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UNITARY EQUIVALENCE

IN PAIRWISE SPECTRAL ANALYSIS

EDWARD W. BARANKIN

A word of Dedication

It is a privilege to share in the honoring of Professor Katuzi Ono on this oc-

casion. It would be enough to be simply putting in evidence my high regard for a

good and dear friend. But there is so very much more than that here. It is an

opportunity for me to declare my esteem for the kind of mathematician who looks at

his field from the outside as well as the inside; who sees the richness of all experience

and seeks its instruction to know better and better the meaning of mathematics; who

by the example of his own life urges young, coming scientists to the more productive

path of an uncompartmentalized personality. Katuzi Ono is all of these.

§1. Introduction,

In the pairwise spectral analysis of two projections F and G (see [1, §4]

of the References) there are determined two resolutions of the identity, E^

and Έ,G, which are spectral measures on the Borel interval [0,1], and which

are, in fact, the spectral measures of the Hermitian operators SF and SG

of (1. 6) below. The derived measures £p and ΈG, defined by

(1. 1) £,(A) = •

EF(A), if 0 φ A

and

. f E G ( A ) - ( / - G ) , i f O e A ,

(1. 2) £G(A) =

1 EG(A), if 0 $ A,
are resolutions of F and G, respectively, and they enjoy the relationship

(1. 3) , Λ

FEG(A) =
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14 EDWARD W. BARANKIN

for every Borel subset A of [0,1]. From (1. 3) other identities are derivable;

for example, if / is a bounded, measurable function on [0,1], then

(1. 4) G $ f(λ)SF(dλ) = J f(λ)ta(dλ)-F
[0,1] [0,1]

and

(1.5) F J f(λ)£a(dλ)= J f(λ)tF(dλ)-G.
[ 1 ] []

J J
[0,1] [0,1]

For a set A Q (0,1] the ranges of corresponding projections EF(A) and

Eσ(A) are isometric. In [1] we gave explicit partial isometries that establish

this, namely, VF;A

 a ^d VG;A. Let us recall their definition. Consistent with

our standard notation

SF = FGF = j XEAdλ),
(1. 6) [ M ]

[ SG = GFG = J λΈo{dλ),
[0,1]

we set

(1.7)

and then define

(1. 8)
VF = S~G

hGF,

VG = S~lFG.

VF is proved to be a partial isometry whose initial domain is the range of

EF((0,1]) and whose terminal domain is the range of Eσ((0,l]). Exactly the

reverse is true for VG9 so that, indeed, we have VG = V*. With these we

finally define, for any A Q (0,1],

(1. 9)

and we find that W ; A is a partial isometry with initial domain the range

of E^A) and terminal domain the range of EG(A); and vice versa for VGlA.
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Some of the relations satisfied by these partial isometries are

VF =
(1. 10)

(i.ii) VG;A = VF;A;

ί VF; AVG = VFVG; A = VF; AVG; A = EG(A),

I VG;AVF = VGVFtA = VG.,AVF;A = E f(A).

The question readily suggests itself whether all the partial isometries

VF; A? A Q (0,1], derive from a single unitary equivalence that is, whether

there exists a unitary operator UF such that

(1. 13) Eσ( A) UF = UF EF( A) = VF; A

for all A S (0,1].

Notice that if this is so, then the unitary operator UG — U* satisfies

(1. 14) EF(A)UG = UGEG(A) = VG; A

for all (A) g (0,1].

In his recent doctoral dissertation, [2], Stephen Strasen presents a construc-

tion of a unitary operator for which he proves that the first equation in

(1. 13) holds. It is, moreover, immediately evident from the construction

that (1. 13) as a whole is verified. Hence, the immediate question is

answered. But here in this present paper we will report on another ap-

proach to a unitary operator satisfying (1. 13). Our formulation is altogether

different form that given by Strasen: we construct an explicit spectral

measure on the circle, and the unitary operator having this spectral measure

proves to fulfill (1. 13). By contrast, Strasen's approach avails itself of the

interrelationships between certain linear manifolds that are involved and

thereby succeeds in avoiding a great deal of explicit detail. We can describe

this approach in a few words. Recall the operator VF introduced above,

which is a partial isometry with initial domain the range of EF((0,1]) and

terminal domain the range of EG((0,l]). Let H and / denote the projections

EF ({0}) and EG({0}), respectively. Let an analysis be carried out as above

with H and / in the places of F and G, respectively. We come up, then,

with spectral measures EH and E J } and with a partial isometry VH having

the range of E#((0,1]) for its initial domain and the range of Ej{(0,1\) for
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16 EDWARD W. BARANKIN

its terminal domain. It is a fact, as proved by Strasen, that EH((0,1]) =

EF({0}), that E,r((0,l]) = Eσ({0}), and that VF + VH is a unitary operator

satisfying (1. 13).

There appears to be near at hand a tying together of these two ap-

proaches, with the result that one would have explicitly the spectral form

of the unitary operator VF + VH*

For the sake of a bit greater clarity of exposition we shall divide our work

into three sections. In the first, that is, in Section 2, we shall define the

operators Wψ{A), Wf\A)9 W%\ Wψ and develop their properties. In Section

3 we shall go on to define and elaborate the spectral measure KF. And

then finally, in Section 4, we present our unitary operator UF and show that

it fulfills (1. 13).

§2. The TF-operators.

We shall let -9 denote the function on the closed unit interval defined

by
(def.) _

(2. 1) ι ${λ) = cos-V t .

For the two projections F and G—which shall remain fixed throughout

our discussion—we consider all the appertinent quantities as defined in

Section 1, and we go directly to making the following definition:

τέfΈAdλ) - τ
A A

for AQ{a9β), 0<a<β<l.

It is now an excellent tour of practice in the operational calculus, enhanced

in our case by the relationships (1. 4) and (1. 5), to perform the evaluation

of the product of (Wΐ\A))* into W$\A). Carrying through all the details

of this we find the very simple result that

(2. 3) (JYcf\A))*W¥\A) = EF(A),

AG(a,β), 0 < a<

This implies in particular that, for any element ψ of the underlying Hubert

space ξ),

(2.4) l|Tn+)(A)0||2H|EF(A)0||S

A£{a9β), 0<a<β<l.
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SPECTRAL ANALYSIS 17

From this in turn it follows that HTV̂ Aĵ H is uniformly arbitrarily small for

sufficiently small σ>0 if A is bounded away from 0 and lies in (0,σ] or is

bounded away from 1 and lies in [1 — σ, 1). And this fact asserts that there

exists the strong limit of W™([ε1,l—ε2Ί) as εί and ε2 tend to 0 through

positive values, and that this limit operator has domain ξ>. We define

(2. 5) m + ) = EF({1}) + limWψ([ε19l - εj).
e i , e 2 l θ

If A C (α, J9), with 0 < a < β < 1, we readily calculate that the following

relation holds:

(2.6) W¥(A) = WP EF(*).

We now take this equation as definitional of W^p (A) for all Borel subsets A of the

closed interval [0,1]. Accordingly we see that Wψ^ ( ) is completely additive

and that we have the following particular evaluations

(2.7)

The limit of WP{lε19 1 - εj), as ε^O and ε 2 | 0 , is 17^ ((0,1)) according

to (2. 5) and (2. 7), and it follows that the limit of the product (T^?)[ε1,l-ε2])*

WT ([βi, l-ε2]) is {Wψ ((0,1)))* W^ ((0,1)). On the other hand, the latter

limit is £^((0,1)), by (2. 3). Hence, we have the equality of these last two

expressions, or, equivalently,

(2.8) Wf+WP = EF{(0,l]).

With this result we immediately obtain from (2. 6) the following result gene-

ralizing (2. 3):

(2. 9) {Wψ (A))*WT (B) = E (̂A Π B - {0}),

A, eg [o,U

(2.

Along with (2. 2) we introduce another definition:

(def.)

) WV()

for Ag(α,/3), 0
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18 EDWARD W. BARANKIN

The same calculation as in the case of Wψ (A) shows that here too we have

the relation

(2. 11) (WP (A))*W? (A) = EF(A),

A g (a,β)9 0<a<β<l,

and consequently also the existence of the strong limit operator, with domain

ft

(2. 12) W? = lim Wf> ([ε19 1 - εj).
e i , e 2 | 0

As before, we find that the following equation is verified for A £ (a9 β) with

0<a<β<l, and we take the equation as definitional for all other Borel

subsets of [0,1]:

(2.13) WP(A) = WP-EF(*).

In particular, then,

(2. 14)

and also

(2. 15)

The relations (2. 13) and (2. 15) combine to give

(2. 16) (WP (A))* IFF (B) = EF(A Π B - {0} - {1}),

A, B S [0,1].

In addition to (2. 9) and (2. 16) we have the formula for mixed pro-

ducts :

A, Bg[0,l].

To obtain this result one again first evaluates the product for A, B g (a, β)9

0 < a < β < 1, using (2. 2) and (2. 10), and finds the product to vanish identi-

cally. One then determines that Wψ* WP = O by taking limits. And finally

(2. 6) and (2. 13) give the full result (2. 17).

Notice that by taking adjoints one finds that (2. 17) holds just as well

with the (+) and (—) interchanged.
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§3. The spectral measure Kp.

It will be convenient to introduce the following notational devices: If

C is any subset of the cell (—1,1], we set

c+ = (o,i]n c,

(3.1)

c- = (-1,0) n c

and

(3. 2) -C = {x e (-1,1]| - x e C}.

Now we make the following definition for any Borel subset C of (—1,1]:

(3. 3) K,(C)Cdί° WΫ>EF(C+)WF + WFEF(-C-)WP*,

e g (-i,i]

By (2. 6) and (2. 13) we can just as well write

(3. 4) ±F(c) = in+)(c+)(τn+)(c+))* + w?(-c-)wp(-c-)y\

From either (3. 3) or (3. 4) we see directly that K^C) is Hermitian. It is

also idempotent, as we find by using (2. 8), (2. 15) and (2. 17). Thus, for

each C, Kp(C) is a projection. From (3. 3) we have, moreover, that K^ is

completely additive. Hence, K F is a spectral measure on (—1,1]. This

does not mean, however, that necessarily Kp((—1,1]) = / ; indeed we shall

see that this is not true in general.

We now evaluate K F . By virtue of the additivity we may reduce the

general computation to separate computations for e g (0,1] and C £(—1,0).

By (3. 4} we see that in either of these cases ΈίF(C) is of the form Wψ\A)

(PF£°(A))* for some A Q (0,1]. Since the latter products are actually additive

(see (2. 6) and (2. 13) again) we may accomplish their general evaluation by

calculating them separately for A= {1} and A £ (α, β)9 O < α < / 5 < 1 . This

last case, of course, enables the calculation for any A £(0,1) through the

continuity implied by the complete additivity.

From (2. 7) we have immediately

(3.5) w

and from (2. 14) we have

(3.6)
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By computing again from the original defining formulas (2. 2) and (2. 10),

we find

(3.7)

—p[ ^ —
. JA τ/λ (1-

A£(α,β), 0<a<β<l.

-EF(dλ)

(Notice here that for the first time the other basic spectral measure, EG,

has entered explicitly into our formulas). According to the discussion in the

preceding paragraph formulas (3. 5), {3. 6), and (3. 7) are sufficient now to

enable us to calculate KP(C) for any C Q (—1,1].

For C = {0} both C+ and C~ are the empty set, and (3. 3) therefore tells

that

(3. 8) KF({0}) = O.

For C = {1} we apply (3. 5) to (3. 4) and we get

(3.9)

Completing a basic set of computational formulas for Kp are the following

two, derived from (3. 7) and (3. 4):

(3. 10) K,(C) = -±-

Jc τ/2 (l—

C Q(a,β), 0<a<β<l;

(3. 11)
~ p I — =

C S (cx,β), 0<a<β<l.

l/λ (1-λ)
•EF(dλ)

From these last two formulas—and referring, of course, to (3. 4)—we

determine, for example,

(3. 12)
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From this we find that

(3. 13) FKA(-h D) = K^((-l, 1))F = E*((0f1))

and therefore furthermore, by (3. 9),

(3. 14) FKF((~1,1]) = K*((-l, ΐ\)F = E,((0,1]).

This relationship shows that KJP((—1,1]) is not in general the identity ope-

rator. We therefore now define, for all Borel subsets C of (—1,1],

(def.)ί KF(C) if 0 $ C ,
(3. 15) K,(C) = β

i Kp(C) + [/-K,((-l , 1])] if OGC.

¥LF is clearly a resolution of the identity on (—1,1],

If F and G are interchanged in all of the analysis we have performed

then we come out with a spectral measure K<? on (—1,1]. It is of interest

to note the symmetry of the right-hand side of (3. 12) and consequently the

fact that

(3.16)

We notice furthermore that the right-hand sides of (3. 10) and (3. 11) pass

into each other when F and G are interchanged. This fact, together with

(3. 16) implies the general result that

(3. 17) KG(C) = K,(-C), C g (-1,1].

§4. The unitary equivalence.

We now finally define the operator UF:

(4.1) £// d = 0 J ei«-»Kr{dλ)+ \ e-**WKF{dλ).
( 1 0 ) [01]

J \
(-1,0) [0,1]

Let us note right at the start that if UG is defined similarly, with KG in

place of K F in (4. 1), then (3. 17) immediately produces the result that

(4. 2) Uβ = U%.

A straightforward calculation shows that

(4. 3) UFU% = UFUF = I,

so that UF is indeed a unitary operator. Similarly, UG is unitary.

https://doi.org/10.1017/S0027763000013246 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013246


22 EDWARD W. BARANKIN

We may obtain a more explicit evaluation of UF, as follows. By (3. 15)

we have

(4.4)
{0}

= -ί[/-K,((-lf 1])].

With (3. 9) we obtain further

(4.5) j
{1}

Then, from (3. 11) we get

(4.6) ( eW-»KF(dλ) =-
S i-e 0iύ

(-1,0)

and from (3. 10)

(4.7)
(0,1)

ε 10

fii-e e-iϋ(

Now taking the sum of (4. 4)-(4. 7) inclusive, we obtain

~Έ,F(d2)

(4. 8) Uf = E,({1}) - ill- K,((-l,l])]

pi-e

~F)
Je

With this expression for UF we are now able to carry out the calcula-

tions to verify that this operator provides the desired unitary equivalence;

that is, that it satisfies (1. 13). Indeed, let (4. 8) be multiplied on the right

by Eί.((0,l]). The result of this multiplication into / — KF{(—1,1]) is O, as

can be seen by (3. 14). The product with the remaining terms evaluates to

(4.9)

which is identical with (see (1. 7)) the product SF 2 GF which is (see (1. 8))

precisely VF% Thus we have
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(4.10) UFEF((0,l]) = VF.

Multiplying this on the right by EF(A), for A Q (0,1], gives (see (1. 9))

(4.11) UFΈF(*) = VF.A.

This is half of the relationship (1. 13). To achieve the other half consider

our analysis having been carried through with F and G interchanged. In

this way we should obtain, corresponding to (4. 10), the equation

(4. 12) UβΈa((091]) = Vβ.

Taking adjoints in this equation, and remembering that VF and VG are

adjoints of each other (see (1. 11)) and likewise UF and UG (see (4. 2)) we

get

(4.13) EG((

Multiplying this on the left by ΈG(A) gives (utilizing (1. 11) and the adjoint

of the second equation in (1. 9))

(4.14) EG(A)UF=VF;A.

which is the second half of (1. 13).

We have thus fully established that our unitary operator UF, given by

(4. 1), fulfills (1. 13).

Of course, UG satisfies a corresponding pair of equalities involving VG. A .

REFERENCES

[ 1 ] Edward W. Barankin, "Toward the mathematics of a general theory of behavior, I:
the lattice Xo>" Annals of the Institute of Statistical Mathematics, Tokyo, Vol. 21, N o . 3,
1969, pp. 421-456.

[ 2 ] Stephen M. Strasen, Flanking in the Wide Sense, doctoral dissertation, University of Cali-
fornia, Berkeley, November, 1968.

University of California,
Berkeley

https://doi.org/10.1017/S0027763000013246 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013246



