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Abstract Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius
deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces f : Mn → Rn+1 that admit
non-trivial deformations preserving the Moebius metric. For n ≥ 5, the classification was completed by
the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we
introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion f : Mn → Rm

into Euclidean space as a one-parameter family of immersions ft : Mn → Rm, with t ∈ (−ε, ε) and
f0 = f , such that the Moebius metrics determined by ft coincide up to the first order. Then we charac-
terize isometric immersions f : Mn → Rm of arbitrary codimension that admit a non-trivial infinitesimal
Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such
characterization to classify the umbilic-free Euclidean hypersurfaces of dimension n ≥ 5 that admit
non-trivial infinitesimal Moebius variations.

Keywords: Moebius metric; Moebius deformable hypersurface; infinitesimally Moebius bendable
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Moebius bending
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1. Introduction

Given an isometric immersion f : Mn → Rm of a Riemannian manifold (Mn, g)
into Euclidean space with normal bundle-valued second fundamental form α ∈
Γ(Hom(TM, TM ;NfM)), let φ ∈ C∞(M) be defined by:

φ2 =
n

n− 1
(‖α‖2 − n‖H‖2), (1)

where H is the mean curvature vector field of f and ‖α‖2 ∈ C∞(M) is given at any point
x ∈ Mn by:

‖α(x)‖2 =
n∑

i,j=1

‖α(x)(Xi, Xj)‖2,
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Infinitesimally Moebius bendable hypersurfaces 237

in terms of an orthonormal basis {Xi}1≤i≤n of TxM. Notice that φ vanishes precisely at
the umbilical points of f. The metric

g∗ = φ2g,

defined on the open subset of non-umbilical points of f, is a Moebius invariant metric
called the Moebius metric determined by f. Namely, if f̃ = τ ◦ f for some Moebius
transformation of Rm, then the Moebius metrics of f and f̃ coincide.
It is a fundamental fact, proved by Wang in [16], that a hypersurface f : Mn → Rn+1 is

uniquely determined, up to Moebius transformations of the ambient space, by its Moebius
metric and its Moebius shape operator S = φ−1(A−HI), where A is the shape operator
of f with respect to a unit normal vector field N and H is the corresponding mean
curvature function. A similar result holds for submanifolds of arbitrary codimension (see
[16] and Section 9.8 of [9]).
Li, Ma and Wang have provided in [13] a partial classification of the hypersurfaces

f : Mn → Rn+1, n ≥ 4, that are not determined, up to Moebius transformations of Rn+1,
only by their Moebius metrics, called Moebius deformable hypersurfaces. For n ≥ 5, the
classification of Moebius deformable hypersurfaces was completed by the authors in [12].
Moebius deformable hypersurfaces belong to the more general class of conformally

deformable hypersurfaces, that is, the hypersurfaces f : Mn → Rn+1 for which Mn

admits an immersion f̃ : Mn → Rn+1 such that f and f̃ induce conformal metrics on
Mn and do not differ by a Moebius transformation. The study of conformally deformable
hypersurfaces goes back to Cartan [2] (see also [8] and Chapter 17 of [9]).
Our main goal in this article is to classify the infinitesimally Moebius bendable hyper-

surfaces, that is, the umbilic-free hypersurfaces f : Mn → Rn+1 into Euclidean space
that admit a one-parameter family of immersions ft : M

n → Rn+1, with t ∈ (−ε, ε) and
f0 = f , whose Moebius metrics coincide with that of f up to the first order, in a sense
that is made precise below.
Let f : Mn → Rm be an isometric immersion free of umbilical points. We call a smooth

map F : (−ε, ε) ×Mn → Rm a Moebius variation of f if ft = F (t, ·), with f0 = f , is an
immersion that determines the same Moebius metric for any t ∈ (−ε, ε). In other words,
if gt is the metric induced by ft, then g∗t = g∗0 , for all t ∈ I.
Trivial Moebius variations can be produced by composing f with the elements of a

smooth one-parameter family of Moebius transformations of the Euclidean ambient space.
Thus, the results in [12] and [13] give a classification of the umbilic-free hypersurfaces
f : Mn → Rn+1 of dimension n ≥ 5 that admit non-trivial Moebius variations.
We are interested in the umbilic-free isometric immersions f : Mn → Rm that satisfy

the weaker condition of admitting non-trivial infinitesimal Moebius variations. By an
infinitesimal Moebius variation of an isometric immersion f : Mn → Rm without umbili-
cal points we mean a smooth map F : (−ε, ε)×Mn → Rm such that the maps ft = F (t, ·),
with f0 = f , are immersions whose corresponding Moebius metrics coincide up to the
first order. This means that ∂

∂t |t=0g
∗
t = 0, that is,

∂

∂t
|t=0(φ

2
t 〈ft∗X, ft∗Y 〉) = 0,
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for all X,Y ∈ X(M), where φ2
t is given by (1) for the immersion ft, t ∈ (−ε, ε).

Given a smooth variation F : (−ε, ε)×Mn → Rm of an isometric immersion f : Mn →
Rm, one defines its variational vector field by T = F∗∂/∂t|t=0. When the immersions
ft = F (t, ·) are the compositions of f with the elements of a smooth one-parameter family
of Moebius transformations of Rm, the variational vector field T is the restriction to Mn

of a conformal Killing vector field of Rm. Accordingly, an infinitesimal Moebius variation
F : (−ε, ε)×Mn → Rm of an isometric immersion f : Mn → Rm without umbilical points
is said to be trivial if the variational vector field T associated with F is the restriction
to Mn of a conformal Killing vector field of Rm. We say that f is infinitesimally Moebius
bendable if it admits an infinitesimal Moebius variation that is non-trivial restricted to
any open subset of Mn. It is locally infinitesimally Moebius bendable if each point x ∈ Mn

has an open neighbourhood U such that f |U is infinitesimally Moebius bendable.
In order to state our classification of the umbilic-free infinitesimally Moebius bendable

Euclidean hypersurfaces of dimension n ≥ 5, we need some further definitions.
First, by a conformally surface-like hypersurface f : Mn → Rn+1 we mean a hyper-

surface that differs by a Moebius transformation of Rn+1 from either a cylinder or a
rotation hypersurface over a surface in R3, or from a cylinder over a three-dimensional
hypersurface of R4 that is a cone over a surface in S3. We say, accordingly, that f is a con-
formally surface-like hypersurface determined by a surface h : L2 → Q3

ε , with ε = 0,−1
or 1, respectively.
Now we recall how a two-parameter family of hyperspheres in Rn+1 is determined by

a surface s : L2 → Sn+2
1,1 into the Lorentzian sphere:

Sn+2
1,1 = {x ∈ Ln+3 : 〈x, x〉 = 1},

in the Lorentz space Ln+3.
Let f : Mn → Rn+1 be an oriented hypersurface with respect to a unit normal vector

field N. Then, the family of hyperspheres x ∈ Mn 7→ S(h(x), r(x)), with radius r(x )
and centre: h(x) = f(x) + r(x)N(x), is enveloped by f. If, in particular, 1/r is the mean
curvature of f, it is called the central sphere congruence of f.
Let Vn+2 denote the light cone in Ln+3 and let Ψ = Ψv,w,C : Rn+1 → Ln+3 be the

isometric embedding onto:

En+1 = En+1
w = {u ∈ Vn+2 : 〈u,w〉 = 1} ⊂ Ln+3 :

given by:

Ψ(x) = v + Cx− 1

2
‖x‖2w,

in terms of w ∈ Vn+2, v ∈ En+1 and a linear isometry C : Rn+1 → {v, w}⊥. Then
the congruence of hyperspheres x ∈ Mn 7→ S(h(x), r(x)) is determined by the map
S : Mn → Sn+2

1,1 defined by:

S(x) =
1

r(x)
Ψ(h(x)) +

r(x)

2
w,
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for Ψ(S(h(x), r(x))) = En+1∩S(x)⊥ for all x ∈ Mn. The map S has rank 0 < k < n, that
is, it corresponds to a k -parameter congruence of hyperespheres, if and only if λ = 1/r
is a principal curvature of f with constant multiplicity n − k (see Section 9.3 of [9] for
details). In this case, S gives rise to a map s : Lk → Sn+2

1,1 such that S ◦ π = s, where

π : Mn → Lk is the canonical projection onto the quotient space of leaves of ker(A−λI).
Finally, a surface h : L2 → Q3

ε is said to be a generalized cone over a unit-speed curve
γ : I → Q2

c , c ≥ ε, in an umbilical surface Q2
c ⊂ Q3

ε , if L
2 = I×J is a product of intervals

I, J ⊂ R and h(s, t) = expγ(s) tN(s) for all (s, t) ∈ I × J , where exp is the exponential

map of Q3
ε and N is a unit normal vector field to Q2

c along γ. Notice that h has 0 as
one of its principal curvatures, with the t-coordinate curves as the correspondent curva-
ture lines. Generalized cones without totally geodesic points are precisely the isothermic
surfaces that have 0 as a simple principal curvature. Recall that a surface h : L2 → Q3

ε

is isothermic if each non-umbilic point of L2 has an open neighbourhood where one can
define isothermic (that is, conformal) coordinates whose coordinate curves are lines of
curvature of h.

Theorem 1. Let f : Mn → Rn+1, n ≥ 5, be an umbilic-free infinitesimally Moebius
bendable hypersurface. Then there exists an open and dense subset U∗ of Mn such that f
is of one of the following types on each connected component U of U∗:

(i) a conformally surface-like hypersurface determined by an isothermic surface
h : L2 → Q3

ε , ε ∈ {−1, 0, 1}.
(ii) a hypersurface whose central sphere congruence is determined by a minimal

space-like surface s : L2 → Sn+2
1,1 .

In particular, f has a principal curvature with multiplicity n− 1 or n− 2 at any point
of Mn, and the first possibility occurs on a connected component U of U∗ if and only if f
is given on U as in part (i), with the surface h : L2 → Q3

ε being a generalized cone over
a unit-speed curve γ : J → Q2

c in an umbilical surface Q2
c ⊂ Q3

ε , c ≥ ε.
Conversely, any simply connected hypersurface as in (ii) is infinitesimally Moebius

bendable, and for any hypersurface as in (i) there exists an open dense subset where f is
locally infinitesimally Moebius bendable.

It follows from Theorem 1 and the main result in [12] that, within the class of hyper-
surfaces that are not conformally surface-like on any open subset and have a principal
curvature of constant multiplicity n − 2, the families of those that are either Moebius
deformable or infinitesimally Moebius bendable coincide. On the other hand, among
conformally surface-like hypersurfaces, the class of infinitesimally Moebius bendable
hypersurfaces is strictly larger than that of Moebius deformable hypersurfaces. Indeed,
while a surface in the former class is determined by an arbitrary isothermic surface, the
elements in the latter are determined by particular isothermic surfaces, namely, Bonnet
surfaces admitting isometric deformations preserving the mean curvature.
Our approach to prove Theorem (1) is rather different from those used in both [12] or

[13] to classify the Moebius deformable hypersurfaces. It is based on the theory devel-
oped in [5] and [7] of the more general notions of conformal variations and conformal
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infinitesimal variations of an isometric immersion f : Mn → Rm, which are natural gen-
eralizations of the corresponding classical concepts of isometric variations and isometric
infinitesimal variations.
A smooth map F : (−ε, ε)×Mn → Rm is a conformal variation of an isometric immer-

sion f : Mn → Rm if the maps ft = F (t, ·), with f0 = f , are conformal immersions for
any t ∈ (−ε, ε), that is, if there is a positive γ ∈ C∞((−ε, ε)×Mn), with γ(0, x) = 1 for
all x ∈ Mn, such that:

γ(t, x)〈ft∗X, ft∗X〉 = 〈X,Y 〉, (2)

for all X,Y ∈ X(M), where 〈 , 〉 stands for the metrics of both Rm and Mn. Thus Moebius
variations are particular cases of conformal variations for which γ(t, x) = φ−2

0 (x)φ2
t (x)

for all (t, x) ∈ I ×Mn.
Conformal infinitesimal variations of an isometric immersion f : Mn → Rm are smooth

variations for which (2) holds up to the first order, that is,

∂

∂t
|t=0(γ(t, x)〈ft∗X, ft∗X〉) = 0, (3)

for all X,Y ∈ X(M). Eq. (3) implies that the variational vector field T = F∗∂/∂t|t=0 of
F satisfies:

〈∇̃XT , f∗Y 〉+ 〈f∗X, ∇̃Y T 〉 = 2ρ〈X,Y 〉, (4)

for all X,Y ∈ X(M), where ρ(x) = −(1/2)∂γ/∂t(0, x).
For this reason, a smooth section T ∈ Γ(f∗TRm) that satisfies (4) is called a conformal

infinitesimal bending of f with conformal factor ρ ∈ C∞(M). In particular, the variational
vector field T = F∗∂/∂t|t=0 of an infinitesimal Moebius variation, which we call an
an infinitesimal Moebius bending, is also a conformal infinitesimal bending of f whose
conformal factor is:

ρ = −1

2

∂

∂t
|t=0(γ(t, x)) = −1

2
φ−2
0 (x)

∂

∂t
|t=0(φ

2
t (x)). (5)

By the above, the variational vector field of a conformal infinitesimal variation
is a conformal infinitesimal bending. Conversely, any conformal infinitesimal bending
T ∈ Γ(f∗TRm) is the variational vector field of a (non-unique) conformal infinitesimal
variation F : (−ε, ε)×Mn → Rm of f. For instance, one may take

F (t, x) = f(x) + tT (x),

for all (t, x) ∈ (−ε, ε) ×Mn. The reason why it is convenient to consider the conformal
infinitesimal bending associated with a conformal infinitesimal variation of an isometric
immersion f : Mn → Rm is that one can establish a fundamental theorem providing
necessary and sufficient conditions for the existence of a conformal infinitesimal bending
(and hence of a conformal infinitesimal variation); see [5].
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Infinitesimal variations of an isometric immersion f : Mn → Rm correspond to the
conformal infinitesimal variations for which the function γ in (3) has the constant value
γ=1. The associated variational vector fields are called infinitesimal bendings and cor-
respond to the conformal infinitesimal bendings with conformal factor ρ=0. The reason
why isothermic surfaces f : L2 → Q3

c appear in this context is that they are precisely the
surfaces that are locally infinitesimally Bonnet bendable, that is, the surfaces that admit
local infinitesimal variations F : (−ε, ε) × L2 → Q3

c such that the mean curvature func-
tions Ht of ft = F (t, ·), t ∈ (−ε, ε), coincide up to the first order, that is, ∂/∂t|t=0Ht = 0
(see, e.g., Proposition 9 of [11]).
The study of hypersurfaces f : Mn → Rn+1, n ≥ 3, that admit non-trivial variations

preserving the induced metric goes back to Sbrana [15] and Cartan [1] (see also [3]
or Chapter 11 of [9]), whereas the hypersurfaces that admit non-trivial infinitesimal
variations were investigated by Sbrana [14] (see also [10], Chapter 14 of [9] and [6]). We
point out that the latter class turns out to be much larger than the former.
In the proof of Theorem (1), a main step is the following characterization of indepen-

dent interest of the infinitesimally Moebius bendable isometric immersions f : Mn → Rm

of arbitrary codimension among those that admit a non-trivial conformal infinitesimal
bending T with conformal factor ρ ∈ C∞(M). In the next statement, we denote by H the
mean curvature vector field of f and by L ∈ Γ(NfM) the normal vector field given by:

L =
1

n

n∑
i=1

β(Xi, Xi) ∈ Γ(NfM), (6)

for any orthonormal frame {X1, . . . , Xn} of Mn, where β is the symmetric section of
Hom (TM, TM ;NfM) associated with T (see (8) below).

Theorem 2. An isometric immersion f : Mn → Rm is infinitesimally Moebius bend-
able if and only if it admits a non-trivial conformal infinitesimal bending such that:

∆ρ+ n〈L,H〉 = 0. (7)

By means of Theorem 2, it is shown in the proof of Theorem 1 that any conformal
infinitesimal bending of a hypersurface as in part (ii) of the statement of that result is
also an infinitesimal Moebius bending.

2. The fundamental theorem of conformal infinitesimal bendings

In this section, we recall from [5] the fundamental theorem for conformal infinitesimal
bendings of Euclidean hypersurfaces.
Let f : Mn → Rm be an isometric immersion and let T be a conformal infinites-

imal bending of f with conformal factor ρ, that is, T and ρ satisfy (4). Defining
L ∈ Γ(Hom(TM ; f∗TRm)) by:

LX = ∇̃XT − ρf∗X = T∗X − ρf∗X,
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for any X ∈ X(M), then (4) can be written as:

〈LX, f∗Y 〉+ 〈f∗X,LY 〉 = 0,

for all X,Y ∈ X(M). Let B ∈ Γ(Hom (TM, TM ; f∗TRm)) be given by:

B(X,Y ) = (∇̃XL)Y = ∇̃XLY − L∇XY,

for all X,Y ∈ X(M), and define β ∈ Γ(Hom (TM, TM ;NfM)) by:

β(X,Y ) = (B(X,Y ))NfM
= (∇̃X∇̃Y T − ∇̃∇XY T )NfM

− ρα(X,Y ), (8)

for all X,Y ∈ X(M). Flatness of the ambient space and the symmetry of α imply that β
is symmetric.
Given η ∈ Γ(NfM), let Bη ∈ Γ(End(TM)) be given by: 〈BηX,Y 〉 = 〈β(X,Y ), η〉 for

all X,Y ∈ X(M). Then it can be shown that:

Aβ(Y,Z)X+Bα(Y,Z)X −Aβ(X,Z)Y −Bα(X,Z)Y

+ (X ∧Hess ρ(Y )− Y ∧Hess ρ(X))Z = 0, (9)

for all X,Y, Z ∈ X(M); see [5], where a fundamental theorem for conformal infinitesimal
bendings of Euclidean submanifolds with arbitrary codimension was obtained. Here we
restrict ourselves to state that theorem for the particular case of hypersurfaces.
Given a hypersurface f : Mn → Rn+1, let A be its shape operator with respect to a

unit normal vector field N, and let B ∈ Γ(End(TM)) be given by

〈BX,Y 〉 = 〈β(X,Y ), N〉

for all X,Y ∈ X(M). The fundamental theorem for conformal infinitesimal bendings of f
reads as follows.

Theorem 3. ([5]) The pair (B, ρ) associated with a conformal infinitesimal bending
of the hypersurface f : Mn → Rn+1 satisfies the equations:

BX ∧AY − BY ∧AX +X ∧Hess ρ(Y )− Y ∧Hess ρ(X) = 0, (10)

and

(∇XB)Y − (∇Y B)X + (X ∧ Y )A∇ρ = 0, (11)

for all X,Y ∈ X(M). Conversely, if Mn is simply connected, then a symmetric tensor
B ∈ Γ(End(TM)) and ρ ∈ C∞(M) satisfying (10) and (11) determine a unique conformal
infinitesimal bending of f.

https://doi.org/10.1017/S0013091523000792 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000792


Infinitesimally Moebius bendable hypersurfaces 243

Remark 4.

1) For an infinitesimal variation of a hypersurface f : Mn → Rn+1, its associated tensor
B satisfies (10) with ρ=0, and (11) reduces to the Codazzi equation for B.

2) By Proposition 12 in [7] (respectively, Theorem 13 in [10]), a conformal infinitesimal
bending (respectively, infinitesimal bending) of a conformal infinitesimal variation
(respectively, infinitesimal variation) of a hypersurface f : Mn → Rn+1, n ≥ 3, is
trivial if and only if its associated tensor B has the form B = ϕI for some ϕ ∈ C∞(M)
(respectively, its associated tensor B vanishes).

3. Proof of Theorem 2

This section is devoted to the proof of Theorem 2, for which we first establish several
preliminary facts.
Let f : Mn → Rm be an isometric immersion and let F : (−ε, ε) × Mn → Rm be a

smooth variation of f by immersions ft = F (t, ·) with f0 = f . From now on, given a
one-parameter family of vector fields Xt ∈ X(M), we define X ′ ∈ X(M) by setting, for
each x ∈ Mn,

X ′(x) =
∂

∂t
|t=0X

t(x).

For the proofs of the next two lemmas we refer to [11] (see Lemma 4 and Lemma 5
therein, respectively).

Lemma 5. For any fixed x ∈ Mn, the velocity vector at t=0 of the smooth curve
t 7→ ft∗X

t(x) is:

∂

∂t
|t=0ft∗X

t(x) = ∇̃X(x)T + f∗X
′(x),

where T is the variational vector field of F.

Lemma 6. If αt denotes the second fundamental form of ft, then

〈 ∂
∂t

|t=0α
t(X,Y ), η〉 = 〈∇̃X∇̃Y T − ∇̃∇XY T , η〉,

for all X,Y ∈ X(M) and η ∈ Γ(NfM).

Taking into account (8), Lemma 6 yields the following for a conformal infinitesimal
variation of f.

Corollary 7. If F is a conformal infinitesimal variation of f and ρ ∈ C∞(M) is the
conformal factor associated to its conformal infinitesimal bending T , then

〈 ∂
∂t

|t=0α
t(X,Y ), η〉 = 〈β(X,Y ) + ρα(X,Y ), η〉, (12)

for all X,Y ∈ X(M) and η ∈ Γ(NfM).
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For a conformal infinitesimal variation F of f and a (local) orthonormal frame
{Xi}1≤i≤n with respect to the metric induced by f, let Xt

i ∈ X(M), 1 ≤ i ≤ n, t ∈ I, be
a smooth one-parameter family of tangent frames such that X0

i = Xi, 1 ≤ i ≤ n, and
〈ft∗Xt

i , ft∗X
t
j〉 = δij , for all 1 ≤ i, j ≤ n and t ∈ I, that is, {Xt

i}1≤i≤n is an orthonormal
frame for the metric induced by ft = F (t, ·).

Lemma 8. The vector fields X ′
i, 1 ≤ i ≤ n, satisfy,

〈X ′
i, Xi〉 = −ρ, (13)

and

〈X ′
i, Xj〉+ 〈Xi, X

′
j〉 = 0, (14)

for all 1 ≤ i, j ≤ n with i 6= j.

Proof. Taking the derivative with respect to t of 〈ft∗Xt
i , ft∗X

t
j〉 = δij at t =0 and

using Lemma (5), we obtain,

0 =
∂

∂t
|t=0〈ft∗Xt

i , ft∗X
t
j〉

=〈∇̃Xi
T + f∗X

′
i, f∗Xj〉+ 〈f∗Xi, ∇̃Xj

T + f∗X
′
j〉

=〈X ′
i, Xj〉+ 〈∇̃Xi

T , f∗Xj〉+ 〈Xi, X
′
j〉+ 〈f∗Xi, ∇̃Xj

T 〉.

Combining the preceding equation with (4) yields:

〈X ′
i, Xj〉+ 〈Xi, X

′
j〉+ 2ρ〈Xi, Xj〉 = 0, 1 ≤ i, j ≤ n.

�

Lemma 9. Let f : Mn → Rm be an isometric immersion and let F : (−ε, ε)×Mn →
Rm be a conformal infinitesimal variation of f with corresponding conformal infinitesimal
bending T and conformal factor ρ ∈ C∞(M). Let φt be given by (1) for each immersion
ft = F (t, ·), t ∈ (−ε, ε). Then

∂

∂t
|t=0φ

2
t = 2n∆ρ− 2φ2ρ+ 2n2〈L,H〉, (15)

where H is the mean curvature vector field of f and L ∈ Γ(NfM) is given by (6).

Proof. Let us first compute ∂/∂t|t=0‖αt‖2. Let {Xt
i}1≤i≤n be a one-parameter family

of frames such that, for each fixed t ∈ (−ε, ε), {Xt
i}1≤i≤n is orthonormal with respect to
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the metric induced by ft. By (12) we have,

〈 ∂
∂t

|t=0α
t(Xt

i , X
t
j), η〉 = 〈β(Xi, Xj) + ρα(Xi, Xj) + α(X ′

i, Xj) + α(Xi, X
′
j), η〉, (16)

hence

1

2

∂

∂t
|t=0‖αt(Xt

i , X
t
j)‖2 =〈 ∂

∂t
|t=0α

t(Xt
i , X

t
j), α(Xi, Xj)〉

=〈β(Xi, Xj) + ρα(Xi, Xj), α(Xi, Xj)〉
+ 〈α(X ′

i, Xj) + α(Xi, X
′
j), α(Xi, Xj)〉.

Thus

∂

∂t
|t=0‖αt‖2 =2ρ‖α‖2 + 2

n∑
i,j=1

〈β(Xi, Xj), α(Xi, Xj)〉

+ 2
n∑

i,j=1

〈α(X ′
i, Xj) + α(Xi, X

′
j), α(Xi, Xj)〉

=2ρ‖α‖2 + 2
n∑

i,j=1

〈β(Xi, Xj), α(Xi, Xj)〉

+ 4
n∑

i,j=1

〈α(X ′
i, Xj), α(Xi, Xj)〉.

It follows from (9) that:

2〈β(Xi, Xj), α(Xi, Xj)〉 =〈β(Xi, Xi), α(Xj , Xj)〉+ 〈β(Xj , Xj), α(Xi, Xi)〉
+ 〈Xj , Xj〉Hess ρ(Xi, Xi) + 〈Xi, Xi〉Hess ρ(Xj , Xj),

for all 1 ≤ i, j ≤ n with i 6= j. Therefore

2
n∑

i,j=1

〈β(Xi, Xj), α(Xi, Xj)〉 = 2(n− 1)∆ρ+ 2
n∑

i,j=1

〈β(Xi, Xi), α(Xj , Xj)〉,

where ∆ denotes the Laplacian. On the other hand, from the Gauss equation,

〈α(X ′
i, Xj), α(Xi, Xj)〉 = 〈α(X ′

i, Xi), α(Xj , Xj)〉+ 〈R(X ′
i, Xj)Xi, Xj〉,

where R denotes the Riemann curvature tensor of Mn, we obtain,

∑
i6=j

〈α(X ′
i, Xj), α(Xi, Xj)〉 =

∑
i6=j

〈α(X ′
i, Xi), α(Xj , Xj)〉 −

n∑
i=1

Ric (X ′
i, Xi).
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Thus

∂

∂t
|t=0‖αt‖2 =2ρ‖α‖2 + 2(n− 1)∆ρ+ 2

n∑
i,j=1

〈β(Xi, Xi), α(Xj , Xj)〉

+ 4
n∑

i,j=1

〈α(X ′
i, Xi), α(Xj , Xj)〉 − 4

n∑
i=1

Ric (X ′
i, Xi)

=2ρ‖α‖2 + 2(n− 1)∆ρ+ 2n2〈L,H〉

+ 4n
n∑

i=1

〈α(X ′
i, Xi),H〉 − 4

n∑
i=1

Ric (X ′
i, Xi).

By (13), we may write X ′
i = −ρXi +

∑
i 6=k 〈X ′

i, Xk〉Xk; hence

n∑
i=1

〈α(X ′
i, Xi),H〉 =− ρn‖H‖2 +

∑
i 6=k

〈X ′
i, Xk〉〈α(Xk, Xi),H〉

=− ρn‖H‖2,

where the last equality follows from (14). Similarly,

n∑
i=1

Ric (X ′
i, Xi) = −ρn(n− 1)s,

where s = 1
n(n−1)

∑n
i=1 Ric(Xi, Xi) is the scalar curvature of Mn. Thus

∂

∂t
|t=0‖αt‖2 =2ρ‖α‖2 + 2(n− 1)∆ρ+ 2n2〈L,H〉

− 4n2ρ‖H‖2 + 4ρn(n− 1)s.

Using that

s =
n

n− 1
‖H‖2 − 1

n(n− 1)
‖α‖2,

we obtain,

∂

∂t
|t=0‖αt‖2 = 2(n− 1)∆ρ+ 2n2〈L,H〉 − 2ρ‖α‖2. (17)

We now compute ∂/∂t|t=0‖Ht‖2. With {Xt
i}1≤i≤n as above, we have,
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∂

∂t
|t=0‖Ht‖2 =2〈 ∂

∂t
|t=0Ht,H〉

=2〈 1
n

n∑
i=1

∂

∂t
|t=0α

t(Xt
i , X

t
i ),H〉

=2ρ‖H‖2 + 2〈L,H〉+ 4

n

n∑
i=1

〈α(X ′
i, Xi),H〉,

where the last step follows from (16). Using (13) and (14) as before, we obtain:

∂

∂t
|t=0‖Ht‖2 = 2〈L,H〉 − 2ρ‖H‖2. (18)

It follows from (17) and (18) that:

∂

∂t
|t=0φ

2
t =

n

n− 1

(
2(n− 1)∆ρ+ 2n2〈L,H〉 − 2ρ‖α‖2

−2n〈L,H〉+ 2nρ‖H‖2
)

=
n

n− 1
(2(n− 1)∆ρ+ 2n(n− 1)〈L,H〉

− 2ρ‖α‖2 + 2ρn‖H‖2)
=2n∆ρ+ 2n2〈L,H〉 − 2φ2ρ,

where we have used (1) in the last equality. �

Proof of Theorem (2). If T is the variational vector field of an infinitesimal Moebius
variation F : (−ε, ε)×Mn → Rm of f, then the corresponding conformal factor ρ is given
by (5). Thus, (15) yields:

−2φ2ρ = 2n∆ρ− 2φ2ρ+ 2n2〈L,H〉,

and hence (7) holds.
For the converse, assume that T is a conformal infinitesimal bending of f whose

conformal factor ρ satisfies (7). The variation F : R × Mn → Rm given by: F(t, x) =
f(x) + tT (x), is a conformal infinitesimal variation with variational vector field T . Let
ft = F(t, ·) and let φt be given by (1) for each ft, t ∈ R. We claim that F is an infinitesimal
Moebius variation of f. Indeed, we have

∂

∂t
|t=0(φ

2
t 〈ft∗X, ft∗Y 〉) = ∂

∂t
|t=0(φ

2
t )〈X,Y 〉+ φ2(〈∇̃XT , f∗Y 〉+ 〈f∗X, ∇̃Y T 〉)

for all X,Y ∈ X(M), hence,

∂

∂t
|t=0(φ

2
t 〈ft∗X , ft∗Y 〉) =

(
∂

∂t
|t=0(φ

2
t ) + 2φ2ρ

)
〈X,Y 〉
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by (4). On the other hand, from (15) and (7) we have:

∂

∂t
|t=0(φ

2
t ) + 2φ2ρ = 0,

which proves the claim and completes the proof. �

Before concluding this section, we state for later use the following consequence of
some of the preceding computations (see [10] for the corresponding fact for (isometric)
infinitesimal variations).

Proposition 10. Let F : (−ε, ε)×Mn → Rn+1 be a conformal infinitesimal variation
of an isometric immersion f : Mn → Rn+1. Let Nt be a unit vector field normal to
ft = F (t, ·), t ∈ (−ε, ε), and denote by At the corresponding shape operator. Then the
tensor B ∈ Γ(End(TM)) associated with F satisfies:

B = A′ + ρA, (19)

where ρ ∈ C∞(M) is the conformal factor of F and A′ = ∂/∂t|t=0At.

Proof. It follows from (4) and Lemma 5 that:

∂/∂t|t=0〈αt(X,Y ), Nt〉 = ∂/∂t|t=0〈ft∗AtX, ft∗Y 〉
= 〈A′X,Y 〉+ 2ρ〈AX,Y 〉

for all X,Y ∈ X(M). On the other hand, from (12) we obtain,

∂/∂t|t=0〈αt(X,Y ), Nt〉 = 〈BX,Y 〉+ ρ〈AX,Y 〉.

Comparing the two preceding equations yields (19). �

4. Proof of Theorem 1

In this section, we prove Theorem 1. We start with some preliminary results, which make
use of the following lemma in [7] (see Lemma 14 therein).

Lemma 11. Let f : Mn → Rn+1, n ≥ 5, be a hypersurface that admits a conformal
infinitesimal bending T that is non-trivial on any open subset. Then its associated tensor
B, the Hessian H of its conformal factor ρ, and the shape operator A of f share, on an open
and dense subset of Mn, a common eigenbundle ∆ of constant dimension dim∆ ≥ n−2.

The next result states how Theorem (2) reads for hypersurfaces.

Proposition 12. Let f : Mn → Rn+1, n ≥ 5, be an umbilic-free infinitesimally
Moebius bendable hypersurface. Then there exists an open and dense subset U of Mn where
B, H and A share a common eigenbundle ∆ of rank n− 2 and tr (A−λI)tr (B− bI) = 0,
where b, λ ∈ C∞(U) are such that B|∆ = bI and A|∆ = λI.
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Proof. Since f is infinitesimally Moebius bendable, it admits, in particular, a confor-
mal infinitesimal bending T that is non-trivial on any open subset. By Lemma 11, there
exists an open and dense subset U of Mn where B, H and A share a common eigenbundle
∆ of constant dimension dim∆ ≥ n − 2. In the proof of Proposition 15 in [7] (see Eq.
(35) therein), it was shown that:

bA+ λ(B − bI) + Hess ρ = 0, (20)

on U . Let H and L be given by trA = nH and trB = nL. Taking traces in (20) yields

nbH+ nλL − nλb+∆ρ = 0.

We write the preceding equation as:

n(H− λ)(L − b) = ∆ρ+ nLH,

which is also equivalent to:

tr (A− λI)tr (B − bI) = n(∆ρ+ nLH). (21)

Taking into account that (7) reduces to ∆ρ + nLH = 0, it follows from (21) and
Theorem (2) that tr (A− λI)tr (B − bI) = 0.
Finally, notice that the preceding condition cannot occur on any open subset where

dim∆ = n − 1. Indeed, if dim∆ = n − 1, then the condition tr (A − λI) = 0 would
imply that A = λI, whereas tr (B − bI) = 0 would yield B = bI, in contradiction with
the assumptions that f is free of umbilic points and that the infinitesimal bending T is
non-trivial, respectively. �

Lemma 13. The distribution ∆ given by Proposition 12 is umbilical.

Proof. If ∆ = ker(A− λI), then it is the eigenbundle corresponding to the principal
curvature λ, and hence umbilical. Thus we only need to consider the case in which ∆
coincides with ker(B − bI) and is a proper subspace of ker(A − λI). Equation (11) can
be written as:

(∇X(B − bI))Y − (∇Y (B − bI))X + (X ∧ Y )(A∇ρ−∇b) = 0,

for any X,Y ∈ X(M), where ∇b and ∇ρ are the gradients of b and of the conformal
factor ρ, respectively. Let T, S ∈ Γ(∆) be orthogonal and take X ∈ Γ(∆⊥). Evaluating
the preceding equation in X and T and taking the inner product of both sides with S
gives 〈∇T (B − bI)X,S〉 = 0. Since we are assuming that rank (B − bI) = 2, the above
equation gives:

(∇TS)∆⊥ = 0,

for all T, S ∈ Γ(∆) with 〈T, S〉 = 0. Thus ∆ is an umbilical distribution. �
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From now on, for U and b, λ ∈ C∞(U) as in Proposition 12, we denote Ā = A − λI
and B̄ = B − bI.

Proposition 14. Let f : Mn → Rn+1, n ≥ 5, be an umbilic-free infinitesimally
Moebius bendable hypersurface, let U be the open and dense subset of Mn given by
Proposition 12, and let U1 be the subset of U where tr B̄ = 0. Then U1 = Y1 ∪ Y2,
where the following holds on Y1 and Y2, respectively:

(i) Ā|∆⊥ is a multiple of the identity endomorphism I ∈ Γ(End(∆⊥));
(ii) there exists at each point an orthonormal basis {X,Y } of ∆⊥ given by principal

directions of f and θ ∈ R such that B̄X = θY and B̄Y = θX.

Proof. It follows from (20) that, at each x ∈ U , Eq. (10) can be written as:

B̄X ∧ ĀY = B̄Y ∧ ĀX, (22)

or equivalently,

〈ĀY,X〉〈B̄X,Y 〉 − 〈B̄X,X〉〈ĀY, Y 〉 = 〈ĀX,X〉〈B̄Y, Y 〉 − 〈B̄Y,X〉〈ĀX, Y 〉,

for all X,Y ∈ TxU . Applying the preceding equation to orthogonal unit eigenvectors X
and Y of Ā|∆⊥ , with ĀX = µ1X and ĀY = µ2Y , gives

−µ2〈B̄X,X〉 = µ1〈B̄Y, Y 〉.

Therefore, at each point of U1, either µ1 = µ2 := µ 6= 0, and hence Ā|∆⊥ = µI, or
〈B̄X,X〉 = 0 = 〈B̄Y, Y 〉. In the latter case, denoting θ = 〈B̄X,Y 〉, we have B̄X = θY
and B̄Y = θX. �

Given a distribution ∆ on a Riemannian manifold Mn, recall that the splitting tensor
C : Γ(∆) → Γ(End(∆⊥)) of ∆ is defined by:

CTX = −∇h
XT,

for all T ∈ Γ(∆) and X ∈ Γ(∆⊥), where ∇h
XT = (∇XT )∆⊥ .

Proposition 15. Let f : Mn → Rn+1, n ≥ 5, be an umbilic-free infinitesimally
Moebius bendable hypersurface carrying a principal curvature of constant multiplicity
n− 2 with corresponding eigenbundle ∆. Assume that at no point of Mn the splitting ten-
sor C : Γ(∆) → Γ(End(∆⊥)) of ∆ satisfies C(Γ(∆)) ⊂ span{I}. Then the central sphere
congruence of f is determined by a minimal space-like surface s : L2 → Sn+2

1 .
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Proof. Denoting by λ the principal curvature of f with constant multiplicity n − 2
with respect to a unit normal vector field N, the map

x ∈ Mn 7→ f(x) +
1

λ(x)
N

determines a two-parameter congruence of hyperspheres that is enveloped by f. As
explained in the introduction, this congruence of hyperspheres is determined by a
space-like surface s : L2 → Sn+2

1 .
Since f is infinitesimally Moebius bendable, it admits, in particular, a conformal

infinitesimal bending that is non-trivial on any open subset. By Proposition 15 in [7], the
hypersurface f is either elliptic, hyperbolic or parabolic with respect to J ∈ Γ(End(∆⊥))
satisfying J2 = −I, J2 = I or J2 = 0, respectively, with J 6= I if J2 = I and J 6=0 if
J2 = 0. Moreover, the tensor B associated with T satisfies:

B̄ = µĀJ, (23)

where 0 6= µ ∈ C∞(M) is constant along the leaves of ∆.
It was also shown in [7] that, in the hyperbolic and elliptic cases, the tensor J is

projectable with respect to the quotient map π : Mn → L2 onto the spaces of leaves of
the eigenbundle ∆ of λ, that is, there exists J̄ ∈ End(TL) such that J̄ ◦ π∗ = π∗ ◦ J .
Moreover, the surface s : L2 → Sn+2

1 is either a special elliptic or special hyperbolic surface
with respect to J̄ . This means that,

αs(J̄X̄, Ȳ ) = αs(X̄, J̄ Ȳ ), (24)

for all X̄, Ȳ ∈ X(L), and that there exists µ ∈ C∞(L) such that µJ̄ is a Codazzi tensor
on L2.
In the sequel we will show that, under the assumptions of the proposition, the tensors J

and J̄ act as a rotation of angle π/2 on ∆⊥ and on each tangent space of L2, respectively,
that is, both J and J̄ are orthogonal tensors satisfying J2 = −I and J̄2 = −I. From
the orthogonality of J and the symmetry of B̄ it will follow that the tensor Ā = A− λI
is traceless by (23). This implies that λ is the mean curvature function of f, and hence
the congruence of hyperspheres determined by s is its central sphere congruence. On the
other hand, the orthogonality of J̄ and the fact that J̄2 = −I implies the minimality of
s by (24), and this will conclude the proof.
First we rule out the parabolic case. So, assume that there exists J ∈ Γ(∆⊥) such

that J2 = 0, J 6=0, ∇h
TJ = 0 for all T ∈ Γ(∆), and such that CT ∈ span{I, J} for

all T ∈ Γ(∆). By Proposition 16 of [7], f is conformally ruled, with the leaves of the
distribution ∆⊕ ker(J) as the rulings of f. Let X,Y ∈ Γ(∆⊥) be an orthonormal basis of
∆⊥ such that JX =Y and JY =0, let λ1, λ

′ ∈ C∞(M) be such that ĀX = λ1X + λ′Y
and ĀY = λ′X. From (23) we see that B̄X = µλ′X and B̄Y = 0. Since B is not a
multiple of the identity endomorphism, then λ′ 6= 0, and hence tr B̄ 6= 0. It follows from
Proposition (12) that λ1 = tr Ā = 0.
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It follows from the Codazzi equation that:

∇h
T Ā = ĀCT (25)

for any T ∈ Γ(∆).
For a fixed T ∈ Γ(∆), write CT = dI + eJ, for some smooth functions d and e. On one

hand, ∇h
T ĀX = ∇h

Tλ
′Y = T (λ′)Y, where we have used that ∇h

TY = 0, for Y is tangent
to the rulings. On the other hand,

ĀCTX = Ā(dX + eY ) = dλ′Y + eλ′X.

Therefore e =0 by (25) and, since T ∈ Γ(∆) was chosen arbitrarily, it follows that
CT ∈ span{I} for any T ∈ Γ(∆), a contradiction with our assumption.
Now assume that f is hyperbolic, that is, that there exists J ∈ Γ(End(∆⊥)) such that

J2 = I, with J 6= I, ∇h
TJ = 0 and such that CT ∈ span{I, J} for all T ∈ Γ(∆). Let {X,Y }

be a frame of ∆⊥ of unit eigenvectors of J, with JX =X and JY = −Y . Since ∇h
TJ = 0

for all T ∈ Γ(∆), it follows that ∇h
TX = 0 = ∇h

TY . The symmetry of B̄ = µĀJ yields
〈ĀX, Y 〉 = 0. Write ĀX = αX + βY and ĀY = γX + δY for some smooth functions α,
β, γ, δ. Then

〈ĀX,X〉 = α+ β〈Y,X〉, 〈ĀY, Y 〉 = γ〈Y,X〉+ δ, (26)

and from 〈ĀX, Y 〉 = 0 = 〈X, ĀY 〉 we obtain,

α〈X,Y 〉+ β = 0 = γ + δ〈X,Y 〉. (27)

On the other hand, writing as before CT = dI + eJ for some smooth functions d and e,
Eq. (25) gives,

〈∇h
T ĀX,X〉 = 〈ĀCTX,X〉 = (d+ e)〈ĀX,X〉, (28)

and similarly,

〈∇h
T ĀY, Y 〉 = 〈ĀCTY, Y 〉 = (d− e)〈ĀY, Y 〉. (29)

Suppose that tr Ā = 0. Then α = −δ, hence (27) implies that β = −γ. Thus 〈ĀX,X〉 =
−〈ĀY, Y 〉 by (26), and hence

〈∇h
T ĀX,X〉 = T 〈ĀX,X〉 = −T 〈ĀY, Y 〉 = −〈∇h

T ĀY, Y 〉.

Comparing with (28) and (29) gives d + e = d − e, for 〈ĀX,X〉 6= 0 by the assumption
that rank Ā = 2. Hence e =0.
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If tr B̄ = 0, then (23) gives α = δ, and hence γ = β by (27). Therefore 〈ĀX,X〉 =
〈ĀY, Y 〉 by (26), and hence

〈∇h
T ĀX,X〉 = T 〈ĀX,X〉 = T 〈ĀY, Y 〉 = 〈∇h

T ĀY, Y 〉.

Then, we obtain as before that e =0 by comparing with (28) and (29), and we conclude
as in the parabolic case that CT ∈ span{I} for any T ∈ Γ(∆), a contradiction.
Finally, suppose that f is elliptic, that is, that there exists J ∈ Γ(End(∆⊥)) such that

J2 = −I, ∇h
TJ = 0, and such that CT ∈ span{I, J} for all T ∈ Γ(∆). Let {X,Y } be a

frame of ∆⊥ such that JX =Y and JY = −X. This is equivalent to asking the complex
vector fields X − iY and X + iY to be pointwise eigenvectors of the C-linear extension
of J, also denoted by J, associated with the eigenvalues i and −i, respectively. Thus
z(X − iY ) = (sX + tY ) + i(tX − sY ) and z(X + iY ) = (sX − tY ) + i(tX + sY ) are
also eigenvectors of J associated to i and −i, respectively, for any z = s + it ∈ C, that
is, X̄ = sX + tY and Ȳ = −tX + sY form a new frame of ∆⊥ such that JX̄ = Ȳ and
JȲ = −X̄. It is easily seen that s and t can be chosen so that X̄ and Ȳ are unit vector
fields. In summary, we can always choose a frame {X,Y } of unit vector fields such that
JX =Y and JY = −X.
Since ∇h

TJ = 0 for all T ∈ Γ(∆), then J∇h
TX = ∇h

TY and J∇h
TY = −∇h

TX. Denoting

X̂ = ∇h
TX and Ŷ = ∇h

TY , it follows that X̂ − iŶ = (s+ it)(X − iY ) for some s+ it ∈ C,
that is,

X̂ = sX + tY and Ŷ = −tX + sY.

Since X and Y have unit length, then 〈X̂,X〉 = 0 = 〈Ŷ , Y 〉. Thus

s+ t〈X,Y 〉 = 0 = s− t〈X,Y 〉,

and hence t〈X,Y 〉 = 0 = s.
Assume that J is not an orthogonal tensor, that is, that 〈X,Y 〉 6= 0. Then s = 0 = t,

that is, ∇h
TX = 0 = ∇h

TY for all T ∈ Γ(∆).
Write ĀX = αX + βY and ĀY = γX + δY for some smooth functions α, β, γ and δ.

The symmetry of B̄ gives:

〈ĀX,X〉+ 〈ĀY, Y 〉 = 0. (30)

Then

〈ĀX,X〉 = α+ β〈Y,X〉, 〈ĀY, Y 〉 = γ〈Y,X〉+ δ, (31)

and from (30) and 〈ĀX, Y 〉 = 〈X, ĀY 〉 we obtain, respectively,

(α+ δ) + (β + γ)〈X,Y 〉 = 0, (32)

and

α〈X,Y 〉+ β = γ + δ〈X,Y 〉. (33)
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On the other hand, writing as before CT = dI+eJ for some smooth functions d and e,
Eq. (25) gives:

〈∇h
T ĀX, Y 〉 = 〈ĀCTX,Y 〉 = d〈ĀX, Y 〉+ e〈ĀY, Y 〉. (34)

Now assume that tr Ā = 0. Then α = −δ, hence β = −γ by (32). Thus 〈ĀX, Y 〉 = 0
by (33), and hence 〈∇h

T ĀX, Y 〉 = T 〈ĀX, Y 〉 = 0. It follows from (34) that e =0, for
〈ĀY, Y 〉 6= 0 by the assumption that rank Ā = 2.
If tr B̄ = 0, then (23) gives γ = β, hence α = δ by (33). Therefore 〈ĀX,X〉 = 0 =

〈ĀY, Y 〉 by (32) and (31). Then 〈∇h
T ĀX,X〉 = T 〈ĀX,X〉 = 0, and, on the other hand,

〈∇h
T ĀX,X〉 = 〈ĀCTX,X〉

= 〈Ā(dX + eY ), X〉
= d〈ĀX,X〉+ e〈ĀY,X〉
= e〈ĀY,X〉.

It follows that e =0, for 〈ĀY,X〉 6= 0 by the assumption that f is free of points with
a principal curvature of multiplicity at least n − 1. We conclude as in the previous cases
that CT ∈ span{I} for any T ∈ Γ(∆), a contradiction.
It follows that J must be an orthogonal tensor, that is, 〈X,Y 〉 = 0. It remains to show

that the tensor J̄ ∈ End(TL) given by J̄ ◦ π∗ = π∗ ◦ J is also orthogonal. For this, we
use the fact that the metric 〈·, ·〉′ on L2 induced by s is related to the metric of Mn by:

〈Z̄, W̄ 〉′ = 〈ĀZ, ĀW 〉, (35)

for all Z̄, W̄ ∈ X(L), where Z, W are the horizontal lifts of Z̄ and W̄ , respectively. Let
X̄ ∈ X(L) and denote by X ∈ Γ(∆⊥) its horizontal lift. Using the symmetry of ĀJ , we
have:

〈X̄, J̄X̄〉′ = 〈ĀX, ĀJX〉
= 〈ĀJĀX,X〉
= 〈JĀX, ĀX〉
= 0,

where in the last step we have used that J acts as a rotation of angle π/2 on ∆⊥. Using
again the symmetry of ĀJ , the proof of the orthogonality of J̄ is completed by noticing
that:

〈J̄X̄, J̄X̄〉′ = 〈ĀJX, ĀJX〉
= 〈JĀJX, ĀX〉
= 〈JJ tĀX, ĀX〉
= −〈J2ĀX, ĀX〉
= 〈X̄, X̄〉′. �
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For the proof of Theorem 1 we will also need the following fact (see Theorem 1 in [4]
or Corollary 9.33 in [9]).

Lemma 16. Let f : Mn → Rn+1, n ≥ 3, be a hypersurface and let ∆ be an umbilical
subbundle of rank n− 2 of the eigenbundle of f correspondent to a principal curvature of
f. Then f is conformally surface-like (with respect to the decomposition TM = ∆⊥ ⊕∆)
if and only if the splitting tensor C : Γ(∆) → Γ(End(∆⊥)) of ∆ satisfies C(Γ(∆)) ⊂
span{I}.

Proof of Theorem 1. Let U and ∆ be, respectively, the open and dense subset of
Mn and the distribution of rank n − 2 given by Proposition 12. By that result, U splits
as U = U1 ∪ U2, with tr B̄ = 0 on U1 and tr Ā = 0 on U2.
We also consider the decompositions U = V1 ∪V2 and U = W1 ∪W2, where V1 and V2

are the subsets where the dimension of ker Ā is either n − 2 or n − 1, respectively, W2 is
the subset where C(Γ(∆)) ⊂ span{I} and W1 = U \W2.
In the following we denote by S 0 the interior of the subset S. We will show that the

direct statement holds on the open and dense subset:

U∗ = V0
2 ∪ (V1 ∩W1) ∪ (V1 ∩W0

2 ∩ U0
2 ) ∪ (V1 ∩W0

2 ∩ Y0
2 ) ∪ (V1 ∩W0

2 ∩ Y0
1 ),

where Y1 and Y2 are the subsets of U1 given by Proposition 14.
It follows from Proposition 15 that the central sphere congruence of f |V1∩W1

is

determined by a minimal space-like surface s : L2 → Sn+2
1 .

The proof of the direct statement will be completed once we prove that, for each
connected component W of the subsets V1 ∩W0

2 ∩ Y0
2 , V0

2 , V1 ∩W0
2 ∩ U0

2 and V1 ∩W0
2 ∩

Y0
1 , respectively, f |W is a conformally surface-like hypersurface determined by a surface

h : L2 → Qε, ε ∈ {−1, 0, 1} of one of the following types:

(i) an isothermic surface;
(ii) a generalized cone over a unit-speed curve γ : J → Q2

c in an umbilical surface
Q2

c ⊂ Q3
ε , c ≥ ε;

(iii) a minimal surface;
(iv) an umbilical surface.

Notice that any surface as in (ii), (iii) and (iv) is also isothermic (for h as in (ii) see
Corollary 12 in [11]). Notice also that f |W being a conformally surface-like hypersurface
determined by a surface h : L2 → Qε, ε ∈ {−1, 0, 1}, is equivalent to W being (isometric
to) a Riemannian product L2 ×Nn−2 and to f |W being given by f |W = I ◦ Φ ◦ (h× i),
where i is the inclusion map of an open subset Nn−2 of either Rn−2 or Qn−2

−ε , according
to whether ε is zero or not, I is a Moebius transformation of Rn+1, and Φ is the standard
isometry Φ: R3 × Rn−2 → Rn+1 if ε=0 and, if ε = −1 or 1, respectively, the conformal
diffeomorphism:

• Φ: H3 × Sn−2 ⊂ L4 × Rn−1 → Rn+1 \ R2, Φ(x, y) = 1
x0

(x1, x2, y) for all x =

x0e0 + x1e1 + x2e2 + x3e3 ∈ L4 and y = (y1, . . . , yn−1) ∈ Sn−2 ⊂ Rn−1, where
{e0, e1, e2, e3} is a pseudo-orthonormal basis of the Lorentzian space Lk+1 with
〈e0, e0〉 = 0 = 〈e3, e3〉 and 〈e0, e3〉 = −1/2.
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• Φ: S3 × Hn−2 ⊂ R4 × Ln−1 → Rn+1 \ Rn−3, Φ(x, y) = 1
y0
(x, y0, . . . , yn−3) for

all x = (x1, . . . , x4) ∈ S3 ⊂ R4 and y = y0e0 + . . . yn−3en−2 ∈ Hn−2 ⊂ Ln−1,
where {e0, . . . , en−2} is a pseudo-orthonormal basis of Ln−1 with 〈e0, e0〉 = 0 =
〈en−2, en−2〉 and 〈e0, en−2〉 = −1/2.

Case (i): Let W be a connected component of V1 ∩W0
2 ∩ Y0

2 . Since, in particular, W ⊂
W2, then C(Γ(∆)) ⊂ span{I} on W. By Lemma 16, f |W is a conformally surface-like
hypersurface determined by a surface h : L2 → Qε, ε ∈ {−1, 0, 1}. Thus, with notations
as in the preceding paragraph, we may write W = L2 ×Nn−2 and f |W = I ◦Φ ◦ (h× i).
In particular, the distributions ∆ and ∆⊥ are given by the tangent spaces to Nn−2 and
L2, respectively.
Denote by g1 the product metric of Q3

ε ×Qn−2
−ε and let g2 be the metric on Q3

ε ×Qn−2
−ε

induced from the metric of Rn+1 by the conformal diffeomorphism I◦Φ. Let ϕ ∈ C∞(Q3
ε×

Qn−2
−ε ) be the conformal factor of g2 with respect to g1, that is, g2 = ϕ2g1. Then the shape

operators of F1 = h× i : L2×Nn−2 → Q3
ε ×Qn−2

−ε and of F2 = F1 : (L
2×Nn−2, F ∗

1 g2) →
(Q3

ε×Qn−2
−ε , g2) with respect to unit normal vector fields N 1 and N2 = N1/ϕ, respectively,

are related by:

A
F2
N2

=
1

ϕ ◦ F1
A

F1
N1

− g1(∇1ϕ,N1)

(ϕ ◦ F1)2
I. (36)

We recall that the Levi-Civita connections ∇̄ and ∇ of the metrics ḡ and g = 〈 , 〉 on
Mn = L2 ×Nn−2 induced by F 1 and F 2, respectively, satisfy:

∇XY = ∇̄XY +
1

ϕ̄
(X(ϕ̄)Y + Y (ϕ̄)X − ḡ(X,Y )∇̄ϕ̄), (37)

where ϕ̄ = ϕ ◦ F1. It follows from (37) that the mean curvature vector field δ ∈ Γ(∆⊥)
of ∆ (with respect to the metric g) is:

δ = −ϕ̄−3(∇̄ϕ̄)∆⊥ . (38)

Now, we can write (11) as:

(∇X B̄)Y − (∇Y B̄)X + (X ∧ Y )(A∇ρ−∇b) = 0, (39)

for all X,Y ∈ X(M). The ∆-component of (39) evaluated in unit vector fields Z ∈ Γ(∆⊥)
and T ∈ Γ(∆) gives: 〈B̄Z,∇TT 〉 = 〈Z,A∇ρ−∇b〉, or equivalently,

B̄δ = A∇ρ−∇b. (40)

Since W ⊂ Y0
2 , there exists locally a smooth function θ and an orthonormal frame

{X,Y } of ∆⊥ given by principal directions of f such that B̄X = θY and B̄Y = θX.
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From (37) we have 〈∇XT,X〉 = 〈∇Y T, Y 〉 = T (log ◦ϕ̄). Evaluating (39) in T and X
(or Y ) gives:

T (θ) = −T (log ◦ϕ̄)θ, (41)

whereas (39) evaluated in X and Y yields:

X(θ) = 2θ〈∇Y Y,X〉 − 〈Y,A∇ρ−∇b〉, (42)

and

Y (θ) = 2θ〈∇XX,Y 〉 − 〈X,A∇ρ−∇b〉. (43)

Set θ̄ = ϕ̄θ . It follows from (41) that T (θ̄) = 0 for any T ∈ Γ(∆). Thus, θ̄ induces
a function on L2, which we also denote by θ̄. By (36), the vector fields X̄ = ϕ̄X and
Ȳ = ϕ̄Y form an orthonormal frame of principal directions of h. Using (37), (38), (40)
and (42) we obtain:

X̄(θ̄) = X̄(ϕ̄)θ + ϕ̄2X(θ)

= X̄(ϕ̄)θ + ϕ̄2(2θ〈∇Y Y,X〉 − 〈Y,A∇ρ−∇b〉)
= X̄(ϕ̄)θ + ϕ̄2(2θ(ϕ̄−1ḡ(∇̄Ȳ Ȳ , X̄)− ϕ̄−2X̄(ϕ̄))− 〈B̄Y, δ〉)
= X̄(ϕ̄)θ + 2θ̄ḡ(∇̄Ȳ Ȳ , X̄)− 2θX̄(ϕ̄)− ϕ̄2θ〈X, δ〉
= X̄(ϕ̄)θ + 2θ̄ḡ(∇̄Ȳ Ȳ , X̄)− 2θX̄(ϕ̄) + θϕ̄−1〈X, ∇̄ϕ̄〉
= X̄(ϕ̄)θ + 2θ̄ḡ(∇̄Ȳ Ȳ , X̄)− 2θX̄(ϕ̄) + θX̄(ϕ̄)

= 2θ̄ḡ(∇̄Ȳ Ȳ , X̄). (44)

A similar computation using (43) instead of (42) gives:

Ȳ (θ̄) = 2θ̄ḡ(∇̄X̄X̄, Ȳ ). (45)

Let B∗ ∈ Γ(End(TL)) be defined by B∗X = θ̄Ȳ and B∗Y = θ̄X̄. Then (44) and (45)
are equivalent to B∗ being a Codazzi tensor on L2. By (36), the shape operator Ah of h
is a multiple of Ā|∆⊥ , which has rank two, for W ⊂ V1, and B∗ is a multiple of B̄|∆⊥ .
Therefore, the fact that Ā and B̄ satisfy (22) implies that B∗ and Ah also satisfy (22)
with respect to ḡ. Since, in addition, trB∗ = 0, it follows from Proposition 8 of [11],
together with Theorem 4.7 in [6] (also stated in [11] as Theorem 2), that h is locally
infinitesimally Bonnet bendable, hence isothermic by Proposition 9 of [11].
Case (ii): First we show that the interior V0

2 of the subset V2 where dimker Ā = n− 1 is
contained in W0

2 ∩Y0
2 . Clearly, V2 ⊂ U1, the subset where tr B̄ = 0, for if tr Ā(x) = 0, that

is, if x ∈ V2 ∩ U2, then we would have Ā(x) = 0, in contradiction with the assumption
that f is free of umbilic points. Also, since dimker Ā = n − 1 on V2, then Ā|∆⊥ cannot
be a multiple of the identity endomorphism I ∈ Γ(End(∆⊥)) at any point of V2. Thus
V2 ⊂ Y2.
We now show that, on any connected component W of V0

2 , the splitting tensor
C : Γ(∆) → Γ(End(∆⊥)) of ∆ satisfies C(Γ(∆)) ⊂ span{I}, which will yield the inclusion
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V0
2 ⊂ W0

2 . So let W be such a connected component. Since we already know that W ⊂ Y0
2 ,

there exist locally smooth functions θ, µ and unit vector fields Y ∈ Γ(∆⊥ ∩ ker Ā) and
X ∈ Γ((ker Ā)⊥) such that ĀX = µX, B̄X = θY and B̄Y = θX.
Applying (39) to T and Y gives:

T (θ)X + θ∇TX − B̄∇TY + B̄∇Y T + 〈λ∇ρ−∇b, Y 〉T
−〈λ∇ρ−∇b, T 〉Y = 0.

(46)

Taking the X -component of (46) we obtain:

T (θ) = θ〈∇Y Y, T 〉, (47)

whereas the Y -component and the T -component give, respectively,

〈λ∇ρ−∇b, T 〉 = 0, (48)

and

〈λ∇ρ−∇b, Y 〉 = θ〈∇TT,X〉.

Applying (39) to T and X and using (48) give:

T (θ)Y + θ∇TY − B̄∇TX + B̄∇XT + 〈µ∇ρ−∇b,X〉T = 0. (49)

Taking the S -component of (49) for S ∈ Γ(∆) with 〈S, T 〉 = 0 gives:

〈∇TS, Y 〉 = 0,

and taking its T -component yields:

θ〈∇TT, Y 〉 = 〈µ∇ρ−∇b,X〉.

Using that ker Ā = {X}⊥ is an umbilical distribution, it follows that the same holds
for ∆.
Taking the X -component of (49) yields:

〈∇XY, T 〉 = 0, (50)

whereas the Y -component gives:

T (θ) = θ〈∇XX,T 〉. (51)

It follows from (47), (50) and (51), taking into account that one also has
〈∇Y X,T 〉 = 0, that the distribution ∆⊥ is umbilical with mean curvature vector
field ζ = (∇ log θ)|∆, which is equivalent to the splitting tensor C : Γ(∆) → Γ(End(∆⊥))
of ∆ satisfying CT = 〈ζ, T 〉I for all T ∈ Γ(∆).
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Now that we know that V0
2 ⊂ W0

2 ∩Y0
2 , the argument used in case (i) shows that f |W is

a conformally surface-like hypersurface determined by an isothermic surface h : L2 → Q3
ε ,

ε ∈ {−1, 0, 1}. But since rank ker Ā = n − 1 on V2, then h has index of relative nullity
equal to one at any point. By Corollary 12 in [11], h is a generalized cone over a unit-speed
curve γ : J → Q2

c in an umbilical surface Q2
c ⊂ Q3

ε , c ≥ ε.
Cases (iii) and (iv): Let W be a connected component of V1 ∩ W0

2 ∩ U0
2 (respectively,

V1 ∩ W0
2 ∩ Y0

1 ). As in cases (i) and (ii), f |W is a conformally surface-like hypersurface
determined by a surface h : L2 → Qε, ε ∈ {−1, 0, 1}, by Lemma 16. Since tr Ā = 0 on U2

(respectively, Ā|∆⊥ is a multiple of the identity endomorphism of ∆⊥ on Y1), it follows
from (36) that also trAh = 0 (respectively, Ah is a multiple of the identity endomorphism
of TL), hence h is a minimal surface (respectively, h is umbilical).
We now prove the converse. Assume first that f : Mn → Rn+1 is a simply connected

hypersurface whose central sphere congruence is determined by a minimal space-like
surface s : L2 → Sn+2

1,1 . Let J̄ ∈ Γ(End(TL)) represent a rotation of angle π/2, and let

X̄, Ȳ be an orthonormal frame satisfying J̄X̄ = Ȳ and J̄ Ȳ = −X̄. Then J̄ is parallel
with respect to the Levi-Civita connection ∇′ on L2, hence it is, in particular, a Codazzi
tensor on L2. Since s is minimal, then α′(X̄, X̄) + α′(Ȳ , Ȳ ) = 0, hence s is a special
elliptic surface by Proposition 11 in [7].
By Theorem 1 in [7], f admits a non-trivial conformal infinitesimal bending T . We

now show that T is also an infinitesimal Moebius bending. Let X,Y ∈ X(M) be the lifts
of X̄ and Ȳ . From (35) we see that ĀX and ĀY form an orthonormal frame of ∆⊥. Let
J ∈ Γ(End(∆⊥)) be the lift of J̄ . It was shown in the proof of the converse of Theorem
1 in [7] that ĀJ is symmetric. Thus

〈JĀX, ĀX〉 = 〈ĀJĀX,X〉 = 〈ĀX, ĀJX〉 = 〈X̄, J̄X̄〉′ = 0.

Similarly, 〈JĀY, ĀY 〉 = 0, 〈JĀX, ĀY 〉 = −1 and 〈JĀY, ĀX〉 = 1. Hence J is an orthog-
onal tensor, and the symmetry of ĀJ implies that tr Ā = 0. By Proposition 12, T is an
infinitesimal Moebius bending.
Now let f : Mn → Rn+1 be a conformally surface-like hypersurface determined by an

isothermic surface h : L2 → Qε, ε ∈ {−1, 0, 1}. Then h is locally infinitesimally Bonnet
bendable (see, e.g., Proposition 9 and Remark 11 of [11]), that is, it admits locally a
non-trivial infinitesimal variation ht : L

2 → Qε such that the metrics ḡt induced by the
ht

′s and their mean curvatures Ht satisfy: ∂/∂t|t=0ḡt = 0 = ∂/∂t|t=0Ht.
Thus also ∂/∂t|t=0Kt = 0, where Kt is the Gauss curvature of ḡt.
Let ft be the variation of f given by the conformally surface-like hypersurfaces

determined by ht. The Moebius metric of ft is (see Remark 3.7 in [13]):

(
4H2

t −
2n

n− 1
(Kt − ε)

)
(ḡt + g−ε),

where g−ε is the metric of Qn−2
−ε and ḡt + g−ε denotes the product metric on L2 ×Qn−2

−ε .
Therefore, the immersions ft determine an infinitesimal Moebius variation of f. It remains
to argue that the latter is non-trivial.
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From Proposition 10 we know that the associated tensor B satisfies (19). On the other
hand, by (36) the shape operator At of ft has the form:

At = δ1(t)Āt + δ2(t)I, (52)

for some smooth functions δ1 and δ2, with δ1(0) 6= 0. Here Āt denotes the second
fundamental form of ht extended to TM by defining ĀtT = 0 for any T tangent to
Qn−2

−ε . Since ∂/∂t|t=0Āt 6= 0, for ht determine a non-trivial infinitesimal Bonnet variation
of h, it follows from (19) and (52) that B is not a multiple of the identity endomor-
phism. Hence the infinitesimal Moebius variation of f determined by ft is non-trivial (see
Remarks 4–2)). �
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