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Abstract. We construct in all characteristigs> 2 a complete surface in the moduli space of smooth
genus 6 curves. The surface is contained in the locus of curves with automorphisms.
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We consider the following question: ‘What is the number of essential parameters
on which a complete family of smooth curves of geguiepends?’ or equivalently,
‘What is the maximal dimension of a complete subvarietyfQf the moduli space

of smooth curves of genys?’ In [3] Diaz provided an upper bound for the dimen-
sion of such a subvariety: fagr > 2 this dimension is at mogt — 2. The moduli
spaceM, itself is irreducible, quasi-projective of dimensiog 3 3 (¢ > 2). Diaz
proved his result in characteristic 0, but his bound also holds in characteristic
(see [6]).

In order to see how good Diaz's bound is, one has to construct complete
subvarieties of,. This turns out to be a difficult problem, in any characteristic.
Only in genus 3 Diaz’s bound is sharp, since it is known Matcontains complete
curves ifg is at least 3 (see [4]). In higher genera almost nothing is known. The best
result we know is a construction of complete subvarieties of arbitrary dimension
d > 1in M, with g > 24*1. This construction gives a complete surfacédgn For
g = 4,5, 6 and 7 the existence of a complete surfackjris an open question.

Starting from a complete curve i3, we construct a complete surfaceMy.
However, this construction only works in characterisi©, 2. Our result is:

THEOREM 1 In any characteristicp > 2 the moduli spacéfs of smooth genus
6 curves contains a complete surface.

To construct in characteristic 0 a complete surfacéfiniseems more difficult.
This is more or less similar to the fact that the moduli spageof principally
polarized abelian varieties of dimensigrncontains in characteristip > 0 com-
plete subvarieties of rather high dimension [7]. The corresponding situation in
characteristic 0 is completely unknown.

Our construction depends heavily on a theorem of Keel. The starting point is
a complete familyC — B of smooth genus 3 curves. The idea is to construct a
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family of double covers ramified in twdistinct points over the fibers of — B.

To parametrize pairs of distinct branch points, we consitlerz C. OnC x 3 C we
want to contractA to a point. To achieve this, we define 6nhx z C a nef and big

line bundleL with the property thaL |, is trivial. To show that the global sections

of a power ofL do not have a base locus we use a theorem of Keel which is only
valid in positive characteristic. Keel's theorem relies on a lemma, which roughly
states that if| 5, is trivial, thenL®? |, is trivial, see [5, Lemma 1.7]. Hers; is
theith order neighborhood af, the subscheme @ x 3z C defined by/*+1, where

I is the ideal sheaf oA\. This is where the Frobenius map is used.

The line bundlel exists in all characteristics, but we do not know how to prove
its eventual freeness in characterictic 0. Instead of using Keel's theorem, we tried
to prove by direct methods thatis free onC x g C. To prove this, we need thét
is trivial on A; for everyi > 0. Unfortunately, we don’t know how to establish this.

1. The Construction

LetC — B be afamily of smooth genus 3 curves over a complete one-dimensional
baseB, having the property that the induced mAp— M3 has finite fibres. We
consider the fibre produaf xz C. Let A C C xp C be the relative diagonal
andm,, m,: C xg C — C the projections on the first and second coordinate. On
C x 5 C consider the line bundIg associated to the divisotr; +75) (K¢, p) +2A.

In characteristipp > 0 we can prove that a sufficiently high powerlofs free:

THEOREM 2. Let L be the line bundle. associated to the divisogr; + 75)
(Kc,g) + 2A. ThenL satisfies orC x5 C:

() the restriction ofL to A is trivial;
(i) L is big and nef orC x g C and big on any subvariety not containirg
(i) in characteristicp > 0 a sufficiently high multiple of. is free and defines a
birational morphism of” x 3 C to a projective threefold. Under this morphism,
A is contracted to a point.

Proof. (i) Let A: C — C x g C be the diagonal map+> (c, ¢). Then according
to the adjunction formula*(K¢x,c+A) = Kc. NOWA*(Kcx,0) = Ke/p+Ke,
so it follows thatA*(A) = —K¢/. HenceA*(L) = O@¢ and the restriction oL
to A is trivial.

(i) Let X be a subvariety of x g C. If X has dimension 1, then

(nik(KC/B) + 7Tﬁk(KC/B)) - X =Kcyp - (w14 + m2,)(X) > 0,
sinceK¢,p is ample onC (see [1]) and sincery .(X) andm, .(X) cannot both be
zero-dimensional. 1iX has dimension > 1, then using a similar argument one

proves that(r; (Kc,5) 4+ m5(Kcyp)) - X > 0. Hence by the Nakai-Moishezon
criterion (K¢, p) + m5(Kc/p) is ample onC xp C. SinceL = m{(K¢/p) +
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m;(Kc/p) + 2A, L is the sum of an ample and an effective divisor, hence big by
one of the equivalent criteria for bigness. By/i)s nef.

Moreover, if we restric to any positive dimensional subvarieXynot contain-
ing A, thenL|y is the sum of the restriction of an ample divisor plus an effective
divisor, hencel |y also big.

(iii) To show thatL is eventually free, we use a result of Keel which states that
in characteristicp > 0 a nef and big line bundlé is eventually free iffL|g ) is
eventually free [5, Theorem 1.2]. Hef( L) is the exceptional locus df; this is
the union of all subvarieties along whidhis not big. By (i) L restricted toA is
free. By (ii) L is nef and big. Together (i) and (ii) implg (L) = A.

Proof of Theorem 1 From Theorem 2 we conclude that for somé¢he global
sections ofL®" yield a morphismp: C x5 C — P" which contracts the diagonal

to a point. InPY choose a hyperplane not meeting the image\ofThen7 =
¢*(H) C C xp C\ A is a surface which parametrizes pairsdigtinct points

on the fibers of the family"” — B. Now by standard arguments one constructs a
complete familyX — S, each fiber being a double cover of a fiberf— B
ramified in the two distinct points determined by T [8, Sect. 1]. Locally we
take square roots, so we have to exclude the case that the characteristic is 2. Since
C — B is a family of smooth genus 3 curveX, — S is a family of smooth
genus 6 curves. The baseis a finite cover ofT. It is needed to overcome the
monodromy arising from the fact that for one pair of distinct branch points one
can choose a finite number of distinct coverings. The Bas@ps into the locus of
curves inMg having non-trivial automorphisms. We claim that this image is two-
dimensional. To prove this, note that the structural map ffbin Mg factors as

S — Rz2 — Ms, whereR;, parametrizes double coverings of genus 3 curves
ramified in two distinct points. The image 8fin R3, is clearly two-dimensional:

S maps toM3 with one-dimensional fibers and one-dimensional image. Moreover,
the mapRsz, — Mg is quasi-finite, since the image parametrizes smooth genus 6
curves with an involution with a genus 3 quotient and a genus 6 curve admits only
finitely many involutions.

2. Remark

Consider thalifferencemapC xz C — JadC/B), (x,y) — [x — y]. This map
contracts the diagonal C C xj C to a curve. Any hypersurface in J&&/ B)

not meeting this curve pulls back to a complete two-dimensional subvariaty

C x g C not meeting the diagonal. Starting from such a subvariety one can, as in
the proof of Theorem 1, construct a family of smooth genus 6 curves. This would
give a different construction of a complete two-dimensional family of smooth
genus 6 curves. But such a hypersurface is hard to find, as the following result
of E. Colombo and P. Pirola [2] shows: Let A — B be a family of Abelian
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varieties of relative dimensiogfiover a smooth complete curi with zero section
e: B — #A and not isogenous to a famib§; x g +, with 4, isotrivial. LetZ be an
effective relative ample divisor o andC a curve onA. ThenC N Z # 0.

3. Characteristic 0

In characteristic O there is one point at which our construction may fail: the line
bundleL associated to the divis@rr; + 75)(K¢/5) + 2A may not be eventually
free. However, in the casB is a point, Keel proves that in all characteristics the
line bundleL is eventually free [5, Theorem 3.0]. One can try to mimic his proof
for the case in whiclB is a curve. The hard part is to show that for every 0

the restriction ofL to thekth order neighborhood ok insideC x C is trivial.
However, we are unable to prove this.
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