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Abstract

We consider the evolution of the ancestral structure of a classical branching process in
space and its diffusion limit. We also indicate how the conditional structure of the past
can be described asymptotically in terms of suitable uniform Brownian trees.
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The aim of this paper is to outline how the genealogy of certain population processes can
be constructed from the simplest birth-and-death processes. We start by considering a classical
binary splitting branching process X = (Xt ) with exponential life lengths, known to be a
birth-and-death process with rates nλ and nμ. For our purposes, there are two basic cases.

• Critical splitting process (λ = μ = 1). In this case the mean is constant, yet the process
dies out in finite time.

• Yule process (λ = 1, μ = 0). In such a process there are no deaths: the process keeps
growing exponentially.

The former is arguably the most basic of all elementary branching processes. It is also
essentially the only case that allows explicit computation, as we now indicate.

Theorem 1. Let X = (Xt ) be a critical binary splitting process with rates 1, and define
pt = 1/(1 + t). Then, with P1{·} := P{· | X0 = 1} and, for finite t > 0,

(i) P1{Xt > 0} = pt ;
(ii) P1(Xt = n | Xt > 0) = pt (1 − pt )

n−1, n ∈ N;
(iii) for fixed t , the ancestors of Xt at times s ∈ [0, t] form a Yule process Zt = (Zt

s) on the
time scale

At
s = − log(1 − pts), s ∈ [0, t].

Here (i) and (ii) are elementary, and they remain asymptotically valid for certain more general
branching mechanisms. Part (iii) is a remarkable and less obvious consequence.
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Now let the individuals of our binary splitting process perform independent Brownian
motions in R

d . Then the population evolves as a set of branching random trees ξ = (ξt ),
in which each ξt is a point process in R

d (in all spatial branching processes considered here
and below, it is understood that the branching trees originating from different individuals are
conditionally independent, given the starting points of those individuals).

Theorem 1 now yields a corresponding statement about such spatial branching processes.

Corollary 1. Let ξ = (ξt ) be a set of critical branching random trees in R
d with binary splitting

at rates 1 and with independent Brownian motions along the branches. Define pt = 1/(1 + t)

and fix any t > 0. Then, for s ∈ [0, t] and setting h = t − s,

(i) the ancestors of ξt at time s form a ph-thinning ζ t
s of ξs;

(ii) ξt is a sum of conditionally independent clusters of age h, rooted at the points of ζ t
s ;

(iii) the point processes ζ t
s with s ∈ [0, t] combine into a Brownian Yule tree on the time scale

At
s = − log(1 − pts), s ∈ [0, t].

Recall that, for any constant p ∈ [0, 1], a p-thinning of a point process ζ is obtained by
individual deletion of the points of ζ , independently with probability 1 − p. The clusters of
age h are independent copies of the original process, each starting from a single individual
at time s. The ancestral processes ζ t

s clearly combine into branching trees on [0, t], but their
nonhomogeneous Markov property may be less obvious, making them into time-changed Yule
processes. The time scale A determines the splitting rate of the process ζ t = (ζ t

s ) at time s.
Given a branching random tree in R

d , as above, starting from a Poisson process on R
d with

intensity μ, we now perform a scaling on three levels:

1. increase the initial intensity by a factor n;

2. speed up the branching/death by a factor n;

3. reduce the weight of each particle by a factor n−1.

As n → ∞, we get convergence to a weakly continuous, measure-valued, strong Markov
process ξ = (ξt ) starting at μ, called a Dawson–Watanabe superprocess (or DW process for
short). For d ≥ 2 and fixed t > 0, ξt is an a.s. singular, diffuse random measure on R

d of
Hausdorff dimension 2.

The DW process ξ = (ξt ) may be thought of as a randomly evolving diffuse cloud. As such,
it seems to defy any simple probabilistic description. It is then highly remarkable that ξ can be
constructed from an underlying discrete structure, composed by clusters of suitable branching
trees. Furthermore, just as the process ξ itself arises in the limit from suitable discrete branching
trees X, the underlying discrete structure of ξ appears in the limit from the corresponding cluster
structure of X. In particular, the genealogy of ξ is a limiting version of the genealogy of X,
which leads us to the following counterpart of Corollary 1.

Theorem 2. Let ξ = (ξt ) be a DW process in R
d . Fix any t > 0. Then, for s ∈ [0, t) and

setting h = t − s,

(i) the ancestors of ξt at time s form a Cox process ζ t
s directed by h−1ξs;

(ii) ξt is a sum of conditionally independent clusters of age h, rooted at the points of ζ t
s ;

https://doi.org/10.1017/apr.2018.77 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.77


On the genealogy of branching populations 175

(iii) the point processes ζ t
s with s ∈ [0, t) combine into a Brownian Yule tree on the time scale

At
s = − log(1 − t−1s);

(iv) as s ↑ t , h−1ζ t
s

v→ ξt a.s.

Recall that a point process ζ is called a Cox process directed by ξ , if ζ is conditionally
Poisson with intensity measure ξ . This is the obvious limiting case of the p-thinnings in
Corollary 1, which suggests part (i). The clusters in (ii) are no longer ordinary processes, since
their distributions are unbounded. However, it still makes sense to consider their conditional
distributions, given that they survive until an age ε > 0. They correspond to the clusters in the
decomposition of infinitely divisible random measures.

The inhomogeneous Markov property in (iii) is again less obvious, and it leads in this case
to an unbounded Yule process (since At

s → ∞ as s → t). Thus, the number of ancestors of
age h tends to ∞ as h → 0. Statement (iv) shows that the original process ξ can be recovered
from those ancestral processes by a law of large numbers.

Our final aim is to consider the conditional genealogy, given that the population at time
t > 0, represented by the diffuse random measure ξt , contributes to the points x1, . . . , xn. Such
conditional distributions may be described by the nth order Palm distributions of the underlying
discrete cluster structure, as may be justified by a suitable limit theorem. Indeed, the familiar
interpretation of univariate Palm distributions of simple point processes in terms of elementary
conditioning can be extended to the present context of diffuse random measures.

Those nth order Palm distributions are obtained by disintegration of the corresponding higher
order Campbell measures, an extension of the nth order moment measures. The resulting nth
order Palm kernel is only defined up to a null set, and we need to invoke a suitable duality
argument to ensure the existence of a regular version. It is the latter version that admits the
following remarkable representation in terms of random trees.

The relevant trees are now the uniform Brownian trees on [0, t] of order n, defined as
follows:

(a) any tree is rooted at the origin of R
d at time 0;

(b) there are n − 1 binary splits, leading to n leaves at time t ,

(c) the splitting times are given by a binomial process on [0, t],
(d) there are independent Brownian motions in R

d along the branches,

(e) there are marks 1, . . . , n attached to the leaves,

(f) all branching structures are equally likely.

Recall that a (uniform) nth order binomial process on [0, t] is a point process of the form∑
k≤n δσk

, where the σk are i.i.d. and uniformly distributed on [0, t]. Such trees have been used
to give a probabilistic description of higher-order moment and Campbell measures.

The following result gives the basic connection between the conditional genealogy of a
DW process and the uniform Brownian tree. To simplify the statement, we consider only the
contributions from a single cluster rooted at 0.

Theorem 3. For a single cluster η of a DW process in R
d , and fixed t > 0 and x1, . . . , xn ∈ R

d ,
the following statements agree almost everywhere:

(i) the Palm distribution of the genealogy of η, at points x1, . . . , xn in the support of ηt ,

(ii) the conditional distribution of the nth order uniform Brownian tree, given that the leaves
reach x1, . . . , xn.
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To obtain the complete family structure, we need to adorn the tree with some independent
clusters, rooted along the branches at a constant rate 2.

For n = 1, the conditional tree is just a Brownian bridge on [0, t], going from 0 to x. The
multivariate statement seems to be much deeper. The general result implies in particular a
probabilistic interpretation of Campbell and moment measures in terms of Brownian trees.

Sources and historical remarks

This paper is based on material in Sections 13.1–3 of Kallenberg (2017), which contains some
further details and selected proofs. Classical Bienaymé branching processes (often referred to as
Galton–Watson processes) in discrete and continuous time, along with their various extensions,
are discussed in many excellent books, including Jagers (1975). General extinction probabilities
and associated cluster distributions were obtained by Kolmogorov (1938) and Yaglom (1947),
respectively.

Watanabe (1968) studied the binary splitting branching process with independent Brownian
motions of particles; Watanabe also derived the diffusion limit, here referred to as a DW
process. The corresponding historical process was discovered and analysed by Dawson and
Perkins (1991), Dynkin (1991), and Le Gall (1991).

Etheridge (2000) provided a recursive construction of a path-valued Markov process to clarify
Dynkin’s (1991) formulae for the moment measures; in fact, her construction is equivalent to
our uniform Brownian tree. The proof of Theorem 3 uses an extension of Le Gall’s (1991)
Brownian snake. No elementary proof is known.
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