonical neural networks (for example, frontoparietal and visual
networks; online Supplementary Fig. S5) for the positive and
negative networks, respectively. The positive body image concern
network was predominantly characterized by within-network
connections of the frontoparietal and medial frontal networks,
and between-network connections of the frontoparietal, medial
frontal, visual, and cerebellar networks. The negative and com-
bined body image concern networks mainly comprised connec-
tions between the subcortical network and the motor/sensory,
visual, and frontoparietal networks.

Control analyses

Because the current body image concern scores were adjusted for
head motion (see the ‘Behavioral Data’ section for details), we did
not control for mean FD when assessing whether the predicted
body image concern scores generated by the CPM process signifi-
cantly correlated with the observed body image concern scores
(e.g. Wang et al, 2021). After controlling for the potential con-
founders of age and BMI (following the method used in prior
CPM studies, e.g. Feng et al.,, 2019), the positive, negative, and
combined networks still effectively predicted the body image
concern scores; however, the predictive models failed to achieve
significant correlations between the predicted and true scores
when controlling for sex (online Supplementary Table S3).
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External validation

This study further examined whether the positive, negative, and
combined networks related to body image concerns in the discov-
ery sample (N = 660) were generalized to an independent sample
(N =821). Edges identified in the discovery dataset as significantly
related to observed behavior scores were extracted from dataset 2,
and then the connectivity strength was directly entered into the
final CPM to obtain the predicted behavior scores and calculate
its correlation with the actual behavior scores (for further details,
see SM Methods). We observed that CPM built with positive
network strength could predict novel participants’ body image
concern scores (positive network: p=0.10, p=0.028; negative
network: p = 0.01, p = 0.88; combined network: p = 0.04, p = 0.25).

Discussion

The present study applied CPM, a recently developed data-driven
approach, to predict levels of ED-associated symptomatology
(i.e. body image concerns, binge eating, and compensatory beha-
viors) in novel participants using whole-brain rsFC data. We
demonstrated that inter-individual differences in body image con-
cerns could be predicted by individual FC patterns, particularly
those from the frontoparietal, medial frontal, subcortical, visual,
and motor/sensory networks. Crucially, we further demonstrated
that the set of connections in the positive network related to body
image concerns identified in one sample generalized to predict
body image concerns in an independent sample, suggesting the
replicability of this effect. These novel findings point to a particu-
larly important role of prefrontal control and subcortical reward
circuits in body shape/weight concerns, which deepens our under-
standing of the connectome-based neuromarkers of maladaptive
cognitive patterns, and may have implications for the early identi-
fication of individuals suffering from strong ED-associated symp-
tomatology in the general population.

Major findings

Consistent with the connectome-based approach, the body image
concern networks are complex and include connections between
multiple, well-established neural networks (Finn et al, 2015;
Rosenberg et al., 2016). The positive network included more con-
nections within the frontoparietal and medial frontal networks, as
well as more connections between the frontoparietal network and
the medial frontal and visual networks (e.g. dorsolateral prefrontal
cortex, MFG, frontal eye fields, and cerebellum). In contrast, the
negative network included more connections between the subcor-
tical network and the motor/sensory and visual networks (e.g.
caudate, supramarginal gyrus, and secondary visual cortex). It
has been demonstrated that the positive or negative feelings that
individuals develop towards their bodily appearance (ie. the
affective component of body image; Cash, 2004) are related to
alterations in the prefrontal cortex, and that the beliefs and mental
representation of physical appearance (i.e. the cognitive compo-
nent of body image) are linked to the posterior parietal areas
(for reviews, see Badoud & Tsakiris, 2017; Gaudio &
Quattrocchi, 2012). It is highly plausible that the abnormal
engagement of frontoparietal network-mediated cognitive control
(e.g. cognitive inflexibility) manifesting as elevated intra-network
functional synchrony may contribute to negative thoughts and
emotions regarding body image (e.g. ruminative preoccupation
with body shape and fear of weight gain). This interpretation is
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Fig. 2. Networks predicting body image concerns summarized by connectivity between macroscale brain regions and networks. (a) From the top, brain regions are
presented in an approximate anatomical order whereby longer-range connections are represented by longer lines. The first set of plots contains edges that
appeared in 100% of the 1000 predictions. To facilitate identifying brain region contributions in the model, edges that appeared in more than 90, 80, and 70%
of the predictions are also shown, respectively (Horien et al., 2019; Ju et al., 2020; Rosenberg, Hsu, Scheinost, Todd Constable, & Chun, 2018). (b) For edges
that appeared in more than 90% of the predictions, displays the positive network (red), for which stronger connectivity predicts more body image concerns
and the negative network (blue), in which decreased connectivity is associated with more body image concerns. Larger spheres correspond to higher degree
nodes (i.e. with more edges) contributing to the CPM model. (c) For edges that appeared in more than 90% of the predictions, summarizes positive and negative
network anatomy based on overlap with canonical neural networks. Cells along the diagonal represent within-network connectivity and the remaining cells cor-
respond to between-network connectivity. Color bars correspond to the total number of edges within/between each canonical neural network, with darker colors
indicating a greater number of edges. The last figure shows the number of positive v. negative edges that correspond to different canonical neural networks, with
warmer colors (orange) indicating more edges in the positive network and cooler colors (green) indicating more edges in the negative network (see online
Supplementary Fig. S5 for further details on network definitions). L, left hemisphere; R, right hemisphere; FC, functional connectivity; CPM, connectome-based
predictive modeling.
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Table 2. Ten nodes with the most connections contributing to the body image concerns model (N =660)

No. K Node name Network L/R Lobe BA MNI coordinates (x, y, 2)
Positive network®
1 8 Cerebellum Visual IT L Cerebellum n/a —40.32 —74.2 —29.15
2 5 Frontal eye fields Medial frontal L Prefrontal 8 —39.35 17.2 46.7
3 4 Dorsolateral Prefrontal cortex Fronto-parietal L Prefrontal 46 —42.97 42.04 11.04
4 4 Frontal eye fields Medial frontal L Prefrontal 8 —5.03 17.67 46.05
5 4 Middle frontal gyrus Fronto-parietal L Prefrontal 10 -18.21 56.99 —14.27
6 4 Supplementary Motor cortex Fronto-parietal R MotorStrip 6 25.22 12.41 49.39
7 3 Thalamus Basal ganglia L Subcortical n/a —4.87 —10.34 5.83
8 3 Caudate Basal ganglia L Subcortical n/a -14.6 —3.51 21.09
9 3 Cerebellum Cerebellum L Cerebellum n/a —-8.7 —50.56 —39.56
10 3 Middle occipital gyrus Visual association L Parietal 7 —28.41 —62.35 40.42
Negative network
1 14 Caudate Basal ganglia R Subcortical n/a 12.56 20.19 -0.7
2 11 Superior temporal gyrus Motor R Temporal 41 59.18 -3.36 2.74
3 10 Parahippocampal gyrus Basal ganglia L Limbic 36 —20.71 -30.77 -11.12
4 9 Precentral gyrus Motor L MotorStrip 6 —56.98 —-3.43 6.82
5 9 Cerebellum Visual IT R Cerebellum n/a 39.09 —74.91 -29.7
6 7 Caudate Basal ganglia L Subcortical n/a —12.52 11.62 8.68
7 7 Fusiform Visual I L Occipital 19 -25.9 —63.14 —-12.25
8 7 Supramarginal gyrus Motor L Parietal 40 —42.21 —31.23 15.89
9 7 Orbitofrontal cortex Limbic L Prefrontal 11 —18.22 19.05 —20.98
10 7 Supramarginal gyrus Motor R Parietal 40 58 —29.28 19.53
Combined network
1 15 Caudate Basal ganglia R Subcortical n/a 12.56 20.19 -0.7
2 11 Cerebellum Visual II L Cerebellum n/a —40.32 —74.2 —29.15
3 11 Cerebellum Visual IT R Cerebellum n/a 39.09 —74.91 -29.7
4 11 Superior temporal gyrus Motor R Temporal 41 59.18 —3.36 2.74
5 10 Parahippocampal gyrus Basal ganglia L Limbic 36 —20.71 -30.77 -11.12
6 9 Caudate Basal ganglia L Subcortical n/a —14.6 -3.51 21.09
7 9 Caudate Basal ganglia L Subcortical n/a —12.52 11.62 8.68
8 9 Precentral gyrus Motor L MotorStrip 6 —56.98 —3.43 6.82
9 8 Cerebellum n/a R Cerebellum n/a 41.9 —63.98 —49.17
10 7 Thalamus Basal ganglia L Subcortical n/a —4.87 —10.34 5.83

L, left hemisphere; R, right hemisphere; BA, Brodmann area; MNI, Montreal Neurological Institute.
Notes: These key nodes were defined as those highest in degree - the number of connections/edges the node was involved in (see also Fig. 2b). K, degree; n/a, not available.
?Subcortical nodes also included the right caudate (K = 1; network: basal ganglia; coordinates: 12.7, 12.93, 11.49), right caudate (K = 1; network: basal ganglia; coordinates: 12.56, 20.19, —0.7),

and left caudate (K =2; network: basal ganglia; coordinates: —12.52, 11.62, 8.68).

consistent with a previous study involving AN participants, which
suggested that increased FC within the frontoparietal network
may be related to ruminations regarding food and bodily appear-
ance (Boehm et al., 2014). As the positive body image concern
network failed to survive multiple comparisons correction, this
result should be interpreted with caution. In particular, body
image disturbances (BIDs), such as overestimation of body size,
have been identified as core features of AN (for reviews, see
Gaudio et al. 2016; Glashouwer, van der Veer, Adipatria, de
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Jong, & Vocks, 2019). Previous studies have shown that neural
alterations involved in reward functions, visuospatial body pro-
cessing, and integration of visual and somatosensory perceptual
information in patients with AN are linked to their BIDs
(Barona et al., 2019; Favaro et al.,, 2012; Phillipou et al.,, 2016).
Thus, the weakened communication between the subcortical net-
work and motor/sensory and visual networks (as indicated by
lesser inter-network FC) may be reflective of an aberrant inter-
action between the exteroceptive representations of the body
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and reward valuation in adults with high body image concern
levels (e.g. thinness-related stimuli such as pictures of under-
weight women are perceived by patients with BIDs as rewarding
and motivating; Monteleone et al., 2018). Since comparative
research on the link between negative body image (e.g. dissatisfac-
tion, shame, and concern in relation to body image) and func-
tional brain network organization (ie. network-level
hypotheses) is lacking, this finding should be interpreted with
caution. Nonetheless, the current identification of brain-based
predictors of body image concerns in non-clinical populations
represents an important first step in addressing the potential
role of large-scale neural networks in body image, given that exist-
ing studies mainly focus on the visual components of body image
in clinical samples (for a review, see Badoud & Tsakiris, 2017). As
there does not appear to be one-to-one mapping correspondence
between brain regions and psychological processes (Anderson,
2014), other interpretations of our results may be possible.
Additional research should be carried out to confirm that the
brain-behavior associations we have observed are best explained
by executive functions, reward sensitivity, and somatosensory
information processing, as we have suggested.

This study expands the work in this area by examining the
neural fingerprints of specific EDSs using a recently developed
machine learning approach, and revealing that the functional con-
nectome is more sensitive in characterizing individual variations
of body image concerns (rather than binge eating or compensa-
tory behaviors) in the internal validation. Possible interpretations
of the results are that the relatively large and stable individual dif-
ferences in body image concerns provide a rare opportunity to
construct reliable brain-behavior associations; in contrast, the
complexity of the etiology of compensatory behaviors and the
lack of persistent negative life events that exacerbate binge eating
may weaken the ability to establish an ideal model. Future studies
could investigate these interesting possibilities by including some
additional measurements that may capture greater individual dif-
ferences (e.g. the Binge Eating Scale; Duarte, Pinto-Gouveia, &
Ferreira, 2015). Meanwhile, it is worth noting that only the posi-
tive body image concern network (rather than the negative or
combined networks) could predict the body image concern scores
in an independent sample (in the external validation). The finding
that only one of the identified networks successfully generalizes to
predict the behavioral variable of interest in an external sample is
not uncommon in prior CPM work (e.g. Beaty et al., 2018; Feng
et al., 2019; Wang et al., 2021). The consensus from these previous
studies has been that these null results are not particularly mean-
ingful and may arise as a result of overfitting the data in the ori-
ginal dataset, a common pitfall of machine learning-based
techniques (Belkin, Hsu, & Mitra, 2018; Ren et al., 2021). Taken
together, the present study provides support for assessing external
validation in addition to internal validation (here, 10F-CV) as an
important step in determining the generalizability of CPM find-
ings (Shen et al.,, 2017).

Our data further demonstrated that the body image concerns
model failed to achieve significant correlations between the pre-
dicted and actual scores when controlling for sex, suggesting a
potential sex difference in the prediction of functional networks
on individual body image concern levels. Given that rsFC can
be predictive of sex, and that sex effects have been observed in
previous CPM studies (Greene et al., 2018; Zhang, Dougherty,
Baum, White, & Michael, 2018), future studies could test the pre-
dictive power of rsFC-based CPM separately in female and male
samples to reveal sex differences in the prediction of specific
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EDSs. Moreover, the current models showed relatively small effect
sizes (e.g. Ibrahim et al., 2021). There is evidence that individua-
lized prediction with the group-level atlas has weaker predictive
power than that with an individualized template (Wang et al,,
2020). It is possible that the use of a group-level atlas in our pre-
dictions overlooked subtle brain-behavior associations (Wang
et al., 2021). Although increasing the sample size will help create
more generalizable models and less variable prediction results,
different objectives and modeling approaches invariably require
different sample sizes for satisfactory performance (Scheinost
et al., 2019). Therefore, the small effect sizes observed for internal
and external validation could in part be due to the use of data-
driven machine learning approaches, which are expected to
have small effect size estimates when applied to large datasets
(Yarkoni & Westfall, 2017). At the edge selection threshold of
P <0.005, we found that the prediction patterns of body image
concerns were similar to those at the threshold of p < 0.01, thereby
providing added confidence in the robustness of our findings (see
SM Discussion for more details). The present work provides an
important contribution to novel interventions intended for mal-
adaptive cognitive symptoms and their associated conditions
(e.g. obesity; Forcano, Mata, de la Torre, & Verdejo-Garcia,
2018), such as defining connectome-based targets for neuromo-
dulation (Siddiqi et al., 2020).

Strengths, limitations, and future directions

This study has several strengths, including a considerable number
of participants, the use of a recently developed whole-brain pre-
dictive modeling approach, and task-free and stable rsFC data
that can provide an objective picture of whole-brain patterns of
FC in individual participants and eliminate the risk of over-
representation of certain regions of interest (Horien, Shen,
Scheinost, & Constable, 2019; Shen et al., 2017; Sprooten et al.,
2017). However, this study also has some limitations. First, we
recruited only undergraduate students, given that the aim of
this study was the early identification in the general population.
Future studies are needed to replicate these findings in adolescents
and older adults and further test whether the current predictive
models can be generalized to clinical patients with EDs/BIDs.
In addition, research on the neural correlates of disordered eating
in pediatric populations (e.g. whether there are critical periods
during which relationships between binge eating and biomarkers
may emerge) is another promising direction for future studies
(Smith et al,, 2021). Second, although we used key inclusion cri-
teria to ensure that participants from both datasets had no psychi-
atric illness or major physical health problems, the lack of mental
disorder diagnosis may have some potential impact on the infer-
ence of our results. Future studies should be conducted to specif-
ically identify and exclude individuals with psychiatric disorders
(e.g. EDs, affective disorders, and schizophrenia) through the
structured clinical interview for DSM-IV, and further verify the
robustness of the results. Our two samples differed significantly
in the number of days between rs-fMRI scan and behavioral mea-
sures, which also needs to be improved in future studies. Third,
previous studies have indicated that predictive models built
from task fMRI data often outperform models built from
rs-fMRI data (Greene et al., 2018). Li et al. (2020) recently
found that the WM functional connectome could offer a novel
applicable neuromarker to explore brain-behavior relationships.
Therefore, future research should compare neural fingerprints
based on rsFC and FC data acquired during task performance,
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such as the food incentive delay paradigm (Simon et al., 2015).
Additional studies are necessary to explore whether the WM
functional connectome can predict individual variations in
ED-associated symptoms. Fourth, while CPM is a data-driven
technique and is therefore not well suited for testing specific
regions of interest-based hypotheses, inspection of the neuroanat-
omy of the networks it identifies can be useful for hypothesis gen-
eration in future studies. Using a spectral dynamic causal
modeling approach (Razi, Kahan, Rees, & Friston, 2015), our
future hypothesis-driven research will further investigate whether
and how the underlying causal interactions (i.e. intrinsic effective
connectivity) between prefrontal control (top-down) and subcor-
tical reward (bottom-up) circuits contribute to susceptibility to
EDS. Finally, this study provides information on how rsFC of
non-clinical population differs across EDS scores, but may not
provide clinical insights regarding an actual ED/BID. Future
cross-sectional studies involving multiple samples (e.g. healthy
controls, binge eaters, subthreshold BED, and BED), as well as
prospective cohort studies involving newly symptomatic/disor-
dered individuals, with longitudinal follow ups to determine
who goes on to develop a frank EDS/ED, will contribute to a
clearer understanding of the full range of neuromarkers from
non-EDs to EDs conditions.

Conclusions

This is the first attempt to predict specific EDSs at the individual
level by performing CPM of rs-fMRI data. Individual body image
concerns could be predicted by the functional interplay between a
wide array of FCs across distributed networks, particularly those
implicated in executive functioning (frontoparietal and medial
frontal), reward sensitivity (subcortical), somatosensory informa-
tion processing (motor/sensory), and visual perception (visual).
The profile of functional connections related to body image
concerns in one sample was found to successfully predict individ-
ual variations in body image concerns in an independent sample,
demonstrating the replicability of this finding. The current
large-sample study demonstrates the feasibility of rsFC-based
individualized prediction of ED-associated symptomatology and
provides novel insights into the neural mechanisms of body
shape/weight concerns in non-clinical populations, which may
allow for more targeted interventions for young adults who are
at heightened risk for maladaptive cognitive symptoms.

Data

CPM was performed using previously validated custom MATLAB
scripts, which are freely available online (https:/www.nitrc.org/
projects/bioimagesuite/). To promote data transparency, anon-
ymized data that support the findings of this research are available
from the corresponding author upon reasonable request. The data
and code sharing adopted by the authors comply with the
requirements of the funding institute and the institutional ethics
approval.

Note

1. Since our predictions were exploratory and the preliminary results may
advance our understanding of the nature and extent of the brain-behavior
associations, we also examined the identified, marginally significant positive
network in the following analyses, which may provide additional and valuable
information for the early identification of high-risk individuals.
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be found at https:/doi.org/10.1017/S0033291722003026.
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