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Spatio-temporal dynamics of a two-layer
pressure-driven flow subjected to a wall-normal
temperature gradient
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The present study investigates the linear spatio-temporal and weakly nonlinear stability
of a pressure-driven two-layer channel flow subjected to a wall-normal temperature
gradient commonly encountered in industrial applications. The liquid–liquid interface
tension is assumed to be a linearly decreasing function of temperature. The study employs
both numerical (pseudo-spectral method) and long-wave approaches. The general linear
stability analysis (GLSA) predicts shear-flow and thermocapillary modes that arise due
to the imposed pressure and temperature gradients, respectively. The previous stability
analyses of the same problem predicted a negligible effect of the pressure-driven flow on
the linear stability of the system. However, the GLSA reveals stabilising and destabilising
effects of the pressure-driven flow depending on the viscosity ratio (μr), thermal
conductivity ratio (κr), interface position (H) and the sign of the imposed temperature
gradient (β1). The analysis predicts a range of H for given μr and κr, which can not be
stabilised by the thermocapillarity. The numerically predicted long-wave instability is then
captured using the long-wave asymptotic approach. The arguments based on the physical
mechanism further successfully explain the role of μr, κr, H, the sign of β1 and the
interaction between the velocity and temperature perturbations in stabilising/destabilising
the flow. The spatio-temporal analysis reveals the dominance of the spanwise mode in
causing the absolutely unstable flow. The weakly nonlinear analysis reveals a subcritical
pitchfork bifurcation without shear flow. However, with the shear flow, the streamwise
mode undergoes a supercritical Hopf bifurcation.
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1. Introduction

Multi-layer channel flows subjected to a temperature gradient are encountered in polymer
processing (Joseph & Renardy 1993; Joseph et al. 1997), microfluidic applications
involving large bubbles (Bretherton 1961; Alvarez & Uguz 2013), additive manufacturing
(Gibson, Rosen & Stucker 2010), material processing and crystal growth (Lappa 2010),
reactive flows (Levenspiel 1999) and industrial processes such as coating and drying
(Kistler & Schweizer 1997). For example, in the fused-filament-fabrication additive
manufacturing process, a product comprised of a polymer composite can be obtained
using a layered feed of required polymer filaments (Quan et al. 2015; Chua & Leong
2017; Goh et al. 2018; Rajak et al. 2019). The fed filaments are then heated to obtain
a multi-layered flow of the molten polymers that then exits through the nozzle and is
deposited on a substrate to obtain the desired product. This system can be modelled as a
multi-layer pressure-driven polymer flow subjected to a wall-normal temperature gradient.
The present study could also be relevant in manipulating the mixing in multi-layered
microfluidic flows wherein the wall-normal temperature gradient could be utilised as a
controlling parameter to enhance or reduce the mixing of the fluids. To understand the
role of the liquid–liquid interface in determining the dynamics of the system, here we
consider a two-layer pressure-driven flow. The multi-layered flows could exhibit various
instabilities due to the shear-flow and temperature dependence of the physical properties
of the fluids. The present study aims to investigate the shear-flow and thermocapillary
instabilities. The thermocapillary instability arises from the temperature dependence of
the interface tension and an ensuing emergence of shear stress at the interface (Pearson
1958; Oron, Davis & Bankoff 1997). While the shear-flow instabilities arise due to the
viscosity stratification (Yih 1967), which leads to the development of longitudinal velocity
perturbations.

For a liquid layer supported by a heated substrate and a free surface, thermocapillary
instabilities exist as the Marangoni number crosses a threshold or critical value Mac.
As explained in the literature (Smith & Davis 1983a,b; Patne et al. 2022), for such
a system to exhibit a thermocapillary instability, the free surface temperature of the
liquid must be lower than that of the substrate. Here, we have a two-layer system with
plate 1 at y∗ = 0 maintained at temperature T∗

1 and plate 2 at y∗ = R maintained at
temperature T∗

2 , where the asterisk implies a dimensional quantity. First, consider the
case when T∗

1 < T∗
2 for which fluid 1 will have the interface temperature higher than the

temperature at y∗ = 0, thus (following the above arguments), it will have a stabilising
effect on the thermocapillary mode. However, for fluid 2, the interface will be at a lower
temperature compared with the plate at y∗ = R. Thus, it will have a destabilising effect
on the thermocapillary mode. The opposite is the case when T∗

1 > T∗
2 . Additionally,

the viscosity stratification leads to a shear-flow instability, which may interact with the
thermocapillary mode via the tangential stress balance condition at the interface. Thus,
there is a competition between the stabilising and destabilising influence of the fluid layers
to manifest thermocapillary and shear-flow instabilities. The above considerations lead
to the following questions. How do the shear-flow and thermocapillary modes interact?
Do the physical properties of the fluids, viz., viscosity and thermal conductivity, interface
position and the sign of the imposed temperature gradient, affect the stability of the flow?
How can one explain the physical mechanism (similar to a single layer) by which the flow
will become unstable? The present study aims to answer these questions.

Yih (1967) predicted shear-flow instability in a two-layer isothermal Couette–Poiseuille
flow and ascribed the unstable mode to the viscosity stratification. From his study, the
shear-flow instability could exist in a viscosity-stratified multi-layer flow, provided that
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Spatio-temporal dynamics of a two-layer pressure-driven flow

finite inertia and a deformable liquid–liquid interface exist. Yiantsios & Higgins (1988)
extended his study to include the short-wave instability and the presence of the density and
thickness ratios. They also carried out an asymptotic analysis to capture the short-wave
instability. Tilley, Davis & Bankoff (1994) considered a similar problem in an inclined
channel for specific cases of air–water and olive oil–water for an arbitrary wavenumber.
Barmak et al. (1994) studied the same problem for an arbitrary wavenumber using the
Chebyshev collocation method and predicted that there is no definite correlation between
the type of instability and the perturbation wavelength.

Georis et al. (1993, 1999), Madruga, Pérez-Garcia & Lebon (2003), Nepomnyashchy
& Simanovskii (2006), Madruga, Pérez-Garcia & Lebon (2004) and Simanovskii (2007)
investigated the dynamics of the multi-layer system subjected to a wall-normal temperature
gradient in the absence of an imposed temperature gradient and assumed a non-deformable
interface thereby missing the main ingredient, i.e. interface deformability and absence
of the base flow, necessary for the existence of the shear-flow instability. However, they
could predict thermocapillary instability at a higher Marangoni number. The deformability
of the interface and the presence of the shear flow were considered by Alvarez & Uguz
(2013) for a three-layer Poiseuille flow subjected to a wall-normal temperature gradient.
However, their analysis was focused on the case with no shear flow, i.e. the absence of
the applied pressure gradient, thus, they did not present results for the critical Marangoni
number when the shear flow was present. Furthermore, they predicted a negligible effect
of the applied pressure gradient on the growth rate (i.e. stability) while the present study
clearly shows (using analytical and numerical calculations and physical arguments) that
the applied pressure gradient can have both stabilising and destabilising effects depending
on the parameters.

Wei (2006) analysed the stability of a two-layer Couette flow with a deformable
interface under an imposed temperature gradient across the bounding plates with the
linear dependence of the interface tension on the temperature. He assumed one fluid layer
in the thin-film limit to proceed with the long-wave asymptotic analysis and governing
equation derivation. The thin-film equations showed the presence of a non-local term
that played an important role in determining the competition between the inertial and
thermocapillary forces. His study showed an interesting interplay between the shear-flow
and thermocapillary instabilities.

The analysis of Wei (2006) was focused on predicting the existence of the instability
but lacked an explanation regarding the physical mechanism of the instabilities, thereby
leaving an important gap in the understanding of the dynamics of the flows. Also, Wei
(2006) studied a two-layer Couette flow whose stability characteristics widely differ from
those of practically important pressure-driven two-layer channel flows. Furthermore, Wei
(2006) considered only temporal dynamics of the flows, which may be inadequate in
the applications. For example, in the co-extrusion of polymers in the presence of the
temperature gradient relevant in the fused-filament-fabrication (Gibson et al. 2010) and
polymer processing (Bird, Armstrong & Hassager 1977), only spatio-temporal analysis
can determine the existence of the detrimental absolute instability, thereby necessitating
the spatio-temporal analysis.

The spatio-temporal instability can be further classified as absolute or convective
instabilities. Absolute instability implies the growth of disturbances at a fixed point in
space while convective instability implies that, given sufficient time, the disturbances
will decay at a fixed point in space. The present study aims to address the shortcomings
of the previous studies by analysing in detail the linear spatio-temporal dynamics of a
two-layer pressure-driven channel flow. It must be noted that Sahu & Matar (2011) studied
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the spatio-temporal dynamics of the two-layer isothermal Poiseuille flow and predicted
the existence of the absolute instability, provided that the Reynolds number is sufficiently
high. The present study augments their study by including the effect of the wall-normal
temperature gradient and shows that the flow can exhibit absolute instability at a much
lower Reynolds number. Also, unlike Wei (2006), here we do not assume long-wave
disturbances, instead a general linear stability analysis (GLSA) applicable for the whole
wavenumber range is carried out. To analytically capture the numerically predicted
instability, a long-wave asymptotic analysis is carried out. The weakly nonlinear stability
analysis carried out in the present study also shows the impact of the pressure-driven flow
on the type of bifurcation the two-layer system will undergo.

The rest of the paper is arranged as follows. The base-state and linearised perturbation
governing equations are derived in § 2. The numerical method utilised to carry out the
GLSA is briefly explained in § 3. The results obtained by GLSA and long-wave asymptotic
analysis to capture the modes predicted by the GLSA are presented in § 4. The physical
mechanism of the thermocapillary and shear-flow modes and their interplay is discussed
in § 5. The long-wave equation derivation, linear spatio-temporal analysis and weakly
nonlinear stability analysis are discussed in § 6. The salient conclusions of the current
study are presented in § 7.

2. Problem formulation

Two immiscible and incompressible Newtonian fluids flowing in a channel, extending
from 0 to R in the y direction, with the interface located at y∗ = HR are subjected to a
temperature gradient along the y axis. The fluids are assumed to extend infinitely in the
lateral direction (along the z axis). The plates at y∗ = 0 and y∗ = R are maintained at
temperatures T∗

1 and T∗
2 , respectively, such that T∗

1 /= T∗
2 , thereby imposing a temperature

gradient across the fluid layers. The two fluids, marked as 1 and 2, have different viscosities
μ1 and μ2 and thermal conductivities κ1 and κ2, respectively, but equal heat capacity cp
and density ρ.

The liquid–liquid interface tension, σ , is assumed to be linearly temperature dependent,

σ ∗ = σ0 − γ (T∗
i − T∗

0 ), (2.1)

where T∗
i is the local interface temperature, γ = −dσ ∗/dT∗ > 0, and σ0 is the interface

tension of the fluid at the reference temperature T∗
0 . This feature results in the emergence

of Marangoni stresses at the interface.
The Cartesian reference frame chosen here contains the x and z axes located in the

lower wall and the y axis normal to the latter and directed into the two-layer system. The
lengths in the present problem are scaled by the channel spacing, R. The components of the
velocity field are scaled by the interface velocity VI , pressure by μVI/R, temperature by
βHR and the time t is scaled by R/VI , where β = dT̄(1)∗/dy∗ is the base-state temperature
gradient across fluid 1. In the dimensionless coordinates, fluids 1 and 2 are confined to
the domains [0, H] and [H, 1], respectively. The schematic of the flow geometry under
consideration is shown in figure 1.

The velocity fields in the two fluids are v(i) = (v
(i)
x , v

(i)
y , v

(i)
z ), where i = 1, 2 represent

fluids 1 and 2, respectively. The dimensionless continuity equation is

∇ · v(i) = 0, (2.2a)
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y

x

Fluid 1

Fluid 2

y = 1, T = T2

y = H, T = Ti

y = 0, T = T1

Figure 1. Schematic of a two-layer plane Poiseuille flow subjected to a wall-normal temperature gradient in
scaled quantities. The velocity profile is shown for μ1 > μ2. For T1 /= T2, thermocapillary stresses develop
along the interface due to the temperature dependence of the interface tension.

where the gradient operator is ∇ = ex∂x + ey∂y + ez∂z, with ej denoting the unit vector in
the j direction. The dimensionless Navier–Stokes equations for the fluids are

Re[∂tv
(i) + (v(i) · ∇)v(i)] = −∇p(i) + μ(i)∇2v(i), (2.2b)

in which Re ≡ ρVIR/μ1 is the Reynolds number and ∇2 ≡ ∂2
x + ∂2

y + ∂2
z is the Laplacian

operator. The dimensionless viscosities are μ(1) = 1 for fluid 1 and μ(2) = μr ≡ μ2/μ1
for fluid 2. The dimensionless energy equations are

Re Pr[∂tT(i) + (v(i) · ∇)T(i)] = κ(i)∇2T(i), (2.2c)

where Pr = μ1cp/κ1 is the Prandtl number based on the properties of fluid 1. The
dimensionless thermal conductivities are κ(1) = 1 for fluid 1 and κ(2) = κr ≡ κ2/κ1 for
fluid 2.

The governing equations (2.2) are subjected to the following boundary conditions.
Assuming no-slip, impermeable plates and fixed temperatures at the bounding plates yield

v(1)
x = 0; v(1)

y = 0; v(1)
z = 0; T(1) = T1, at y = 0, (2.3a)

v(2)
x = 0; v(2)

y = 0; v(2)
z = 0; T(2) = T2, at y = 1. (2.3b)

For the linear stability analysis, the assumption of two-dimensional disturbances is
not applicable for the present system due to the thermocapillarity, which can excite
spanwise unstable modes earlier than the streamwise modes implying inapplicability of the
Squire’s theorem (Pearson 1958). Thus, henceforth three-dimensional disturbances will be
considered for the stability analysis. The fluid–fluid interface is located at y = H + ξ(x, t),
where ξ(x, t) is the infinitesimal displacement of the interface from its undisturbed
position, y = H. The boundary conditions at the interface are the kinematic boundary
condition, the balance of the tangential and normal components of the velocities and
stresses, as well as the balance of the temperature and heat flux, as follows:

∂tξ + vx∂xξ = vy, (2.3c)

v(1) − v(2) = 0, (2.3d)

t1 · τ (1) · n − t1 · τ (2) · n = −Ma∇T · t1, (2.3e)

t2 · τ (1) · n − t2 · τ (2) · n = −Ma∇T · t2, (2.3f )

−p(1) + n · τ (1) · n − (−p(2) + n · τ (2) · n) = −Ca−1(∇ · n), (2.3g)

T(1) − T(2) = 0, (2.3h)

∇T(1) · n − κr∇T(2) · n = 0. (2.3i)
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Here Ca = μ1VI/σ0 is the capillary number and Ma = γβHR/μ1VI is the Marangoni
number. By definition, the sign of Ma is the same as that of the base-state temperature
gradient across fluid 1, i.e. β. The Marangoni number can be rearranged as

Ma = γβ

μ1VI/(HR)
= Thermocapillary stress at the interface due to fluid 1

Viscous stress at the interface due to fluid 1
. (2.4)

Thus, the Marangoni number defined here gives relative importance of the thermocapillary
and viscous stresses due to fluid 1 along the interface.

The vectors t1, t2 and n represent the unit tangent and normal vectors to the free surface,
respectively. The linearised expressions for the normal and tangential vectors at the free
surface in the perturbed state are

n = −∂xξex + ey − ∂zξez; t1 = ex + ∂xξey; t2 = ez + ∂zξey. (2.5a–c)

2.1. Base state
A steady-state, fully developed pressure-driven bilayer flow has base-state velocities

v̄(1)
x = y[y − 1 − H(μr − 1)(H − y)]

(H − 1)H
, (2.6a)

v̄(2)
x = ( y − 1)[y − H(μr − 1)(H − 1 − y)]

(H − 1)Hμr
. (2.6b)

Similarly, the base-state temperature gradients are

∂T̄(1)

∂y
= 1; ∂T̄(2)

∂y
= 1

κr
, (2.6c)

β1 = κ2(T∗
2 − T∗

1 )

[(1 − H)κ1 + Hκ2]R
. (2.6d)

The subsequent linear stability analysis is performed with respect to this base state.

2.2. Linearised perturbation equations
For the linear stability analysis, dynamical quantities such as velocities, temperatures and
pressures are decomposed into the base-state and perturbed state, as F(x, t) = F̄( y) +
F ′(x, t). Here, F(x, t) is any dynamic quantity and a prime signifies the small perturbation
quantity. In the linearised governing equations, the normal modes of the following form
are then substituted:

F ′(x, t) = F̃( y) exp(i(kx + mz − ωt)). (2.7)

Here k and m are the wavenumbers and F̃( y) is the eigenfunction of F ′(x, t). The other
parameter, ω = ωr + iωi, is the complex frequency, which characterises the temporal
phase speed and growth of the disturbances. For the temporal stability analysis, the
wavenumbers are treated as real numbers, while for the spatio-temporal analysis, the
wavenumbers are complex numbers. The flow is considered temporally unstable if at least
one eigenvalue satisfies the condition ωi > 0. As described in § 6.2, the flow is absolutely
unstable if the imaginary part of the complex frequency at the cusp point (ωi0) satisfies the
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Spatio-temporal dynamics of a two-layer pressure-driven flow

condition ωi0 > 0, otherwise, convectively unstable. After the substitution of the normal
modes, the linearised governing equations become

ikṽ(i)
x + Dṽ(i)

y = 0, (2.8a)

Re[−iωṽ(i)
x + ikv̄(i)

x ṽ(i)
x + ṽ(i)

y Dv̄(i)
x ] = −ikp̃(i) + μ(i)(D2 − k2 − m2)ṽ(i)

x , (2.8b)

Re[−iωṽ(i)
y + ikv̄(i)

x ṽ(i)
y ] = −Dp̃(i) + μ(i)(D2 − k2 − m2)ṽ(i)

y , (2.8c)

Re[−iωṽ(i)
z + ikv̄(i)

x ṽ(i)
z ] = −imp̃(i) + μ(i)(D2 − k2 − m2)ṽ(i)

z , (2.8d)

Re Pr[−iωT̃(i) + ikv̄(i)
x T̃(i) + DT̄(i)ṽ(i)

y ] = κ(i)(D2 − k2 − m2)T̃(i), (2.8e)

where D = d/dy.
The above equations are to be solved using the following boundary conditions. At y = 0

and y = 1, the assumption of no-slip, impermeability and imposed temperature gradient
along the plates gives

ṽ(1)
x = 0; ṽ(1)

y = 0; ṽ(1)
z = 0; T̃(1) = 0, at y = 0, (2.9a)

ṽ(2)
x = 0; ṽ(2)

y = 0; ṽ(2)
z = 0; T̃(2) = 0, at y = 1. (2.9b)

At y = H, oscillations of the fluid–fluid interface will be induced due to the
perturbations. Thus, the infinitesimal displacement of the interface will play a role. These
boundary conditions, after substitution of the normal modes, become

i(kv̄(1)
x − ω)ξ̃ = ṽ(1)

y , (2.9c)

ṽ(1)
x + Dv̄(1)

x ξ̃ = ṽ(2)
x + Dv̄(2)

x ξ̃ , (2.9d)

ṽ(1)
y = ṽ(2)

y , (2.9e)

ṽ(1)
z = ṽ(2)

z , (2.9f )

Dṽ(1)
x + ikṽ(1)

y + [D2v̄(1)
x − μrD2v̄(2)

x ]ξ̃

= μr(Dṽ(2)
x + ikṽ(2)

y ) − ikMa(T̃(1) + DT̄(1)ξ̃ ), (2.9g)

Dṽ(1)
z + imṽ(1)

y = μr(Dṽ(2)
z + imṽ(2)

y ) − imMa(T̃(1) + DT̄(1)ξ̃ ), (2.9h)

−p̃(1) + 2Dv(1)
y = −p̃(2) + 2μrDv(2)

y − Ca−1(k2 + m2)ξ̃, (2.9i)

T̃(1) + DT̄(1)ξ̃ = T̃(2) + DT̄(2)ξ̃, (2.9j)

DT̃(1) = κrDT̃(2), (2.9k)

where all quantities are evaluated at y = H.

3. Numerical approach

To carry out the GLSA of the problem at hand, the pseudo-spectral method is employed in
which the eigenfunctions corresponding to each dynamic field are expanded into a series
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of Chebyshev polynomials as

f̃ ( y) =
m=N∑
m=0

amTm( y), (3.1)

where Tm( y) are Chebyshev polynomials of degree m and N is the highest degree of
the polynomial in the series expansion or, equivalently, the number of collocation points.
The series coefficients am are the unknowns to be solved for. The generalized eigenvalue
problem is constructed in the form

Ae + ωBe = 0, (3.2)

where A and B are matrices obtained from the discretisation procedure and e is the vector
containing the coefficients of all series expansions.

The details of the discretisation of the governing equations and boundary conditions,
and construction of A and B can be found in the standard procedure described by Trefethen
(2000) and Schmid & Henningson (2001). Application of the pseudo-spectral method for
similar problems can be found in the study of Boomkamp et al. (1997), Barmak et al.
(1994), Patne, Agnon & Oron (2020, 2021); Patne et al. (2022). The MATLAB routine eig
is used to solve the constructed generalized eigenvalue problem equation (3.2).

To identify genuine modes in the numerically computed spectrum, the eigenspectrum
is obtained for N and N + 2 collocation points, which are then compared with a specified
tolerance, e.g. 10−4. The genuine eigenvalues are further verified by increasing the number
of collocation points by 25 and monitoring the variation of the obtained eigenvalues. If the
eigenvalue does not change up to a prescribed precision, e.g. to the sixth significant digit,
the same number of collocation points are used to determine the critical parameters of the
system. In the present work, N = 50 is found to be sufficient to achieve convergence and
determine the leading, most unstable eigenvalue within the investigated parameter range.

It must be noted that the numerical and analytical approaches employed here are similar
to the one used for studying the stability of a non-isothermal two-layer plane Couette flow
by Patne et al. (2022). Additionally, for an isothermal two-layer Poiseuille flow, we have
validated the asymptotic approach against the standard procedure developed by Yih (1967)
and Yiantsios & Higgins (1988) as follows.

To standardise and compare with their predictions, the layers are assumed to be of equal
thickness, the relation ω = kc is used, and the coordinate system origin is shifted to the
fluid–fluid interface so that the interface lies at y = 0 and fluids 1 and 2 will be present in
the intervals [0, 1] and [0, −1], respectively. This adjustment then modifies the base state
(2.6) and boundary conditions (2.3) location to mimic Yih (1967) and Yiantsios & Higgins
(1988). Now following the procedure for the long-wave asymptotic analysis outlined in § 4,
we obtain

c0 = 1 + 2(μr − 1)2

μ2
r + 14μr + 1

(3.3)

in exact agreement with equation (46) of Yih (1967) and equation (9) of Yiantsios &
Higgins (1988) for n = 1. Please note that they use m to denote the viscosity ratio μr and
n to denote the thickness ratio H. Next, we proceed with the O(k) eigenvalue correction for
which term-by-term comparison is difficult, thus, the unstable eigenvalue for a particular
value of μr is compared. For n = 1 and m = 10, the continuous curve in figure 2(a)
of Yiantsios & Higgins (1988) gives c1/(kRe) ∼ 0.0128 while our procedure followed
here predicts c1//(kRe) = 0.0127, which is in excellent agreement thereby validating the
long-wave asymptotic analysis. The results obtained by the numerical calculations are
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(×10–4)

Figure 2. The effect of the variation in Ma on the streamwise mode in the ωr − ωi plane at Re = 10, H =
0.4, μr = 0.5, κr = 1, k = 0.1, Ca = 0.001, m = 0, and Pr = 7. The eigenvalues in the figure correspond to a
decreasing Ma in steps of unity such that the blue circle with ωi < 0 is for Ma = 0 and the star with ωi > 0
is for Ma = −5. The figure demonstrates the strong destabilising effect of the thermocapillary stresses on the
growth rate of the unstable mode.

then verified against the predictions of the standardised long-wave asymptotic analysis,
as shown in figure 4, thus validating the former.

4. General linear stability analysis

Before proceeding with the results, an estimation of the practical range of the
dimensionless parameters is presented here. In this case, the typical ranges for
the physical properties are (Ezersky et al. 1993; De Saedeleer et al. 1996;
Li, Xu & Kumacheva 2000; Schatz & Neitzel 2001; Ospennikov & Schwabe
2004; Mizev & Schwabe 2009) R ∼ 10−6 − 10−2 m, ρ ∼ 103 kg m−3, σ0 ∼ 10−3 −
10−1 N m−1, γ ∼ 10−5 − 10−3 N (m K)−1, κ ∼ 10−2 − 102 J (m s K)−1, μ ∼ 10−5 −
102 Pa s and VI ∼ 10−3 − 10−1 m s−1. Thus, the typical dimensionless numbers are
Re ∼ O(10−5 − 103), Ca ∼ O(10−4 − 10−1) and Pr ∼ O(10−3 − 103). This parametric
range will be used here to study the predicted instabilities.

As explained in § 1, the thermocapillary stresses exerted by the fluid layers exhibit
strong competition and may influence the stability of the flow. Figure 2 shows the strong
destabilising effect of the thermocapillary stresses, which results in instability. The role of
the thermocapillary stresses along the interface becomes clear from figure 3. Additionally,
figure 3(b) shows that as k � 1, the growth rate ωi /= 0, thereby illustrating the long-wave
nature of the instability. Figures 2 and 3 show the streamwise mode (m = 0). A similar
spanwise unstable mode (k = 0) also exists with ωr = 0, thus, a stationary mode. The
long-wave streamwise and spanwise modes are amenable to the asymptotic approach
with asymptotic expansion around the limit k = m = 0. For the convenience of the
mathematical analysis and presentation of the results, the discussion will be divided into
two sections dealing with the streamwise and spanwise modes.
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Figure 3. The variation of ωi with k for the streamwise mode at Re = 10, H = 0.4, μr = 0.5,

κr = 1, Ca = 0.001, m = 0 and Pr = 7. Panel (a) shows the destabilising effect of decreasing Ma on the
streamwise mode. Panel (b) provides the magnified view of the streamwise mode at low k to show that ωi /= 0
for k � 1, thereby illustrating the long-wave nature of the streamwise mode.

4.1. Streamwise mode (m = 0)
For m = 0 and ṽz = 0, the momentum perturbation equations in (2.8) can be reduced to
two-dimensional Orr–Sommerfeld equations

iRe(kv̄(i)
x − ω)(D2 − k2)ṽ(i)

y = μ(i)(D2 − k2)2ṽ(i)
y − ikReD2v̄(i)

x ṽ(i)
y , (4.1)

whereas the energy equation in (2.8) is modified by substituting m = 0. Next, the velocity
and temperature fields and the complex frequency ω are expanded as the series in terms of
a small wavenumber k, as

ṽ(i)
y = v

(i)
y0 + kv(i)

y1 + k2v
(i)
y2 + · · · , (4.2a)

ω = kc0 + k2c1 + k3c2 + · · · , (4.2b)

T̃(i) = 1
k

T(i)
0 + T(i)

1 + kT(i)
2 + · · · . (4.2c)

The above expansions are then substituted into the Orr–Sommerfeld equation (4.1), the
energy equation (2.8e) and the boundary conditions (2.9). Similar expansion in powers of
k for ṽ

(i)
x can be obtained from the continuity equations and, for p̃(i), can be obtained from

the x-momentum equation.
At O(1), the governing equations read

D4v
(i)
y0 = 0; D2T(i)

0 = 0. (4.3a,b)

Using the expansions (4.2), the O(1) eigenvalue is

c0 = − [(H2 − 2H)(μr − 1) − 1][1 + H2(μr − 1)]
1 + H(μr − 1)[4 − 6H + 4H2 − H3 + H3μr]

. (4.4)

The O(1) eigenvalue, c0, is a real quantity, thus, these are purely travelling disturbances.
For H = 0.5, the above expression reduces to equation (46) of Yih (1967), thereby
validating the procedure. The above expression is independent of the capillary number
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Ca in agreement with Yih (1967). Furthermore, c0 for both the flows is independent of
κr, representing the thermal conductivity stratification, and Ma, reflecting the thermal
stresses. This implies that the thermocapillarity and thermal properties do not affect the
phase speed of the disturbances, while they might affect at O(k) or higher. Thus, we
proceed with higher-order correction, i.e. O(k).

At O(k), the governing equations are

μ(i)D4v
(i)
y1 + iRe(c0 − v̄(i)

x )D2v
(i)
y0 − ReD2v̄(i)

x v
(i)
y0 = 0, (4.5a)

κ(i)D2T(i)
1 + iRe Pr(c0 − v̄(i)

x )T(i)
0 − Re PrDT̄(i)v

(i)
y0 = 0. (4.5b)

Solving (4.5) in the same way as for O(1) above, yields

c1 = i [f1(H, μr, κr) Ma + f2(H, μr) Re], (4.6)

where

f1 = g1

g2
; f2 = g3

g4
, (4.7a)

g1 = (H − 1)2H2(2H − H2 + μrH2 − 1), (4.7b)

g2 = [1 + (κr − 1)H] [2 + 2H(μr − 1)(4 − 6H + 4H2 − H3 + μrH3)], (4.7c)

g3 = −(2H − H2 + μrH2 − 1){1 − μr + 5H14(μr − 1)7(1 + μr) + 2H(−4 + 3μr + μ2
r )

−2H13(μr − 1)6(−32 + 19μr + 3μ2
r ) + H12(μr − 1)5(377 − 694μr + 177μ2

r )

+H2(13 + 4μr + 15μ2
r − 32μ3

r ) + 8H3(13 − 34μr + 16μ2
r + 5μ3

r )

−8H11(μr − 1)4(−169 + 472μr − 258μ2
r + 29μ3

r )

−2H5(μr − 1)2(−1144 + 1441μr − 1107μ2
r + 112μ3

r )

+2H9(μr − 1)3(−2860 + 8635μr − 4718μ2
r + 223μ3

r )

+H8(μr − 1)3(7293 − 17490μr + 5341μ2
r + 472μ3

r )

+H6(μr − 1)2(−4719 + 9240μr − 6473μ2
r + 776μ3

r )

+H4(−715 + 1925μr − 2061μ2
r + 1259μ3

r − 408μ4
r )

−16H7(μr − 1)2(−429 + 1155μr − 873μ2
r + 112μ3

r + 14μ4
r )

+H10(μr − 1)3(3289 − 11517μr + 9743μ2
r − 2115μ3

r + 88μ4
r )}, (4.7d)

g4 = 420(1 + H(4 − 6H + 4H2 − H3 + μrH4)(μr − 1))3μ2
r . (4.7e)

Using (4.4) and (4.6), the eigenvalue ω up to O(k) correction is

ω = kc0(H, μr) + i k2 [f1(H, μr, κr) Ma + f2(H, μr) Re]. (4.8)

The function f1(H, μr, κr) represents the combined effect of the thermocapillarity and
viscosity stratification along the interface while the function f2(H, μr) represents the
inertial stresses alone. The function f2(H, μr) is similar to the coefficient of Re in the
analysis of Yih (1967), thus representing the shear-flow instability due to the viscosity
stratification in the absence of an imposed temperature gradient. The first function
f1(H, μr, κr) is dependent on both the viscosity and thermal conductivity stratification
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and represents an additional term due to the imposed temperature gradient. Clearly, the
mechanism responsible for the instability stems from shearing action (Re term) along
the interface, which results in the ‘shear-flow mode’ and thermocapillary stresses (Ma
term) along the interface, which leads to the ‘thermocapillary mode’. Additionally, from
(4.8), the long-wave instability is independent of Pr, which is present only in the energy
equation as a coefficient of the convection term. Thus, although the momentum convection
terms affect the long-wave instability (through the Re term), the energy convection does
not affect the long-wave instability. The effect of the energy appears only through the
Marangoni terms implying the vital role played by the thermocapillary stresses (through
the Ma term) in determining the stability of the flow.

From (4.8), the instability can exist (ωi > 0) for an arbitrary Re and Ma > 0 if f1 > 0
and f2 > 0. When f1 > 0 and f2 < 0, then a minimum value of Ma > 0 will be necessary
to set in the instability. If f1 < 0 and f2 > 0 then the flow is unconditionally unstable
for Ma < 0, implying the necessity of a negative temperature gradient across fluid 1. For
f1 < 0 and f2 < 0, a minimum value of Ma < 0 is necessary to make flow unstable. Thus,
the rest of the analysis aims to evaluate the required critical value and sign of the critical
Marangoni number Mac to stabilise/destabilise the flow. Equating the imaginary part of
(4.8) to zero, we obtain the expression for the critical Marangoni number

Mac = − f2(H, μr)

f1(H, μr, κr)
Re, (4.9)

implying Re merely enters as a multiplier; thus, in the present study we have presented and
discussed the results for the temporal instability for a fixed Re = 0.1.

The comparison of the growth rate (ωi) of the unstable streamwise mode predicted
by the numerical approach and the asymptotic approach (4.6) is presented in figure 4.
On expected lines, the asymptotic and numerical approaches are in excellent agreement
for k < 0.5. From the O(k) expression for the eigenvalue, the shear-flow instability is
independent of Ca. To accommodate this in the numerical approach, Ca = ∞ has been
used.

The orthonormalised velocity and temperature perturbations for the streamwise mode
are shown in figure 5. The eigenfunctions vanish at the boundaries of the channel, i.e.
y = 0 and y = 1 due to the impermeability condition and the absence of the temperature
perturbations at the wall given by boundary conditions (2.9a) and (2.9b). Also, both the
eigenfunctions achieve maximum at the interface, implying that the instability is driven by
the shear and thermocapillary stresses at the interface.

The critical parameter curves (corresponding to ωi = 0) in Mac − H parametric space
as a function of μr and κr are shown in figure 6. From (4.7a), (4.7b) and (4.7d), the factor
(2H − H2 + μrH2 − 1) is common in the numerator for both f1(H, μr, κr) and f2(H, μr)
with g3 having a negative sign preceding the factor, thus, both functions have a common
root H = (

√
μr − 1)/(μr − 1). The remaining factors of g1, namely, (H − 1)2, H2 and g2

do not affect the sign of f1 for μr < 1. Similarly, the remaining factors of g3 and g4 do
not affect the sign of f2. Thus, for a given value of H and μr, both functions will possess
an opposite sign and their signs will switch at the root H = (

√
μr − 1)/(μr − 1). This is

precisely the case depicted in figure 6 with the location of the vertical line parallel to the
Mac axis indicating the root. For example, for μr = 0.1, the root is H = 0.76 with f1 > 0
and f2 < 0 for H < 0.76 and f1 < 0 and f2 > 0 for H > 0.76 separated by a vertical line at
H = 0.76 in figure 6(a). Thus, for Ma > 0, for H < 0.76, the thermocapillarity stabilises
while the shear force has a destabilising influence. The opposite is the case for f1 < 0 and
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Analytical approach

Figure 4. Comparison between the asymptotic and numerical approaches in the prediction of the growth rate
ωi with wavenumber k at Re = 0.1, H = 0.3, μr = 0.3, κr = 3, Ca = ∞ and Pr = 7 for the return flow. The
excellent agreement between the asymptotic and numerical approaches for k < 0.5 validates the numerical
methodology utilised here. For ωi > 0, the flow is unstable.
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Figure 5. The variation of the orthonormalised velocity and temperature eigenfunctions (for fluid 1) in
the x–y plane at Re = 10, Pr = 7, μr = 0.5, H = 0.4, κr = 1, Ma = −10, Ca = 0.001 and k = 0.1 for the
streamwise mode ω = 0.111936 + 0.000924 i. The eigenfunctions exhibit maximum variation near y = 0.4,
i.e. the interface, indicating the destabilisation introduced by the shearing and thermocapillary stresses along
the interface. The plotted eigenfunctions are the modulus or absolute value of the respective eigenfunctions.

f2 > 0 for H > 0.76. Also, the root H = (
√

μr − 1)/(μr − 1) is independent of κr, thus,
variation in κr does not affect the location of the vertical line shown in figure 6.

For μr > 1, as shown in figure 6(b), a negative temperature gradient is necessary to
stabilise or destabilise the flow. In this case, functions f1 and f2 have H = 0.24 as the
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Figure 6. Variation in the critical Marangoni number Mac with the relative position of the interface H at
Re = 0.1. The capillary number Ca and Prandtl number Pr do not affect the critical parameters for the
long-wave instability, as seen in (4.8). (a) For H < 0.76, f1 < 0 and f2 > 0; thus, the thermocapillarity has a
stabilising effect (if β1 > 0) while the shearing force has a destabilising effect. As a result, the flow is unstable
for Ma < Mac. However, for H > 0.76, f1 > 0 and f2 < 0, which leads to the swapping of the stable and
unstable regimes. (b) For H < 0.24, f1 < 0 and f2 < 0; thus, both thermocapillarity and the shearing force have
a stabilising effect (if β1 > 0). However, if β1 < 0 then the flow becomes unstable for Ma < 0. For H > 0.24,
the shearing force has a destabilising effect, while thermocapillarity with β1 has a stabilising effect. (c) A
decreasing κ2 or an increasing κ1 shifts the neutral stability boundary to a lower Ma. (d) Illustrates the opposite
scenario of panel (c). Results are shown for (a) κr = 1 and μr = 0.1, (b) κr = 1 and μr = 10, (c) κr = 0.1 and
μr = 0.1, (d) κr = 10 and μr = 0.1.

common root. For H < 0.24, both f1 and f2 are negative, thus, both the thermocapillary
and inertial terms have a stabilising influence due to which a negative temperature
gradient is necessary to set in the instability. While for H > 0.24, both f1 and f2 are
positive, thus, both the thermocapillary and inertial terms have a destabilising influence.
A negative temperature gradient then becomes necessary to stabilise the flow. The
physical mechanism of the stabilisation or destabilisation due to the viscosity stratification,
i.e. impact of variation in the parameter μr is explained in § 5.

The effect of the thermal conductivity stratification on the stable and unstable zones
in Mac − H parametric space is shown in figure 6(c,d). Figure 6(c) shows that if fluid 2
has a lower thermal conductivity than fluid 1, i.e. κr < 1, then compared with the only
viscosity stratification shown in figure 6(a), the critical parameter curves shift to a lower
Mac while the opposite occurs for κr > 1. The physical picture of the impact of variation
in the parameter κr on the thermocapillary mode is discussed in § 5.

The analysis of Wei (2006), which considered a two-layer plane Couette flow subjected
to a temperature gradient, assumed one of the fluid layers in the thin-film limit implied
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H → 0 or H → 1. He concluded that the shear-flow mode could be stabilised for an
arbitrary H by the thermocapillary mode. However, from figure 6, for μr < 1, the
thermocapillarity is unable to stabilise the flow as H → 0 while, for μr > 1, again
thermocapillarity is incapable of stabilising the flow as H → 1. This implies that the
analysis of Wei (2006) has limited applicability to a two-layer pressure-driven flow
subjected to a temperature gradient. Furthermore, Wei (2006) predicted two neutral states
when the interface tension is weak, but there is no such region found in the present analysis
highlighting the difference between the two-layer planar Couette and pressure-driven flows
or a possible failure of the thin-film assumption of Wei (2006).

4.2. Spanwise mode (k = 0)
For k = 0 and ṽx = 0, the momentum perturbation equations in (2.8) reduce to

− iω Re(D2 − m2)ṽ(i)
y = μ(i)(D2 − m2)2ṽ(i)

y , (4.10)

and the energy equations in (2.8) are modified by substituting k = 0 and ṽx = 0. Similar
to the case of the streamwise perturbations, the velocity and temperature fields and the
complex frequency ω are expanded as the series in terms of spanwise wavenumber m,

ṽ(i)
y = v

(i)
y0 + mv

(i)
y1 + m2v

(i)
y2 + · · · , (4.11)

ω = mc0 + m2c1 + m3c2 + · · · , (4.12)

T̃(i) = 1
m

T(i)
0 + T(i)

1 + mT(i)
2 + · · · . (4.13)

The above expansions are then substituted in (4.10), the energy equation (2.8e) for k = 0
and the boundary conditions (2.9). The expansions in powers of m for ṽ

(i)
x and p̃(i) are

obtained from the continuity equations and the z-momentum equations, respectively.
At O(1), the governing equations read

D4v
(i)
y0 = 0; D2T(i)

0 = 0. (4.14a,b)

At O(1), the eigenvalue is
c0 = 0. (4.15)

This shows that the spanwise mode is stationary. At O(m), the governing equations are

μ(i)D4v
(i)
y1 + iRec0D2v

(i)
y0 = 0, (4.16a)

D2T(i)
1 + iRe Prc0T(i)

0 − Re Pr
∂T̄(i)

∂y
v

(i)
y0 = 0. (4.16b)

Solving (4.16) in the same way as for O(1) above, yields

c1 = i f1(H, μr, κr) Ma, (4.17)

where f1 is a function defined in (4.7a). Using (4.15) and (4.17), the eigenvalue ω up to
O(m) correction is

ω = i m2 f1(H, μr, κr) Ma. (4.18)

A comparison of the above expression for ω with the expression for the complex frequency
for the streamwise mode (4.8) shows the absence of the shear-flow term (i.e. Re term)
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Figure 7. Variation of the function f1 with the relative position of the liquid–liquid interface H. (a) An
increasing μr increases the range of H for which f1 > 0. (b) A decreasing κr increases maximum |f1| values.
The spanwise mode is unstable for the H range that satisfies the condition f1 > 0. Results are shown for
(a) κr = 1, (b) μr = 0.1.

for the spanwise mode. The shear-flow term is absent since the base-state flow is only
in the streamwise direction, while there is no base-state velocity present in the spanwise
direction. This is also the reason that the O(1) eigenvalue vanishes, thereby implying a
stationary mode.

From (4.18), the spanwise mode is unstable if the product f1Ma > 0. From figure 7(a),
for a given μr, there exists a range of H for which f1 > 0. For such a range, the spanwise
perturbations become unstable for a positive temperature gradient, i.e. Ma > 0. While
for f1 < 0, a negative temperature gradient, i.e. Ma < 0, is essential for destabilising the
spanwise mode. For example, from the curve for μr = 0.1, f1 < 0 for H < 0.76 and f1 > 0
for H > 0.76; thus, to destabilise the spanwise perturbations, Ma < 0 for H < 0.76 and
Ma > 0 for H > 0.76 will be necessary.

The dominant mode of instability, i.e. the mode with the higher growth rate between the
streamwise and spanwise modes, and its range can be decided as follows. When f2 < 0,
then from (4.8), the streamwise mode will have to overcome the stabilising effect of the
inertial term to destabilise the flow, which is not the case with the spanwise mode since the
inertial term is absent (see (4.18)). Thus, the spanwise mode will dominate the stability of
the flow in the parametric regime for which f2 < 0. The opposite is true when the inertial
term has a destabilising effect, i.e. f2 > 0. In this case, the streamwise mode will have a
higher growth rate than the spanwise mode, thereby becoming the dominant mode.

4.3. Oblique modes
The above discussion was limited to only the extremes, i.e. streamwise and spanwise
instability modes. However, the streamwise and spanwise instability modes turn out to
be the dominant modes of instability as follows. A comparison of (4.8) and (4.18) shows
that the difference between the two modes is due to the term f2(H, μr)Re. Thus, if f2 < 0
then the spanwise mode will possess a higher growth rate than the streamwise mode,
and the opposite will be true for f2 > 0. Any oblique mode with k /= 0 and m /= 0 will
have both Ma and Re terms. The function f1 will remain the same for all oblique modes
since it remains the same for the extremes, i.e. streamwise and spanwise modes. However,
the Re term will diminish as one goes from a streamwise to spanwise mode. Thus, if
f2 < 0, all oblique and streamwise modes will have a growth rate lower than the spanwise
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Figure 8. The growth rate variation due to variations in k and m in the ωr − ωi plane at
Re = 10, H = 0.3, μr = 0.1, κr = 3, Ma = −10, Ca = 0.01 and Pr = 7. The figure demonstrates that any
oblique mode will have a growth rate between the streamwise and spanwise modes. In the illustrated case,
f2 > 0, thus, the streamwise mode exhibits a higher growth rate than the oblique and spanwise modes.

mode, while for f2 > 0, the streamwise mode will possess a higher growth rate than
oblique and spanwise modes. Thus, the analysis presented here successfully captures the
dominant modes of instability, viz., streamwise and spanwise modes. The case with f2 > 0
is illustrated in figure 8.

5. Physical mechanism

5.1. Purely thermocapillary mode (Re = 0)
In the following section we discuss the role of shear and Marangoni stresses exerted on
the liquid–liquid interface in causing the predicted instabilities. The physical mechanism
behind the Marangoni instability in a liquid layer with a free surface subjected to a negative
vertical temperature gradient is well understood (Smith & Davis 1983a,b; Patne et al.
2021).

Consider a ‘hot spot’ generated randomly due to the temperature fluctuations at the
interface as schematically shown in figure 9. The surface tension at the hot spot decreases
correspondingly, which sets fluid flows away from the hot spot along the interface as
shown by arrows pointing away from the hot spot in figure 9. To maintain the local
mass conservation, upward and downward flows develop in fluids 1 and 2, respectively.
Simultaneously, the hot spot loses thermal energy due to thermal diffusion to the
surrounding fluid. These upward and downward flows are also opposed by viscous forces.
Thus, the fate of the hot spot, i.e. growth or decay, is determined by the combined effects
of the generated flows and the viscosity and thermal diffusivity of the fluids.

For the positive temperature gradient across fluid 1, i.e. β1 > 0, the fluid layer adjacent
to the interface on the fluid 1 side is at a lower temperature than the interface. The opposite
is the case with fluid 2. Thus, the upflow will try to cool down the hot spot while the
downflow will try to heat it up. The cooling action of the upflow and the heating action
of the downflow will be reinforced/opposed by the viscous forces and thermal diffusion
of energy. For example, the cooling action of the upflow reinforces the thermal energy
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y = R, T = T2

y = HR, T = Ti

y = 0, T = T1

Downflow

Fluid 2

Fluid 1

Upflow

Figure 9. A schematic of the hot spot (red opaque circle) evolution at the interface. The temperature at
the interface T = Ti differs from the wall temperatures due to the imposed temperature gradient. The
thermocapillarity generates flow away from the hot spot along the interface. To fill in the so-formed mass
deficiency, an upflow in fluid 1 and a downflow in fluid 2 emerge. The combination of these flows leads to the
stabilising or destabilising effects of the thermocapillary stresses discussed in § 4.

loss due to the thermal diffusion from the hot spot. Thus, for the instability to exist, the
downflow must overcome the cooling action of the upflow, viscous forces and the thermal
diffusion of the thermal energy that is a function of the parameters H, μr and κr.

5.1.1. Effect of H
Consider the purely thermocapillary mode, which can be effectively represented by
figure 7 since only the thermocapillary mode of instability exists for the spanwise mode.
For a positive temperature gradient β1 > 0, from figure 7, the flow becomes unstable
for certain H depending on the value of κr implying that as H increases the flow gets
destabilised, which can be explained as follows.

As discussed above, for β1 > 0, the downflow is responsible for amplifying the hot
spot energy, while the upflow, viscous forces and thermal diffusion are responsible for
the decrease in the hot spot energy. As H increases, the interface gets closer to the upper
plate with a higher temperature implying an increased temperature on the fluid 2 side of
the interface. Thus, as the interface moves closer to the upper plate, the heating effect
provided by the downflow to the hot spot also increases, which can then overcome the
cooling effect provided by the upflow, thereby leading to thermocapillary instability. To
generalize, as the interface approaches the hotter fluid side, the thermocapillary instability
becomes severe.

5.1.2. Effect of κr
The hot spot shown in figure 9 can lose thermal energy through diffusion on the fluid 1
side, and the opposite is true on the fluid 2 side since the heat flux due to thermal diffusion
is proportional to the negative temperature gradient. At the same time, the downflow loses
while upflow gains energy while travelling to the interface by thermal diffusion since the
downflow is at a higher temperature than the surrounding while the upflow is at a lower
temperature than the surrounding. From figure 7(b), as κr decreases, the magnitude of f1
(thus, ωi) increases, which indicates that a decreasing κr has a destabilising effect on the
flow. The inequality κr < 1 implies κ2 < κ1. The destabilisation thus could be a result
of the diffusion-mediated energy gain by the upflow due to higher thermal conductivity
and lesser diffusion-mediated energy loss by the downflow, both of which support the
increase of hot spot energy. The destabilising effect of decreasing κr also implies a minor
role played by the energy loss from the hot spot on fluid 1 side by thermal diffusion. For
β1 < 0, there will be an opposite effect.
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5.1.3. Effect of μr
From figure 7(a), as μr increases, the flow becomes unstable for a larger range of H, which
can be explained as follows. As μr � 1, the two-layer system approaches the familiar
single-layer system subjected to a temperature gradient with fluid 2 having an extremely
higher viscosity than fluid 1, much akin to a water layer on a heated substrate and exposed
to ambient air. Essentially, one can neglect the dynamics of fluid 1, which is indeed the
case in the literature wherever thermocapillary instabilities are studied in a liquid layer
(Oron et al. 1997). Thus, the increasing unstable H range with increasing μr is due to the
lower/higher viscous stresses exerted by fluid 1/fluid 2 at the interface. For β1 < 0 and
μr � 1, the dynamics of fluid 2 can be neglected based on similar arguments.

5.2. Purely shear-flow mode (Ma = 0)
The mechanism for the shear-flow instability arising due to viscosity stratification was
explained by Yih (1967), Hinch (1984), Smith (1990) and Charru & Hinch (2000). For the
long-wave instability, the explanation suggested by Charru & Hinch (2000) was that, due to
the viscosity stratification, perturbations in the longitudinal velocity component develop,
which then lead to the emergence of pressure perturbations. It must be noted that, from
(4.8), the shear-flow component of the long-wave instability, i.e. the term containing the
Reynolds number Re, remains unaffected by the presence of the Marangoni stresses. Thus,
the destabilisation mechanism proposed by Charru & Hinch (2000) for the long-wave
instability is also applicable here.

5.3. Combined thermocapillary and shear-flow mode
The thermal and velocity perturbations are related by the tangential stress balance
conditions (2.9g) and (2.9h) at the interface and through the base-state–perturbed-state
terms in the linearised energy equation (2.8e). Thus, when a thermocapillary mode
of instability becomes unstable by the mechanism discussed in § 5.1, then the thermal
perturbations start to grow, which then leads to the growth of the velocity perturbations
through the relations (2.9g), (2.9h) and (2.8e). Similarly, when the shear-flow mode
becomes unstable by the mechanism discussed in § 5.2, longitudinal velocity perturbations
start to develop. This growth in the velocity perturbations then leads to the growth of the
thermal perturbations through the relations (2.9g), (2.9h) and (2.8e). Depending on the
stable/unstable nature of both modes, the superposition between the thermocapillary and
shear-flow modes can be classified into the following two types.

5.3.1. Constructive superposition
Consider the parametric regime where f1, Ma and f2 are positive. In this case, both velocity
and temperature perturbations start developing, which leads to the reinforcement of the
growth of the perturbations due to both shear flow and thermocapillarity through the
relations (2.9g), (2.9h) and (2.8e). Thus, shear flow and thermocapillarity help each other
in causing the flow to become unstable with the mode possessing a growth rate higher than
the individual modes, thereby leading to constructive superposition.

5.3.2. Destructive superposition
First, consider the parametric regime with f1 > 0, Ma > 0 and f2 < 0 where the
thermocapillarity has a destabilising influence while the shear flow has a stabilising
influence. In this case, the developing temperature perturbations due to the
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thermocapillarity are suppressed by the stabilising velocity perturbations caused by the
imposed shear flow through the relations (2.9g), (2.9h) and (2.8e), thereby leading to
the destructive superposition. Thus, for an unstable flow to exist, the shear flow has to
overcome the stabilising influence of thermocapillarity. The opposite scenario exists for
f1 < 0, Ma > 0 and f2 > 0 or f1 > 0, Ma < 0 and f2 > 0 where the thermocapillarity has a
stabilising influence while the shear flow has a destabilising influence that can be explained
in a similar manner.

6. Long-wave analysis

To explore the long-wave instability, we derive the long-wave evolution equation
describing the dynamics of the liquid layers for the streamwise disturbances. We then carry
out the linear and weakly nonlinear analyses of the system. Let λ be the wavelength of the
long-wave disturbances such that R = ελ, where ε � 1. Now, following the procedure
described in Oron et al. (1997), Patne et al. (2021) and Samanta (2013) we scale the x axis
and time as x → Xε−1 and t → τε−1. While the fluid dynamical quantities are expanded
as

v(i)
x = u(i)

0 + εu(i)
1 + · · · , (6.1)

v(i)
y = εv

(i)
0 + ε2v

(i)
1 + · · · , (6.2)

p(i) = 1
ε
Π

(i)
0 + Π

(i)
1 + · · · . (6.3)

Using these scalings, at the leading order O(ε0) the governing equations (2.2) reduce to

− ∂XΠ
(i)
0 + μ(i)∂2

y u(i)
0 = 0, ∂yΠ

(i)
0 = 0, ∂2

y T(i) = 0. (6.4a–c)

Equations (6.4a–c) are subjected to the following boundary conditions. At the lower
(y = 0) and upper (y = 1) walls, the assumptions of no-slip, impermeability and fixed
temperature imply that

at y = 0, u(1)
0 = 0; v

(1)
0 = 0; T(1) = T1, (6.5a)

at y = 1, u(2)
0 = 0; v

(2)
0 = 0; T(2) = T2. (6.5b)

At the fluid–fluid interface y = h(x, t), the continuity of the tangential velocity, tangential
and normal stresses, temperature field and heat flux gives

u(1)
0 = u(2)

0 , (6.5c)

v
(1)
0 = v

(2)
0 , (6.5d)

∂yu(1)
0 − μr∂yu(2)

0 = −M̂a(∂XT + ∂yT∂Xh), (6.5e)

Π
(1)
0 − Π

(2)
0 = −Ĉa−1

∂2
Xh, (6.5f )

T(1) = T(2), (6.5g)

∂yT(1) = κr∂yT(2), (6.5h)

where
M̂a = εMa, Ĉa = ε−3Ca, (6.5i)

are the scaled Marangoni and capillary numbers, respectively. Solving O(ε0) equations
(6.4a–c) using the boundary conditions (6.5) yield the velocity profiles for the fluids.
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Spatio-temporal dynamics of a two-layer pressure-driven flow

In addition to the above boundary conditions, an additional boundary condition related
to the volumetric flow rate is imposed to evaluate the pressure gradient (6.6h), which at
O(ε0) gives ∫ h

0
u(1)

0 +
∫ 1

h
u(2)

0 = q, (6.5j)

where q is the total volumetric flow rate.
The solution of the above system of governing equations (6.4a–c) subjected to the

boundary conditions (6.5) gives

u(1)
0 = a1 + a2y + 1

2
∂XΠ

(1)
0 , (6.6a)

u(2)
0 = a3 + a4y + 1

2μr
∂XΠ

(2)
0 , (6.6b)

T(1) = t1 + t2y, (6.6c)

T(2) = t3 + t4y, (6.6d)

where ai and ti are the integration constants

a1 = 0, (6.6e)

a2 = [1 + H(κr − 1)]Ma(h − 1)∂Xh
[1 + (κr − 1)h]2[1 + (μr − 1)h]

−h[2 + (μr − 2)h]∂XΠ
(1)
0 + (h − 1)2∂XΠ

(2)
0

2[1 + (μr − 1)h]
, (6.6f )

a3 = − Ma (1 − H + Hκr)h ∂Xh
[1 + (κr − 1)h]2[1 + (μr − 1)h]

−μrh∂XΠ
(1)
0 + [μr + h − 1 − 2μrh]∂XΠ

(2)
0

2[1 + (μr − 1)h]
, (6.6g)

a4 = −∂XΠ
(2)
0 + h[2Maμr(1 − H + Hκr)∂Xh + μrh[1 + (κr − 1)h]2∂XΠ

(1)
0 ]

2μr[1 + (κr − 1)h]2[1 + (μr − 1)h]

+h[2 − 2κr + h(−κ2
r + 2κr − 2μr − (κr − 1)(2μr − 1)h(2 + κr h − h))]∂XΠ

(2)
0

2μr[1 + (κr − 1)h]2[1 + (μr − 1)h]
,

(6.6h)

t2 = [1 + H(κr − 1)]∂Xh
[1 + (κr − 1)h]2 , (6.6i)

t4 = [1 + H(κr − 1)]∂Xh
κr[1 + (κr − 1)h]2 . (6.6j)

The exact expressions of t1 and t3 are irrelevant in the present analysis and thus not
presented here for the sake of brevity. Using the velocity profiles (6.6a) and (6.6b), the
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pressure gradient in the first fluid is

∂XΠ
(1)
0 = −6μr[2q(1 + κrh − h)2(1 + μrh − h) − Mah(1 + Hκr − H)(h − 1)∂Xh]

[1 + (κr − 1)h]2[1 + h(μr − 1)(4 − 6h + 4h2 + (μr − 1)h3)]

+ (h − 1)2[−1 + 2h − 4μrh + (μr − 1)h2]∂3
Xh

Ca[1 + h(μr − 1)(4 − 6h + 4h2 + (μr − 1)h3)]
. (6.6k)

The rescaled kinematic boundary condition at the interface up to O(1) is

∂th = −∂x

∫ h

0
u(1)

0 dy. (6.7)

By substituting the velocity profiles derived above into (6.7), the following thickness
evolution equation can be obtained:

H1(h, ∂xh, ∂2
x h, ∂3

x h, ∂4
x h) + H2(h)∂th = 0. (6.8a)

At O(ε), the governing equations give

Re(∂τ u(i)
0 + u(i)

0 ∂Xu(i)
0 + v

(i)
0 ∂yu(i)

0 ) = −∂XΠ
(i)
1 + μ(i)∂2

y u(i)
1 , (6.9a)

∂yΠ
(i)
1 = 0, (6.9b)

where the energy equation is irrelevant and, thus, neglected. The transverse components
of velocity v

(i)
0 can be obtained from the continuity equation

v
(1)
0 = −

∫ y

0
∂xu(1)

0 dy, (6.10)

v
(2)
0 = −

∫ 1

y
∂xu(2)

0 dy. (6.11)

At O(ε), the boundary conditions at the wall are,

at y = 0, u(1)
1 = 0; v

(1)
1 = 0, (6.12a)

at y = 1, u(2)
1 = 0; v

(2)
1 = 0. (6.12b)

While at the fluid–fluid interface, the interface conditions are

u(1)
1 = u(2)

1 , (6.12c)

v
(1)
1 = v

(2)
1 , (6.12d)

∂yu(1)
1 − μr∂yu(2)

1 = 0, (6.12e)

Π
(1)
1 − Π

(2)
1 = 0. (6.12f )

Similar to the volumetric flow condition (6.5j), the volumetric flow condition at O(ε) is∫ h

0
u(1)

1 +
∫ 1

h
u(2)

1 = 0. (6.12g)

Solving the system of (6.9) with boundary conditions (6.12) gives the O(ε) contribution.
Unlike O(ε0) equations, O(ε) equations turn out to be cumbersome to handle even with
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the help of MATHEMATICA, thus, explicit expressions for the quantities are not given
here. The rescaled kinematic boundary condition at the interface up to O(ε) is

∂th = −∂x

∫ h

0
(u(1)

0 + u(1)
1 ) dy. (6.13)

A similar procedure can also be followed for the spanwise mode (k = 0) with the
streamwise velocity, scaled axis x, and tangential stress component τyx being replaced
by the spanwise velocity, scaled axis z, and tangential stress component τyz, respectively.
An additional change is the modification of the boundary condition (6.5j) by substituting
q = 0 since there is no volumetric flow rate in the spanwise direction. Thus, the above
kinematic boundary condition can be set in the vector form to include the spanwise
component.

6.1. Temporal stability analysis (ki = 0)
To obtain the dispersion relation, we linearise (6.13) and substitute h(x, t) = H + δei(kx−ωt)

where δ � 1 in the resulting linearised equation to obtain the dispersion relation

ω = kf0(H, μr)q + i k2[ f1(H, μr, κr)Ma + f2(H, μr)Re] + i k4 f3(H, μr)

Ca
, (6.14)

where f1 and f2 are defined in (4.7a) and

f0 = 6μr(H − 1)H[(H2 − 2H)(μr − 1) − 1][1 + H2(μr − 1)]
[1 + H(μr − 1)(4 − 6H + 4H2 − H3 + H3μr)]2 , (6.15)

f3 = (H − 1)3H3[1 + H(μr − 1)]
3 + 3H(μr − 1)(4 − 6H + 4H2 − H3 + H3μr)

, (6.16)

where the function f3 < 0 for arbitrary μr and H. For (4.8) and (6.14) to give the
same eigenvalue requires q = c0/f0, thereby obtaining q. The dispersion relation for the
spanwise mode can be simply obtained from (6.14) by substituting q = 0, k = m and
Re = 0,

ω = i m2f1(H, μr, κr) + i m4 f3(H, μr)

Ca
. (6.17)

Figure 10 shows the efficacy of the long-wave approach in predicting the dispersion
curves compared with the numerical approach for k < 0.2. For k > 0.2, the dispersion
curves predicted by both approaches start to differ such that the long-wave approach
predicts a higher growth rate. This indicates that the higher-order terms missed due to
the truncation of the solution to O(ε) terms lead to an additional stabilisation. It must be
noted that one can extend the above model beyond O(ε) terms by following the procedure
outlined by Ruyer-Quil & Manneville (1998), which could further improve the agreement
between the numerical and long-wave approaches. Despite the quantitative differences in
the growth rate predicted by the long-wave approach however, it does succeed in capturing
the qualitative characteristics of the dispersion curve for an arbitrary wavenumber such
as stabilisation due to the interface tension. Additionally, the evolution equation approach
yields an equation that can be utilised to study the spatio-temporal and weakly nonlinear
evolution of the flow as discussed below. Due to this, the evolution equation approach
is more useful than the asymptotic approach but the latter offers a simpler mathematical
treatment compared with the former.
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Figure 10. Comparison between the growth rate predicted by the numerical and long-wave approaches for
the streamwise mode at Re = 10, H = 0.4, μr = 0.1, κr = 1, Ca = 0.1 and Pr = 7. The excellent agreement
between both approaches for k < 0.2 validates the long-wave analysis. For k > 0.2, the dispersion curve
predicted by the long-wave analysis predicts a higher growth rate compared with the numerically obtained
dispersion curve. The spanwise mode also shows a similar trend.

6.2. Spatio-temporal stability analysis (ki /= 0)
The GLSA in § 4 and long-wave stability studied in § 6.1 carry out the temporal stability
analysis since the frequency of the disturbances, ω, is considered to be a complex number
while the wavenumbers, k and m, are assumed to be real numbers (Drazin & Reid 1981).
The temporal stability analysis is used to determine the evolution of the disturbances with
time. Similarly, spatial stability analysis studies the evolution of disturbances in space. For
the spatial stability analysis, ω is taken as a real number and k as a complex number (Drazin
2002). The spatio-temporal stability analysis predicts the evolution of the disturbances in
both space and time. In this case, both ω and k are treated as complex numbers (Huerre
& Monkewitz 1990; Schmid & Henningson 2001) and instability is classified as either an
absolute or convective instability.

The existence of absolute instability implies the growth of disturbances in both upstream
and downstream directions, while the presence of convective instability signifies that the
disturbances develop only in the downstream direction from the source of the disturbances
(Briggs 1964). Thus, in a convectively unstable flow, at any fixed position in space the
unstable disturbances will decay if provided sufficient time (Huerre & Monkewitz 1990),
resulting in mixing only in the downstream direction, while in an absolutely unstable flow,
the disturbances will induce mixing both upstream and downstream. This can be illustrated
by considering the response of a given base velocity profile to an impulse excitation at
asymptotically long times (Huerre & Monkewitz 1990), where the obtained response is
used to determine whether the flow is absolutely or convectively unstable. This section
is aimed at understanding the effect of thermocapillarity and shear flow in introducing
absolute instability. It must be noted that, for a system with a sustained inlet noise, the
convectively unstable flow can also lead to enhancement in mixing.

To understand the absolute and convective instabilities, assume a dispersion relation
of the form ω = G(k), where G(k) is a continuous and differentiable function of k.
For the absolute instability to exist, the group velocity of the disturbances must vanish
for at least one value of k, so that ∂ω/∂k = 0 (Huerre & Monkewitz 1990; Schmid &
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Spatio-temporal dynamics of a two-layer pressure-driven flow

Henningson 2001). However, the determined saddle point must also obey the causality
principle for the existence of the absolute instability (Huerre & Monkewitz 1990). To
obtain the sufficient condition, the equation ∂ω/∂k = 0 is solved for k, which gives the
saddle points of the dispersion relation. If the saddle point is of first order in the k plane
(denoted by k0) and ω0 is the value of ω at the saddle point k0, then a local Taylor expansion
about this point gives (ω − ω0) ∼ (k − k0)

2. This shows that the mapping from the k plane
to the ω plane is characterised by angle doubling (i.e. phase doubling) provided that the
saddle point is of the first order. Here, the k and ω planes refer to the kr − ki and ωr − ωi
planes, respectively. If for at least one saddle point ω0i > 0 then the flow is absolutely
unstable else convectively unstable (Huerre & Monkewitz 1990).

Following the procedure outlined above, we differentiate the dispersion relation (6.14)
once with respect to k and solving the resulting equation for k yields three roots. Among the
three roots, one is purely imaginary, thus, a spurious saddle point. The other two roots have
an equal absolute value of kr and ki but kr are of opposite signs. Thus, there is a mirror cusp
point for kr < 0 with the same growth rate but having a negative frequency ωr < 0. Here,
we restrict ourselves to kr > 0, thus, the cusp point under consideration has ωr > 0. It must
be noted that both the cusp points have the same critical parameters. To illustrate, consider
the saddle point and cusp point for H = 0.4, μr = 0.1, κr = 1, Re = 10, Ca = 0.01 and
Ma = −10. The above analysis yields three roots,

k01 = 0.533172i corresponds to ω01 = 0.562612i, (6.18)

k02 = 0.71133 − 0.266586i corresponds to ω02 = 1.05618 − 0.163357i, (6.19)

k03 = −0.71133 − 0.266586i corresponds to ω03 = −1.05618 − 0.163357i, (6.20)

of which the first root (or saddle point) gives a spurious mode since the corresponding
temporally unstable mode does not exist. The second root gives the correct cusp point
while the third root gives the mirror cusp point. Furthermore, ωi0 < 0, thus, a convectively
unstable flow. The saddle point for arbitrary parameters is

k0 = l1 + l2
l3

, (6.21)

where

l1 = 2iCaf331/6(3i +
√

3)( f1Ma + f2Re), (6.22)

l2 = 31/3(i +
√

3)

[
9Caf 2

3 ω0 +
√

3
√

−Ca2f 3
3 [8Ca( f1Ma + f2Re)3 − 27f3ω2

0]
]2/3

,

(6.23)

l3 = 12f3

[
9Caf 2

3 ω0 +
√

3
√

Ca2f 3
3 [−8Ca( f1Ma + f2Re)3 + 27ω2

0]
]1/3

, (6.24)

where q = ω0/f0 has been used. The corresponding cusp point can be readily obtained
by substituting k = k0 in the dispersion relation (6.14). To understand the role of
thermocapillarity and shear flow in causing absolute instability individually and combined,
the spatio-temporal analysis results have been divided into three cases.

6.2.1. Purely shear-flow mode (Ma = 0)
This case corresponds to the case studied by Sahu & Matar (2011). The saddle point (6.24)
can be readily obtained by substituting Ma = 0. For realistic dispersion relations, finding

957 A11-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

51
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.51


R. Patne and J. Chandarana

0

0.1

0.2

0.3

0.4

0.5

ki = 0

ki = –0.075

ki = –0.15

ki = –0.208934

0.5 1.0 1.5 2.0 0 0.5 1.0 1.5
–0.3

–0.2

–0.1

0

0.1

0.2
ki = 0
ki = –0.1

ki = –0.2
ki = –0.262125

ωi

ωr ωr

(a) (b)

Figure 11. The existence of the (a) absolutely unstable flow at Re = 45 and (b) convectively unstable flow at
Re = 25 due to the shear-flow mode of instability. The other parameters are H = 0.4, μr = 0.1, Ca = 0.01 and
Ma = 0. To determine the genuine character of the formed cusp point, a straight line is drawn from the cusp
point and the number of times its intersections with the curve for ki = 0 are counted. In both cases, such a line
intersects the ki = 0 curve once, thus, an odd number of times. Thus, both the cusp points are genuine. In panel
(a), ωi0 > 0, thus, an absolutely unstable flow, while in panel (b), ωi0 < 0 implying a convectively unstable
flow. (a) Absolutely unstable, (b) convectively unstable.

the saddle point in the k plane and a cusp point in the ω plane according to Briggs (1964)
method becomes a cumbersome mathematical and numerical task. A simpler alternative
is the method of Kupfer, Bers & Ram (1987), in which for the prediction of an absolute
instability, only the formation of the cusp point in the ω plane is necessary. If the formed
cusp point corresponds to ωi0 > 0 and is genuine, then the flow is absolutely unstable.
Given the relative ease of the Kupfer et al. (1987) method, it will be employed in the
present study, to determine whether the flow is absolutely or convectively unstable.

Briefly, the Kupfer et al. (1987) method is as follows. First, a temporal stability curve is
obtained in the ω plane by fixing ki = 0 and varying kr in the dispersion relation. Next, a
negative value of ki is fixed and kr is varied, to obtain a curve in the ω plane. This step is
repeated until a cusp point forms in the ω plane. A straight line is then drawn parallel to
the ωi axis from the cusp point extending to ωi → ∞, which will intersect the temporal
stability curve at least once. If the number of intersections with the temporal stability
curve is an odd number then the formed cusp point is genuine; if the count is even then it
is an evanescent cusp point. The existence of a genuine cusp point implies the presence of
absolute instability, while that of an evanescent mode signifies a spurious cusp point (Yeo,
Khoo & Zhao 1999, 2001; Patne & Shankar 2017; Patne & Ramon 2020).

Figure 11 illustrates the genuine cusp points in the ω plane exhibiting absolute and
convectively unstable flows. Figure 11 also shows that as the Reynolds number is increased,
the flow can become absolutely unstable, thus, there is a critical value of the Reynolds
number, Rea, beyond which the flow is absolutely unstable. The saddle point (6.24) and
dispersion relation (6.14) are utilised to find out Rea at which ωi0 = 0 for varying H. The
result is plotted in figure 12. For H < 0.4, Rea rapidly increases with increasing H but
plateaus in 0.4 < H < 0.5 and once again starts steeply increasing for H > 0.6. The flow
is temporally unstable for H < 0.76, otherwise stable such that, for H < 0.76, as long
as Re /= 0 the flow is temporally unstable, but figure 12 shows that there is a finite Re
required to set in absolute instability. Consequently, for Re < Rea, the temporally unstable
disturbances will only grow with respect to time but will decay at any fixed position.
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Stable
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Convectively unstable

Figure 12. The variation of the critical Reynolds number for the onset of the absolute instability Rea with H at
μr = 0.1, κr = 1, Ma = 0 and Ca = 0.01. The figure shows the absolutely and convectively unstable regions
due to the shear-flow instability. For H > 0.76, the shear-flow mode is temporally stable.

However, for Re > Rea, the disturbances will start growing both upstream and downstream
which will lead to the enhancement of the mixing and may lead to the development of
the global mode of instability (Huerre & Monkewitz 1990). A similar curve can also be
obtained for μr = 10, not shown here for brevity. By symmetry, for such a system, the
shear-flow mode will be temporally unstable for H > 0.24 which will exhibit an absolutely
unstable region for H > 0.24 and stable region for H < 0.24 with Rea → ∞ as H → 0.24.

6.2.2. Purely thermocapillary mode (Re = 0)
In this case, Re = 0 is substituted in the dispersion relation (6.14) and the saddle point
(6.24). First, consider the case with q = 0, i.e. the base state is a stationary two-layer
system. In such a case, the thermocapillary mode of instability is a stationary mode
that is inherently absolutely unstable provided that the flow is temporally unstable. Thus,
the system due to pure thermocapillarity in the absence of the base-state flow becomes
simultaneously temporally and absolutely unstable. Furthermore, for q = 0, dispersion
relations for the streamwise mode (6.14) and spanwise mode (6.17) become identical, thus,
both modes become unstable at the same critical parameters.

Next, consider the case with q > 0 but Re = 0 implying a creeping or stokes flow
where the inertial terms in the governing equations are negligible compared with the
viscous terms. In this case, the imaginary parts of the complex frequency for streamwise
and spanwise modes are identical (see (6.14) and (6.17)), thus, both modes will become
temporally unstable at the same critical parameters. However, the streamwise mode has
a non-zero base-state flow and is thus a travelling mode while the spanwise mode is
stationary. The base-state flow may lead to the existence of the convectively unstable
flow due to the streamwise mode, as illustrated in figure 13(b). It must be noted that the
streamwise mode does become absolutely unstable albeit at a higher |Ma|, as shown in
figure 13(a). The spanwise mode, however, becomes absolutely and temporally unstable at
identical |Ma| since there is no shear flow in the spanwise direction, thereby making the
flow absolutely unstable even in the presence of the shear flow. This also implies that the
spanwise mode will dominate the absolute instability region for Re = 0.
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Figure 13. The existence of an (a) absolutely unstable flow at Ma = −30 and (b) convectively unstable
flow at Ma = −20 due to the streamwise thermocapillary mode. The other parameters are H = 0.4, μr =
0.1, Ca = 0.01, κr = 1 and Re = 0. The figure illustrates that the streamwise mode may become convectively
or absolutely unstable due to the shear flow. (a) Absolutely unstable, (b) convectively unstable.

6.2.3. Combined shear-flow and thermocapillary mode
This case corresponds to the problem under consideration where we have both active
shear-flow and thermocapillary modes of instability with the relevant dispersion relations
(6.14) and (6.17) and saddle point (6.24). For the parametric range where the shear flow
destabilises and thermocapillarity stabilises, from (6.17) the spanwise mode is stable while
from (6.17) the streamwise mode is unstable, thus, only the latter can give rise to the
absolute instability. However, for the streamwise mode to introduce absolute instability, it
must overcome the thermocapillarity stabilisation.

For the parametric range where the thermocapillarity destabilises, the spanwise mode
will lead to absolute and temporal instability at an identical |Ma|. Thus, for the streamwise
mode to cause an absolute instability with a higher ωi0 at a lower |Ma|, the shear-flow
mode must be absolutely unstable, i.e. Re > Rea. A high Re implies the requirement of
a higher velocity and from figure 12, Rea ∼ O(1 − 103) which puts a restriction on the
ability of the streamwise mode to introduce the absolute instability at a higher ωi0. From
table 1, if both thermocapillarity and shear flow have a destabilising effect and Re > Rea
(Re < Rea) then the streamwise (spanwise) mode will dominate the absolute instability
region. If thermocapillarity has a destabilising (stabilising) effect and shear flow has a
stabilising (destabilising) effect then the spanwise (streamwise) mode will dominate the
absolute instability region.

6.3. Weakly nonlinear analysis
Unlike linear stability analysis, to study the weakly nonlinear stability analysis, we must
retain the full nonlinear equation. However, working on weakly nonlinear analysis using
such an equation even with MATHEMATICA software becomes a cumbersome exercise;
thus, the subsequent analysis is restricted to the creeping-flow limit, i.e. Re → 0. Thus,
the aim of this section reduces to determine the effect of the shear flow on the weakly
nonlinear evolution of the thermocapillary instability through the volumetric flow rate q.
It must be noted that a two-layer plane Poiseuille flow with a purely long-wave shear-flow
instability generally undergoes a supercritical bifurcation but may undergo a subcritical
bifurcation for H ∼ 0.5 (Hooper & Grimshaw 1985; Barthelet, Charru & Fabre 1995).
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Parameters Dominant absolutely unstable mode

f1 > 0, f2 > 0, Ma > 0, Re > Rea Streamwise mode
f1 > 0, f2 > 0, Ma > 0, Re < Rea Spanwise mode
f1 < 0, f2 > 0, Ma > 0 Streamwise mode
f1 < 0, f2 < 0, Ma < 0 Spanwise mode
f1 < 0, f2 > 0, Ma < 0, Re > Rea Streamwise mode
f1 < 0, f2 > 0, Ma < 0, Re < Rea Spanwise mode

Table 1. The table shows the parametric regime in which the streamwise and spanwise modes will dominate
the absolutely unstable region. The conclusions can be inferred using the dispersion relations (6.14) and (6.17)
for the streamwise and spanwise modes, respectively, and figure 12.

Following Cheng, Chen & Lai (2001) and Patne et al. (2021), we introduce slow time
scales T1 = ξ t, T2 = ξ2t, where ξ � 1 is a small parameter related to the deviation of the
Marangoni number Ma from its critical value Mac,

ξ2 = Ma − Mac

Mac
. (6.25)

Next, we expand Ma and h(x, t) into series of ξ ,

Ma = Mac(1 + ξ2), (6.26a)

h(x, t) = ξh1(x, t, T1, T2) + ξ2h2(x, t, T1, T2) + ξ3h3(x, t, T1, T2) + · · · , (6.26b)

where Mac is the critical value of the Marangoni number obtained by solving dispersion
relation (6.17) for ωi = 0 with k = kc = 2π/L being the cutoff wavenumber and L the
length of the periodic domain,

f1(H, μr, κr)Mac + f3(H, μr)

21
k2

c = 0. (6.27)

Next, kc = 2π/L and Mac obtained in the previous step are substituted into the generalized
equation (6.8a). The problem is then solved order by order in ξ in terms of hi.

At O(δ), the linear stability equation is obtained with the solution of the form
h1(x, t, T1, T2) = A(T1, T2) exp (ikcx − ωrt) + c.c., where A(T1, T2) is the unknown
complex amplitude of the perturbation and c.c. denotes complex conjugate. It must be
noted that the spanwise mode is stationary (see (6.17)), thus, for the spanwise mode,
ωr = 0 in the solution while, for the streamwise mode, ωr will be the real part of the
dispersion relation (6.14). At O(ξ2), the solvability condition yields a linear differential
equation in terms of the temporal growth rate of the amplitude A(T1, T2) in the slow
time scale T1. Additionally, the solution of the differential equation at O(ξ2) is similar
to h1, such that h2(x, t, T1, T2) = B(T1, T2) exp (2(ikcx − ωt)) + c.c. with the complex
amplitude B(T1, T2) proportional to A(T1, T2)

2.
At O(ξ3), the Landau equation governing the weakly nonlinear temporal evolution of

the amplitude function A ≡ A(T1, T2) in slow time T2 is obtained,

∂T2A = λ1A + λ2|A|2A, (6.28)
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where the parameter λ1 is concerned about the linear growth of the perturbations and will
be proportional to Ma − Mac. For the spanwise mode at κr = 1,

λ1 = − 2
ξ2 CaH3k4

c(Ma − Mac)(1 − H)3[1 + H(μr − 1)]

[1 + H(μr − 1)(4 − 6H + 4H2 + H3(μr − 1))]. (6.29)

At the onset of instability, λ1 vanishes. The other parameter λ2 is associated with the
weakly nonlinear temporal evolution of the perturbations near the critical point. For the
spanwise mode at κr = 1,

λ2 = Ca(H − 1)Hk4
c

α

β
,

α = (H − 1)10(75 − 414H + 67H2)

− 2μrH(H − 1)7(299 − 1424H + 2455H2 − 1163H3 + 201H4)

+ H2μ2
r (H − 1)5(−1086 + 6394H − 14433H2 + 13839H3 − 4415H4 + 1005H5)

− 2H3μ3
r (H − 1)3(292 − 2727H + 8735H2 − 12686H3 + 8018H4 − 2010H5 + 670H6)

+ H5μ4
r (H − 1)2(−1304 + 6410H − 10644H2 + 6229H3 − 610H4 + 1005H5)

− 2H7μ5
r (H − 1)(368 − 801H + 172H2 + 359H3 + 201H4)

+ H10μ6
r (−272 + 280H + 67H2),

β = 5[1 + H(μr − 1)][1 − 2H + H2 − H2μr]2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.30)

Similar expressions for λ1 and λ2 could also be derived for the streamwise mode. However,
those will be more complicated owing to non-zero ωr and q, thus, will not be given here.

For a stationary liquid layer on a heated substrate and other surfaces exposed to
an inert gas, λ2 > 0 (Patne et al. 2021) and λ2 is a real number, thus, the layer
undergoes a subcritical pitchfork bifurcation and perturbations will grow beyond the
critical parameters. The present analysis for the explored parameter range shows that for
a stationary two-layer system, in the absence of the shear flow (i.e. q = 0), subjected
to a wall-normal temperature gradient both streamwise and spanwise modes exhibit
a subcritical pitchfork bifurcation. For example, at μr = 2, H = 0.8, κr = 1 and Ca =
0.001, λ2 = 0.00114. However, in the presence of the shear flow (i.e. q > 0), λ2 becomes
a complex number, thus, the system will undergo a Hopf bifurcation. The real part of λ2,
i.e. λ2r, may become negative for q > 0, thereby showing the existence of a supercritical
Hopf bifurcation. It must be noted that q is not an independent quantity but a function of
μr and H, viz.,

q = 1 + H(μr − 1)[4 − 6H + 4H2 + H3(μr − 1)]
6Hμr(H − 1)

(6.31)

obtained by integrating the base-state velocity profiles (2.6b) over the flow domain. To
illustrate the impact of the shear flow, consider the same case at μr = 2, H = 0.8, κr = 1
and Ca = 0.001 but with q = 1.4675, then λ2 = −5.7177 + 2.4066i with λ2r < 0 and
λ2i /= 0, thus, the flow undergoes a supercritical Hopf bifurcation.

The physical consequence of the transition from a subcritical to supercritical bifurcation
could be explained as follows. A stationary liquid layer on a heated substrate and other free
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surface ruptures or forms dry spots due to thermocapillary instability as follows (Oron
et al. 1997; Oron 2000). At Ma = Mac, the layer becomes linearly unstable via the process
explained in § 5, thereby leading to unstable thermal perturbations. For Ma > Mac, the
layer undergoes subcritical bifurcation, thus, from (6.28) the amplitude of the unstable
thermal perturbations will start increasing which leads to increasing peaks and troughs
in the perturbation wave. The trough eventually becomes sufficiently deep to result in
the dry spot formation or rupture. As in the present case, if a shear flow is introduced
then the symmetry is broken and there will be a net movement of the fluid from left to
right assuming a decreasing pressure gradient. In this case, when a trough forms, the
net movement of the liquid will fill that trough while decreasing the height of the peak
simultaneously. This leads to the absence of the film rupture. Thus, the shear flow could
hamper the film rupture and lead to a supercritical bifurcation.

7. Conclusions

In the present work we study the linear spatio-temporal stability analysis of a two-layer
pressure-driven flow subjected to a wall-normal temperature gradient. The stability of
the flow has been analysed using both the numerical and long-wave approaches. The
analysis reveals an interesting interplay between thermocapillarity and shear flow. The
thermocapillarity, arising from the temperature dependence of the interface tension,
leads to thermocapillary instability while the shear flow, due to the imposed pressure
gradient, leads to the shear-flow instability. The unstable modes can be further classified as
streamwise and spanwise modes depending on the wavenumber under consideration. The
shear flow does not contribute to the stability of the spanwise modes since the base-state
flow does not affect the latter. Alvarez & Uguz (2013) predicted a negligible effect of the
shear flow on the thermocapillary instability. However, the present study clearly shows that
the shear flow can have a stabilising or destabilising effect on the thermocapillary mode,
depending on the parameters.

The streamwise thermocapillary mode can lead to an unstable flow even if the
shear-flow mode predicts a stable flow similar to a two-layer plane Couette flow subjected
to a temperature gradient (Wei 2006). However, unlike two-layer plane Couette flow,
depending on the values of μr and κr, there is a certain range of H for which the unstable
flow due to the shear-flow mode can not be stabilised using the streamwise thermocapillary
mode. The spanwise mode is stationary, unlike the travelling streamwise mode. When the
shear-flow mode has a destabilising influence, the dominant mode of instability is the
streamwise mode. Otherwise, the spanwise mode determines the stability of the flow.

The physical origin of the thermocapillary mode of instability has been explained
using the instantaneous hot-spot generation due to thermal perturbations. For the
thermocapillary instability in a liquid layer situated on a heated substrate, the hot spot that
develops at the surface receives the energy for the growth only from the liquid. However,
in the two-layer flow considered, both layers may provide/extract energy to/from the hot
spot depending on the imposed temperature gradient, interface position, viscosity ratio and
thermal conductivity ratio. Such a feat could be achieved by the upflow and downflow that
develop in fluids 1 and 2, respectively.

As the interface position (i.e. H) approaches the plate with a higher temperature,
the thermocapillary mode becomes unstable due to the increasing capability of the
corresponding flow to heat the hot spot. While a decreasing κr leads to an increasingly
unstable flow due to the diffusion-mediated energy gain by the flow from the hotter fluid
side and the opposite from the colder fluid side. For μ2 � μ1, the dynamics of fluid 1
could be ignored, and the opposite is true for μ2 � μ1.
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The evolution equation for the flow in the long-wave limit is derived, which is then
utilised to analyse the linear spatio-temporal and weakly nonlinear stability analysis. The
dispersion curves obtained using the pseudo-spectral numerical method and the long-wave
evolution equation show good agreement for k < 0.2. The spatio-temporal stability
analysis predicts an absolutely unstable flow due to the shear-flow mode, even without
thermocapillarity. When the pressure gradient is switched off, then the two-layer system
can still exhibit absolute instability due to both streamwise and spanwise thermocapillary
modes arising because of the imposed temperature gradient at the same parameters. Also,
when Re > Rea (Re < Rea) and thermocapillarity has a destabilising effect, then the
streamwise (spanwise) mode will dominate the absolute instability region.

The weakly nonlinear analysis shows that without a shear flow, the two-layer system
subjected to a wall-normal temperature gradient will undergo a subcritical pitchfork
bifurcation simultaneously through the streamwise and spanwise modes. However, as soon
as the shear flow is switched on, the streamwise mode undergoes a supercritical Hopf
bifurcation. The physical manifestation of this change in the type of bifurcation has been
discussed.

The present study thus shows that the stability of a two-layer pressure-driven flow
subjected to a wall-normal temperature gradient strongly depends on the interface position,
imposed temperature gradient sign, and viscosities and thermal conductivities of the
fluids. The present study could be further extended to the fully nonlinear regime using
the derived evolution equation, which could further reveal the interplay between the
pressure and temperature gradients that could help in practical applications to control
undesirable patterns. Also, the present study considers Newtonian fluids. However,
additive manufacturing and polymer co-extrusion processes involve non-Newtonian fluids.
Thus, the present study could be extended to include the non-Newtonian behaviour of the
fluids.
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