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ON THE EXISTENCE AND BOUNDEDNESS OF
SQUARE FUNCTION OPERATORS
ON CAMPANATO SPACES

YONGZHONG SUN

Abstract. Let g(f) be a Littlewood-Paley square function of f, which belongs
to Campanato spaces LP*(1 < p < 00,—% < a < 1). We prove that if
g(f) (o) exists (i.e. g(f)(wo) < o0) for a single point o € R™, then g(f)(z)
exists almost everywhere in R™ and ||g(f)||zr.e < C||f||Lr.e. Thus we give an
improvement of some earlier results such as in [8], where it is always needed
to assume g(f)(x) exists in a set of positive measure in order to get the a.e.
existence and boundedness of g(f)(z).

§1. Introduction

In this note we study the existence and boundedness property of square
function operators on Campanato spaces. First we introduce the definition
of square functions, which are the generalization of classical ones. See [4].

DEFINITION 1.1. ¢ € CY(R") is called a Littlewood-Paley function, if
there is a positive constant ¢ such that:

(i) ¥ € L'and [ +(x)dx = 0;
Rn

(ii) [¥(z)] < el + [z~
(iii) [Vip(@)] < e(1+ |2[) 772

For a given Littlewood-Paley function, one may define three kinds of
square functions.

DEFINITION 1.2. Let % be a Littlewood-Paley function and f €
Lioe(R™), define
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1. Radial square function.

o) = ([t P L)’

t

2 Nontangential square function.

N[

swN@ = [ WP S

z—y|<t

3. Tangential square function.

() (a) = (/0“ [ e (10 ) fﬁf‘?)%;

where A > 0 is a real number, 1 () = &¢(%).

To be convenient, we omit the subscript ¢ and use g(f), s(f), gx(f) to
denote three square functions respectively. Next we introduce the concept
of Campanato spaces, which are the generalization of BMO and Lipschitz
spaces.

DEFINITION 1.3. ([1]) Suppose f is a locally integrable function and

1§p<oo,—%§oz<1. Define

1
Pine =sup (1B [ 176a) = fup )
B B
Campanato space LP* = {f € Lroc:  [f]pp.a < 00}

An useful property of a Campanato function is the following

LEMMA 1.1. ([2]) Suppose f € LP*1 < p < oo. If 3 >0 and o <
min{ (3, 1},then for any ball B = B, (x)

/ ‘f(y) - fB’ dy < Ore— [f]Lp,ozy

Rn B 4 |z — ?/|n+ﬂ B

where C' is a constant depending only on n,a and (3.
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In [6] the author studied the behavior of classical square functions act-
ing on L* and BMO space. He pointed out that the value of square
function of an L* function may be infinite everywhere in R™. Under the
assumption of the existence (finiteness) on a set of positive measure, he
got the a.e. finiteness and BM O-boundedness of square functions. Soon
after, such kind of results was generalized to other kind of square functions
such as Lusin’s area functions, Stein’s g3 functions and so on. See [3], for
example. Later, in [7] the authors improved aforementioned results in the
sense that in order to guarantee the a.e. existence and BM O-boundedness
of square function, only the assumption of one point finiteness is enough.
Similar results also hold for Lipschitz function spaces. See [5]. Since the
generalization of BM O and Lipschitz space is Campanato space, a natural
question is that if there are similar answers for the square function opera-
tors acting on Campanato spaces. Recently, K.Yabuta and others obtained
some satisfactory results, see [8] and the references therein. But their re-
sults still have a not so satisfied point, that is, in some cases in order to
get the a.e. finiteness it is always needed to assume the finiteness of square
functions on a positive measure set (such as the first occurrence in [6]). The
main results in this note point out that the one point existence of square
function is enough. More precisely, we have

THEOREM 1. Suppose f € LP*(1 < p < oo,—% < o< 1) If
9(f)(xo) < 400 for a single point xo € R", then g(f)(x) exists almost
everywhere in R™ and there is a constant C' depending on ¥, n,p,a such
that

lg(H)llzre < C|f]lLre-

THEOREM 2. Suppose f € LP%(1 < p < oo,—% < a < 1). If there
is a point xg € R™ such that s(f)(xzo) < 400, then s(f)(x) < +oo almost
everywhere in R™ and there is a constant C' depending only on ¢, n,p,«
such that

Is(Nllzre < Cllf]lLre.

THEOREM 3. Suppose f € LPY(1 < p < o0, —% <a<1),A>3+ %
If there is a point xo € R"™ such that gi(f)(zo) < 400, then gi(f)(x)
exists almost everywhere in R™ and there is a constant C' depending only
on ¥, n,p, A, a such that

g5 (F)llzre < Clf |-
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Obviously, our results improve and generalize some earlier results, es-
pecially those in [7] and [8].
Finally, We need to point out that though our results are new and the

approach is different from others, many of our idea come from [6, 7] and
[8].

§2. Proof of Theorem 1

We first deal with radial square function, which is relatively simple.
Let B = B,(xp) be any ball with centre xy. As usual, we decompose f
in the following way,

f(@) = fap + (f(x) — fap)xap(z) + (f(x) — faB)X(R\aB)(T)
= fi+ fa(z) + f3(2).

([ oo s )
([ s s )’

90(f) (@), goo () () < g(f)(@) < gof (z) + goo f ().

Define

90(f)(x)

goo (f)()

Obviously,

By property (i) of 9,
(2.1) 9(f1) = 90(f1) = goo(f1) = 0;
Since g(f2)(x) € LP, g(f2)(x) exists a.e. in R"™ and
1 o
(2.2 l9(2)lm) < Cllfallis < CIBIFS (i
In fact we have the following pointwise estimate for goo(f2):

LEMMA 2.1. For any x € R",

(2.3) g (£2)(x) < CIBI3 [flLme
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Proof. By condition (ii) of 1),

1
2 2
dt

t

ool f2) () = [ﬁLﬁmm—wb@my

NI

2

Am(/wM@—ynu@w—ﬁmmJ =
B

<C /TOO L/t‘” (1 + ’xzy‘)_n_l |f(y) = fapldy
B
<C (4/ |f(y) — f4B|dZ/) </T+OO t2"1dt>%
B

<0 [ 1) fusldy < CYBIE e
4B

IN

N

2

We need the following two lemmas.

LEMMA 2.2. For any x € B, go(f3)(x) < oo and

(2.4) g0(f3)(x) < C|B|[f]Lre.
Proof. Note thatift < r,x € B,y ¢ 4B, then (t+|x—y|) ~ (r+|zo—y|).

1
2

2
' d
go(f3)(w) = /O L/ Vi(x — ) f3(y)dy Tt
r 1 gl 2 2
=¢ /0 / tr gt 4 |z — y[ntl | f3(y)|dy s
Rn
2 3
' fly) - f
=¢ /0 / r”ll —Izi |z —4;’7‘z+1 dy| tdt

R"M\4B

< Cr U f] e ( /0 ' tdt) :
< Cro(f]ve = C|B|%[f]Lpe;
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The next to the last inequality comes from Lemma 1.1.

The following is a key lemma.

LEMMA 2.3. For any x € B, goo(f3)(z) < 00 and
(2.5) |90 (f3) () = goo (f) (w0)| < CIBI= [f]1rea.
Note that by assumption, goo(f)(x0) < g(f)(z0) < o0.

900 (f3)(®) = goo () (20)]
2
- ( a L/ Uil — ) a(y)dy Cf)
+oo 2 d %
- ( / L/WO — ) I W)y f)

/;OO / [Wr(z — y)fs(y) — Pr(zo — ) f (y)] dy

Rn

Proof. By property (i) of 1,

=

=

IN

2
dt
t

‘f) + goelF2)(0)

</ = [ W= 9) = dulawo = )] Folw)dy

i
= I(z) + goo(f2)(0);

s [ 15 =il ([ o =)~ ity —y>|2%)% dy

R™\4B

For Vo € B,y ¢ 4B, |ih(z —y) — (w0 —y)| < Clz —zo| (1 + |zg — y[)~"+?).

(7 e =) = oo - yw)%

t
“+00
<C(/ L
— - t2n

t= 1 — 0| Zar\’
(L4t Yoo —y)"™) 1

[
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1
+o00 |$0 - y| —2(n+2) dt 2
<Cr (/0 <1+7t ) anT3

1
r “+00 S 2
et ([ )
o — ™+ ( 0 (1+s)20%
—C "

|900 - y|n+17

Hence by Lemma 1.1,
|f(y) — faB

dy < Cr® .
|$0 N y|n+1 Y= r [f]Lp

I(x) <Cr /

R"\4B

Finally, using Lemma 2.1,

1950 (f3) (%) = 9o (F)(0)| < I(x) + goo(f2)(x0) < C|BI=[f]zre.

Remark 2.1. In fact, in the estimate of the term I we proved

400 %
( / |wt<x—y>—wt<x>|2%) < Clylla|= 0.
0

145

We continue to prove the theorem. By Lemmas 2.2 and 2.3, we know
g(f3)(x) is finite everywhere in B. By the a.e. existence of g(f2)(x) we know
g(f)(x) is finite a.e. in B. By the arbitrarity of the radius of B = B,(zy),
we get the a.e. existence of g(f)(z) in R™. Next we prove the boundedness

of g(f).

Let E = {x € R"|g(f)(z) < co}. Obviously, one only needs to prove

that for any ball B* = B,(z*) with centre z* € E,

@6) ([ oD@ o) de)” < OB e

In fact, let

f(x) = fap~ + (f(x) = fap-)xap- () + (f(2) — faB)X(Rr\aB*)(T)

= h1 + ha(x) + ha(x);

and denote

oot7)w) = ([t P )"
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([T 2t
a1 = ([T s@P )
Repeating the argument of proving (2.1), (2.2), (2.4) and (2.5), we have
(2.7) 9(h1) = go(h1) = goo(h1) = 0;
(28) l9(h2) o) < Cllhallzr < CIB [ [flzra:
(2.9) sup go(hs)(x) < C|B*[7[f]pre;
reB*
(2.10) sup 1900 (h3) (@) = goo (f) ()] < C| B[ [f] e
Hence

42 ([ lgnlh)(@) — g (1)) )
< 2 g0l + 2 [ Ion(ha) )" d)”
2B sup lgeo () () — oo ()0
< C|B 7 | f] .

83. Proof of Theorems 2, 3

We only give the proof of Theorem 3. The proof of Theorem 2 is similar
and we leave it to the interesting reader.
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As in the proof of Theorem 1, we only need to prove the following three
lemmas concerning on gy. Use the same notation as the last section, define

o) = ([ [ rwt*f<x—u>|2du)%;
G = ([ ] |¢t*f<z—u>|2du)%;

Y
where dy = (1 + |it‘) " fﬁff.

LEMMA 3.1. For any x € R", g} .. (f2)(%) < 00 and

(3.1) Froo(f2)(@) < C|B[7[f]rpa;

where the constant C depends only on ¥,n,p,a and .

Proof. By noting condition (ii) of 1,

9 oo(f2) (@ </ /n du)
(/ /[/ el —u— )||f(y)—f43\dyrdu>

B 2 3
<C(/ /n MB n 1+t( z|a;iw|—diy)”“] du)
<C/ — faBldy (/+OO/ <t+‘u’>’\" g:fﬁ)a
< C/ — faBldy (/+OO/ <1+|U|>M dvdt)

£2n+1
1 a
<C— [ |f(y) = fagldy < C|B|[f]Lre.
™ JaB

| e =y = faly)dy

N

N

The following lemma is essentially contained in Lemma 4 in [7].

LEMMA 3.2. IfA >3+ %,then for any x € B,g} o(f3)(z)exists and

(3.2) gio(f3)(@) < C|B|% [f]Lre.
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Proof. By condition (ii) of ¢ and (1+|z|) < (1+|z—y|)(1+|y|),Vz,y €
rol(f3)(@

([ C

<c // / i) = fasl__ ( t )A”dudt
Nty e —u—g 0] el e
‘u|) —An+2n+2 %

dudt

R"\4B

/ Vile —y — u) fs(y)dy

Noting that for t € (0,7),2 € B,y ¢ 4B, one has t + |z — y| ~ r + |zo — Y|
and A >3+ 2,

|f(y) — f1B]
(r +|zo —y|)"

Golf@ <cr |

R"\4B
< Cr[flire = C|B|¥[f]re;
The last inequality comes from Lemma 1.1.

LEMMA 3.3. If A>3+ %, then for any x € B,g3 (f3)(x) < oo and

(f3)(x) = 3.00(£)(0) | < CIBIZ[f]pe.

Proof. By Lemma 3.1 and using the same argument as in the proof of
Lemma 2.3, one only needs to prove
2 \3
d,u)

(3.4) I(z) = ( /R | il = u ) = il — = )] o)y
By the Minkowski inequality, we only need to estimate the following

<Cr / |f(y) — fasldy
|900 -
term II(x). By using condition (ii) of 1),

(3.3)

|n+1 ;
R™\4B

1
2

() = ( [ e == ) = ulo — = y)l2dﬂ>

https://doi.org/10.1017/50027763000008746 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000008746

SQUARE FUNCTION OPERATORS ON CAMPANATO SPACES 149

2 \3
B </Ri“ d”)

1
1 Iz — o2 2
SC/ (/n+1 ia = 2(nH)d,u do
o \Jryt o2 (15 4 o — u—y + 6z — 20)])

1
2

1 (14 |v|) = dvdt
< Cr/o /R”“ 20—t 0(z—z0) 2(n+2) do
+  t2nt3 (1—|—|70 Y —v|)

1
D (1 4 |v|) " dvds 2
:Cr/ |z ! / " = 5T 2) do
0 R g2n+3 (1+ |s=1z" —v)

e o0 h(s)ds
_CT‘/ |z|~ 1 (/0 52("23 ) do;

_ (1+ An
where z = |20 — y + 0(x — x0)|,2" = 2|z| 71, ha(s) = Jrn (1+\S—1|U/) u\)Q(z”)

/Ol(g; — 20) - V(0 — u — y + Oz — 0))db

Next we estimate h,/(s).

If s > 1, then
dv
h / = C(n, A);
(5)= | A5 o)™ (n,A)
If s < 1, then
ha(s) < / + / +/,
vl<gs <k Ju>2

Note that if [v| < &, then |s712/ — v > &

/ (1 + ‘UD*)\ndU < 271/ 82(n+2)(1 + ‘UD*)\nd'U < 082(n+2);
( " B

1+ |5712’/ B v|)2(n+2) - (1 + 28)2(n+2)
lv|< g5

If £ <|v] <2 then 1+ |v]~ 1

(1+ |v|)_>‘”dv
1. _ 2(n+2)
IPAPE (14 |s7 12 —v|)
sM
<C Cs()x—l)n
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If v| > %,thmﬂs’lz'—'U\Z’”"‘% > %hﬁ

/ (]. + |U|)_>‘nd2} <C / |v|f)\n72nf4d,v < CS)\TL+2n+3_
(1+]s71z/ — U\)2(”+2) N N ’

v|>2 |v]>2

Finally by noting A > 3 + %, A=1)n>2n+2,

/*0" hy(s)ds <c
0 ?

g2n+3  —

hence

1
Il(x) < Cr/ |27 do < Cr|wg —y| 7"
0

and (3.5) is proved.

Remark 3.1. We need the assumption of A > 3 + 2, while in [8] only

A>1+ % is assumed.

Acknowledgements. 1 would like to thank the referee for careful

reading and pointing out a mistake in the proof of Lemma 3.3 in the earlier
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