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ABSTRACT

Finite-element simulations of the Ross Ice Shelf
flow yield good qualitative agreement with observ-
ation, but velocity magnitudes tend to be too low
up~-stream of ice rises and too high near the ice
front. These errors will be significantly reduced
by better model convergence to the flow law, more
accurate values of the flow-law parameters, better
resolution of the ice streams, and inclusion of sub-
grid scale stress variability produced by crevassing
and ice-fabric orientation. A model run featuring a
hypothetical ice rise down-stream of Crary Ice Rise
indicates that the distinctive strain-rate patterns
produced by an isolated ice rise can be cancelled by
neighboring ice rises. This suggests that an isolated
ice rise might migrate up-stream along sea-bed ridges
unless there are neighboring ice rises acting to
stabilize the surrounding ice-thickness tendencies.

INTRODUCTION

Ice-shelf motion is complicated by geographical
confinement, ice-thickness variability, and the non-
Newtonian ice-flow law. Pioneering analytic studies
of ice-shelf flow were accomplished by reducing the
above three complications through various simplifying
assumptions (Weertman 1957, Budd 1966, Thomas 1973,
Sanderson 1979). These complexities, however, are
quite influential in governing ice-shelf motion.
Hence, the analytic solutions are insufficient for
interpreting existing field data. By using numerical
models, investigators may overcome these difficulties
and, in addition, perform detailed thought experi-
ments that nature cannot provide. For example, numer-
ical experiments might reveal how an ice shelf res-
ponds to differing grounding-line positions and ice-
rise distributions. Such experimentation could be
important in assessing the possible impact of anthro-
pogenically induced climate changes on the Earth's
ice masses.

Before these benefits of numerical modeling can
materialize, investigators must first gain confidence
that the numerical methods actually work. In this
paper, we report on our preliminary numerical simula-
tions of the flow of the Ross Ice Shelf. Our present
goal is to demonstrate that the modeling techniques
produce simulated flow patterns that are in agreement
with the field observations reported by Thomas and
MacAyeal (in press) and by Thomas and others (in
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press). In our exposition of the model technique and
performance, we stress the physical concepts rather
than the technical detail. We believe that the basic
physical concept underlying our modeling technique,
namely, the process by which mechanical energy is
converted to heat energy during ice-shelf motion, can
be appreciated by all glaciologists including those
with Tittle modeling experience. We also suggest

that this energy-budget approach can stimulate novel
ways to examine and interpret the field data.

The modeling technique we used, the finite element
method, was first developed and applied to ice-shelf
flow by J Langdon (personal communication 1976) and
by W F Schmidt {personal communication 1978). Hooke
and others (1979) used similar techniques to simulate
the flow in small grounded ice caps. The application
of our independently developed model to the entire
Ross Ice Shelf amplifies the basic utility of the
numerical methods demonstrated in these previous
studies.

MODEL THEORY

One of the common criticisms of the finite ele-
ment method applied to ice is that it is difficult
to understand. Unlike finite-difference analysis,
the finite element method does not work directly with
the momentum balance equations. Instead, it works
with an integral equation that is derived from the
method of weighted residuals (see for example the
basic text by Pinder and Gray 1977). To promote a
physical understanding of this integral equation,
we show how it is derived from D'Alembert's principle
of virtual work. We then interpret this equation as
a simple statement of conservation of energy for ice-
shelf flow.

For the purpose of illustration, we first apply
D'Alembert's principle to the simple example of N
point particles of mass m. Newton's law is written:

d (mVj) -Fj=0 for i = 1,2...,N (1)
i

where V} and Fi are the velocity and external force
vectors for the ith particle. D'Alembert's principle
states:
> > >
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where 6R1 is the virtual, or imaginary, displacement
of particle i. Equation (2) states that the sum

total of the work done against the residual forces,
(d (mV i), by the virtual displacements of all of

the particles must be zero. This is the origin of the
name "virtual work". Since the virtual displacements
are completely arbitrary, Equation (2) can be satis-
fied only if the residual forces are identically zero.
Thus, the system of N vector equations expressed in
Equation (1)} is equivalent to the single integral
condition expressed by Equation (2).

The finite element method also operates with the
principle of virtual work in order to determine the
flow of an ice shelf. Momentum balance in the ice
shelf continuum is written,

V-% - pgk =0 (3)
3

where o is the stress tensor, o the density of ice,
g is 9.8 m s~2, and % is the vertical unit vector.
Interpreting the stress as the momentum flux, this
equation states that the source of momentum, the body
force -pgk, must be balanced by the divergence of the
momentum flux. To form an expression stating
D'Alembert's principle, we vector multiply Equation
(3) by a virtual velocity field 8"u and integrate over
the entire ice-shelf volume. This gives

-
SI5 8 UsVd dxdydz - fff 6w pg dxdydz = 0 (4)
v v

where éw is the vertical component of Sah, x and y
are horizontal coordinates, z is the vertical coordin-
ate (zero at sea-level), and V is the volume of the
ice shelf. The virtual velocity field replaces the
virtual displacement field used in the previous
example because ice flow is best described in terms
of strain-rates and velocities rather than strains
and displacements. The dimensions of Equation (4)
are work per unit time, hence, the equation may wmore
correctly be interpreted as conservation of virtual
power expenditure.

Equation {4) is simplified by assuming (i) that
all real and virtual strain-rates are independent of
z, (ii) that shear strain-rates in the vertical plane
are zero, (iii) incompressibility, {(iv) that the ver-
tical variation of the flow-law parameter is incorpor-
ated by using its vertical average, and (v) that the
small-angle approximation is used in all terms involv-
ing ice-shelf bottom slopes. Particular attention must
be given to the treatment of the vertical variation
of ice density. If, for instance, the ice were
treated as vertically homogeneous using the verti-
cally averaged density, the strain-rates, as pre-
dicted by Weertman's (1957) expression for unidirec-
tional spreading, are magnified by as much as three-
fold. We avoid this problem by treating the ice
shelf as if it consisted of two layers: a solid ice
Tayer on the bottom conta1n1ng the total ice mass at
a density of p;=917 kg m 3, and a 16 m thick air
layer on top representing the volume of air bubbles
trapped in the firn of the real ice shelf. All the
creep takes place in the solid ice, so the air-layer
thickness remains constant. We estimate that this
simple treatment of the density-depth distribution
leads to an underestimate of spreading rates by less
than 20%. Improved representation of the firn layer
will be included in future models. The above assump-
tions, normally applied to ice-shelf studies (Weert-
man 1957, Budd 1966, Thomas 1973, Sanderson and Doake
1979), allow the integration over z in Equation (4)
to be done analytically. This makes the unknown flow
field two-dimensional and therefore more economically
treated by computers with Timited memory. Following
Schmidt (unpublished) and Hooke and others (1979),
Glen's flow law is written in the following way:
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o'y = Zv(é)éij, (5)

where

B/(2 ¢l-1/n) {6)

v(e)

. 3
and where v(e) is the effective viscosity, o' is

the dev1ator1c stress tensor, € is the strain-rate
tensor, & —(1513 1J) 2, B is the vertical average

of the ice- st1ffness parameter, and n = 3, Applying
this flow law, the five assumptions, and the diver-
gence theorem to Equation (4), we obtain Equation (7)

.. .. s arsr s oan B
ff4uH{6exxaxx+6€yyeyy+65xysxy+2<S€yyexx+2c5 X yy}dxdy
ig Hz(pi L e 458
‘A oig B; - -2~)(6EXX éeyy)dxdy
2 . »

+£fpi/png {éu.aH/3x+6v.8H/3y+H(5sxx+éeyy)}dxdy

1 2 2 L e :;I >
-If5gps/p H2 Suen dS1 - s/8u+a'sn,dS2 (7)
Sl iTTw rﬁ S 2

2

>
3

where 8¢ is the virtual strain-rate tensor,

=1 027 kg m™3 is the density of sea-water
1n the Ross Sea su and &v are the x and y components
of su, nl and n7 are,the normals to the ice front and
the shearing sides, ¢ is the side shear stress, A is
the horizontal ice-shelf area, H is 16 m less than
the observed ice thickness, and Sy and Sy are the
vertical areas of the ice front and ice shelf-
grounded ice or ice shelf-mountain wall contacts,
respectively.

The virtual flow field is completely arbitrary;
hence, Equation (7) must hold when the actual flow
field replaces the virtual flow field. In this circum-
stance, Equation (7) expresses conservation of energy.
The term on the left-hand side represents the conver-
sion of kinetic energy to heat energy by viscous
dissipation. The terms on the right-hand side repre-
sent, in order, (i) the work done against gravity as
the ice redistributes its mass vertically during hori-
zontal flow divergence, (ii) the work done against
sea pressure on the basal surface of the ice shelf
{this term includes the work done by horizontal
motion of the sloping ice-shelf bottom surface as
well as the work done when there is upward motion of
the bottom), (iii) the work done against sea pressure
by the forward movement of the ice front, and (iv)
the wark done against shear stresses at the sides of
the ice shelf.

To understand how the energy conversion terms in
Equation (7) interrelate to produce the observed ice-
shelf motion, we consider the simple example of iso-
tropic spreading of a 100 m thick cylindrical iceberg.
Figure 1 displays the geometry of the iceberg and a
table of the non-zero energy conversion terms of
Equation (7) computed from Weertman's {1957) exact
analytic solution

Exx = Fyy T~ %.ezz
(the model reproduced this result). As the iceberg
thins, the basal surface rises and work is done on
the iceberg by water pressure. This energy is ex-
pended through (i) work done against gravity as the
center of mass of the thinning iceberg rises, (ii)
work done against sea pressure by outward expansion
of the vertical sides, and (iii) viscous dissipation.
The basic energy conversion in this iceberg example

= 1,24 x 10710 ¢71
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Fig.l. Energy budget associated with the uniform

spreading of a cylindrical iceberg.

and in all other ice-shelf flow is between gravi-
tational potential energy of the ice-water systenm
and heat energy by the viscous dissipation term.

MODEL INPUT

To perform a finite element simulation of ice-
shelf flow, the following information is needed as
model input: (i) a "mesh", or a sub-divided represent-
ation of the domain, (ii) ice thickness at each node
or point forming a vertex of the triangular elements
which comprise the mesh, (iii) the sea-water pressure
that acts on the ice front, (iv) either the velocity
or stress at boundaries where the ice shelf joins
grounded ice or mountain wall (in our present simula-
tions we specified zero velocity at all of the ice-
shelf sides except where glaciers and ice streams
flow into the ice shelf), and (v) the flow-law para-
meter within each triangular element. Figure 2
displays some of the model input information used in
our simulation of the Ross Ice Shelf. This inform-
ation was compiled from various data sources: ice
thickness (Bentley and others 1979), air content at
Little America V (Crary 1961) and the Ross Ice Shelf
Project drill hole (lLangway personal communication),
ice-stream and mountain outlet-glacier ice transports
{not velocities) (Swithinbank 1964 and personal
communication, and estimated from adjacent ice-shelf
measurements). In regions where field observations
were absent, model input was estimated.

MODEL RESULTS
Our goals, at this early stage of model develop-
ment, are to evaluate model performance and to ident-

Numerical modeling of ice-ghelf motion
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Fig.2. Map of the finite element mesh used to simu-
late the flow of Ross Ice Shelf. Grid spac1ng is
22 km. Ice inflow specified at landward ice-shelf
margins is given in units of km3 a-!.

ify the model aspects which must be improved for
agreement with observation. Accordingly, we ran the
model three times using differing ice-stiffness para-
meter values, and ice-rise configurations as listed
in Table I. In run 1, the ice-stiffness parameter B
was set at 1.8 x 108 N m-2 s1/3 over the entire ice
shelf. In runs 2 and 3 the value of B was specified
to vary from its highest value near the ice front to
its Towest value at the southern ice-shelf extremity
as estimated from probable ice-shelf temperatures
reported by Thomas and MacAyeal (in press). In run 3,
we introduced a hypothetical ice rise called M12 in
the approximate location where other investigators
have found evidence for intermittent ice-shelf
grounding (Thomas amd others in press, Jezek personal
communication).

In all runs, we obtained qualitatively satisfac-
tory representation of the flow patterns and strain-
rates observed. Figures 3 through 7 display these
results, and the observations are given in Thomas and
MacAyeal (in press) and in Thomas and others (in
press}. The most notable disagreement with observ-
ation was that the model velocities and strain-rates
were too high near the ice front, and too low up-
stream from Crary Ice Rise. Most of this disagreement
is due to a lack of convergence by the model. The
comparatively primitive convergence routine used to
satisfy Equation (6) did not achieve adequate conver-
gence in the amount of available computer time. The
high spreading rates near the ice front were under-
going significant reduction at each iteration, but
our final run gives near-ice-front strain-rates
approximately double equivalent "Weertman" spreading

TABLE I. MODEL INPUT AND QUTPUT FOR THE THREE MODEL RUNS

Run n B hypothetical velocity near velocity behind
features ice front Crary Ice Rise
(m a~1) (m a-1)
1 3 1.8x108Nm2sl/3 none 2 100 150
2 3 1.5 to 2.1 x 108 none 2 200 200
3 3 1.5 %0 2.1 x 108 M12 jce rise 2 000 150
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Fig.3. Flow vectors from run 2. Magnitudes are given
in Figure 4.

Fig.4. Ice-velocity contours from run 2 in units
of ma-!,

rates for an unconfined ice shelf. From our experi-
ence in modeling iceberg creep we are confident that,
with sufficient time, the model would converge to
give spreading rates equal to, or less than, equiva-
lent "Weertman" spreading rates. We are currently
developing convergence techniques which will provide
major improvements to the model efficiency.

Aside from the obvious error introduced by these
technical problems, model sensitivity to several
other effects can be addressed. Run 2 had qualitat-
ively better results than run 1, because the variable
B tended to stiffen (soften) the ice where the simu-
lated flow was too high (low). We anticipate that the
cross ice-shelf variations of B that ultimately yield
the best fit between model and data can be inverted
to give us valuable information regarding the tempera-
ture depth profile and basal-melting rates. Another
discrepancy between model and observation is that the
model does not maintain the high speeds and consolid-
ation of the ice-stream injecta. Possibly this is be-
cause the ice streams themselves cannot be adequately
resoTved by the 22 km grid scale; the model retained
correct volume flux by representing the ice streams
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Fig.5. Vertical strain-rate contours from run 2 in
units of 10-10 g-1

thinning).

(negative for ice-shelf

Fig.6. Ice-velocity contours from run 3 with
hypothetical ice rise in units of m a~l.

as wider and slower moving than in reality. A finer
grid will overcome this problem. Finally, crevassing,
rifting, and development of preferred ice fabric are
important physics that are not incorporated by the
model at this time.

Run 3 is distinct from runs 1 and 2 because we
placed a hypothetical ice rise down-stream of the
Crary Ice Rise at a location known as M12. The
results are shown in Figures 6 and 7. The effect is
(i) to reduce the ice velocity up-stream of M12, and
(i1) to alter the vertical strain-rate field. Appa-
rent in the simulated vertical strain-rate fields
around Crary Ice Rise and M12 is a distinctive ice-
rise signature, Horizonal flow convergence occurs
up-stream of the ice rise, and horizontal flow diver-
gence occurs down-stream of the ice rise. This signa-
ture can be attributed to the compressive stresses
associated with the back pressure exerted on up-
stream ice by the ice rise, and by the state of
tension in the lee of the ice rise as ice is dragged
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Fig.7. Vertical strain-rate contours from run 3
with hypothetical ice rise in units of 10-10 s-1
{negative for ice-shelf thinning).

away by faster-moving ice on either side. In run 3,
the down-stream portion of the signature of Crary
Ice Rise is almost cancelled by the up-stream portion
of the signature of Mi2, This is also seen in the
field data {(Thomas and others in press): down-stream
of Crary Ice Rise, there is no evidence of strong
horizontal ice divergence, yet near the hypothetical
M12 ice rise, there is the distinctive flow conver-
gence suggestive of the up-stream portion of an ice-
rise signature. Debris-laden ice may be responsible
for internal echoes in the radio echo-sounding pro-
files near M12 (Jezek personal communication). How-
ever, there are no records of an ice rise in this
area; if it exists, it does not appear to be associ-
ated with any surface crevassing or a rise in surface
elevation. Perhaps the ice in this region is sliding
over shoaling sea bed to form ice rumples, with
little reduction in ice velocity, but encountering
sufficient resistance to affect nearby strain-rates.
We believe that the ice-rise signature and the
modification of this signature by coordination of ice-
rise locations is a vital dynamic process. If, for
jnstance, there are no ice rumples near M12, horizon-
tal divergence down-stream and strong horizontal con-
vergence up-stream of Crary Ice Rise will tend to
cause the grounding-line perimeter of the ice rise
to migrate up-stream along a sea-bed ridge by the
process of up-stream grounding and down-stream un-
grounding. The position of the Crary Ice Rise peri-
meter would thus retrograde with respect to the bulk
ice movement. The existence of ice rumples down-
stream of Crary Ice Rise could prevent the retrograde
motion by reducing ice divergence in the lee of the
ice rise. We suggest that the apparently long-term
historical presence of Crary Ice Rise (deduced from
its dome elevation {MacAyeal and Thomas 1980)) is
attributable to transient ice-rumple formation and
decay near M12. These transient ice rumples may
undergo retrograde displacement along the sea-bed
ridges over which they form, so that an ice rise is
never able to form. Despite their transience, repeat-
ed ice-rumple formation throughout the recent past
may have prevented the retrograde displacement of the
down-stream edge of Crary Ice Rise. The up-stream
edge of Crary Ice Rise may be undergoing retrograde
translation anyway, as suggested by Thomas and Bent-
ley (1978). We recommend that the interaction between
transient ice rises on the Ross Ice Shelf be studied
further as a possibly important dynamic process.
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CONCLUSION

Ice-shelf spreading is driven by the tendency of
the Tess dense ice to override the more dense sea-
water, thereby allowing the ice/sea-water system to
achieve minimum potential energy. Our finite element
model reproduces this process by performing a detail-
ed numerical account of the ice-shelf energy budget.
The present model simulations have yielded encourag-
ing results, and suggest that continued model improve-
ment will result in a reliable scientific tool useful
for reproducing field observations and for examining
past and future ice-shelf scenarios. Moreover, the
model can be used to investigate ice-shelf processes,
such as transient ice-rise interaction, that cannot
be fully illuminated by costly and lengthy field
programs alone.

To improve the model's performance and provide
close agreement with observations, we intend to: (i)
obtain rapid convergence of viscosity to satisfy
Glen's flow law, (ii) account for sub-grid scale
stress variability such as rifting and thermal/fabric
induced shear banding, (iii1) improve the compatib-
ility between ice-rise location, ice-stream inflow,
and other influential features with the ice-thickness
pattern used as model input (excessive variability in
the simulated strain-rate patterns may result largely
from grid interpolation errors while compiling the
locations of ice rises and the observed ice-thickness
patterns around them), (iv) explore the use of stress-
specified instead of velocity-specified boundary con-
ditions at the sides of and beneath grounded areas of
ice shelf and alongside mountain walls, (v) find para-
meters for sub-grid scale ice-shelf grounding and
ice-rumple formation, and (vi) improve our treatment
of ice-shelf temperature variations in regions of
high strain-rate.
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