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Abstract

Suppose that a system is affected by a sequence of random shocks that occur over cer-
tain time periods. In this paper we study the discrete censored δ-shock model, δ ≥ 1, for
which the system fails whenever no shock occurs within a δ-length time period from
the last shock, by supposing that the interarrival times between consecutive shocks are
described by a first-order Markov chain (as well as under the binomial shock process,
i.e., when the interarrival times between successive shocks have a geometric distribu-
tion). Using the Markov chain embedding technique introduced by Chadjiconstantinidis
et al. (Adv. Appl. Prob. 32, 2000), we study the joint and marginal distributions of the
system’s lifetime, the number of shocks, and the number of periods in which no shocks
occur, up to the failure of the system. The joint and marginal probability generating
functions of these random variables are obtained, and several recursions and exact for-
mulae are given for the evaluation of their probability mass functions and moments. It
is shown that the system’s lifetime follows a Markov geometric distribution of order δ

(a geometric distribution of order δ under the binomial setup) and also that it follows a
matrix-geometric distribution. Some reliability properties are also given under the bino-
mial shock process, by showing that a shift of the system’s lifetime random variable
follows a compound geometric distribution. Finally, we introduce a new mixed discrete
censored δ-shock model, for which the system fails when no shock occurs within a δ-
length time period from the last shock, or the magnitude of the shock is larger than a
given critical threshold γ > 0. Similarly, for this mixed model, we study the joint and
marginal distributions of the system’s lifetime, the number of shocks, and the number
of periods in which no shocks occur, up to the failure of the system, under the binomial
shock process.
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1. Introduction

Shock models have been of great interest in reliability theory, operational research, and
applied probability. Shock models are applied to study the lifetime of a system in the presence
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of a random environment. A classical shock model is based on a stochastic model that involves
interarrival times between successive shocks, magnitudes of shocks, and a particular rule which
defines the failure criteria of the system. Numerous shock models have been defined and stud-
ied in the literature from different perspectives. The extreme and cumulative shock models are
the basic models that have been extensively studied in the literature. In the extreme (cumula-
tive) shock model, a system that is subject to shocks of random magnitudes at random times
breaks down when an individual shock magnitude (the cumulative shock magnitude) exceeds
some given threshold (see, for example, Cha and Finkelstein [10], Cirillo and Hüsler [13],
Gut and Hüsler [25], Gut [23], and Shanthikumar and Sumita [43]). Many researchers have
defined and investigated modifications and generalizations of these two traditional models,
such as δ-shock models, run shock models, and mixed shock models. In the δ-shock model,
the system fails whenever the time between two consecutive shocks falls below a fixed thresh-
old δ (Li [27], Wang and Zang [46], Xu and Li [50], Li and Kong [28], Li and Zhao [29], Li
et al. [30], Bai and Xiao [4], Eryilmaz and Bayramoglou [19]), whereas under the setup of the
run shock model, the system fails when the magnitudes of a specified number of consecutive
shocks exceed a given threshold γ (Sumita and Shanthikumar [45], Gut [23], Mallor and Omey
[36]). The above-mentioned papers study the lifetime behavior of the system when the shocks
occur according to a Poisson process, i.e. the interarrival times between shocks are exponen-
tially distributed. Eryilmaz [18] studied the δ-shock model when the shock arrival process is
described by a Pólya process which has dependent interarrival times. Eryilmaz [14] introduced
and studied the lifetime of a generalized δ-shock model, under which the system breaks down
whenever the lengths of k ≥ 1 consecutive interarrival times are less than a given threshold δ

and the shocks occur according to a Poisson process. Under the δ-shock model, the failure
time of the system depends only on the interarrival times between shocks. In the mixed shock
models, two or more types of classical shocks affect the behavior of the system. One is based
on the interarrival time between successive shocks, and the other is based on the magnitude
of a single shock and/or the cumulative shock magnitude. For example, in the mixed δ-shock
model and the extreme shock model, the system fails if the interarrival time between two con-
secutive shocks is less than a given positive value, say δ, or the magnitude of a single shock
is more than a positive value, say γ (Wang and Zang [47], Rafiee et al. [42], Parvardeh and
Balakrishnan [40], Lorvand et al. [31–33]).

Ma and Li [35] introduced a new shock model, called the censored δ-shock model, in which
the system fails whenever no shock occurs within a δ-length time period from the last shock.
Ma and Li [35] applied this model to describe customer relationships in trading management.
A customer’s lifetime can be treated as the sum of δ and all previous trade times. When the
interval between two successive trades between the customer and the trading company exceeds
a threshold δ, a subsequent trade from this customer can be regarded as a trade from a new cus-
tomer. The censored δ-shock model has many other applications in several fields, such as engi-
neering, medicine, and management; for more examples, see Bai et al. [3] and Bian et al. [6].

Ma and Li [35] investigated the lifetime distribution of the censored δ-shock model and
some related properties assuming that the system is subjected to external shocks under the
classical assumption that shocks arrive according to a Poisson process, i.e., when the times
between arrivals of successive shocks have a common exponential distribution. Eryilmaz and
Bayramoglu [19] studied the lifetime distribution of the censored δ-shock model assuming
that the external shocks arrive according to a renewal process such that the interarrival times
of shocks follow the uniform distribution. Bai et al. [3] examined the parameter estimation of
the censored δ-shock model.
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In the above setups, the studies focused on the evaluation of the system’s lifetime in a con-
tinuous setup, in the sense that shocks arrive according to a renewal process and the times
between successive shocks have a continuous probability distribution. However, in some cases
the shocks may occur over discrete periods. In many real-life problems, the sojourn time in
a state may be expressed by a number of specific cycles, e.g., the number of hours, days, or
weeks that have passed, which can be modeled by a random variable having a discrete proba-
bility distribution. On the other hand, discrete-time shock models can be used to approximate
continuous-time shock models. Several studies have been made of discrete shock models, i.e.,
when the interarrival times of shocks have a discrete probability distribution. See, for example,
Eryilmaz [14–17], Gut [24], Aven and Gaarder [2], Nanda [39], Nair [38], Eryilmaz and Tekin
[21], Eryilmaz and Kan [20], Chadjiconstantinidis and Eryilmaz [12], Lorvand et al. [32, 33],
Lorvand and Nematollahi [31], and the references therein.

Under the discrete setup, Bian et al. [6] studied the lifetime of the censored δ-shock model
when the times between successive shocks have a common geometric distribution and obtained
the probability mass function (PMF), the probability generating function (PGF), the mean and
the variance of system’s lifetime, and the joint PMF of the system’s lifetime and the number
of shocks until the failure of the system. Also, they obtained the PMF of the system’s lifetime
when the shocks arrive according to a specific first-order discrete-time Markov chain, in the
sense that the initial probability of shock process at time zero has a special distribution.

Ma et al. [34] generalized the model of Bian et al. [6] by considering shocks that arrive
according to a first-order discrete-time Markov chain with an arbitrary initial probability of
shock at time zero and obtained the PMF, the mean of the system’s lifetime, and the joint PMF
of the system’s lifetime and the number of shocks until the failure of the system.

In this paper, we examine the joint and marginal distributions involved in a discrete censored
δ-shock model, i.e., the system’s lifetime, the number of shocks until the failure of the system,
and the number of periods in which no shocks occur, up to the failure of the system.

Consider a system which is subject to external shocks, and let Xi denote the interarrival time
between the (i − 1)th and ith shocks. The shocks arrive according to a discrete renewal process
at times n = 0, 1, · · · . It is assumed that {X1, X2, · · · } constitute a sequence of nonnegative
discrete independent and identically distributed (i.i.d.) random variables.

We recall that under the censored δ-shock model, the system fails when no shock occurs
within a δ-length time period from the last shock. In this model, the lifetime Tδ of the system
is defined by the shifted compound random variable (or random sum)

Tδ =
Mδ∑
i=0

Xi + δ, (1)

where
{Mδ = n} = {X1 ≤ δ, · · · , Xn ≤ δ, Xn+1 > δ}, n = 0, 1, 2, · · · , (2)

for a prespecified level δ ≥ 1 with X0 ≡ 0. Therefore, the random variable Mδ represents the
number of shocks occurring until the failure of the system.

Usually, in the study of the random sums, it is assumed that the random variables Xi and Mδ

are independent. However, in the random sum (1) these random variables are dependent, and
hence it is mathematically intractable to use this representation to find the distribution of Tδ .
To overcome this difficulty, we define the following sequence of i.i.d. binary random variables:

In =
{

1 if a shock occurs in periodn,

0 otherwise,
n = 1, 2, · · · . (3)

https://doi.org/10.1017/apr.2022.72 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.72


Discrete censored δ-shock models 1147

Let us denote by S (success) the event {In = 1} and by F (failure) the event {In = 0}. Then the
problem of evaluating the distribution of Tδ can be equivalently transformed to a waiting prob-
lem. The lifetime Tδ is distributed as the waiting time random variable, say Wδ , for the first
occurrence of the pattern ‘no success occurs within a δ-length time period from the last suc-
cess’. That is, Wδ (and hence Tδ) is the waiting time until a sequence of δ consecutive failures
(or a failure run of length δ) is observed for the first time. Under this framework, it is notewor-
thy that the random variable Tδ and/or Wδ can also defined using indicator variables, as

Tδ = min{n : In−δ+1 = In−δ+2 = · · · = In = 0}.
Clearly, Wδ counts the number of binary trials required to observe for the first time the
pattern

FF · · · F︸ ︷︷ ︸
δ

.

For example, if we consider the sequence of outcomes SFFSFSFFFSF, then W2 = 3, W3 = 9.
Therefore, the study of the lifetime Tδ is equivalent to the study of the waiting time Wδ , and
so in the rest of this section we shall use the random variable Tδ .

In the sequel, we introduce the discrete mixed censored δ-shock model. This model is
obtained by combining the discrete censored δ-shock model defined above and the extreme
shock model. Let Zi, i ≥ 1, be the magnitude of the ith shock; we assume that {Zi, i ≥ 1} is
a sequence of i.i.d. random variables, independent of the interarrival times {Xi, i ≥ 1}, having
common df G (x) = 1 − G (x) = Pr(Zi ≤ x). Under this model, the system fails when no shock
occurs within a δ-length time period from the last shock, or the magnitude of the shock is larger
than a given critical threshold γ > 0.

In the mixed censored δ-shock model, the lifetime of the system is defined by

Tδ,γ =
{∑n

i=0 Xi + δ if X1 ≤ δ, Z1 ≤ γ , · · · , Xn ≤ δ, Zn ≤ γ , Xn+1 > δ,∑n+1
i=0 Xi if X1 ≤ δ, Z1 ≤ γ , · · · , Xn ≤ δ, Zn ≤ γ , Xn+1 ≤ δ, Zn+1 > γ,

(4)

with X0 ≡ 0. It should be noted that when γ → ∞, the mixed censored δ-shock model is
reduced to the censored δ-shock model.

Now let us consider some processes according to which the shocks may occur:

• The binomial process or the i.i.d. model: We assume that the external shocks arrive
according to a binomial process at times n = 1, 2, · · · . That is, a shock occurs with
probability p and does not occur with probability q = 1 − p in any period of time n =
1, 2, · · · . Then all the random variables X0, X1, X2, · · · are i.i.d. following the zero-
truncated geometric distribution with PMF Pr (Xi = x) = pqx−1 , x = 1, 2, · · · . In this
case, the random variables In, n = 1, 2, · · · , defined by (3) are i.i.d. and follow the
Bernoulli distribution with parameter p. Note that for δ = 1, the random variable Tδ

follows the usual geometric distribution, and hence it is only interesting to assume δ > 1.

• The Markov process: We assume that the shocks occur according to a two-state Markov
chain. In this case, the random variables In, n = 1, 2, · · · , defined by (3) are a time-
homogeneous two-state Markov chain with transition probabilities

pij = Pr(In = j/In−1 = i) , n ≥ 2, i, j ∈ {0, 1}(pi0 + pi1 = 1)

and initial probabilities p0 = Pr(I1 = 0), p1 = Pr(I1 = 1) (with p0 + p1 = 1). Under this
setup, the distributions of the interarrival times between successive shocks have PMF
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given by

Pr (Xi = x) =
{

p11, x = 1,

p10px−2
00 p01, x ≥ 2,

for any i ≥ 1. (5)

Of course, for p1 = p01 = p11 = p, p0 = p00 = p10 = q = 1 − p, this model is reduced to
the i.i.d. model.

In this paper we study the joint and marginal distributions of the random variables that are
involved in a discrete censored δ-shock model, namely the random variables Tδ , Mδ , and Nδ ,
where Nδ represents the number of periods in which no shocks occur, until the failure of the
system. As stated previously, the problem of evaluating the distribution of Tδ can be equiv-
alently transformed to a waiting problem on binary sequences. Hence, in Section 2 we give
some preliminary results for our subsequent analysis. In Subsection 2.1 we discuss the Markov
chain imbedding technique developed by Chadjiconstantinidis et al. [11] for the study of the
joint distribution of the number of successes, the number of failures, and the number of occur-
rences of any pattern in a sequence of binary trials, which we shall use in Section 3 in order
to obtain the joint PGFs of the random variables Mδ (which equivalently corresponds to the
number of successes), Nδ (which corresponds to the number of periods in which no shocks
occur, until the failure of the system), and Tδ (which corresponds to the pattern ‘no success
occurs within a δ-length time period from the last success’) under the Markov shock process
and (as a special case) under the binomial shock process. The distribution of the system’s life-
time Tδ is discussed in detail in Section 4. The PMF is obtained, and it is shown that under the
Markov shock process, Tδ follows a Markov geometric distribution of order δ; hence, under
the binomial shock process, it follows a geometric distribution of order δ. Several recursions
for the evaluation of the PMF, the survival function, and the moments of Tδ are given. An exact
matrix-form relationship for the PMF and the survival function of Tδ is also given, by showing
that the distribution of Tδ has a matrix-geometric distribution. Also it is shown that under the
binomial shock process, the random variable Tδ − δ has a compound geometric distribution;
using this, we get an upper bound for the survival function of Tδ , and we show that the dis-
tribution of Tδ − δ belongs to some reliability classes. In Section 5 we examine the marginal
distributions of the random variables Mδ and Nδ . Finally, in Section 6 we study the mixed cen-
sored δ-shock model under the binomial shock process, and we get results corresponding to
those given in Section 4.

2. Some preliminary results

2.1. A Markov chain imbedding technique

As stated previously, the main tool for deriving our main result, given by Theorem 3.1
below, is the Markov chain embedding technique developed by Chadjiconstantinidis et al.
[11], and thus we deem it necessary to outline briefly this technique.

Let Z1, Z2, · · · be a sequence of binary outcomes (trials) taking on the values 1 (success,
S) or 0 (failure, F), and denote by P any pattern, i.e. a string (or a collection of strings) of
outcomes with a prespecified composition. The number of successes and failures among Z1,
Z2, · · · , Zn (where n is a fixed integer) will be denoted by Sn and Fn respectively. Let Wr

denotes the waiting time till the rth appearance of the pattern P . We are interested in the joint
distribution of the waiting time W1 till the first occurrence of P , and in the number of successes
SW1 and the number of failures FW1 at that point (i.e., the number of successes and failures in
the sequence Z1, Z2, · · · , ZW1 ). The main assumption made here is that the number, say Vn, of
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occurrences of P in n trials is a Markov chain imbeddable variable of binomial type, which is
defined below.

According to Koutras and Alexandrou [26], an integer-valued random variable Vn (where
n is a nonnegative integer) defined on {0, 1, · · · , ln}, is called a Markov chain imbeddable
variable if the following hold:

(i) There exists a Markov chain {Yt : t ≥ 0} defined on a state space �.

(ii) There exists a partition {Cx, x = 0, 1, · · · } on �.

(iii) For every x ∈ {0, 1 · · · , ln}, the event {Vn = x} is equivalent to the event {Yn ∈ Cx}, i.e.

Pr (Vn = x) = Pr(Yn ∈ Cx).

Without loss of generality, we assume that the sets (state subspaces) Cx of the partition
{Cx, x = 0, 1, · · · } have the same cardinality s = |Cx| for any x ≥ 0; more specifically, Cx ={
cx,0, cx,1, · · · , cx, s−1

}
. Then the nonnegative random variable Vn is called a Markov chain

imbeddable variable of binomial type (MVB) if

(a) Vn is a Markov chain imbeddable variable, and

(b) Pr(Yt ∈ cy,j
∣∣Yt−1 ∈ cx,i) = 0 for all y 	= x, x + 1 and t ≥ 0.

As in Chadjiconstantinidis et al. [11], for the Markov chain {Yt : t ≥ 0} we introduce the
four s × s transition probability matrices

At,j (x, y) = [Pr
(
Yt = cx,i′ , St = y + j |Yt−1 = cxi , St−1 = y

)]
, j = 0, 1,

Bt,j (x, y) = [Pr
(
Yt = cx+1,i′, St = y + j |Yt−1 = cxi , St−1 = y

)]
, j = 0, 1,

and define the 1 × s vector a (ρ) by

a (ρ) = f 1 (0, 0) + ρf 1(0, 1), (6)

where the 1 × s probability vector f 1 (x, y) is defined by

f 1 (x, y) = (Pr(Y1 = cx,0, Z1 = y), · · · , Pr(Y1 = cx,s−1, Z1 = y)). (7)

By ei, i = 1, 2, · · · , s, we denote the unit vectors of R
s, and the symbol ‘T’ denotes the

transpose of a matrix and/or vector.
For homogeneous MVBs (which is our case), i.e., where the matrices At,j (x, y), Bt,j (x, y)

do not depend on t, x, y, we set At,j (x, y) = Aj, Bt,j (x, y) = Bj, j = 0, 1, and let

βi,j = eiBj1T
s , j = 0, 1 and i = 1, 2, · · · , s, (8)

where 1s denotes the 1 × s unit vector. Also, let Is be the s × s identity matrix.
In the following proposition we show how to obtain the joint PGF of the random vector

(FW1 , SW1 , W1) in terms of the matrices Aj and Bj, j = 0, 1.

Proposition 2.1. If At,j (x, y) = Aj, Bt,j (x, y) = Bj, j = 0, 1, for all x, y and t ≥ 1, then the joint
PGF Hz, u, t) =E[zFW1 uSW1 tW1 ] of the random vector (FW1 , SW1 , W1) is given by

H (z, u, t) = zt2a (u/z)
s∑

i=1

(βi,0z + βi,1u)
{

Is − t[zA0 + uA1]}−1 eT
i ,

where a (u/z) and βi,j are given by (6) and (8) respectively.
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Proof. Define the generating function

H (z, u, t; w) =
∞∑

r=1

E[zFWr uSWr tWr ]wr.

Then, from the relation (4.8) in Chadjiconstantinidis et al. [11], we have

H (z, u, t; w) = zwt2a (u/z)
s∑

i=1

(βi,0z + βi,1u)

× {Is − t [zA0 + uA1 + w(zB0 + uB1)]}−1eT
i ,

where a (u/z) and βi,j are given by (6) and (8) respectively. Since

H (z, u, t) = ∂

∂w
H (z, u, t; w) |w = 0 ,

the result follows immediately from the above expression for H (z, u, t; w). �

2.2. On discrete compound geometric and geometric distributions of order k

Another notion of interest in this paper is the discrete compound geometric distribution.
A random variable N following the geometric distribution with PMF Pr (N = n) = θ (1 − θ )n,
n = 0, 1, 2, · · · , 0 < θ < 1, will be denoted by N ∼ Geo(θ ).

Let us consider the random sum H defined by

H =
{

0, N = 0,

Y1 + Y2 + · · · + YN, N ≥ 1,

where {Yi, i ≥ 1} is a sequence of i.i.d. random variables which are also independent of N.
If Yi, i ≥ 1, are discrete random variables with common PMF fY1 (y) = Pr(Y1 = y) and N ∼
Geo(θ ), then H is said to follow the discrete compound geometric distribution, abbreviated as
H ∼ D-CGeo(θ ), fY1 ). It is well known (see, e.g., Willmot and Lin [49]) that the PGF PH (z) =
E[zH] of H is given by

PH (z) = θ

1 − (1 − θ )PY1 (z)
, (9)

where PY1 (z) =E[zY1 ] is the PGF of Y1, and the PMF fH (x) = Pr(H = x) and the survival
function FH (x) = Pr(H > x) satisfy the discrete defective renewal equations

fH (x) = (1 − θ )
x∑

i=1

fY1 (i) fH (x − i), x = 1, 2, · · · (10)

with initial condition fH (0) = θ , and

FH (x) = (1 − θ )
x∑

i=1

fY1 (i) FH (x − i) + (1 − θ )FY (x), x = 0, 1, · · · (11)

The mean and the variance of H are given by

E [H] = 1 − θ

θ
E[Y1] and Var [H] = 1 − θ

θ
Var [Y1] + 1 − θ

θ2
E

2[Y1]. (12)
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A generalization of the geometric distribution is the so-called geometric distribution of order k
(Philippou et al. [41]) introduced by Feller [22], as well as the Markov geometric distribution
of order k (Balakrishnan and Koutras [5]).

Let Z1, Z2, · · · be a sequence of independent binary (Bernoulli) trials each resulting in one
of two possible outcomes, say A and A, with Pr (A) = 1 − Pr

(
A
) = θ ; that is, Pr (Zi = 1} =

Pr (A) = θ , Pr (Zi = 0} = Pr
(
A
) = 1 − θ , for every i = 1, 2, · · · . Let the random variable Uk

be the waiting time in the sequence of independent experiments until the first occurrence of k
consecutive As, i.e., until the first occurrence of the pattern AA · · · A︸ ︷︷ ︸

k times

. Then Uk is said to have

the geometric distribution of order k with PGF PUk (z) =E[zUk ] given by Aki et al. [1],

PUk (z) = (1 − θz)(θz)k

1 − z + (1 − θ )θkzk+1
, (13)

and will be denoted by Uk ∼ Geok(θ ). Obviously, if the random variable Uk denotes the waiting
time in the sequence of independent experiments until the first occurrence of k consecutive As,
then Uk ∼ Geok(1 − θ ). Note that for k = 1 we have Geo1 (θ) = Geo(θ ) (and hence U1 = N);
i.e., the geometric distribution of order 1 is reduced to the usual geometric distribution.

Suppose now that the binary sequence Z1, Z2, · · · is a time-homogeneous two-state Markov
chain with transition probability matrix [

θ00 θ01

θ10 ϑ11

]
,

that is, with θij = Pr(Zt = j |Zt−1 = i) , t ≥ 2, 0 ≤ i, j ≤ 1, and initial probabilities
θj = Pr(Z1 = j), j = 0, 1. The distribution of the waiting time Uk for the first occurrence
of a run AA · · · A︸ ︷︷ ︸

k times

in the sequence Z1, Z2, · · · will be called the Markov geometric distribution

of order k (Balakrishnan and Koutras [5]), abbreviated as Uk ∼ MGeok(θ1; θ00, θ11). The PGF
of Uk is given by the relation (2.45) in Balakrishnan and Koutras [5]:

PUk (z) = θk−1
11 {θ1 + (θ0θ01 − θ1θ00) z}zk

1 − θ00z − θ01θ10z2
∑k−2

i=0 (θ11z)i
. (14)

Manifestly, if we set θ1 = θ01 = θ11 = θ and θ0 = θ10 = θ00 = 1 − θ , we get the Geok(θ )
distribution, i.e., MGeok (θ ; 1 − θ, θ) = Geok(θ ).

3. Some results on joint distributions

The main result of this section is given in the next theorem, where we give the joint PGF
of the lifetime Tδ and the random variables involved, Nδ and Mδ . We recall that the random
variable Mδ defined by (2) represents the number of shocks that occur before the failure of the
system, whereas the random variable Nδ represents the number of periods in which no shocks
occur, up to the failure of the system. Hence, according to the notation of the previous section,
we have Mδ = STδ and Nδ = FTδ , where S (success) denotes the event {In = 1} (the occurrence
of a shock in the nth period), and F (failure) denotes the event {In = 0} (the non-occurrence of
a shock in the nth period).

Theorem 3.1. For the Markov shock process, the joint PGF

G(012)
δ (z, u, t) =E

[
zNδ uMδ tTδ

]
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of the random vector (Nδ, Mδ, Tδ) is given by

G(012)
δ (z, u, t) = [p0 + (p1p10 − p0p11) zt]pδ−1

00 (zt)δ

1 − utp11 − zut2p01p10
∑δ−2

i=0 (p00zt)i
. (15)

Proof. Let Wδ,1 be the waiting time until the first occurrence of the pattern P = {FF · · · F︸ ︷︷ ︸
δ times

}
in the sequence of the two-state Markov chain I1, I2, · · · described in Section 1. Then it holds
that Tδ � Wδ, � Wδ,1, Nδ � FWδ,1 , Mδ � SWδ,1 , and G(012)

δ (z, u, t) = H (z, u, t).
In order to view the random variable Tδ as an MVB, we define

Cx = {cx,0, cx,1, · · · , cx, k−1},

where cx,i = (x, i) for all x = 0, 1, · · · , [n/δ] (ln = [n/δ], s = δ), and we introduce a Markov
chain {Yt, t ≥ 0} on � = ∪ln

x=0C as follows: Yt = (x, i) if and only if, in the sequence of outcomes
leading to the tth trial (say FSFFS · · · S FF · · · F︸ ︷︷ ︸

m times

), there exist x non-overlapping failure runs

and m trailing failures with m ≡ i mod k.
Clearly, under this setup, the random variable Tδ becomes an MVB, and also the resulting

Markov chain is homogeneous, with

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p11 0 0 · · · 0

p01 0 0 · · · 0

...
...

... · · · ...

p01 0 0 · · · 0

p01 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 p10 0 · · · 0

0 0 p00 · · · 0

...
...

... · · · ...

0 0 0 · · · p00

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

B0 = 0δ×δ , and the only nonvanishing entry of B1 is the entry (δ, 1), where a p00 is present.
Using (7), the 1 × δ vector f 1 (x, y) is given by

f 1 (x, y) =
{

0k, x > 0, y = 0, 1,

py
0p1−y

1 ey+1, x = 0, y = 0, 1,

and hence from (6) it follows that the 1 × δ vector a (ρ) is a (ρ) = (p0, p1ρ, 0, · · · , 0), whereas
from (8) we get

βi,0 = 0 for all i = 1, 2, · · · , δ; βi,1 =
{

0, 1 ≤ i ≤ δ − 1,

p00, i = δ.

Hence, applying Proposition 2.1, it is straightforward to show that

G(012)
δ (z, u, t) = p00zut2a (u/z) {Ik − t[zA0 + uA1]}−1eT

δ

= p00zut2
(

p0Aδ1 + p1
u

z
Aδ2

)
,
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where

Aδ1 = utp10(utp00)δ−2

1 − utp11 − zut2p01p10
∑δ−2

i=0 (p00zt)i
,

Aδ2 = (1 − ztp11)(utp00)δ−2

1 − utp11 − zut2p01p10
∑δ−2

i=0 (p00zt)i
,

and thus (15) follows immediately. �
By letting p0 = q, p1 = p, p10 = p00 = q, p01 = p11 = p, 0 < p < 1, q = 1 − p, we obtain the

following corollary directly from Theorem 3.1.

Corollary 3.1. For the binomial shock process, the joint PGF

G(012)
δ (z, u, t) =E

[
zNδ uMδ tTδ

]
is given by

G(012)
δ (z, u, t) = (qzt)δ(1 − qzt)

1 − qzt − put[1 − (qzt)δ]
.

By letting z = 1 in (15), we immediately obtain the following corollary giving the joint PGF
of the number of shocks Mδ until the failure of the system and the lifetime Tδ of the system.

Corollary 3.2. (i) For the Markov shock process, the joint PGF

G(12)
δ (u, t) =E

[
uMδ tTδ

]
of the random vector (Mδ, Tδ) is given by

G(12)
δ (u, t) = [p0 + (p1p10 − p0p11) t]pδ−1

00 tδ

1 − utp11 − ut2p01p10
∑δ−2

i=0 (p00t)i
.

(ii) For the binomial shock process, the joint PGF

G(12)
δ (u, t) =E

[
uMδ tTδ

]
of the random vector (Mδ, Tδ) is given by

G(12)
δ (u, t) = (1 − qt)(qt)δ

1 − qt − put[1 − (qt)δ]
.

Using Corollary 3.2, it is straightforward to obtain a recursive relationship for evaluating
the joint PMF as well as the joint factorial moments of (Mδ, Tδ). For example, we get the
following recursion for the joint PMF f (12)

δ (m, n) = Pr(Mδ = m, Tδ = n), m, n ≥ 0, under the
binomial shock process

f (12)
δ (m, n) = qf (12)

δ (m, n − 1) + pf (12)
δ (m − 1, n − 1) − pqδf (12)

δ (m − 1, n − δ) ,

for any m ≥ 1, n ≥ δ + 2, with initial conditions

f (12)
δ (0, n) = 0, n ≥ 0;

f (12)
δ (1, n) = 0, 0 ≤ n ≤ δ − 1;

f (12)
δ (1, δ) = qδ;

f (12)
δ (1, δ + 1) = pqδ .
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Also, by differentiating G(12)
δ (u, t) with respect to u and t and then letting u = t = 1, we get

E [MδTδ] = 1 − (δ + 1)qδ

qδ
+ 1 − (δ + 1)pqδ

pqδ
E [Mδ] + 1 − qδ

qδ
E [Tδ] ,

and since E[Mδ] = 1−qδ

qδ (see Bian et al. [6]), the covariance of Mδ and Tδ is given by

Cov (Mδ, Tδ) = 1 − (1 + δp)qδ

pq2δ
.

Since the numerator is a decreasing function in 0 < q < 1, it holds that 0 < Cov (Mδ, Tδ) <

1/pq2δ .
Similarly, from Theorem 3.1 we directly obtain the following corollaries, from which we

can easily obtain recursions for the corresponding PMF and the joint factorial moments. The
results are immediate and therefore omitted.

Corollary 3.3. (i) For the Markov shock process, the joint PGF

G(02)
δ (z, t) =E

[
zNδ tTδ

]
of the random vector (Nδ, Tδ) is given by

G(02)
δ (z, t) = [p0 + (p1p10 − p0p11) zt]pδ−1

00 (zt)δ

1 − tp11 − zt2p01p10
∑δ−2

i=0 (p00zt)i
.

(ii) For the binomial shock process, the joint PGF

G(02)
δ (z, t) =E

[
zNδ tTδ

]
of the random vector (Nδ, Tδ) is given by

G(02)
δ (z, t) = (1 − qzt)(qzt)δ

1 − qzt − pt[1 − (qzt)δ]
.

Corollary 3.4. (i) For the Markov shock process, the joint PGF

G(01)
δ (u, t) =E

[
zNδ u

Mδ
]

of the random vector (Nδ, Mδ) is given by

G(01)
δ (z, u) = [p0 + (p1p10 − p0p11) z]pδ−1

00 zδ

1 − up11 − zup01p10
∑δ−2

i=0 (p00z)i
.

(ii) For the binomial shock process, the joint PGF

G(01)
δ (u, t) =E

[
zNδ u

Mδ
]

of the random vector (Nδ, Mδ) is given by

G(01)
δ (z, u) = (1 − qz)(qz)δ

1 − qz − pu[1 − (qz)δ]
.
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4. The distribution of the lifetime Tδ

In this section we shall study in some detail the distribution of the lifetime Tδ . By letting
z = u = 1 in (15), we immediately get the PGF of Tδ given in the next result.

Corollary 4.1. (i) For the Markov shock process, the PGF Gδ(t) =E[tTδ ] of the lifetime Tδ is
given by

Gδ(t) = [p0 + (p1p10 − p0p11) t]pδ−1
00 tδ

1 − p11t − p01p10t2
∑δ−2

i=0 (p00t)i
. (16)

(ii) For the binomial shock process, the PGF Gδ(t) =E[tTδ ] of the lifetime Tδ is given by

Gδ (t) = (1 − qt) (qt)δ

1 − t + pqδtδ+1
. (17)

Note that (17) was also proved by Bian et al. [6, Theorem 3.2] using a different approach.

Remark 4.1. (i) For the Markov shock process, from (14) and (16) it follows that the system’s
lifetime Tδ follows a Markov geometric distribution of order δ, namely

Tδ ∼ MGeoδ(p0; p11, p00).

(ii) For the binomial risk process, from (13) and (17) it follows that Tδ ∼ Geoδ(q).
Using Corollary 4.1 and the fact that Gδ (t) =∑∞

n=0 fδ (n) tn, we can easily obtain a
recursive relationship for evaluating the PMF fδ (n) = Pr(Tδ = n), n ≥ 0.

Hence, for the Markov shock process, from (16) we directly obtain the recursion

fδ (n) = p11fδ (n − 1) +
δ∑

i=2

p01p10pi−2
00 fδ (n − i), n ≥ δ + 2

with initial conditions

fδ (n) = 0, 0 ≤ n ≤ δ − 1;

fδ (δ) = p0pδ−1
00 ;

fδ (δ + 1) = p1p10pδ−1
00 .

By rewriting (16) equivalently as

Gδ (t) = p0pδ−1
00 tδ + (p1p10 − p0p11 − p0p00) pδ−1

00 tδ+1 − (p1p10 − p0p11)pδ
00tδ+2

+ (p00 + p11) tGδ (t) + (p01p10 − p00p11) t2Gδ (t) − p01p10pδ−1
00 t

δ+1
Gδ (t) ,

expanding both sides of this relation into a power series, and then picking up the coefficients
of tn for all n ≥ 0 in the resulting equation, we get a computationally more efficient recursive
scheme which is given in the following result.

Corollary 4.2. (i) For the Markov shock process, the PMF fδ (n) = Pr(Tδ = n) satisfies the
recursion

fδ (n) = (p00 + p11) fδ (n − 1) + (p01p10 − p00p11) fδ (n − 2) − p01p10pδ−1
00 fδ (n − δ − 1)
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for n ≥ δ + 3, with initial conditions

fδ (n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 ≤ n ≤ δ − 1,

p0pδ−1
00 , n = δ,

p1p10pδ−1
00 , n = δ + 1,

(p0p01 + p1p11) p10pδ−1
00 , n = δ + 2.

(ii) For the binomial shock process, the PMF fδ (n) = Pr(Tδ = n) satisfies the recursion

fδ (n) = fδ (n − 1) − pqδfδ (n − δ − 1) , n ≥ 2δ + 1, (18)

with initial conditions

fδ (n) =

⎧⎪⎨
⎪⎩

0, 0 ≤ n ≤ δ − 1,

qδ, n = δ,

pqδ, δ + 1 ≤ n ≤ 2δ.

For the binomial shock process, Bian et al. [6, Theorem 3.1] obtained an exact double
summation formula for fδ (n). Using a result of Muselli [37] and interchanging the roles of p
and q, we can establish a more attractive single summation formula for fδ (n), namely

fδ (n) =

[
n+1
δ+1

]∑
i=1

( − 1)i−1qiδpi−1
{(

n − iδ − 1
i − 2

)
+ p

(
n − iδ − 1

i − 1

)}
.

In the following, we represent the random variable Tδ as a matrix-geometric distribution.
The PGF given by (13) is rational and has the form

Gδ (t) = c1t + · · · + cmtm

1 + d1t + · · · + dmtm

for some m ≥ 1 and real constants c1, . . . , cm and d1, . . . , dm. A random variable with zero
PMF at zero that has a PGF in this form is said to have a matrix-geometric distribution (see,
e.g., Bladt and Nielsen [7]). In this case, the PMF and the survival function of the random
variable Tδ can be represented respectively as

Pr (Tδ = n) = πQn−1u′ (19)

and
Pr (Tδ > n) = πQn(I − Q)−1u′, (20)

where π = (1, 0, . . . , 0),

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−d1 0 0 · · · 0 1

−dm 0 0 · · · 0 0

−dm−1 1 0 · · · 0 0

−dm−2 0 1 · · · 0 0
...

...
...

. . .
...

...

−d2 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

cm

cm−1

cm−2

...

c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, from (16) we have m = δ + 1 and

c1 = c2 = · · · = cδ−1 = 0, cδ = p0pδ−1
00 , cδ+1 = (p1p10 − p0p11)pδ−1

00 ,

d1 = −p11, di = −p01p10pi−2
00 for i = 2, 3, . . . , δ, dδ+1 = 0.
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Thus fδ (n) and Pr (Tδ > n) for the Markov shock process can be evaluated in matrix form
through (18) and (19) respectively.

By direct differentiation of (16), it is easy to obtain the mean of Tδ (or the mean time to
failure of the system, MTTF) for the Markov shock process as

E [Tδ] = p10 + p01 − p0pδ−1
00 + (p0 − p10)pδ

00

p01p10pδ−1
00

,

whereas for the binomial shock process, from (17) we find that the rth moment (about zero)
of Tδ ,

μr =E
[
Tr

δ

]= dr

dtr
Gδ(et) |t = 0 ,

obeys the recursion

μr =
r−1∑
i=0

(
r
i

) {
1

pqδ
− (δ + 1)r−i

}
μr−i + δr − q(δ + 1)r

p
, r ≥ 1.

Therefore, we get that the MTTF and the variance of Tδ for the binomial shock process are

E [Tδ] = 1 − qδ

pqδ
, Var [Tδ] = 1 − (2δ + 1) pqδ − q2δ+1

p2q2δ
, (21)

which are also given in Corollaries 3.1 and 3.2, respectively, of Bian et al. [6].
Now let us consider the problem of approximating the distribution of the lifetime Tδ . By

a(x) ∼ b(x) we indicate that limx→∞ (a(x)/b(x)) = 1. Thus, we have the following result.

Theorem 4.1. For the Markov shock process, it holds that

fδ (n) ∼ (1 − p00x)(a0 + a1x + a2x2 + a3x3)

p01p10(b0 + b1x + b2x2)
· 1

xn+1
, as n → ∞,

where 1 < x < 1/p11 is the root of

V1 (t) = 1 − (p00 + p11) t − (p01p10 − p00p11) t2 + p01p10pδ−1
00 tδ+1

that is smallest in absolute value, and

a0 = −[p0 + (p1p10 − p0p11) ], a1 = p0(p00 + p11),

a2 = p0 (p01p10 − p00p11) + (p00 + p11)(p1p10 − p0p11),

a3 = (p1p10 − p0p11)(p01p10 − p00p11),

b0 = δ + 1, b1 = −δ(p00 + p11), b2 = −(δ − 1)(p01p10 − p00p11).

Proof. Define the function

V (t) = 1 − p11t − p01p10t2
δ−2∑
i=0

(p00t)i.
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Since V (t) is a decreasing function in t ≥ 0 and we have V (0) = 1, limt→∞ V (t) = −∞, it
follows that there exists a unique positive root of V (t), say t = x. For all real or complex
numbers t with |t| < x, we have∣∣∣∣∣p11t + p01p10t2

δ−2∑
i=0

(p00t)i

∣∣∣∣∣< p11x + p01p10x2
δ−2∑
i=0

(p00x)i = 1 − V (x) = 1, (22)

implying that

V (t) ≥ 1 −
∣∣∣∣∣p11t + p01p10t2

δ−2∑
i=0

(p00t)i

∣∣∣∣∣> 0, for |t| < x.

Therefore, there exist no roots of V (t) with |t| < x. Now, if there exists a real or complex
number t0, |t0| = x, such that for t = t0 the inequality (22) reduces to an equality, then t0 = x.
Hence, x is smaller in absolute value than any other root of V (t). Also, we have

V (1) = 1 − p11 − p01p10

δ−2∑
i=0

p00
i = p10pδ−1

00 > 0,

i.e., V (1) > V(x), and hence it holds that x > 1.
Since

V ′ (x) = −
[

p11 + p01p10

δ−2∑
i=2

ip00
i−2xi

]
	= 0,

it follows that x is a single root of V (t). Finally, since

V (1/p11) = −p01p10

δ−2∑
i=2

p00
i−2p−i

11 < 0,

it holds that V (1/p11) < V(x), implying that (1/p11) > x. Therefore, x is a single root which is
smaller in absolute value than any other root of V (t) satisfying 1 < x < 1/p11.

If we consider the function U (t) = p0pδ−1
00 tδ + (p1p10 − p0p11)pδ−1

00 tδ+1, then from (16) we
have

Gδ (t) = U(t)

V(t)
= U1(t)

V1(t)
,

where
U1 (t) = (1 − p00t) U(t),

V1 (t) = 1 − (p00 + p11) t − (p01p10 − p00p11) t2 + p01p10pδ−1
00 tδ+1.

Therefore, x is also the root of V1 (t) that is smallest in absolute value, and hence, according
to the partial fraction expansion method (see Feller [22, p. 277]), the coefficient of tn in Gδ (t)
(i.e., the quantity fδ (n) = Pr(Tδ = n)) equals (approximately, for large n) ρ1x−(n+1); i.e., it
holds that

fδ (n) ∼ ρ1x−(n+1), as n → ∞, (23)

where x is a simple root of V1 (t) = 0 which is smaller in absolute value than any other root,
and the coefficient ρ1 is equal to

ρ1 = −U1(x)

{[
dV1 (t) )

dt

]
t=x

}−1

. (24)
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From V1 (x) = 0, we get pδ−1
00 xδ+1 = [1 − (p00 + p11) x − (p01p10 − p00p11) x2]/p01p10, and

thus we find

d

dx
V1 (x) = −1

x
(b0 + b1x + b2x2), U1 (x) = (1 − p00x) (a0 + a1x + a2x2 + a3x3).

Now the result follows immediately from (23) and (24). �
In the sequel, let us examine in more detail the distribution of the lifetime Tδ for the bino-

mial shock process. First, in the following theorem we prove an important property satisfied
by Tδ , i.e., that the random variable Tδ − δ follows a discrete compound geometric distribu-
tion. Representation of a distribution as a compound geometric distribution is useful from a
probabilistic standpoint, as many properties follow from this, such as infinite divisibility (e.g.
Steutel [44]); also, we can easily obtain several other results on the distribution of Tδ , such as
recursions for the PMF, the survival function, the moments, bounds, and asymptotics.

Theorem 4.2. For the binomial shock process, the shifted random variable Tδ − δ ∈ {0, 1,
2, · · · } follows a discrete compound geometric distribution; that is, Tδ − δ ∼ CGeo(qδ, fY ),
where

fY (y) = pqy−1

1 − qδ
, y = 1, 2, · · · , δ, (25)

is the PMF of a truncated Geo(p) distribution.

Proof. Consider the discrete compound geometric sum

H =
{

0 if N = 0,

Y1 + Y2 + · · · YN if N ≥ 1,

where the random variable N has the geometric distribution with PMF

Pr (N = n) = qδ(1 − qδ)
n
, n = 0, 1, 2, · · · ,

and the random variables {Yi, i ≥ 1} are i.i.d. and independent of N with common PMF

Pr (Y = y) = pqy−1

1 − qδ
, y = 1, 2, · · · , δ.

If PN (t) =E[tN] and PY (t) =E[tY ] denote the PGFs of N and Y respectively, then

PN (t) = qδ

1 − (1 − qδ
)

t
and PY (t) = pt[1 − (qt)δ]

(1 − qδ)(1 − qt)
.

Hence, the PGF PH (t) =E[tH] of the random sum H is

PH (t) = PN [PY (t)] = qδ

1 − (1 − qδ
)

PH (t)

= (1 − qt)qδ

1 − t + pqδtδ+1
. (26)

Now, since E
[
tTδ−δ

]= t−δ
E
[
tTδ
]
, from (17) and (26) it follows that E

[
tTδ−δ

]= PH (t), and
thus the random variables Tδ − δ and H have the same distribution; that is, Tδ − δ has a discrete
compound geometric distribution with values in the set {0, 1, 2, · · · }. �
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An important immediate consequence of Theorem 4.2 is given in the following corollary,
where it is shown that Tδ − δ belongs to certain discrete reliability classes of distributions. Let
N be a nonnegative discrete random variable with pn = Pr(N = n), an = Pr(N > n). The distri-
bution of N is said to be discrete decreasing failure rate (D-DFR) if an+1/an is nondecreasing
in n for all n ≥ 0. A discrete failure rate may be defined as

h (n) = Pr (N = n |N ≥ n ) = pn

pn + an
, for all n ≥ 0,

and thus an+1/an = 1 − h(n + 1), implying that the distribution of N is D-DFR if h(n) is non-
increasing for all n ≥ 1. Also, the distribution of N is said to be discrete strongly decreasing
failure rate (DS-DFR) if h(n) is nonincreasing for all n ≥ 0 (see, e.g., Willmot and Cai [48]). It
is obvious that the DS-DFR class is a subclass of the D-DFR class. The distribution of N is said
to be discrete new worse than used (D-NWU) if am+n ≥ aman, for m, n = 0, 1, 2, · · · , and is
said to be discrete strongly new worse than used (DS-NWU) if am+n+1 ≥ aman, for m, n = 0, 1,
2, · · · (see Cai and Kalashnikov [9]). It is shown in Cai and Kalashnikov [9] that the DS-NWU
class is contained in the D-NWU class.

Corollary 4.3. For the binomial shock process, the distribution of the shifted random variable
Tδ − δ is DS-DFR and DS-NWU.

Proof. Since the survival function FY (x) = Pr (Y > x) =∑δ
y=x+1 fY (x), where the PMF

of Y is given by (25), is

FY (x) = qx − qδ

1 − qδ
, 0 ≤ x ≤ δ,

it follows that the function

h (x) = fY (x)

fY (x) + FY (x)
= p

qx−1

qx−1 − qδ

is nonincreasing for all n ≥ 1, and hence the distribution of Y is D-DFR. Therefore, from
Willmot and Cai [48, Theorem 2.1], it follows that the distribution of Tδ − δ is DS-DFR. Also,
since the random variable Tδ − δ follows a discrete compound geometric distribution, this
implies that Tδ − δ is NWU (Brown [8]), and hence the result follows from Theorem 2.2 of
Willmot and Cai [48]. �

Using (10), we get a recursion for the PMF of the discrete compound geometric random
variable Tδ − δ which leads to the recursion given by (18) for the PMF fδ (n) = Pr(Tδ = n).
Also, using (11) (or equivalently, using (18)), we get a recursion for the survival function of
Tδ − δ, from which we obtain that Fδ(n) = Pr(Tδ > n) satisfies the recursive scheme

Fδ (n) = Fδ (n − 1) − pqδFδ (n − δ − 1) , n ≥ 2δ + 1,

with initial conditions

Fδ (n) = 1, 0 ≤ n ≤ δ − 1;

Fδ (n) = 1 − [1 + (n − δ) p]qδ, δ ≤ n ≤ 2δ.

Moreover, using (12) for the random variable Tδ − δ, we again get the results of (21) as
obtained by Bian [6].
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In the sequel we shall give an upper bound for the survival function Fδ (n) using the fact
that Tδ − δ has a discrete compound geometric distribution.

Corollary 4.4. If κ > 1 satisfies

1 − κ − pqδκδ+1 = 0, (27)

then

Fδ (n) ≤ (1 − qδ)

(
1

κ

)n−δ

, n ≥ δ.

Proof. It is easy to see that if κ > 1 satisfies (27), then it holds that PY (κ) = 1/(1 − qδ).
Also, since the distribution of Y is D-DFR (see the proof of Corollary 4.3), it is also D-NWU
(Willmot and Cai [48]), and hence from Willmot and Lin [49, Corollary 7.2.5] we get the
following upper bound for the survival function FH (x) = Pr(H > x) of the discrete compound
geometric random variable H = Tδ − δ:

FH (x) ≤ FH (0)

(
1

κ

)x

, x = 0, 1, 2, · · · .

Since FH (0) = Pr (Tδ > δ) = 1 − fδ (δ) = 1 − qδ and FH (n − δ) = Fδ (n), the required upper
bound follows immediately. �

For the binomial shock process, the asymptotic result of Theorem 4.1 takes a simpler form,
as illustrated in the following corollary.

Corollary 4.5. For the binomial shock process, the PMF fδ (n) of the lifetime Tδ satisfies

fδ (n) ∼ (x − 1) (1 − qx)

p(δ + 1 − δx)
· 1

xn+1
, as n → ∞,

where 1 < x < 1/p is the root of V1 (t) = 1 − t + pqδtδ+1 that is smallest in absolute value.

Note that κ of Corollary 4.4 is exactly the root x of Corollary 4.5. The root x can easily
be calculated by solving the equation V1 (t) = 0 using the package R. Also, the root x can be
satisfactorily approximated by

x∗ = 1 + pqδ[1 + (δ + 1) pqδ].

To see this, let us write first V (x) = 0 in the alternative form

x = 1 + pqδxδ+1 = h(x),

and observe that the dominant root x can be numerically calculated by successive approxi-
mations, setting x0 = 1 and xk+1 = h(xk) (see, e.g., Feller [22]). The first two iterations yield

x1 = h (x0) = 1 + pqδ,

x2 = h (x1) = 1 + pqδ(1 + pqδ)
δ+1 ∼= 1 + pqδ[1 + (δ + 1) pqδ] = x∗,

and since the higher-step approximations become rather cumbersome, one could terminate the
process here (at the price of a cruder approximation as compared to subsequent terms of the
iteration scheme).
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5. The distributions of Mδ and Nδ

Let f (1)
δ (m) = Pr(Mδ = m), m ≥ 0, be the PMF of the random variable Mδ . In the following

corollary it is shown that Mδ ∼ Geo(p10pδ−1
00 ).

Corollary 5.1. For the Markov shock process, the number of shocks Mδ until the failure of the
system follows the geometric distribution with PMF

f (1)
δ (m) = p10pδ−1

00

(
1 − p10pδ−1

00

)m
, m = 0, 1, 2, · · · .

Proof. By letting z = t = 1 in (15), we get that the PGF G(1)
δ (u) =E

[
uMδ
]

is given by

G(1)
δ (u) = [p0 + (p1p10 − p0p11) ]pδ−1

00

1 − up11 − up01p10
∑δ−2

i=0 (p00)i

= p10pδ−1
00

1 −
(

1 − p10pδ−1
00

)
u
,

and hence the result follows. �
Obviously, from Corollary 5.1 we get that Mδ ∼ Geo(qδ) for the binomial shock process

(Bian et al. [6]).
Next, let us examine the distribution of the random variable Nδ . We recall that Nδ represents

the number of periods in which no shocks appear, up to the failure of the system. By letting
u = t = 1 in (15), we immediately obtain the following result.

Corollary 5.2. (i) For the Markov shock process, the PGF G(0)
δ (z) =E

[
zNδ
]

of the random
variable Nδ is given by

G(0)
δ (z) = [p0 + (p1p10 − p0p11) z]pδ−1

00 zδ

1 − p11 − zp01p10
∑δ−2

i=0 (p00z)i
. (28)

(ii) For the binomial shock process, the PGF G(0)
δ (z) =E

[
zNδ
]

is given by

G(0)
δ (z) = (1 − qz)qδ−1zδ

1 − z + pqδ−1zδ
. (29)

Also, from (28) we observe that Nδ has a matrix-geometric distribution, and its PMF and
survival function can be computed using (19) and (20) with (m = δ + 1)

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(p11 + p01p10) 0 0 · · · 0 1

0 0 0 · · · 0 0

0 1 0 · · · 0 0

−p01p10pδ−2
00 0 1 · · · 0 0

...
...

...
. . .

...
...

−p01p10p00 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

(p1p10 − p0p11)pδ−1
00

p0pδ−1
00

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Rewriting (28) as

G(0)
δ (z) = (1 − p00z) [p0 + (p1p10 − p0p11) z]pδ−1

00 zδ

p10[1 − z + p01pδ−1
00 zδ]

,
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we can easily proceed to the development of a recursive relationship for the PMF f (0)
δ (k) =

Pr(Nδ = k), as given in the next result.

Corollary 5.3. (i) For the Markov shock process, the PMF f (0)
δ (k) = Pr(Nδ = k) satisfies the

recursive scheme

f (0)
δ (k) = f (0)

δ (k − 1) − p01pδ−1
00 f (0)

δ (k − δ), k ≥ δ + 3,

with initial conditions

f (0)
δ (k) = 0, 0 ≤ k ≤ δ − 1,

f (0)
δ (δ) = p0p−1

10 pδ−1
00 ,

f (0)
δ (δ + 1) = p0p−1

10 pδ−1
00 + (p1p10 − p0p11 − p0p00)p−1

10 pδ−1
00 ,

f (0)
δ (δ + 2) = p0p−1

10 pδ−1
00 + (p1p10 − p0p11 − p0p00) p−1

10 pδ−1
00 − (p1p10 − p0p11)p−1

10 pδ−1
00 .

(ii) For the binomial shock process, the PMF f (0)
δ (k) = Pr(Nδ = k) satisfies the recursive

scheme
f (0)
δ (k) = f (0)

δ (k − 1) − pqδ−1f (0)
δ (k − δ), k ≥ 2δ + 1

with initial conditions

f (0)
δ (k) = 0, 0 ≤ k ≤ δ − 1,

f (0)
δ (δ) = qδ−1,

f (0)
δ (k) = pqδ−1, δ + 1 ≤ k ≤ 2δ.

In the sequel let us consider the binomial shock process. From (29) we obtain that the
shifted random variable Nδ − δ follows a compound geometric distribution as shown in the
next theorem.

Theorem 5.1. For the binomial shock process, the random variable Nδ − δ ∼ CGeo(qδ−1, fU),
where

fU(x) = pqx−1/(1 − qδ−1), x = 1, 2, · · · , δ − 1.

Proof. Consider the compound geometric sum

Lδ =
{

0, Qδ = 0,

U1 + U2 + · · · + UQδ , Qδ ≥ 1,

where the random variable Qδ ∼ Geo(qδ−1) and the i.i.d. random variables U1, U2, · · · have
common PMF given by

Pr (U1 = i) = pqi−1

1 − qδ−1
, i = 1, 2, · · · , δ − 1.

Then the PGF of Lδ is

E
[
zLδ
]= qδ−1

1 − (1 − qδ−1
)
E[zU1 ]

,
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and since

E
[
zU1
]= pz[1 − (qz)δ−1]

(1 − qδ−1)(1 − qz)
,

we obtain

E
[
zLδ
]= (1 − qz)qδ−1

1 − z + pqδ−1zδ
.

Therefore, from (29) we get

E
[
zNδ−δ

]= G(0)
δ (z) z−δ =E

[
zLδ
]
,

and hence Nδ − δ � Lδ . This completes the proof. �
Using Theorem 5.1 and (10), we get another equivalent (to that given in Corollary 5.3)

recursive relationship for f (0)
δ (k) as

f (0)
δ (k) = p

k−δ∑
i=1

qi−1f (0)
δ (k − i), k ≥ δ + 1,

with f (0)
δ (k) = 0, 0 ≤ k ≤ δ − 1, and f (0)

δ (δ) = qδ−1. Also, the mean of Nδ is

E [Nδ] =E [Lδ] + δ = E [Qδ] E [U] + δ

= 1 − qδ

pqδ−1
.

Since FU (k) = Pr (U > k) = (1 − qδ−k−1)/(1 − qδ−1), 0 ≤ k ≤ δ − 2, and FU (k) = 0,
k ≥ δ − 1, the survival function Pr(Lδ > k) satisfies the recursion

Pr (Lδ > k) =
(

1 − qδ−1
) k∑

i=1

fU (i) Pr (Lδ > k − i) + (1 − qδ−1)FU (k) , k ≥ 1

or

Pr (Lδ > k) =
{

p
∑k

i=1 qi−1Pr (Lδ > k − i) + 1 − qδ−k−1, 1 ≤ k ≤ δ − 2,

p
∑k

i=1 qi−1Pr (Lδ > k − i) , k ≥ δ − 1,

and hence the survival function F
(0)
δ (k) = Pr(Nδ > k), k ≥ 0, can be evaluated recursively

through the following recursive scheme:

F
(0)
δ (k) =

{
p
∑k−δ

i=1 qi−1F
(0)
δ (k − i) + 1 − q2δ−k−1, δ + 1 ≤ k ≤ 2δ − 2,

p
∑k−δ

i=1 qi−1F
(0)
δ (k − i) , k ≥ 2δ − 1.

As in the previous section, one can obtain an upper bound and asymptotic results for

F
(0)
δ (k). Since the proofs are similar, they are omitted.

Finally, since Lδ is a compound geometric sum, it follows that the shifted random variable
Nδ − δ is DS-DFR and DS-NWU (the proof is similar to that of Corollary 4.3).
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6. The binomial discrete mixed censored δ-shock model

In this section we study the discrete mixed censored δ-shock model. This model is obtained
by combining the discrete censored δ-shock model studied in the previous sections and the
extreme shock model.

Let Nδ,γ be the number of periods in which no shocks appear, until the failure of the system.
Here we study the joint and marginal distributions of the random variables Nδ,γ , Mδ,γ , and Tδ,γ

under the binomial shock process, where Tδ,γ and Mδ,γ are defined by (4) and (5) respectively.

Theorem 6.1. The joint PGF

G(012)
δ,γ (z, u, t) =E

[
zNδ,γ uMδ,γ tTδ,γ

]
of the random vector (Nδ,γ , Mδ,γ , Tδ,γ ) for the binomial shock process is given by

G(012)
δ,γ (z, u, t) = (1 − qzt) (qzt)δ + pG(γ )ut[1 − (qzt)δ]

1 − qzt − pG (γ ) ut[1 − (qzt)δ]
. (30)

Proof. Suppose that Wδ is the waiting time until the event ‘no success occurs within a δ-
length time period from the last success in I1, I2, · · · , or a shock with magnitude larger than γ

occurs in I1, I2, · · · ’. Then it is obvious that Tδ,γ � Wδ for δ ≥ 1. There are two possible forms
for a typical sequence of outcomes for observing Wδ , namely (I) and (II):

(I)
FF · · · F︸ ︷︷ ︸

x1≤δ−1

S︸︷︷︸
Z1≤γ

FF · · · F︸ ︷︷ ︸
x2≤δ−1

S︸︷︷︸
Z2≤γ

FF · · · F︸ ︷︷ ︸
x3≤δ−1

S︸︷︷︸
Z3≤γ

· · · FF · · · F︸ ︷︷ ︸
xi−1≤δ−1

S︸︷︷︸
Zi−1≤γ

FF · · · F︸ ︷︷ ︸
xi=δ

,

where x1 is the number of Fs until the first S is reached; xk, for 2 ≤ k ≤ i − 1, is the
number of Fs between the (k − 1)th and the kth success; and Zk is the magnitude of the
kth shock;

(II)

FF · · · F︸ ︷︷ ︸
x1≤δ−1

S︸︷︷︸
Z1≤γ

FF · · · F︸ ︷︷ ︸
x2≤δ−1

S︸︷︷︸
Z2≤γ

FF · · · F︸ ︷︷ ︸
x3≤δ−1

S︸︷︷︸
Z3≤γ

· · · FF · · · F︸ ︷︷ ︸
xi−1≤δ−1

S︸︷︷︸
Zi−1≤γ

FF · · · F︸ ︷︷ ︸
xi≤δ−1

S︸︷︷︸
Zi>γ

.

Then the contribution of each of the first i − 1 terms FF · · · F︸ ︷︷ ︸
xk≤δ−1

S︸︷︷︸
Zk≤γ

, 1 ≤ k ≤ i − 1, in the

pattern (I) is
δ−1∑
xk=0

pG (γ ) qxk zxk utxk+1 = pG (γ ) ut
1 − (qzt)δ

1 − qzt
,

the last term FF · · · F︸ ︷︷ ︸
xi=δ

contributes qδzδtδ , and thus the overall contribution of the pattern (I) to

the PGF is

qδzδtδ
(

pG (γ ) ut
1 − (qzt)δ

1 − qzt

)i−1

. (31)

Similarly, the contribution of the first i − 1 terms FF · · · F︸ ︷︷ ︸
xk≤δ−1

S︸︷︷︸
Zk≤γ

, 1 ≤ k ≤ i − 1, in the pattern

(II) is again

pG (γ ) ut
1 − (qzt)δ

1 − qzt
,
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whereas the contribution of the last term FF · · · F︸ ︷︷ ︸
xi≤δ−1

S︸︷︷︸
Zi>γ

is

δ−1∑
xi=0

pG (γ ) qxiuxi txi+1 = pG (γ ) ut
1 − (qzt)δ

1 − qzt
,

and so the overall contribution of the pattern (II) to the PGF is

pG (γ ) ut
1 − (qzt)δ

1 − qzt

(
pG (γ ) ut

1 − (qzt)δ

1 − qzt

)i−1

. (32)

Summing the contributions to the PGF of all possible patterns (I) and (II) from (31) and (32),
we get that

G(012)
δ,γ (z, u, t) =

{
(qzt)δ + pG (γ ) ut

1 − (qzt)δ

1 − qzt

} ∞∑
ι=1

(
pG (γ ) ut

1 − (qzt)δ

1 − qzt

)i−1

,

from which (30) follows immediately. �
As expected, we observe that for γ → ∞, the PGF in (30) is reduced to the PGF given by

Corollary 3.1. Using (30), we directly obtain the joint PGFs of the random vectors (Nδ,γ , Tδ,γ ),
(Mδ,γ , Tδ,γ ), and (Nδ,γ , Mδ,γ ), which easily lead to the evaluation of recursions for their joint
PMFs and their joint moments. The details are omitted. Let us discuss the distribution of the
lifetime Tδ,γ . By letting z = u = 1 in (30) we get the following result.

Corollary 6.1. The PGF Gδ,γ (t) =E[tTδ,γ ] of the lifetime Tδ,γ is given by

Gδ,γ (t) = (1 − qt) (qt)δ + pG(γ )t[1 − (qt)δ]

1 − [q + pG (γ )
]

t + pqδG (γ ) tδ+1
.

The PGF of Tδ,γ can alternatively be obtained directly from (4). Indeed, by the definition
of the lifetime random variable, we have

Gδ,γ (t) = tδ
∞∑

n=0

[
E
(
tX
∣∣ X ≤ δ

)]n
[Pr (X ≤ δ) ]nPr (X > δ) [Pr (Z ≤ γ )]n

+
∞∑

n=0

[
E
(
tX
∣∣ X ≤ δ

)]n+1
[Pr (X ≤ δ) ]n+1[Pr (Z ≤ γ ) ]nPr (Z > γ ) ,

and thus obtain

Gδ,γ (t) = tδPr (X > δ) +E
(
tX
∣∣ X ≤ δ

)
Pr (X ≤ δ) Pr (Z > γ )

1 −E
(
tX
∣∣ X ≤ δ

)
Pr (X ≤ δ) Pr (Z ≤ γ )

.

Manifestly,

E
(
tX
∣∣ X ≤ δ

)= pt(1 − (qt)δ)

(1 − qt)(1 − qδ)
,
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and Pr (X ≤ δ) = 1 − qδ . Hence, we get

Gδ,γ (t) = (1 − qt) (qt)δ + pG(γ )t[1 − (qt)δ]

1 − [q + pG (γ )
]

t + pqδG (γ ) tδ+1
.

Using Corollary 6.1, one can easily obtain a recursive scheme for the evaluation of the PMF
fδ,γ (n) = Pr(Tδ,γ = n).

Corollary 6.2. The PMF fδ,γ (n) = Pr(Tδ,γ = n) can be evaluated through the recursive
formula

fδ,γ (n) = [q + pG (γ )
]

fδ,γ (n − 1) − pqδG(γ )fδ,γ (n − δ − 1) , n ≥ δ + 2

with initial conditions

fδ,γ (0) = 0; fδ,γ (1) = pG(γ ); fδ,γ (n) = [q + pG (γ ) ]n−1pG(γ ), 2 ≤ n ≤ δ − 1;

fδ,γ (δ) = qδ + [q + pG (γ ) ]δ−1pG(γ );

fδ,γ (δ + 1) = pqδ
[
G (γ ) − G (γ )

]+ [q + pG (γ )]δpG(γ ).

Also, from Corollary 6.1 it follows that Tδ,γ has a matrix-geometric distribution, and hence
an exact relationship for fδ,γ (n) and Fδ,γ (n) = Pr(Tδ,γ > n) can be obtained using (19) and
(20) respectively, with (m = δ + 1)

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q + pG(γ ) 0 0 · · · 0 1

−pqδG(γ ) 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pG(γ )

−qδ(q + pG (γ )]

qδ

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By letting u = t = 1 in (30), we get that the PGF G(0)
δ (z) =E

[
zNδ,γ

]
of the random variable

Nδ,γ is given by

G(0)
δ (z) = (1 − qz) (qz)δ + pG(γ )[1 − (qz)δ]

1 − qz − pG (γ ) [1 − (qz)δ]
.

Using this, we can easily compute recursively the PMF, the survival function, and the moments
of Nδ,γ ; also, we can obtain an exact formula for the PMF and the survival function, since Nδ,γ

also has a matrix-geometric distribution. The results are straightforward and hence the details
are omitted.

Finally, in the following corollary we give the distribution of the number of shocks Mδ,γ .

Corollary 6.3. The distribution of the random variable Mδ,γ of the number of shocks until
the failure of the system is the discrete mixture of the degenerate distribution at zero and the
Geo(θ ;1) distribution with weights qδ and 1 − qδ respectively, where θ = 1 − (1 − qδ

)
G(γ ).

Proof. Letting z = t = 1, from (30) we get that the PGF G(1)
δ,γ (u) =E

[
uMδ,γ

]
of the random

variable Mδ,γ is

G(1)
δ,γ (u) = qδ + (1 − qδ)Gγ )u

1 − (1 − qδ
)

G (γ ) u
,
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TABLE 1. The PMF and mean of Tδ,γ .

δ p n Pr(Tδ,γ = n) E(Tδ,γ )

2 0.75 1 0.1544 4.8919
2 0.1931
3 0.1380
5 0.0866

10 0.0259
0.5 1 0.1029 3.7090

2 0.3423
3 0.1564
5 0.0827

10 0.0129
3 0.75 1 0.1544 6.0124

2 0.1306
3 0.1260
5 0.0833

10 0.0327
0.5 1 0.1029 5.7348

2 0.0923
3 0.2078
5 0.0945

10 0.0319

and since it can be equivalently rewritten as

G(1)
δ,γ (u) = qδ + (1 − qδ)

[
1 − (1 − qδ

)
G (γ )

]
u

1 − (1 − qδ
)

G (γ ) u
,

the proof is completed. �

Hence, it follows immediately from Corollary 6.3 that the PMF f (1)
δ,γ (m) = Pr(Mδ,γ = m) is

given by

f (1)
δ,γ (m) =

{
qδ, m = 0,(

1 − qδ
) [

1 − (1 − qδ
)

G (γ )
] [(

1 − qδ
)

G (γ )
]m−1

, m = 1, 2, · · · .

For an illustration, in Table 1 we compute the PMF and mean of Tδ,γ when Pr {Z ≤ x} = 1 −
(1 − θ )x for θ = 0.1, γ = 15, and selected values of δ and p.
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