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We apply a continuation method to recently optimized stellarator equilibria with excellent
quasi-axisymmetry to generate new equilibria with a wide range of rotational transform
profiles. Using these equilibria, we investigate how the rotational transform affects
fast-particle confinement, the maximum coil–plasma distance, the maximum growth
rate in linear gyrokinetic ion-temperature gradient simulations and the ion heat flux in
corresponding nonlinear simulations. We find values of two-term quasi-symmetry error
comparable to or lower than those of the similar Landreman–Paul (Phys. Rev. Lett., vol.
128, 2022, 035001) configuration for values of the mean rotational transform ῑ between
0.12 and 0.75. The fast-particle confinement improves with ῑ until ῑ = 0.73, at which point
the degradation in quasi-symmetry outweighs the benefits of further increasing ῑ. The
required coil–plasma distance only varies by about ±10 % for the configurations under
consideration, and is between 2.8 and 3.3 m when the configuration is scaled up to reactor
size (minor radius a = 1.7 m and volume-averaged magnetic field strength of 5.86 T).
The maximum growth rate from linear gyrokinetic simulations increases with ῑ, but also
shifts towards higher ky values. The maximum linear growth rate is sensitive to the choice
of flux tube at rational ῑ, but this can be compensated for by taking the maximum over
several flux tubes. The corresponding ion heat fluxes from nonlinear simulations display
a non-monotonic relation to ῑ. Sufficiently large positive shear is destabilizing. This is
reflected in both linear growth rates and nonlinear heat fluxes.

Keywords: fusion plasma

1. Introduction

Stellarators are toroidal magnetic confinement devices that rely on non-axisymmetric
magnetic fields to confine a plasma. Non-axisymmetry makes it possible to produce
the confining magnetic field using currents external to the plasma. However, without an
explicit symmetry direction, particles are not guaranteed to be confined by conservation
laws, and the magnetic field must be optimized to confine particles.
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One possible optimization strategy is to optimize for a property known as quasi-
symmetry (Boozer 1983), in which the magnitude of the magnetic field has a symmetry in
a special set of coordinates. Over the last few years, tremendous progress has been made
in optimizing stellarator geometries to achieve excellent quasi-symmetry (Landreman &
Paul 2022). However, the results so far are mostly limited to configurations scattered
in parameter space, which makes it hard to systematically study the effects of varying
equilibrium parameters, such as the rotational transform ι and global magnetic shear ŝ.

In this paper, we attempt to alleviate this issue by applying continuation methods
to continuously deform the rotational transform profile of the ‘Precise QA’ vacuum
configuration described in Landreman & Paul (2022). This procedure lets us generate a
family of stellarator geometries that are similar to each other in a sense that is explained
in the next section, but where the rotational transform profile varies.

Since the mean rotational transform of the original ‘Precise QA’ configuration was
arbitrarily imposed, it is not a priori obvious that there are any inherent trade-offs between
quasi-symmetry and different values of mean ι. Increasing the rotational transform is
expected to improve the fast-particle confinement, since the width of banana orbits scales
∝ 1/ι (Paul et al. 2022), and could thus be beneficial for a reactor.

Optimization by continuation is a technique whereby an optimization problem is solved
by continuously deforming a simpler optimization problem. If each deformation is a
small perturbation to the previous problem, the solution of the previous problem can
be used as a good initial guess to the perturbed problem. By repeatedly applying small
perturbations and optimizing at each step, we eventually arrive at a solution to the novel
optimization problem.

A variety of continuation-type methods have been used for stellarator equilibrium and
optimization calculations previously. The code DESC allows for magnetohydrodynamic
equilibria to be computed by continuation in the plasma boundary shape or plasma
profiles (Conlin et al. 2023). One common optimization approach – optimizing first in
a small parameter space of Fourier modes describing the plasma shape, then expanding
the number of Fourier modes in the parameter space and re-optimizing – can be viewed as
a type of continuation method. This approach was discussed for instance in Landreman
& Paul (2022). Continuation is also a standard method for exploring the Pareto front
in multi-objective optimization, and has recently seen use in this context to explore the
trade-offs between quasi-symmetry and aspect ratio (Bindel, Landreman & Padidar 2023).

Larger systematic explorations of the space of quasi-symmetric stellarators have
previously been published by Landreman (2022), which relied on the near-axis expansion
to directly construct optimized stellarator equilibria (Landreman, Sengupta & Plunk 2019;
Plunk, Landreman & Helander 2019). In contrast, our geometries are solutions to the full
equilibrium equation, with a realistic number of Fourier modes describing the boundary.
Giuliani et al. (2023) recently made public a large database of quasi-axisymmetric (QA)
stellarators with varying ῑ, which could be used to perform studies similar to this one.

While there is a rich mathematical literature on continuation methods (also known
as homotopy methods), see for example Allgower & Georg (2003), the application of
the method to practical optimization problems is often based more on intuition than on
mathematical rigour (Mobahi & Fisher 2015). This is also the approach taken here.

The rest of the paper is organized as follows. In the next section, we present the
objective function used in the optimization, and introduce the continuation method. In
§ 3, we apply this method to generate ‘Precise QA’-like configurations with varying
mean rotational transform or shear. We analyse these configurations with respect to
fast-particle confinement, gyrokinetic stability and required coil–plasma distance. We find
that fast-particle confinement improves with higher ῑ, up to a point, while the maximum
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growth rate in our gyrokinetic simulations increases and shifts towards higher ky. Finally,
we discuss the results in § 4. All the equilibria presented here can be found as supplemental
material on Zenodo at https://zenodo.org/doi/10.5281/zenodo.10521393 (see Buller 2024).

2. Theory

A magnetic field B is quasi-symmetric with helicity (M,N) if its magnitude B = |B|
can be written as

B = B(ψ,Mϑ − Nζ ), (2.1)

where ψ is a flux-surface label, which we take to be the toroidal flux divided by 2π, and
ϑ and ζ are magnetic angles, which we take to be the Boozer angles. Compared with the
generic case where B = B(ψ, ϑ, ζ ) depends on all angles independently, the Lagrangian
of a charged particle travelling through a quasi-symmetric field has a symmetry direction
when written in Boozer coordinates, which ensures that the charged particle is confined
by the magnetic field (Boozer 1983; Nührenberg & Zille 1988; Rodriguez, Helander &
Bhattacharjee 2020). The symmetry direction depends on M and N: fields with N = 0 are
known as QA; fields with non-zero N and M are called quasi-helically symmetric.

As the Boozer angles ϑ and ζ themselves depend on B, it is not known how
to directly compute fields with quasi-symmetry, except for the case where the fields
possess exact axisymmetry (B = B(ψ, ϑ)). Using different asymptotic methods for
finding quasi-symmetry typically yields overdetermined systems of equations beyond a
certain order (Garren & Boozer 1991; Plunk & Helander 2018), which suggests that exact
quasi-symmetry apart from true axisymmetry may be impossible to achieve. The approach
taken historically is to instead optimize B to achieve approximate quasi-symmetry, which
can yield configurations that are good enough in practice. This is also the approach taken
in this paper.

As in Landreman & Paul (2022), we take our objective function to be

f = fQS + (A − A∗)2 + (ῑ− ῑ∗)2, (2.2)

where A is the aspect ratio, ῑ is the mean (over ψ) of the rotational transform and fQS
is the so-called two-term formulation of quasi-symmetry (Helander & Simakov 2008).
Specifically

fQS =
∑

sj

〈(
1
B3

[N − ιM]B × ∇B · ∇ψ − [MG + NI]B · ∇B
)2
〉
, (2.3)

where the sum is over flux surfaces, 〈·〉 denotes the flux-surface average and 2πG/μ0
and 2πI/μ0 are the poloidal current outside and toroidal current inside the flux surface,
respectively. The fQS objective is zero when B is quasi-symmetric with helicity (M,N),
so different kinds of quasi-symmetry can be targeted by specifying M and N. The second
and third terms on the right-hand side of (2.2) target a specific aspect ratio A∗ and mean
rotational transform ῑ∗, respectively.

The above objective is optimized with respect to the boundary shape of the plasma,
which is described in terms of Fourier modes. The boundary can be described by

R(θ, φ) =
Mpol∑
m=0

Ntor∑
n=−Ntor

rc,m,n cos (mθ − nfpnφ),

Z(θ, φ) =
Mpol∑
m=0

Ntor∑
n=−Ntor

zs,m,n sin (mθ − nfpnφ),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.4)
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where R, Z, φ are the cylindrical coordinates of our surface, Mpol and Ntor are the maximum
poloidal and toroidal mode numbers in our representation and nfp is the number of
field-periods of the geometry. Throughout this work, stellarator symmetry is assumed,
which eliminates the sine and cosine components in R and Z, respectively. The poloidal
angle θ is arbitrary. Typically, Mpol = Ntor = 6 in our optimizations.

For each boundary, a magnetic equilibrium is calculated using the VMEC code
(Hirshman & Whitson 1983) and the objective is evaluated for this calculated equilibrium.
The optimization is formulated using the SIMSOPT framework (Landreman et al. 2021).
We use the Trust Region Reflective method in SCIPY to find a local minimum given an
initial condition (Virtanen et al. 2020).

2.1. Computational procedure
We generate our equilibria by solving a series of local optimization problems with different
ῑ∗, using a continuation method.

Let F[ῑ∗] denote the objective function (2.2) with a specific value of ῑ∗. Let F(0) = F[ῑ(0)∗ ]
and let x(0) be an optimum to this objective. We define our series of optimization problems
through

ῑ(n+1)
∗ = ῑ(n)∗ +�ῑ∗, (2.5)

F(n+1) = F[ῑ(n+1)
∗ ]; (2.6)

and take x(n) to denote the optimum of F(n).
Since we are doing local optimizations, the obtained optimum for a given F(n) will

depend on the initial guess. For each new optimization problem F(n+1), we use the optimum
from the previous optimization problem F(n) as our initial guess. IfΔῑ∗ is small, we expect
F(n+1) to be roughly equal to F(n) with a small perturbation, and x(n) can thus be expected to
be close to the new optimum x(n+1). If this expectation holds, our procedure will generate
a series of equilibria with different ῑ∗ that are otherwise similar, in the sense of being close
to each other in the space of Fourier boundary modes over which we optimize.

3. Results

In this section, we present measures of quasi-symmetry, fast-particle confinement and
ion-temperature-gradient (ITG) stability for the different geometries obtained using the
procedure described in § 2.1. Quasi-symmetry is part of the objective function (2.2), and
can thus be considered a measure of how well the optimizer performs for the different ῑ∗.
The other figures of merit were not explicitly optimized for.

3.1. Exploring the optimization landscape around an optimum
Before presenting detailed results of our optimized configurations, it is instructive to look
at the optimization landscape around an optimum and how it changes when going to
the next ῑ∗. In figure 1, we plot the objective function when varying each of the Fourier
boundary modes about our optimum for ῑ∗ = 0.42. Each panel corresponds to a different
boundary mode, indicated above the plot. The y axes and x axes correspond to the value
of the objective and the boundary mode, respectively. Colour is used to indicate the range
of the y axis. The range of the x axis covers a 30 % relative change in the corresponding
boundary parameter.

From reading the colourbar, we see that the relative sensitivity of the objective to various
boundary modes varies by almost eight orders of magnitude. This is largely due to the
differences in the absolute values of the original modes. Since several boundary modes
have very shallow or even non-existent local wells, our optimum is effectively in a flat
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FIGURE 1. Solid lines: variation in the objective (2.2) for ῑ∗ = 0.42 for a scan in boundary
modes around the corresponding optimum. Each panel corresponds to a scan in one boundary
mode, as indicated above the panel. Each boundary mode is varied by up to ±30 % and the
colours correspond to the range of values taken by the objective along that curve. Dashed lines:
objective evaluated for the same boundaries, but with ῑ∗ = 0.43.

valley and is thus not unique. Small changes in the numerical optimization method or
initial condition will result in optima where the non-sensitive boundary modes assume
different values, within the narrow range plotted.

This ‘non-uniqueness’ suggests that the slight perturbations of the continuation method
may cause unpredictable jumps in the insensitive boundary modes. To illustrate the
immediate effect of increasing ῑ∗, figure 1 also shows the landscape around the same
ῑ∗ = 0.42 optimum after ῑ∗ in the objective has been changed to 0.43, corresponding
to the initial state of the optimization of the next step in our ῑ∗ scan. For some of the
insensitive modes (for example, m = 3, n = 0), the objective changes from being relatively
flat to having an incline over the plotted range. This will push the optimizer to make
relatively large jumps in these boundary modes, potentially to different local minima in
these insensitive modes.

Thus, the continuation method does not strictly follow a unique minimum as the
landscape is deformed by changing ῑ∗. Rather, it samples a class of minima with potentially
large relative differences in the insensitive modes. In the next section we use the resulting
equilibria to evaluate how various figures of merit vary with ῑ.
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FIGURE 2. Quasi-symmetry error (2.3) from configurations with varying ῑ. The blue line
corresponds to configurations found by the continuation method described in § 2.1. For
comparison, we also include optimizations following the same procedure as in Landreman &
Paul (2022), but targeting different ῑ (orange). Depicted in green is a continuation scan towards
lower ῑ, showing that the scan is not reversible, which is expected given the ‘non-uniqueness’ of
the configurations as discussed in § 3.1. The ‘Precise QA’ (Landreman & Paul 2022) corresponds
to the ῑ = 0.42 ‘from purely toroidal’ optimization.

3.2. Varying rotational transform in a QA equilibrium
Using the objective function (2.2) with A∗ = 6.0, N = 1 and M = 0 in (2.3), we optimize
the boundary of an nfp = 2 field-period vacuum configuration starting from a purely
toroidal field and targeting ῑ∗ = 0.12. We optimize by successively expanding the number
of boundary Fourier modes in six steps, only including Fourier modes up to |n| ≤ j,m ≤ j
in the jth step. This optimization is repeated for six different relative finite-difference
step sizes to calculate the rate of change with respect to the different boundary modes
rc,m,n and zs,m,n, and the optimum with the lowest quasi-symmetry error is picked. The
resulting optimum is taken as our initial configuration in the procedure described in the
next paragraph.

Incrementing ῑ∗ by 0.01, we redo the optimization starting from the previous optimum.
As this is a small adjustment to the objective function, the previous optimum is expected to
be a good initial guess. Thus, we immediately optimize with all Fourier boundary modes.
This not only saves time, but is also expected to make the resulting series of optima similar
to each other. For convenience, all optimizations are performed with the initially found
optimal finite-difference step size.

The quasi-symmetry errors of the resulting configurations at the different ῑ∗ are plotted
in figure 2, alongside the results of rerunning the optimizations from a purely toroidal field
at different ῑ∗. We see that the continuation method results in lower quasi-symmetry error
throughout the entire ῑ∗ range, achieving quasi-symmetry errors about ten times lower
than that for the optimization starting from a purely toroidal field. For ῑ∗ ∈ [0.2, 0.65], the
quasi-symmetry error displays a broad valley, where it varies between 2.4 × 10−8 and
9.0 × 10−8.

For 0.12 < ῑ∗ < 0.2, the continuation method gives decreasing quasi-symmetry error
for increasing ῑ∗. To test whether this is due to lingering effects of the initial configuration
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FIGURE 3. Rows 1 and 2: plasma boundary shapes for select points in the scan (ῑ = 0.12,
ῑ = 0.42 and ῑ = 0.71). As ῑ increases, the boundary becomes more elongated. Row 3: |B| on
the boundary in Boozer coordinates.

at ῑ∗ = 0.12, we run the continuation method in reverse starting from the ῑ∗ = 0.21
configuration. The result is shown in green in figure 2. Due to the ‘non-uniqueness’
property discussed in § 3.1, we do not expect the process to retrace itself exactly when
done in reverse. Indeed, we find that the resulting configurations have somewhat different
quasi-symmetry error after only two backwards iterations, compared with the previously
obtained configurations with the same ῑ∗. These new configurations are not notably better
than the configurations obtained by starting from a purely toroidal field. This indicates that
higher quasi-symmetry error for ῑ∗ < 0.20 is not merely an effect of the initial conditions
in the optimization.

Figure 3 shows examples of boundary shapes obtained in the continuation scan. We see
that as ῑ∗ increases, the boundary shapes become more elongated. This appears to limit the
range of achievable ῑ∗ in the scan, as VMEC eventually fails to solve for the resulting
plasma equilibria around ῑ∗ = 0.81. The quasi-symmetry starts to degrade already at
ῑ∗ ≈ 0.65, perhaps because of the optimum shape becoming thin enough that it cannot
be accurately represented using only boundary Fourier modes up to |n| ≤ 4,m ≤ 4.

One advantage of higher ῑ∗ is that the orbit width of charged particles roughly scales as
1/ι for QA configurations. Specifically, in the small-orbit-width limit, the orbit width is
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FIGURE 4. Fast-particle loss fraction for the different ῑ configurations as calculated by SIMPLE
by tracing 5000 alpha particles released at the surfaces with normalized toroidal flux s = 0.3,
s = 0.5, s = 0.7. The dashed lines show least-squares fits of c ῑα∗ to the data, with fit parameters
c and α shown in the figure.

proportional to (Paul et al. 2022)

forbit width =
∣∣∣∣MG − NI

Mι− N

∣∣∣∣ . (3.1)

We thus expect fast particles to be better confined in QA configurations with higher ῑ∗, all
else being equal.

This prediction is borne out by particle tracing simulations using the collisionless
guiding-centre orbit solver SIMPLE (Albert, Kasilov & Kernbichler 2020a,b). Figure 4
shows the loss fractions calculated by tracing 5000 alpha particles with 3.52 MeV energy
for 0.2 s. The particles were launched at three different radii, and considered lost when
crossing the last closed flux surface at normalized toroidal flux s = 1.0. The configurations
have all been scaled up to a reactor-relevant minor radius of 1.704m and volume-average
magnetic field of 5.865 T, to match the ARIES-CS configuration (Najmabadi et al. 2008).
We see that the confinement improves with ῑ until about ῑ = 0.73, where the increase in
quasi-symmetry error outweighs the benefits of increasing ῑ.

To see to which extent the 1/ι orbit-width scaling is reflected in the fast-particle losses,
we fit the losses to cῑα∗ for ῑ∗ ∈ [0.2, 0.65], where the quasi-symmetry error is relatively
constant. The fits and values of the coefficients are shown alongside the data in figure 4,
for the s = 0.5 and s = 0.7 results. The fits systematically overpredict the particle losses
towards the higher end of the fitted range. Increasing the range of ῑ∗ in the fit to [0.12, 0.73]
changes of the values of the coefficients to (c = 0.07, α = −0.99) and (c = 0.017, α =
−1.6) for the s = 0.7 and s = 0.5 fits, respectively, and does not significantly affect the
agreement between the fitted curve and the data. Thus, the orbit width scaling with ι only
offers a qualitative estimate of how the fast-particle losses scale, and other mechanisms
must be accounted for to get the full picture.

Not included in the SIMPLE calculations is the effect of the gyro-orbit about the guiding
centres, which effectively widens the orbits and thus should increase the losses. As an
estimate of the size of this effect, we calculate the ratio of the gyroradius to the orbit
width, using the expression for the orbit width in the small-orbit-width limit given by Paul
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(a)

(b)

FIGURE 5. (a) Maximum growth rate at s = 0.25, for a different number Nα of flux tubes in
each ῑ configuration. Data are from electrostatic linear STELLA simulations with a/LT = 3,
a/Ln = 1 and adiabatic electrons. (b) The ky mode number of the fastest growing mode. The
underlying γ (ky) curves are shown in figure 7. Vertical dotted lines indicate some low-order
rationals.

et al. (2022):
gyroradius
orbit width

= |N − ιM|
|MG − NI| |∇ψ |

√
Bλ

2
√

1 − Bλ
, (3.2)

where λ = v2
⊥/(Bv

2), with v⊥ the speed of the particle in the direction perpendicular to
the magnetic field. For our QA configurations (I ≈ 0 Tm, G ≈ 70 Tm, —∇ψ | ≈ 20 Tm,
N = 0, M = 1) this ratio ends up being roughly ι/7 for Bλ = 0.5, and is thus much less
than one. The finite gyro-orbit correction should thus be small for our range of ι, except
for the most deeply trapped particles. Specifically, the gyro-orbit width becomes larger
than the orbit width for Bλ > (7/ι)2/[1 + (7/ι)2], or about Bλ > 0.987 for the worst-case
scenario of ι = 0.81.

For configurations with this low quasi-symmetry error, collisional transport is almost
surely dwarfed by turbulent transport. For example, ITG mode turbulence appears to
dominate the heat transport in Wendelstein 7-X (Carralero et al. 2021).

In figure 5, we show the maximum growth rates max (γ ) for the s = 0.25 surface in each
configuration, as calculated from linear electrostatic gyrokinetic flux-tube simulations
using the gyrokinetic code STELLA (Barnes, Parra & Landreman 2019) using adiabatic
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FIGURE 6. Shear ŝ = −(s/ι)(dι/ds) at s = 0.25 plotted against the ῑ of each equilibrium. Zero
shear is marked with a dashed line.

electrons. The simulations use gradients to promote ITG turbulence: a/LTi = 3 and
a/Ln = 1. In the figure, Nα indicates the number of flux tubes in which max (γ ) was
calculated, using equally spaced values of the field line label α0 on the interval [0,π],
with a point always placed on α0 = 0. In STELLA, α0 (together with s) specifies the
location of a flux tube, with α0 being the value of α = θ − ιφ at the middle of the
flux tube. The α0 interval [0,π] covers the entire half-period of a stellarator symmetric
configuration. The simulations use kx = 0 and the parallel domain extends for 70 toroidal
turns, corresponding to about 8.4 poloidal turns for the lowest ι values. Due to the low
shear of these configurations, the modes can have structure far along the field line; 70
toroidal turns was found to be sufficient to resolve this with good margins towards the
boundaries for all configurations in the scan. The shear ŝ in each configuration at the
radius of the simulations (s = 0.25) is shown in figure 6, revealing that most of the scan
has a slight positive shear, with the configurations with ῑ < 0.2 having somewhat larger
shear still below 0.1. Note that while 0.1 is small in an absolute sense, it is not unusual
for stellarators to have such low shear (Ascasíbar et al. 2008). We only consider kx = 0
modes, since these modes usually have the largest growth rates for ITG turbulence, which
we confirmed for the ῑ = 0.49 and ῑ = 0.49 cases.

The γ (ky) curves corresponding to the flux tube with the maximum growth rates are
shown in figure 7, for some of the ῑ∗ configurations. Despite some of the curves being
calculated on flux tubes with different α0, the result is an essentially smooth change in the
growth rate curves with ῑ∗. For ῑ∗ ≥ 0.77, the growth rate peaks above ρky = 3.0, so these
simulations were modified to include higher ky values.

Figures 5 and 7 both show a clear trend towards higher max (γ ) and higher wavenumbers
ky with increasing ῑ, suggesting smaller-scale turbulence. At certain values of ῑ, the
Nα0 = 1 and Nα0 = 2 curves in figure 5 display sharp dips towards lower max (γ ).

This can be understood in terms of the flux tubes on rational surfaces not sampling the
full flux-surface geometry. As a result, modes on different flux tubes will, for example,
experience different levels of finite-Larmor-radius (FLR) damping in regions of bad
curvature. This is illustrated in figure 8, which shows the value of |∇α|2 at maxima in the
curvature drift along the flux tube, for different flux tubes in the ῑ∗ = 0.49 and ῑ∗ = 0.50
geometries. For the non-rational ι, all flux tubes sample regions of bad curvature with all
values of |∇α|2, while for the rational ι, the different flux tubes display different values of
|∇α|2 at regions of bad curvature. Flux tubes with lower |∇α|2 in bad-curvature regions
have higher growth rates as they experience less FLR damping.

Figure 9 shows the corresponding nonlinear ion heat flux as calculated using the
gyrokinetic code GX. GX is a new gyrokinetic code that runs on GPUs (Mandell, Dorland
& Landreman 2018; Mandell et al. 2022). GX has been benchmarked against STELLA
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(a) (b) (c)

FIGURE 7. Growth rates γ (ky) for the flux tube with the highest max (γ ) for a subset of the
different ῑ∗ configurations. The curves for different configurations are grouped into different
panels based on the range of their ῑ∗ values: (a) 0.13–0.34, (b) 0.37–0.56 and (c) 0.59–0.77.
Colours indicate the specific ῑ∗ corresponding to each curve.

and other established gyrokinetic codes (Mandell et al. 2022), and should be faster than
STELLA when it comes to running electrostatic nonlinear gyrokinetic simulations with
adiabatic electrons. In contrast to the linear results, there is more variation between flux
tubes with different α0, but seemingly no great difference between rational and irrational
values of ι. Both these features are consistent with the nonlinear heat flux being insensitive
to structures that are very elongated along the field line, so that even on irrational flux
tubes, the turbulence does not effectively sample all regions of bad curvature on the
flux surface. The trend with respect to ι is non-monotonic with several local maxima
and minima.

We also investigated how far away coils can be placed from our plasma, using
the method in Kappel et al. (2024). Given a maximum surface-current density Kmax
(corresponding to a minimum coil–coil distance) and a required accuracy in reproducing
the last-closed flux surface of a target configuration, the distance between the plasma and
the coil winding surface in the coil-shape code REGCOIL (Landreman 2017) is increased
until the maximum current density on the winding surface reaches Kmax. The accuracy
with which the coils produce the target last-closed flux surface is measured by

Bn,RMS =
√∫

LCFS
dS(n · B)2

/∫
LCFS

dS, (3.3)

where the surface integrals are over the target surface and n is the unit normal of this
surface; B is here the magnetic field produced by the coils.

The results of REGCOIL calculations with Kmax = 17.16 MA m−1 and Bn,RMS = 0.01 T
for the different ῑ∗ target configurations are shown in figure 10. All target configurations
have been rescaled to the ARIES-CS minor radius a and volume-averaged B, and the value
of Kmax was chosen to match the minimum coil–coil distance of the ARIES-CS coil set.
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FIGURE 8. Values of |∇α|2 at points of maximum curvature drift along different flux tubes
(given by α0 on the x axis) for an irrational (ῑ∗ = 0.49) and rational (ῑ∗ = 0.50) flux surface.

FIGURE 9. Nonlinear ion heat fluxes Qi for a few different ῑ∗ configurations starting from ῑ∗ =
0.20 to ῑ∗ = 0.80. The fluxes are calculated using the gyrokinetic code GX on a single flux tube,
with calculations done for the α0 = 0 and α0 = π/4 flux tubes. Here QgB = niTiv

3
Ti/(B

2a2),
where vTi = √

2Ti/mi is defined with a
√

2 unlike in the raw GX output.

Also included in the figure is the gradient scale length of B, defined as

L∗
∇B ≡ min

( √
2B

‖∇B‖F

)
, (3.4)

where ‖∇B‖F is the Frobenius norm of the tensor ∇B and the minimum is taken over
boundary surface of the plasma. This metric, which is purely defined in terms of the target
magnetic field and requires no coil geometry to calculate, has been proposed as a good
proxy for the plasma–coil separation. Again, see Kappel et al. (2024) for details.
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FIGURE 10. Coil–plasma separation for the different ῑ∗ configurations, calculated using
REGCOIL, alongside the magnetic scale length L‖∇B‖. The configurations have been scaled up
to a = 1.704m and volume-average magnetic field of 5.865 T, to match ARIES-CS. The sheet
current density is computed to meet a target accuracy Bn,RMS = 0.01 T and a maximum current
density of 17.16 MA m−1, which corresponds to the minimum coil–coil distance of ARIES-CS
(Kappel, Landreman & Malhotra 2024).

From figure 10, we see that the coil–plasma separation and gradient scale length both
vary weakly over the ι scan. Specifically, the coil–plasma separation is between 2.85
and 3.25 m with a minimum for ῑ∗ around 0.35. The difference between the smallest
plasma–coil separation and the largest is only 23 % of the minor radius. This is a small
difference compared with the full range of plasma–coil separations present in Kappel et al.
(2024). The L∗

∇B metric is not expected to be a detailed enough proxy to fully capture such
slight variations, which is reflected in the fact that L∗

∇B does not reproduce the minimum
at ῑ∗ = 0.35.

We thus conclude that changes to ῑ do not seem to play a large role in setting the
plasma–coil separation. Since our configurations differ widely in their elongation, it also
seems like elongation does not have a large effect on plasma–coil separation.

3.3. Varying shear in QA equilibrium
All configurations in the previous section have low values of global magnetic shear.
This might make them susceptible to curvature-driven instabilities, compared with
configurations with negative shear (Antonsen et al. 1996; Nadeem, Rafiq & Persson 2001).

High shear helps limiting the parallel extent of modes elongated along the magnetic field
lines due to radially nearby field lines separating as the parallel coordinate is traversed,
which forces such modes to have lower radial correlation length or a limited parallel extent.
Gyrokinetic modes with smaller perpendicular extent generally have a smaller impact on
a configuration, as they lead to less transport, which can be qualitatively understood by
viewing the size of the mode perpendicular to the field line as a step length in a diffusive
process (Merz & Jenko 2008).

We obtain configurations with stronger shear by additional optimizations where we add
a term targeting the mean shear. Defining the mean shear as

¯̂s = −c1/ῑ, (3.5)

https://doi.org/10.1017/S0022377824001351 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001351


14 S. Buller, M. Landreman, J. Kappel and R. Gaur

FIGURE 11. Plasma boundary shapes for select points in the scan (¯̂s = −0.16, ¯̂s = 0.0 and
¯̂s = 0.15). Imposing positive shear mainly affects the triangularity of the boundary, while a
negative shear makes the boundary more elongated and narrow.

where c1 is the result of a linear fit c0 + c1s to the ι(s) profile, we add the following
optimization target to our objective (2.2):

(¯̂s − ¯̂s∗)2. (3.6)

The negative sign in (3.5) is included to match the sign convention of the conventional
definition of shear, −(s/ι)(dι/ds).

Starting from the ῑ∗ = 0.42 configuration found in § 3.2, which has a mean shear
¯̂s = 0.0195 ≈ 0.02, we do two continuation scans in ¯̂s∗ towards more negative and more
positive shear, respectively, still targeting ῑ∗ = 0.42. The configurations with lowest and
highest shear are shown in figure 11, alongside the ¯̂s = 0 configuration.

The resulting quasi-symmetry error is shown in figure 12. We see that imposing an
additional shear objective degrades the quasi-symmetry. This is expected when adding
competing objectives to an optimization problem.

In figure 13, we show the fast-particle loss fraction calculated using the same set-up
as for the s = 0.3 calculations in figure 4. The degradation in quasi-symmetry appears to
increase the fast-particle losses somewhat, but the effect is small enough for this range of
shear for the uncertainty in the individual calculations to be comparable, as seen by the
non-smoothness of the curve.
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FIGURE 12. Quasi-symmetry error (2.3) from a continuation scan varying shear. The scan is
performed around the ι = 0.42 configuration.

FIGURE 13. Fast-particle loss fraction for the different ¯̂s configurations as calculated by
SIMPLE using the same simulation set-up as for the s = 0.3 curve in figure 4.

Finally, we investigate the effect of shear on turbulent transport. The maximum growth
rates max (γ ) and the dependence of the growth rate on ky for the shear scan are shown
in figures 14 and 15, respectively. We see a clear trend towards increasing maximum
growth rates for shear above ¯̂s > 0.085. This increase seems to be due to some new mode
appearing at high ky values, and the maximum growth rate of this mode is not properly
resolved in these simulations. The mode remains even when setting the density gradient to
zero, and must thus be driven by the ITG, although it appears at much larger values of ky
than typical ITG turbulence.

The effect on the nonlinear ion heat flux is more modest, but there is an increase of
about 25 % for positive shear, as seen in figure 16. Positive shear being destabilizing is
well known in the tokamak literature (Antonsen et al. 1996; Nadeem et al. 2001), and our
results appear to be consistent with that.
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FIGURE 14. Maximum growth rates for the different ¯̂s configurations, using the same
simulation set-up as in figure 5.

FIGURE 15. Growth rates γ (ky) for a subset of the different ¯̂s∗ configurations.
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FIGURE 16. Nonlinear heat fluxes for the different ¯̂s configurations.

4. Conclusions

We have used a continuation method to generate a sequence of QA equilibria with
different rotational transform profiles. The configurations are similar to each other, with
each a local minimum of an optimization problem that is initialized at the previously found
minimum. Through this procedure, we have found nfp = 2 QA configurations with higher
mean rotational transform ῑ than what was previously found. We find QA configurations
with exceptionally low quasi-symmetry errors for ῑ ∈ [0.2, 0.65]. For ῑ in and slightly
above this range, increasing ῑ increases the elongation of the plasma boundary, which
is likely what ultimately limits the achievable values of ῑ. Fast-particle losses as calculated
by a collisionless drift-kinetic particle-tracing code decrease with ι up to a point, but the
effect is weaker than the ι−1 scaling predicted by purely accounting for how the orbit width
scales with ι. Nevertheless, there is a potential conflict between having low elongation and
low fast-particle losses. The dependence of the turbulent ion heat flux is non-monotonic
in ι and shows some mild sensitivity to which flux tube the simulations are performed at.
The linearly calculated growth rates, on the other hand, are sensitive to the choice of flux
tube on rational flux surfaces.

Higher shear can be imposed on the configurations by adding an extra term in the
objective function. This increases the quasi-symmetry error somewhat, but this hardly
affects the fast-particle losses. The turbulent heat flux tends to increase somewhat for
positive shear, causing an increases by about 25 % for the range of shear considered here.
The effect of shear in magnetohydrodynamic stability is likely even more important, but
was not considered here.

Acknowledgements

The authors are grateful for discussions with B. Dorland, I. Abel, R. Jorge, E. Rodriguez,
W. Sengupta, N. Nikulsin, R. Nies, T. Adkins and J. Parisi, who have all provided valuable
input and motivation for this work.

Editor Per Helander thanks the referees for their advice in evaluating this article.

Funding

This work was supported by the US Department of Energy, Office of Science, Office
of Fusion Energy Science, under award number DE-FG02-93ER54197. This research used

https://doi.org/10.1017/S0022377824001351 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001351


18 S. Buller, M. Landreman, J. Kappel and R. Gaur

resources of the National Energy Research Scientific Computing Center (NERSC), a US
Department of Energy Office of Science User Facility located at Lawrence Berkeley
National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC
award FES-ERCAP-mp217-2023. Additional computations were performed on the HPC
systems Cobra and Raven at the Max Planck Computing and Data Facility (MPCDF).

Declaration of interest

The authors report no conflict of interest.

REFERENCES

ALBERT, C.G., KASILOV, S.V. & KERNBICHLER, W. 2020a Accelerated methods for direct computation
of fusion alpha particle losses within, stellarator optimization. J. Plasma Phys. 86 (2), 815860201.
https://doi.org/10.1017/S0022377820000203

ALBERT, C.G., KASILOV, S.V. & KERNBICHLER, W. 2020b Symplectic integration with non-canonical
quadrature for guiding-center orbits in magnetic confinement devices. J. Comput. Phys. 403,
109065. https://www.sciencedirect.com/science/article/abs/pii/S0021999119307703?via%3Dihub

ALLGOWER, E.L. & GEORG, K. 2003 Introduction to Numerical Continuation Methods. Society for
Industrial and Applied Mathematics. https://epubs.siam.org/doi/book/10.1137/1.9780898719154

ANTONSEN, T.M. JR., DRAKE, J.F., GUZDAR, P.N., HASSAM, A.B., LAU, Y.T., LIU, C.S. &
NOVAKOVSKII, S.V. 1996 Physical mechanism of enhanced stability from negative shear in
tokamaks: implications for edge transport and the L-H transition. Phys. Plasmas 3 (6), 2221–2223.
https://doi.org/10.1063/1.871928

ASCASÍBAR, E., et al. 2008 Effect of rotational transform and magnetic shear on confinement of
stellarators. Plasma Fusion Res. 3, S1004–S1004.

BARNES, M., PARRA, F.I. & LANDREMAN, M. 2019 stella: an operator-split, implicit–explicit
δf -gyrokinetic code for general magnetic field configurations. J. Comput. Phys. 391, 365–380.
https://www.sciencedirect.com/science/article/abs/pii/S002199911930066X?via%3Dihub

BINDEL, D., LANDREMAN, M. & PADIDAR, M. 2023 Understanding trade-offs in stellarator design with
multi-objective optimization. https://arxiv.org/abs/2304.08698

BOOZER, A.H. 1983 Transport and isomorphic equilibria. Phys. Fluids 26 (2), 496–499. https://doi.org/
10.1063/1.864166

BULLER, S. 2024 Dataset for ‘A family of quasi-axisymmetric stellarators with varied rotational transform
data’. https://zenodo.org/records/10521394

CARRALERO, D., ESTRADA, T., MARAGKOUDAKIS, E., WINDISCH, T., ALONSO, J.A., BEURSKENS,
M., BOZHENKOV, S., CALVO, I., DAMM, H., FORD, O., FUCHERT, G., GARCÍA-REGAÑA, J.M.,
PABLANT, N., SÁNCHEZ, E., PASCH, E., VELASCO, J.L. & THE WENDELSTEIN 7-X TEAM

2021 An experimental characterization of core turbulence regimes in Wendelstein 7-X. Nucl. Fusion
61 (9), 096015. https://doi.org/10.1088/1741-4326/ac112f

CONLIN, R., DUDT, D.W., PANICI, D. & KOLEMEN, E. 2023 The DESC stellarator code suite. Part 2.
Perturbation and continuation methods. J. Plasma Phys. 89 (3), 955890305. https://doi.org/10.1017/
S0022377823000399

GARREN, D.A. & BOOZER, A.H. 1991 Existence of quasihelically symmetric stellarators. Phys. Fluids
B: Plasma Phys. 3 (10), 2822–2834. https://doi.org/10.1063/1.859916

GIULIANI, A., WECHSUNG, F., CERFON, A., LANDREMAN, M. & STADLER, G. 2023 Direct stellarator
coil optimization for nested magnetic surfaces with precise quasi-symmetry. Phys. Plasmas 30 (4),
042511. https://doi.org/10.1063/5.0129716

HELANDER, P. & SIMAKOV, A.N. 2008 Intrinsic ambipolarity and rotation in stellarators. Phys. Rev. Lett.
101, 145003. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.145003

HIRSHMAN, S.P. & WHITSON, J.C. 1983 Steepest–descent moment method for three-dimensional
magnetohydrodynamic equilibria. Phys. Fluids 26 (12), 3553–3568. https://pubs.aip.org/aip/
pfl/article-abstract/26/12/3553/809269/Steepest-descent-moment-method-for-three?redirectedFrom
=fulltext

https://doi.org/10.1017/S0022377824001351 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000203
https://www.sciencedirect.com/science/article/abs/pii/S0021999119307703?via%3Dihub
https://epubs.siam.org/doi/book/10.1137/1.9780898719154
https://doi.org/10.1063/1.871928
https://www.sciencedirect.com/science/article/abs/pii/S002199911930066X?via%3Dihub
https://arxiv.org/abs/2304.08698
https://doi.org/10.1063/1.864166
https://doi.org/10.1063/1.864166
https://zenodo.org/records/10521394
https://doi.org/10.1088/1741-4326/ac112f
https://doi.org/10.1017/S0022377823000399
https://doi.org/10.1017/S0022377823000399
https://doi.org/10.1063/1.859916
https://doi.org/10.1063/5.0129716
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.145003
https://pubs.aip.org/aip/pfl/article-abstract/26/12/3553/809269/Steepest-descent-moment-method-for-three?redirectedFrom=fulltext
https://doi.org/10.1017/S0022377824001351


Quasi-axisymmetric stellarators with varied rotational transform 19

KAPPEL, J., LANDREMAN, M. & MALHOTRA, D. 2024 The magnetic gradient scale length explains why
certain plasmas require close external magnetic coils. Plasma Phys. Control. Fusion 66 (2), 025018.
https://doi.org/10.1088/1361-6587/ad1a3e

LANDREMAN, M. 2017 An improved current potential method for fast computation of stellarator coil
shapes. Nucl. Fusion 57 (4), 046003. https://doi.org/10.1088/1741-4326/aa57d4

LANDREMAN, M. 2022 Mapping the space of quasisymmetric stellarators using optimized near-axis
expansion. J. Plasma Phys. 88 (6), 905880616. https://doi.org/10.1017/S0022377822001258

LANDREMAN, M., MEDASANI, B., WECHSUNG, F., GIULIANI, A., JORGE, R. & ZHU, C. 2021
SIMSOPT: a flexible framework for stellarator optimization. J. Open Source Softw. 6 (65), 3525.
https://doi.org/10.21105/joss.03525

LANDREMAN, M. & PAUL, E. 2022 Magnetic fields with precise quasisymmetry for plasma confinement.
Phys. Rev. Lett. 128, 035001. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.035001

LANDREMAN, M., SENGUPTA, W. & PLUNK, G.G. 2019 Direct construction of optimized stellarator
shapes. Part 2. Numerical quasisymmetric solutions. J. Plasma Phys. 85 (1), 905850103. https://
doi.org/10.1017/S0022377818001344

MANDELL, N.R., DORLAND, W., ABEL, I., GAUR, R., KIM, P., MARTIN, M. & QIAN, T. 2022 GX:
a GPU-native gyrokinetic turbulence code for tokamak and stellarator design. https://arxiv.org/abs/
2209.06731

MANDELL, N.R., DORLAND, W. & LANDREMAN, M. 2018 Laguerre–Hermite pseudo-spectral
velocity formulation of gyrokinetics. J. Plasma Phys. 84 (1), 905840108. https://doi.org/10.1017/
S0022377818000041

MERZ, F. & JENKO, F. 2008 Nonlinear saturation of trapped electron modes via perpendicular particle
diffusion. Phys. Rev. Lett. 100, 035005. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.
100.035005

MOBAHI, H. & FISHER, J. III 2015 A theoretical analysis of optimization by Gaussian continuation.
In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29. Association for the
Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v29i1.9356

NADEEM, M., RAFIQ, T. & PERSSON, M. 2001 Local magnetic shear and drift waves in stellarators. Phys.
Plasmas 8 (10), 4375–4385. https://doi.org/10.1063/1.1396842

NAJMABADI, F., et al. 2008 The ARIES-CS compact stellarator fusion power plant. Fusion Sci. Technol.
54 (3), 655–672. https://doi.org/10.13182/FST54-655

NÜHRENBERG, J. & ZILLE, R. 1988 Quasi-helically symmetric toroidal stellarators. Phys. Lett. A 129 (2),
113–117. https://www.sciencedirect.com/science/article/abs/pii/0375960188900801?via%3Dihub

PAUL, E.J., BHATTACHARJEE, A., LANDREMAN, M., ALEX, D., VELASCO, J.L. & NIES, R. 2022
Energetic particle loss mechanisms in reactor-scale equilibria close to quasisymmetry. Nucl. Fusion
62 (12), 126054. https://doi.org/10.1088/1741-4326/ac9b07

PLUNK, G.G. & HELANDER, P. 2018 Quasi-axisymmetric magnetic fields: weakly non-axisymmetric case
in a vacuum. J. Plasma Phys. 84 (2), 905840205. https://doi.org/10.1017/S0022377818000259

PLUNK, G.G., LANDREMAN, M. & HELANDER, P. 2019 Direct construction of optimized stellarator
shapes. Part 3. Omnigenity near the magnetic axis. J. Plasma Phys. 85 (6), 905850602. https://doi.
org/10.1017/S002237781900062X

RODRIGUEZ, E., HELANDER, P. & BHATTACHARJEE, A. 2020 Necessary and sufficient conditions for
quasisymmetry. Phys. Plasmas 27 (6), 062501. https://doi.org/10.1063/5.0008551

VIRTANEN, P., et al. 2020 SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat.
Meth. 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

https://doi.org/10.1017/S0022377824001351 Published online by Cambridge University Press

https://doi.org/10.1088/1361-6587/ad1a3e
https://doi.org/10.1088/1741-4326/aa57d4
https://doi.org/10.1017/S0022377822001258
https://doi.org/10.21105/joss.03525
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.035001
https://doi.org/10.1017/S0022377818001344
https://doi.org/10.1017/S0022377818001344
https://arxiv.org/abs/2209.06731
https://arxiv.org/abs/2209.06731
https://doi.org/10.1017/S0022377818000041
https://doi.org/10.1017/S0022377818000041
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.035005
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.035005
https://doi.org/10.1609/aaai.v29i1.9356
https://doi.org/10.1063/1.1396842
https://doi.org/10.13182/FST54-655
https://www.sciencedirect.com/science/article/abs/pii/0375960188900801?via%3Dihub
https://doi.org/10.1088/1741-4326/ac9b07
https://doi.org/10.1017/S0022377818000259
https://doi.org/10.1017/S002237781900062X
https://doi.org/10.1017/S002237781900062X
https://doi.org/10.1063/5.0008551
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1017/S0022377824001351

	1 Introduction
	2 Theory
	2.1 Computational procedure

	3 Results
	3.1 Exploring the optimization landscape around an optimum
	3.2 Varying rotational transform in a QA equilibrium
	3.3 Varying shear in QA equilibrium

	4 Conclusions
	References

