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The shock wave accelerating a heavy fluid layer can induce reverberating waves that
continuously interact with the first and second interfaces. In order to manipulate the
perturbation growths at fluid-layer interfaces, we present a theoretical framework to
eliminate the reverberating waves. A model is established to predict the individual
freeze-out (i.e. stagnation of perturbation growth) for the first and second interfaces under
specific flow conditions determined based on the shock dynamics theory. The theoretical
model quantifies the controllable parameters required for freeze-out, including the initial
amplitudes of the first and second interfaces, the interface coupling strength and the
maximum initial layer thickness preventing the second interface’s phase reversal. The
effectiveness of the model in predicting individual freeze-out for the first and second
interfaces is validated numerically over a wide range of initial conditions. The upper and
lower limits of initial amplitudes for the freeze-out of the whole fluid-layer width growth
are further predicted. Within this amplitude range, a slightly higher initial amplitude for
the second interface is specified, effectively arresting the growth of the entire fluid-layer
width before the phase reversal of the second interface.

Key words: shock waves

1. Introduction

Richtmyer–Meshkov instability (RMI) occurs when an impulsive acceleration (e.g. a
shock wave) is imposed on a perturbed fluid interface with different densities (Richtmyer
1960; Meshkov 1969). Generally, the perturbation at the interface initially grows rapidly,
followed by nonlinear growth and formation of interpenetrating structures including
bubbles (light fluids penetrating into heavy fluids) and spikes (heavy fluids penetrating into
light fluids), eventually leading to transition to turbulence. The RMI plays a significant role
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in various scientific and engineering applications such as supernova explosions (Kuranz
et al. 2018), scramjet (Yang, Chang & Bao 2014) and inertial confinement fusion (ICF)
(Betti & Hurricane 2016). Particularly, in ICF, the perturbation growth of RMI poses
a significant challenge to implosion ignition since it induces undesired mixing between
materials in different layers, diminishing the purity of fuels in the capsule and thus
leading to reduced fusion yields (Lindl et al. 2014; Betti & Hurricane 2016). As a result,
the stagnation of perturbation growth of RMI, a phenomenon commonly referred to as
freeze-out (Mikaelian 1994), is of importance for ICF, and has been a subject of great
interest (Zhou 2017a,b; Zhou et al. 2021).

Most previous studies focused on the single-interface freeze-out, which can be achieved
by two shock impacts. The essence of this type of freeze-out is that the vorticity induced by
the second shock offsets the counterpart induced by the first shock, resulting in stagnation
of perturbation growth. Mikaelian (1985) first proposed this idea and summarized the
schemes for freeze-out. For a heavy/light interface with completed phase reversal, the
second shock propagates in the same direction as the first shock. For a heavy/light interface
with incomplete phase reversal or a light/heavy interface, the second shock propagates
in the opposite direction to the first shock. Charakhch’yan (2000, 2001) numerically
achieved freeze-out for a heavy/light single-mode interface by adjusting the intensity of
the second shock. For a light/heavy single-mode interface, the freeze-out of perturbation
growth was achieved numerically by Mikaelian (2010) and experimentally by Chen
et al. (2023b). Note that the second impact required for freeze-out can also be provided
by rarefaction waves. Chen et al. (2023a) experimentally investigated the evolution
of a heavy/light single-mode interface successively impacted by a shock and reflected
rarefaction waves. It was shown that the freeze-out of perturbation growth emerges when
the rarefaction waves impact the interface at a suitable time after the interface’s phase
reversal.

The ICF capsule consists of multiple material layers (Terry, Perkins & Sepke 2012;
Montgomery et al. 2018) and thus freeze-out of perturbation growth for fluid layers is
significant. For a finite-thickness fluid layer, the growth of perturbations on one interface
can affect that of the other, which causes the well-known phenomenon of interface
coupling or feedthrough (Mikaelian 1983; Jacobs et al. 1995; Desjardins et al. 2019).
If a reasonable condition is satisfied, the coupling effect induced by the first interface
can freeze the growth of perturbations on the second interface, and vice versa. By
considering the coupling effect between the two interfaces, Mikaelian (1995) derived
the freeze-out condition for perturbation growth of an A/B/A-type fluid layer, where
‘A’ and ‘B’ stand for the fluids outside and inside the fluid layer, respectively. Later,
Mikaelian (1996) examined the freeze-out model through numerical simulations and
found that the freeze-out did not occur as predicted by his theory. The deviation can
be attributed to two reasons. First, the model of Mikaelian (1995) does not take into
account the effects caused by shock compression. This leads to the model’s inability to
correctly characterize the parameters required for freeze-out. Second, reverberating waves
within the layer continually interact with fluid-layer interfaces, resulting in additional
Rayleigh–Taylor effects and stretching effects (Liang et al. 2020; Cong et al. 2022),
thereby causing the freeze-out theory of Mikaelian (1995) to be invalid. In other
words, the presence of reverberating waves makes it difficult to achieve freeze-out for
fluid-layer interfaces by interface coupling alone since, even if the interface coupling
leads to freeze-out of perturbation growth, the reverberating waves would destroy the
freeze-out state.
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Note that if the reverberating waves within the fluid layer provide vorticity with an
opposite sign to the original vorticity on the interface, they contribute to the freeze-out
of perturbation growth. As a consequence, by reasonably matching the effects of interface
coupling and reverberating waves, freeze-out for fluid-layer interfaces can be achieved.
Based on this, Liang & Luo (2023) numerically studied the evolution of a fluid layer with
two heavy/light interfaces on both sides, and found that the perturbation growth of the first
or second interface can be frozen under the combined effects of interface coupling and
reverberating waves. Notably, the initial conditions for freeze-out are stringent in the work
of Liang & Luo (2023), since these two effects need to be elaborately regulated to achieve
freeze-out. Additionally, a low incident shock Mach number was considered in this work
(Liang & Luo 2023) so that only the first interaction between the reverberating waves and
the fluid-layer interfaces plays a significant role in freeze-out. However, for a relatively
strong incident shock, the second and even later interactions between the reverberating
waves and the fluid-layer interfaces become significant (Zhang et al. 2022). This would
complicate the matching of the effects of interface coupling and reverberating waves to
achieve freeze-out, because the interaction of later reverberating waves with the interface
can destroy the freeze-out state established by the combined effects of interface coupling
and the earlier reverberating wave. In short, achieving freeze-out of perturbation growth
for fluid layers remains challenging, which motivates the present work.

In this work, freeze-out for a heavy fluid layer is investigated both theoretically
and numerically. The heavy fluid layer has been a commonly considered configuration
in previous studies, and the evolution mechanism for this type of fluid layer has
been extensively studied (Jacobs et al. 1993, 1995; Balakumar et al. 2008, 2012;
Balasubramanian, Orlicz & Prestridge 2013; Orlicz et al. 2015; Liang et al. 2020; Cong
et al. 2022). Nevertheless, exploration involving freeze-out of perturbation growth for
the heavy fluid layer is limited (Mikaelian 1995, 1996). Owing to the unfavourable
effect of reverberating waves on freeze-out in most cases, we propose to eliminate the
reverberating waves within the heavy fluid layer to realize freeze-out. In the absence
of reverberating waves, the interface coupling dominates the freeze-out for fluid-layer
interfaces, reducing the complexity of theoretical modelling. By reasonably characterizing
the initial parameters required for freeze-out, we establish a freeze-out theory for
heavy-fluid-layer interfaces. Significantly, a relatively high Mach number of 2 will be
employed in the current study, posing a greater challenge for freeze-out compared
with the previous fluid-layer study with a lower Mach number of 1.24 (Liang & Luo
2023). The remainder of this paper is organized as follows. Section 2 describes the
method for eliminating reverberating waves and the freeze-out theory. Section 3 presents
the numerical methods used for simulating the shock–interface interactions. In § 4,
parametric studies are conducted to examine the validity of the freeze-out theory. Section 5
investigates the simultaneous freeze-out for both the first and second interfaces, and it also
explores the freeze-out for the entire fluid-layer width growth. Finally, conclusions are
presented.

2. Theoretical analysis

We will first introduce the method of eliminating reverberating waves within the heavy
fluid layer, as described in § 2.1. Then, a theory for predicting the individual freeze-out
for the first and second interfaces is established in § 2.2. Since freeze-out for the second
interface must be achieved prior to the phase reversal, a model, as the supplementary
condition for the second interface’s freeze-out, is established in § 2.3.
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Figure 1. Schematics of a heavy fluid layer (ρB > ρA) for the shock compression in the absence of
reverberating waves. (a) The moment (t < 0) before the arrival of the incident shock IS. (b) The moment
(t = t+) when the transmitted shock TS1 just leaves the first interface. (c) The moment (t = t∗) when the shock
TS1 reaches the middle position of the initial second interface. Here, II1 and II2 denote the initial first and
second interfaces, respectively; SI1 and SI2 denote the shocked first and second interfaces, respectively; a0

1 and
a0

2 denote initial amplitudes of the first and second interfaces, respectively; a+
1 denotes the amplitude of the

first interface at t+; a∗
1 and a∗

2 denote the amplitudes of the first and second interfaces at t∗, respectively; L0
denotes the initial layer thickness; L∗ denotes the layer thickness at t∗; λ denotes the interface wavelength; and
ρA and ρB (ρ∗

A and ρ∗
B) denote the pre-shock (post-shock) densities for fluid A and fluid B, respectively.

2.1. Method of eliminating reverberating waves
Figure 1(a) illustrates the initial configuration of the A/B/A-type heavy fluid layer with
sinusoidal interfaces on both sides. Here, a0

1 and a0
2 denote the initial amplitudes of the first

and second interfaces, respectively; L0 denotes the initial fluid-layer thickness; λ denotes
the initial wavelength of the fluid-layer interface; and ρA and ρB denote initial densities
for fluid A and fluid B, respectively. Notably, the initial amplitudes of both perturbed
interfaces satisfy the small-amplitude hypothesis in this work, i.e. ka0

1 � 1 and ka0
2 � 1,

where k (= 2π/λ) is the wavenumber. For the small-amplitude scenario, the method of
eliminating reverberating waves, derived based on one-dimensional (1-D) shock dynamics
theories (Han & Yin 1993), is considered to be applicable.

As shown in figure 1(a), when the incident shock IS propagates from fluid A to fluid
B, total transmission (i.e. no reflected wave) occurs at the first interface, provided that the
following condition (Han & Yin 1993) is satisfied:

cB/cA = κ, (2.1)

with

κ =
γB

[
1 + γB + 1

2γB
( p2/p1 − 1)

]1/2

γA

[
1 + γA + 1

2γA
( p2/p1 − 1)

]1/2 , (2.2)

where cB/cA is the ratio of sound speed in fluid B to that in fluid A; γA and γB are the
adiabatic indices for fluid A and fluid B, respectively; and p2/p1 is the ratio of pressure
behind IS to that in front of IS, which can be expressed as

p2/p1 = 1 + 2γA

γA + 1
(M2

s − 1), (2.3)
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with Ms denoting the incident shock Mach number. By substituting cA = √
γApA/ρA and

cB = √
γBpB/ρB into (2.1) and simplifying, we obtain

1 + 2
p2/p1 − 1

= ρB − ρA

γAρA − γBρB
. (2.4)

Substituting (2.3) into (2.4) yields

R0 = ρB

ρA
= γA(γA + 1)M2

s

γB − γA + γA(γB + 1)M2
s
, (2.5)

where R0 is the initial density ratio. Equation (2.5) gives the relationship among R0, Ms,
ρA, ρB, γA and γB under the total transmission condition.

When the IS passes through the first interface, the transmitted shock TS1 is generated,
as depicted in figure 1(b). Due to the total transmission of IS at the first interface, the value
of p2/p1 remains equal for both IS and TS1. As a result, the gas parameters on both sides
of the second interface also satisfy (2.4), that is, TS1 is also totally transmissive at the
second interface. Here, it can be concluded that, for an A/B/A-type heavy fluid layer, if
the shock is totally transmissive at the first interface, it is also totally transmissive at the
second interface. The total transmission at both fluid-layer interfaces causes the post-shock
flow velocity to remain unvaried. As a consequence, the shock-induced jump velocities for
the first and second interfaces are equal. In the remainder of this paper, the parameter �U
will be used to represent the jump velocity for both the first and second interfaces under
the total transmission condition.

2.2. Theory of individual freeze-out for the first and second interfaces
The freeze-out theory for heavy fluid layers focuses on the case where the first and second
interfaces are in phase, as illustrated in figure 1(a). This choice is limited by the fact that
freeze-out only theoretically emerges for in-phase cases (Mikaelian 1995). To construct
the freeze-out theory, we need to know the parameters (including the density ratio, the
fluid-layer thickness and the interface amplitudes) at the initiation of interface coupling.
For the shock-accelerated fluid layer, the interface coupling is initiated after the shock
compression. Figure 1 shows schematics of the shock-compression process for the heavy
fluid layer in the absence of reverberating waves. The time when the incident shock
IS just contacts the first interface is defined as t = 0. When the IS completely passes
through the first interface (t = t+), as shown in figure 1(b), the density of fluid A changes
from ρA to ρ∗

A, and the first interface amplitude is compressed from a0
1 to a+

1 . When the
transmitted shock TS1 reaches the second interface centre (t = t∗), as shown in figure 1(c),
the fluid-layer thickness is compressed from L0 to the minimum value of L∗, the amplitude
of the first interface changes to a∗

1 and the amplitude of the second interface is compressed
from a0

2 to a∗
2. In this work, the interface coupling is considered to be initiated at t = t∗.

Then, the post-shock quantities at t = t∗, including the density ratio R∗, the layer thickness
L∗ and the interface amplitudes a∗

1 and a∗
2, required for the establishment of the freeze-out

theory, will be determined.
By solving the 1-D Riemann problem of the shock–interface interaction, the post-shock

densities ρ∗
A and ρ∗

B can be obtained and thus R∗ can be written as

R∗ = ρ∗
B/ρ∗

A. (2.6)

The duration of the whole compression process of the fluid layer can be denoted as
L0/Vts1, where Vts1 represents the velocity of TS1. Throughout this period, the downstream
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movement of the first interface can be quantified as �U(L0/Vts1). As a result, L∗ can be
written as

L∗ = L0 − �U(L0/Vts1) = L0(1 − �U/Vts1). (2.7)

Notably, under the total transmission condition, L∗ remains unvaried since the jump
velocities for both interfaces are equal.

The development of the first interface’s amplitude during the transition from a0
1 to a∗

1
can be divided into two stages: (I), 0 < t � t+, the shock-compression stage; (II), t+ < t �
t∗, the independent perturbation growth stage. In stage I, the amplitude (a+

1 ) after shock
compression can be expressed as

a+
1 = a0

1(1 − �U/Vis), (2.8)

where Vis is the velocity of IS. In stage II, the amplitude growth for the first interface
initially enters a startup period. According to the work of Lombardini & Pullin (2009), the
amplitude growth rate of the first interface in the startup period can be expressed as

da1

dt
= C1Γ

�UA+ ȧRich
1

t
τ
. (2.9)

Here, τ is the startup time, which can be found using

τ = 1
2k

(
1 − A+

Vf + �U
+ 1 + A+

Vts1 − �U

)
, (2.10)

where A+ = (ρ∗
B − ρ∗

A)/(ρ∗
B + ρ∗

A) is the post-shock Atwood number, and Vf is the
velocity of the reflected wave from the interface. In the total transmission condition, Vf
is considered to be equal to the local sound velocity. The parameter Γ is the circulation
imposed by IS on the first interface (Samtaney & Zabusky 1994), which can be expressed
as

Γ = cA

Ms

[
γB(1 − φ( p3/p1, γB))

γA(γB − 1)R0
− 1 − φ( p3/p2, γA)φ( p2/p1, γA)

γA − 1

]
, (2.11)

with

φ(ξ, η) ≡ ξ
(η − 1)ξ + η + 1
(η + 1)ξ + η − 1

, (2.12)

where p3 is the pressure behind TS1. Here, C1 = [(1 − A+)(Vf + �U) − (1 +
A+)(−Vts1 + �U)]/(Vf + Vts1) and ȧRich

1 is the perturbation growth rate obtained from
the model of Richtmyer (1960) as

ȧRich
1 = ka+

1 �UA+. (2.13)

After the startup period, the amplitude growth for the first interface enters a linear period.
The amplitude growth rate in this period can be given by (2.13).

Notably, at t = t∗, the amplitude growth of the first interface can be categorized into two
scenarios: (i) for t∗ − t+ ≤ τ , the amplitude growth is still in the startup period; (ii) for
t∗ − t+ > τ , the amplitude growth has entered the linear period. By integrating the time
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term in (2.9) and (2.13), the amplitude a∗
1 in the two scenarios can be expressed as

a∗
1 =

⎧⎪⎪⎨
⎪⎪⎩

a+
1 + C1Γ ȧRich

1
2�UτA+ (t∗ − t+)2, t∗ − t+ ≤ τ ;

a+
1 + C1Γ ȧRich

1
2�UA+ τ + ȧRich

1 (t∗ − t+ − τ), t∗ − t+ > τ.

(2.14)

The amplitude a∗
2 can be expressed as

a∗
2 = a0

2 + a+
2

2
, (2.15)

where a+
2 is the amplitude for the second interface at the time when TS1 completely passes

through it. The a+
2 can be expressed as

a+
2 = a0

2(1 − �U/Vts1). (2.16)

In the previous studies involving a heavy/light single-mode case (Meyer & Blewett 1972;
Holmes et al. 1999; Guo et al. 2022a), a∗

2, rather than a+
2 , is employed as the post-shock

amplitude for theoretical modelling since a∗
2 performs better in predicting the amplitude

growth rate for the heavy/light configuration. In the current work, a∗
2 is also selected as the

post-shock amplitude of the second interface to establish the freeze-out theory.
By replacing the pre-shock quantities R0, L0, a0

1 and a0
2 in the model of Mikaelian (1995)

with the post-shock quantities R∗, L∗, a∗
1 and a∗

2, we can obtain the following expression
to predict the freeze-out for the first interface:

a∗
1 = a∗

2 sin θ ′, (2.17)

and the following expression to predict the freeze-out for the second interface:

a∗
2 = a∗

1 sin θ ′. (2.18)

In (2.17) and (2.18), θ ′ is the coupling angel with consideration of the post-shock quantities
R∗ and L∗ and

sin θ ′ = 2W
1 + W2 , (2.19)

with

W = 1 + sinh(kL∗) tanh
(

kL∗

2

)
+ sinh(kL∗)

R∗

{
1 +

[
1 + R∗2 + 2R∗ coth(kL∗)

]1/2
}

.

(2.20)

When employing equation (2.17) to forecast the first interface’s freeze-out, we find that
the calculated value of a∗

1 is too large, resulting in a significant amplitude growth rate
of the first interface. As a result, the coupling effect imposed by the second interface
fails to freeze the amplitude growth of the first interface. Similarly, (2.18) also yields
an overestimation of a∗

2, leading to its inability to predict the freeze-out for the second
interface. The failure of (2.17) and (2.18) indicates that considering only the modification
of post-shock quantities for the original model of Mikaelian (1995) is insufficient.

It should be noted that, in the original model of Mikaelian (1995), R0 and L0 are
independent parameters. However, in the total transmission condition, R0 is determined
by (2.5), establishing a relationship between R0 and the adiabatic indices (γA and γB).
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Figure 2. The dimensionless amplitude growth for the first (a) and second (b) interfaces predicted by the
freeze-out theory with different β values. Cases I13 and I26m are designed for examining the freeze-out for the
first and second interfaces, respectively, with their initial conditions detailed in tables 1 and 2 in §§ 4.2 and 4.3.

Any change in R0 requires γA or γB to change accordingly to ensure total transmission.
Nevertheless, based on the shock dynamics theory (Han & Yin 1993), variations in γA
or γB can affect the values of �U and Vts1, thus influencing the value of L∗ (see (2.7)).
Consequently, under the total transmission condition, changes in R0 can lead to variations
in L∗ so that R∗ and L∗ are not independent. It is believed that directly substituting the
independent parameters L0 and R0 with the dependent parameters L∗ and R∗ into (2.19)
causes it to be incapable of accurately quantifying the interface coupling strength required
for freeze-out, thus leading to the failure of (2.17) and (2.18). To account for additional
effects arising from the correlation between R∗ and L∗, an empirical parameter β is
introduced in (2.19), resulting in a modified form of (2.19):

sin θ∗ = 2βW
1 + W2 , (2.21)

where θ∗ is the modified coupling angle.
Then, we describe the determination process of the parameter β. As mentioned above,

(2.17) and (2.18) yield an overestimation for a∗
1 and a∗

2, respectively, resulting in their
inability to predict the individual freeze-out for the first and second interfaces. As a
consequence, to ensure the effectiveness of the freeze-out theory, it is necessary to
introduce a parameter less than 1 to multiply sin θ ′ in (2.17) to reduce the resulting value
of a∗

1, and in (2.18) to reduce the resulting value of a∗
2. In other words, the parameter β

introduced should be smaller than 1. Naturally, β is expected to be a constant, representing
the simplest approach for the modification. To determine the optimal value for β, we
explore some values within the range of 0 to 1. For each attempted β value, numerical
simulations are conducted to confirm whether freeze-out occurs. Using cases I13 and I26m

(details provided in tables 1 and 2 in §§ 4.2 and 4.3) as examples, figure 2(a,b) shows
the dimensionless amplitude growth of the first and second interfaces predicted by the
freeze-out theory with three β values (β = 1, 0.4 and 2/3). It is evident that, for β values
that are either too large (β = 1) or too small (β = 0.4), the amplitude growth of both
interfaces remains unfrozen. However, when β = 2/3, the amplitude growth of the first
and second interfaces is effectively arrested. Importantly, this β value (= 2/3) is found
to be effective for the freeze-out theory in predicting freeze-out for the first and second
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Figure 3. Variations of sin θ∗ as a function of kL0 (a) and R0 (b). In (a), the values of R0 corresponding to
each Ms are 2, 3 and 4, respectively. In (b), the values of Ms corresponding to each kL0 are 1.2, 1.6 and 2.0,
respectively. The lines for kLm

0 are obtained based on (2.27), as described in § 2.3.

interfaces over a broad range of initial conditions, as observed in figures 8 and 11 in §§ 4.2
and 4.3. Consequently, β = 2/3 is recommended in (2.21).

Notably, sin θ∗ varies from 0 to 2/3. As the value of sin θ∗ becomes larger, the interface
coupling strength is higher. To illustrate the dependence of sin θ∗ on initial conditions,
figure 3 presents the variations of sin θ∗ vs kL0 and R0, with consideration of the influence
of Ms. As shown in figure 3(a), as kL0 decreases, sin θ∗ increases and when kL0 approaches
zero, sin θ∗ converges to 2/3. As shown in figure 3(b), as R0 increases, sin θ∗ increases
but saturates rapidly. Particularly, at a relatively large kL0 such as kL0 = 3.14, increasing
R0 alone cannot make sin θ∗ converge to 2/3. As a result, enhancing of the interface
coupling strength is more effectively achieved by reducing kL0 rather than increasing R0.
In addition, as Ms increases, sin θ∗ also increases. This phenomenon occurs because a
stronger shock impact leads to a greater compression in both interface thicknesses and
fluid densities, resulting in an increase in both kL∗ and R∗ and, consequently, an increase
in sin θ∗.

Finally, with consideration of the quantity sin θ∗, the model for predicting the freeze-out
for the first interface can be expressed as

a∗
1 = a∗

2 sin θ∗, (2.22)

and the model for predicting the freeze-out for the second interface can be expressed as

a∗
2 = a∗

1 sin θ∗. (2.23)

Equations (2.22) and (2.23) quantify the amplitudes of the first and second interfaces at
the onset of interface coupling, as well as the interface coupling strength required for
freeze-out.

Based on the variations of the first and second interfaces’ amplitudes during the shock
compression stage, the initial amplitudes (a0

1 and a0
2) of the first and second interfaces

required for freeze-out can be determined. For instance, we can first set a value for a0
1, and

then, the a0
2 required for freeze-out for the first interface can be determined by combining

(2.22), (2.8), (2.14), (2.15) and (2.16); and the a0
2 required for freeze-out for the second

interface can be determined by combining (2.23), (2.8), (2.14), (2.15) and (2.16).
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2.3. Supplementary condition for the second interface’s freeze-out
After the shock impact, phase reversal generally arises at the second interface of the
heavy fluid layer (Meyer & Blewett 1972). Previous fluid-layer studies have indicated that,
once phase reversal of the second interface is accomplished, the spike continually grows
downstream so that freeze-out cannot be achieved by the interface coupling (Liang et al.
2020; Cong et al. 2022). Consequently, the freeze-out for the second interface needs to be
achieved before phase reversal. This indicates that (2.23) is not sufficient to achieve the
freeze-out for the second interface.

After the shock passes through the fluid layer (t > t∗), the coupling effect is considered
to propagate at the local sound velocity (c∗

B) within the fluid layer. The value of c∗
B can be

obtained by the shock dynamics theory (Han & Yin 1993). As the first interface evolves, its
induced coupling effects continuously transmit to the second interface. If the first interface
imposes sufficient coupling effects on the second interface, the second interface’s phase
reversal could be prevented (Liang & Luo 2023). The coupling transfer time (tct) between
the first and second interfaces is expressed as

tct = L∗/c∗
B. (2.24)

Note that, as the initial layer thickness increases, the tct becomes larger. Consequently,
over the same time interval, the total amount of coupling effects imposed on the second
interface decreases with increasing initial layer thickness. As a result, there is a maximum
initial layer thickness (Lm

0 ) at which the total coupling effects imposed on the second
interface just prohibit the second interface’s phase reversal.

Starting from t∗, the phase-reversal time (tpr) for the second interface is given by

tpr = a0
2

Vts1
+ a+

2

ȧRich
2

, (2.25)

where ȧRich
2 (= ka+

2 �UA+) is the amplitude growth rate in the phase reversal stage (Zhai
et al. 2016). To prevent phase reversal at the second interface, tct should be smaller than
tpr. This leads to the relation

tct = δtpr, (2.26)

where δ ∈ (0, 1) is a proportional factor. Combining (2.26) with (2.7), the maximum initial
layer thickness Lm

0 is expressed as

Lm
0 = δc∗

B
1 − �U/Vts1

(
1

k�UA+ + a0
2

Vts1

)
. (2.27)

When L0 < Lm
0 , the phase reversal at the second interface can be prevented so that the

freeze-out for the second interface is feasible.
In (2.27), only the factor δ is unknown. To determine δ, we perform numerical

simulations with various initial conditions. Specifically, eight numerical cases, I24m–I26m

and I29m–I213m, each with unique initial conditions detailed in table 2 in § 4.3,
are considered. For each case, simulations with different initial layer thicknesses are
conducted to specify the numerical maximum initial layer thickness (Lm,num

0 ) that prevents
the phase reversal at the second interface. Then, by substituting the Lm,num

0 values into
(2.27), eight numerical values for δ are obtained. It is shown that each case yields a distinct
numerical value for δ, indicating that a unified δ cannot be determined. In other words, δ is
influenced by the initial conditions, much like tct and tpr. Here, sin θ∗, a non-dimensional
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Figure 4. The variations of δ with sin θ∗. Symbols denote the numerical values of δ, obtained from simulations
of cases I24m–I26m and I29m–I213m. The initial conditions of the eight numerical cases are presented in table 2.
The red line indicates the quadratic function, δ = 9 sin2 θ∗/8.

parameter dependent on initial conditions, is employed to specify δ. Figure 4 shows the
δ–sin θ∗ plot. It is observed that, as sin θ∗ increases, δ also increases. We find that a
quadratic function, δ = 9 sin2 θ∗/8, can well characterize the relationship between δ and
sin θ∗. As a result, δ = 9 sin2 θ∗/8 is recommended for defining δ. Notably, sin θ∗ varies
from 0 to 2/3 so that δ varies from 0 to 1/2. Consequently, as illustrated in (2.26), the
maximum value of the coupling transfer time tct must be less than 1/2 of the phase reversal
time tpr to prevent the second interface’s phase reversal.

The theoretical lines of the dimensionless form of Lm
0 , denoted as kLm

0 , are presented in
figure 3(a). The value for the dimensionless initial layer thickness (kL0) on the left-hand
side of the lines of kLm

0 enables the freeze-out for the second interface. In short, to achieve
freeze-out for the second interface, it is essential not only for the amplitudes of the first
and second interfaces to satisfy (2.23), but also for the initial layer thickness to remain
smaller than Lm

0 (i.e. L0 < Lm
0 ).

3. Numerical methods

3.1. Numerical set-up and code validation
The initial configuration of the A/B/A-type heavy fluid layer, adopted in the simulations,
is depicted in figure 1(a). The detailed settings for the initial parameters including a0

1,
a0

2, Ms, L0, ρA, ρB and λ will be described in §§ 4 and 5. The computational domain’s
length is set to be at least ten times half the wavelength λ (in this work, three different
wavelengths with values of 120, 240 and 480 mm are considered) to avoid interference of
reflected waves from the right boundary with the evolving interface during the designated
simulation time. To optimize computational efficiency, calculations are performed only for
half the computational domain along the y-direction. In the simulations, the nodes with a
volume fraction of fluid B between 5 % and 95 % are considered as the interface. The
amplitude of the evolving first (second) interface, denoted as a1 (a2), is defined as half of
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Figure 5. Code validation based on amplitude growths of heavy-fluid-layer interfaces under the conditions of
lower (a) and higher (b) Mach numbers. Symbols represent experimental results obtained from the air/SF6/air
fluid-layer case in the previous work (Li et al. 2023). Lines represent numerical results based on four kinds of
mesh sizes.

the distance between the bubble tip and the spike tip at the nodes with a fluid B volume
fraction of 50 %. In the simulations, the temperature is 295 K and the pressure is 101.3 kPa.

The interactions between a shock and the heavy fluid layer are described by
two-dimensional (2-D) compressible multi-component Euler equations. The optimized
six-point weighted compact nonlinear scheme (WCNS) with minimum dispersion and
adaptive dissipation (Zhou et al. 2023b) is used. The optimized WCNS scheme is extended
to multi-species flows by incorporating the double-flux algorithm of Abgrall & Karni
(2001), and has shown a good capability to simulate RMI problems (Zhou et al. 2023a).
For time integration, a third-order total variation diminishing Runge–Kutta method is
adopted. Further details about the numerical scheme can be found in the previous work
(Zhou et al. 2023b).

The experimental data from a shocked air/SF6/air fluid layer in the previous work
(Li et al. 2023) are utilized for code validation. The simulation employs identical initial
conditions to those used in the experiment. The incident shock Mach number is 1.19. The
first interface of the fluid layer is a flat one, while the second interface is a single-mode
case with an initial amplitude and wavelength of 4 and 60 mm, respectively. The volume
fraction of SF6 within the layer is 82.6 %, and the surrounding air outside the layer
is pure. Figure 5(a) shows the comparison of interface amplitude growths between the
experimental data and our simulation results. It is found that the experimental and
numerical results achieve a good agreement.

To evaluate grid convergence, four different mesh sizes (0.4 mm, 0.2 mm, 0.15 mm
and 0.1 mm) are adopted to simulate an air/SF6/air fluid layer impacted by a shock with
Ms = 2.0. Figure 5(b) shows the temporal amplitude variations for the first and second
interfaces for each mesh size at Ms = 2.0. Additionally, figure 5(a) includes the amplitude
growth data of the lower Mach number case, considering these four mesh sizes. It is
evident that the amplitude growth data exhibit convergence as the mesh size decreases
from 0.4 to 0.1 mm, both for higher and lower Mach number cases. Particularly, the
numerical results for cases with mesh sizes of 0.2 mm, 0.15 mm and 0.1 mm are in close
agreement. To strike a balance between computational cost and accuracy, a mesh size of
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Figure 6. Numerical schlieren images and pressure fields for a shocked heavy-fluid-layer case, designed for
examining the total transmission. Note that two partially enlarged views of the pressure fields are provided
at the bottom. Here, RR1 and RR2 denote the regions consisting of rarefaction and compression waves; II1
and II2 denote the initial first and second interfaces, respectively; SI1 and SI2 denote the shocked first and
second interfaces, respectively, and similarly hereinafter. The black dashed lines in the pressure plots denote a
half-wavelength interface, which are intentionally plotted to enhance understanding of the interface evolution.
Numbers in the numerical schlieren images denote time with unit of μs.

0.15 mm is utilized for cases with λ = 120 mm, while a mesh size of 0.2 mm is utilized for
cases with λ = 240 mm or 480 mm.

3.2. Total transmission validation
The total transmission of a shock at small-amplitude fluid-layer interfaces is assessed. The
initial conditions for the examination are listed as follows: Ms is set to 2.0 to investigate
the total transmission at a relatively high Mach number; SF6 is chosen as the heavy fluid
with ρB and γB of 6.08 kg m−3 and 1.10, respectively; R0 is set to 3, causing ρA to be
2.03 kg m−3; γA is determined to be 4.72 using (2.5); and a0

1 and a0
2 are 0.36 and 1 mm,

respectively, both satisfying the small-amplitude hypothesis. Notably, the values of a0
1 and

a0
2 satisfy (2.22) so that the perturbation growth of the first interface would be frozen. Since

the reverberating waves within the layer arise due to reflection from the second interface,
only the total transmission at the second interface is examined.

Figure 6 shows the numerical schlieren images and corresponding pressure fields of a
shocked SF6 fluid layer for the examination case. As shown in figure 6, the incident shock
IS passes through the first interface, giving rise to the transmitted shock TS1 (155 μs).
Subsequently, TS1 impacts the second interface, leading to the formation of a transmitted
shock TS2 (245 μs). Notably, a reflected region RR1 is formed when TS1 traverses the
second interface. The generation of RR1 region is primarily ascribed to the diffuse initial
interface across four grids in this work. Due to the slight diffusion of the interface, the
complete satisfaction of the total transmission condition is not achieved, resulting in
the generation of reflected waves. Furthermore, the derivation of the total transmission
condition is based on 1-D assumptions so that the 2-D small-amplitude perturbation
may still give rise to reflected waves. In the partially enlarged view of the pressure plot
at 245 μs, as shown in figure 6, the pressure first decreases and then increases when
traversing the RR1 region from left to right. This indicates that the RR1 region consists of
rarefaction and compression waves. These waves in the RR1 region successively strike
the first interface, resulting in an RR2 region consisting of reflected compression and

987 A10-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

39
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.390


Z. Cong, X. Guo, Z. Zhou, W. Cheng and T. Si

rarefaction waves (320 μs). In this examination case, the ratio of the pressure ahead of
the RR1 (RR2) region to that behind the RR1 (RR2) region is 1.0098 (0.9987). We also
determine the two pressure ratios for all cases considered in this work (see tables 1–3 for
details of the cases), and the pressure ratio involving the RR1 (RR2) region varies from
1.0041 (0.9865) to 1.0148 (0.9995) for different cases. This indicates that the reverberating
waves resulting from the initial 2-D diffuse interfaces are weak for all cases so that the
shock can be considered totally transmissive at the second interface.

Notably, the maximum values of ka0
1 or ka0

2 for all cases in this work are no more than
0.1. These initial amplitude values satisfy the small-amplitude requirements of ka0

1 � 1
and ka0

2 � 1, because the values of ka0
1,2 are an order of magnitude smaller than unity.

Such a small amplitude can significantly reduce the influence of dimensionality on the
total transmission condition. Furthermore, the reverberating waves resulting from the
small-amplitude interfaces are very weak. As a result, ka0

1,2 = 0.1 may serve as a threshold
for the total transmission of a shock at the perturbed fluid-layer interface.

4. Evaluation of the freeze-out theory

In this section, § 4.1 presents the initial condition settings for parametric studies conducted
for the freeze-out examination; § 4.2 examines the validity of (2.22) in predicting the
freeze-out for the first interface; and § 4.3 examines the validity of (2.23) and (2.27) in
predicting the freeze-out for the second interface.

4.1. Initial condition settings for parametric studies
Equations (2.22), (2.23) and (2.27) are all functions of sin θ∗, which is dependent on
the incident shock Mach number (Ms), the initial density ratio (R0), the initial fluid-layer
thickness (L0) and the interface wavelength (λ). As a result, the individual freeze-out for
the first and second interfaces under the conditions of various Ms, R0, L0 and λ will be
examined.

In the previous freeze-out studies with lower Mach numbers (Ms < 1.4) (Chen et al.
2023a,b; Liang & Luo 2023), after the incident shock passes through the interface, both
the transmitted shock and reflected wave rapidly propagate away from the interface. As
a result, after a very short time, there are no large changes in pressure in the vicinity
of the interface so that compressibility effects are weak in the lower Mach number
cases (Richtmyer 1960). As the Mach number increases, the interface velocity shows
a significant rise. For instance, in the cases of Ms = 2.0 considered in this work, the
velocity (�U) of the first interface is approximately 80 % of that (Vts1) of the transmitted
shock TS1. The velocity ratio (�U/Vts1 ≈ 0.8) at Ms = 2.0 is much higher than the
corresponding ratio (�U/Vts1 ≈ 0.4) at Ms = 1.2. As a result, in relatively high Mach
number cases, the transmitted shock recedes slowly from the interface (Glendinning
et al. 2003; Motl et al. 2009). This results in changes in pressure behind the transmitted
shock influencing the interface perturbation growth for a relatively long time; thus,
compressibility effects become significant in higher Mach number cases (Sadot et al.
2003; Guo et al. 2020; Zhang et al. 2022). The presence of compressibility effects adds
complexity to the coupling between the two interfaces, possibly influencing the realization
of freeze-out. Furthermore, compressibility effects may cause the two models of (2.22)
and (2.23) to be invalid in predicting freeze-out, because these two models are initially
derived by treating the shock as an instantaneous acceleration on incompressible fluids
(Mikaelian 1995). In the present study, to examine the applicability and effectiveness of
the models (2.22) and (2.23) under conditions of relatively high Mach numbers, the Ms is
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consistently set at 2.0, except for cases specifically designed for freeze-out examinations
at lower Mach numbers (Ms = 1.2 and 1.6).

We first employ real gases to form different R0. After examining 56 real gases (see
Appendix A for details of the gases), it is found that, under the total transmission
condition, the largest R0 is achieved when xenon (Xe) is used as fluid A and a mixture
of decafluorobutane (C4F10) and neopentane (C5H12) is used as fluid B. Specifically, at
Ms = 1.2, 1.6 and 2.0, the largest R0 under the total transmission condition is determined
to be 1.49, 1.40 and 1.36, respectively. Additionally, we consider the following two cases
to investigate the potential effect of gas species on the validity of our freeze-out theory:
krypton (Kr) is employed as fluid A and a mixture of C4F10 and C5H12 is employed
as fluid B; argon (Ar) is employed as fluid A and a mixture of butane (C4H10) and
propane (C3H8) is employed as fluid B. At Ms = 2.0, the R0 value for these two cases
under the total transmission condition is 1.35 and 1.31, respectively. Further details of the
real-gas cases can be found in tables 1 and 2 (denoted as cases I11–I15 and I24m–I28m).
The discussion about the total transmission under real-gas conditions is presented
in Appendix A.

Notably, the largest R0 formed by real gases is no more than 1.49 under the total
transmission condition, as Ms varies from 1.2 to 2.0. This density ratio is relatively small,
so that it is insufficient for validating the effectiveness of our freeze-out theory from
the perspective of R0. To address this limitation, artificial gases are utilized, providing
a convenient means to adjust R0. In this work, using artificial gases, we form R0 values
with a range of 2–4. The upper limit for R0 is based on the fact that, beyond R0 = 4, the
change in sin θ∗ is minimal, resulting in a limited variation in interface coupling strength
(see figure 3b). As illustrated in tables 1 and 2, for cases I16–I114, cases I21–I23 and cases
I29m–I215m, the artificial gas is utilized as fluid A, and the real gas SF6 is utilized as fluid
B. The properties including ρA and γA for the artificial gases can be determined by (2.5).

The choice of L0 involved in parametric studies is made to first ensure that the layer
thickness (L∗) at the coupling onset time (t∗ in this work) remains under 1/3 of the interface
wavelength. This criterion is based on the finding that the interface coupling becomes
non-negligible when the layer thickness at the onset time is less than 1/3 of the interface
wavelength (Taylor 1950). Particularly, in freeze-out test cases for the second interface, the
choice of L0 is further limited by Lm

0 , as described in § 2.3.
In most cases, λ is fixed at 120 mm, which is the same as the transverse size of the shock

tube used in our previous work (Cong et al. 2022; Guo et al. 2022a,b). To explore potential
effects arising from variations in interface wavelengths on freeze-out, we also include two
additional wavelengths of 240 and 480 mm. These values, generally unexplored in previous
shock-tube studies, offer insights into the impact of different interface wavelengths on the
freeze-out phenomenon.

Notably, (2.22) and (2.23) are derived based on the small-amplitude hypothesis (i.e.
ka0

1 � 1 and ka0
2 � 1). As a result, the initial amplitudes of all cases in this work are

set in accordance with this condition. When freeze-out for the first interface is examined,
a0

2 is first specified, and then the corresponding a0
1 is determined by combining (2.15),

(2.22), (2.14) and (2.8). When freeze-out for the second interface is examined, a0
1 is

first specified, and then the corresponding a0
2 is determined by combining (2.8), (2.14),

(2.23) and (2.15). For all cases, ka0
1 has a range of 0.0084–0.0628, and ka0

2 has a range
of 0.0162–0.0628.

987 A10-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

39
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.390


Z. Cong, X. Guo, Z. Zhou, W. Cheng and T. Si

Case Ms L0 R0 λ a0
1 a0

2 sin θ∗ �U ρA γA ρB γB

I11 1.2 21.5 1.49 120 0.39 1.0 0.379 48.3 5.47 1.68 8.14 1.05
I12 1.6 39.2 1.40 120 0.44 1.0 0.397 128.4 5.47 1.68 7.65 1.06
I13 2.0 60 1.36 120 0.48 1.0 0.413 197.6 5.47 1.68 7.44 1.06
I14 2.0 60 1.35 120 0.47 1.0 0.403 247.4 3.49 1.67 4.70 1.07
I15 2.0 60 1.31 120 0.43 1.0 0.375 358.4 1.66 1.67 2.18 1.11
I16 2.0 20 3 120 0.67 1.0 0.637 254.8 2.03 4.72 6.08 1.10
I17 2.0 60 3 120 0.36 1.0 0.512 254.8 2.03 4.72 6.08 1.10
I18 2.0 100 3 120 0.16 1.0 0.366 254.8 2.03 4.72 6.08 1.10
I19 2.0 60 2 120 0.39 1.0 0.472 239.4 3.04 2.89 6.08 1.10
I110 2.0 60 4 120 0.35 1.0 0.529 262.4 1.52 6.56 6.08 1.10
I111 1.2 20.7 3 120 0.40 1.0 0.475 66.5 2.03 3.81 6.08 1.10
I112 1.6 39.4 3 120 0.34 1.0 0.501 169.2 2.03 4.41 6.08 1.10
I113 2.0 120 3 240 1.18 2.4 0.512 254.8 2.03 4.72 6.08 1.10
I114 2.0 240 3 480 2.35 4.8 0.512 254.8 2.03 4.72 6.08 1.10
S1 2.0 — 3 120 0.36 — — 254.8 2.03 4.72 6.08 1.10

Table 1. Initial conditions of cases I11–I114 designed for testing the validity of (2.22) in predicting freeze-out
for the first interface. Case S1 is a single-mode case, which is utilized for comparison. In cases I11–I13, fluid A
is Xe. In cases I4 and I5, fluid A is Kr and Ar, respectively. In cases I11–I14, fluid B is a mixture of C4F10 and
C5H12, and the volume fractions of C4F10 and C5H12 in cases I11–I14 are 74.39 % and 25.61 %, 67.30 % and
32.70 %, 64.31 % and 35.69 %, 24.58 % and 75.42 %. In case I15, fluid B is a mixture of C4H10 and C3H8, and
the volume fractions of C4H10 and C3H8 are 59.80 % and 40.20 %. In cases I16–I114, fluid B is SF6, and fluid
A is the artificial gas whose ρA and γA are determined by (2.5) to satisfy the total transmission condition. For
cases I11–I13, the selection of L0 results in the same L∗, and similarly, for cases I17, I111-I112. The purpose of
maintaining the same L∗ is to emphasize the effect of the Mach number. The units of L0, λ, a0

1 and a0
2 are mm,

the unit of �U is m s−1 and the unit of ρA and ρB is kg m−3.

4.2. Freeze-out for the first interface
Cases I11–I13 and I111–I112, cases I16–I18, cases I11–I15 and I19–I110 and cases
I113–I114, with their initial conditions summarized in table 1, are designed to examine the
validity of (2.22) in predicting the freeze-out for the first interface from the perspectives
of Ms, L0, R0 and λ, respectively. The inclusion of different gases in these cases also offers
an opportunity to assess the validity of (2.22) from the perspective of the gas species.
Additionally, case S1, as a single-mode scenario, is included for comparison. As illustrated
in table 1, all values of a0

1 determined by our freeze-out theory are smaller than the values
of a0

2.
Case I17 is taken as an example to illustrate the interface evolution observed in cases

I11–I112, all featuring an identical wavelength of 120 mm. Figure 7(a) presents the
numerical schlieren images of interface evolution for case I17. Notably, numbers in images
of figure 7(a) denote the dimensionless time (k�Ut). The fluid layer in case I17 first
experiences a compression process resulting from the IS impact. Then, phase reversal
of the second interface occurs after the impact of TS1 (k�Ut = 1.9–6.3). Note that, at
k�Ut = 6.3, the first interface’s morphology remains almost unchanged compared with
its post-shock state (k�Ut = 1.9). This phenomenon occurs because the second interface
has a higher initial amplitude and thus a faster amplitude growth rate (Richtmyer 1960;
Meyer & Blewett 1972) in comparison with the first interface. As a result, after phase
reversal, the upstream growth of the second interface’s bubble effectively squeezes the
bubble of the first interface, hindering its evolution. As time elapses, the second interface
constantly develops so that it imposes a stronger squeeze on the first interface. In a late
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Figure 7. Numerical schlieren images of interface evolution for cases I17 (a) and I114 (b). Here, ‘Bu’ and ‘Sp’
denote bubbles and spikes, respectively, and ‘xB1’ and ‘xS1’ denote the tips of bubbles and spikes for the first
interface, respectively. Numbers denote the dimensionless time k�Ut.

stage (k�Ut = 13.9), the coupling effect from the second interface even causes the bubble
tip of the first interface to slightly protrude upstream, further impeding the first interface’s
evolution.

Case I114 is taken as an example to illustrate the interface evolution observed in
cases I113–I114, featuring larger interface wavelengths of 240 and 480 mm, respectively.
Figure 7(b) presents the interface evolution for case I114. It is observed that, at a late stage
(k�Ut = 13.9), the bubble tip in case I114 becomes nearly flat but remains downstream
of the spike tip, which is different from the observation in case I17. The distinction arises
primarily from the larger initial amplitude and greater initial layer thickness in case I114.
When subjected to the coupling effect of the second interface, the larger initial amplitude
requires more time for the bubble tip of the first interface to move upstream of the spike
tip. Moreover, the greater layer thickness allows for a longer transfer time of coupling
effect from the second interface, thus delaying movement of the bubble tip at the first
interface. As a result, the bubble tip of the first interface in case I114 is more prone to
remain downstream of the spike tip compared with case I17.

The dimensionless amplitude growth of the first interface for cases I11–I114 is shown
in figure 8, in which the time is scaled as k�Ut and the amplitude is scaled as ka1. The
amplitude a1 for the evolving first interface is defined as (xB1 − xS1)/2, where xB1 and
xS1 denote positions of the bubble tip and the spike tip for the first interface, respectively
(see figure 7). It is observed that the amplitude data for cases I113–I114 do not collapse
with those for cases I11–I112. This is primarily because the initial amplitudes for cases
I113-I114 are larger than those for cases I11–I112, resulting in consistently higher evolving
amplitude data for these two cases. Notably, the amplitude data for cases with higher L0, R0
and Ms (such as cases I17–I18, I110, I113–I114) exhibit oscillations, which are attributed to
the reflected rarefaction and compression waves from the 2-D diffuse interface, as detailed
in § 3.2. The effect of the rarefaction waves leads to an increase in amplitude for the first
interface, while compression waves contribute to a decrease, resulting in the oscillatory
amplitude growth. As L0 decreases, the period of the oscillation shortens; and as R0 and Ms
decrease, the strength of the reverberating waves diminishes. Consequently, the oscillation
is not evident for the cases with smaller values of L0, R0 and Ms.

Overall, the amplitude growths of the first interface for cases I11–I114 are roughly
frozen, as illustrated in figure 8. This indicates that the model (2.22) is robust in
predicting freeze-out for the first interface over a relatively wide range of initial conditions.
Furthermore, (2.22) shows insensitivity to variations in Ms, R0, L0, λ and gas species.
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Figure 8. Temporal variations of the first interface’s amplitudes for cases I11–I114 in a dimensionless form.
Case S1 is a single-mode case included for comparison.

4.3. Freeze-out for the second interface
First, the influence of whether the second interface accomplishes phase reversal on the
prediction of (2.23) is examined. Case I21, with L0 = 20 mm, is designed as an incomplete
phase-reversal scenario, and cases I22 and I23, with L0 = 35 and 60 mm, are designed
as completed phase-reversal scenarios. The selection of L0 values for cases I21–I23 is
based on the value of Lm

0 , which is calculated as 28.7 mm using (2.27). Further details of
the initial conditions for cases I21–I23 are presented in table 2. The numerical schlieren
images of the interface evolution for cases I21–I23 are shown in figure 9. For case I21
with a smaller L0, as shown in figure 9(a), the bubble tip of the first interface constantly
squeezes that of the second interface and even occupies the position where the bubble tip
of the second interface would be, thus preventing phase reversal of the second interface.
Conversely, for cases I22 and I23 with a larger L0, as shown in figure 9(b,c), phase reversal
of the second interface is completed.

The dimensionless amplitude growth of the second interface for cases I21–I23 is
presented in figure 10, in which the time is scaled as k�U(t − t∗) and the amplitude
is scaled as ka2. The amplitude a2 for the evolving second interface is defined as
(xB2 − xS2)/2, where xB2 and xS2 denote positions of the bubble tip and the spike tip
for the second interface, respectively (see figure 9). It is evident that the amplitude growth
of the second interface for case I21 is frozen, while the two phase-reversal cases display
continuous negative perturbation growth. This indicates that although (2.23) defines the
relationship between a0

1 and a0
2, freeze-out for the second interface cannot be achieved

once phase reversal is accomplished.
Second, the validity of (2.23) in predicting freeze-out for the second interface at

L0 = Lm
0 is examined. Cases I24m–I26m and I212m–I213m, cases I24m–I211m and cases

I214m–I215m, with the initial conditions presented in table 2, are designed to examine
the second interface’s freeze-out from the perspectives of Ms, R0 and λ, respectively.
Figure 11 shows the dimensionless amplitude growths of the second interface in cases
I24m–I215m. Given that cases I29m–I215m have larger initial amplitudes in comparison
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Case Ms L0 (Lm
0 ) R0 λ a0

1 a0
2 sin θ∗ �U ρA γA ρB γB

I21 2.0 20 3 120 1.0 0.78 0.637 254.8 2.03 4.72 6.08 1.10
I22 2.0 35 3 120 1.0 0.74 0.597 254.8 2.03 4.72 6.08 1.10
I23 2.0 60 3 120 1.0 0.71 0.512 254.8 2.03 4.72 6.08 1.10
I24m 1.2 28.0 1.49 120 1.0 0.31 0.310 48.3 5.47 1.68 8.14 1.05
I25m 1.6 32.0 1.40 120 1.0 0.38 0.445 128.4 5.47 1.68 7.65 1.06
I26m 2.0 36.7 1.36 120 1.0 0.39 0.516 197.6 5.47 1.68 7.44 1.06
I27m 2.0 36.8 1.35 120 1.0 0.39 0.508 247.4 3.49 1.67 4.70 1.07
I28m 2.0 37.1 1.31 120 1.0 0.36 0.485 358.4 1.66 1.67 2.18 1.11
I29m 2.0 30.6 2 120 1.0 0.42 0.586 239.4 3.04 2.89 6.08 1.10
I210m 2.0 28.7 3 120 1.0 0.76 0.615 254.8 2.03 4.72 6.08 1.10
I211m 2.0 28.1 4 120 1.0 0.81 0.624 262.4 1.52 6.56 6.08 1.10
I212m 1.2 23.5 3 120 1.0 0.51 0.443 66.5 2.03 3.81 6.08 1.10
I213m 1.6 25.6 3 120 1.0 0.69 0.575 169.2 2.03 4.41 6.08 1.10
I214m 2.0 56.2 3 240 2.4 1.86 0.617 254.8 2.03 4.72 6.08 1.10
I215m 2.0 112.4 3 480 4.8 3.72 0.617 254.8 2.03 4.72 6.08 1.10
S2 2.0 — 3 120 — 0.76 — 254.8 2.03 4.72 6.08 1.10

Table 2. Initial conditions for cases I21–I23, I24m–I215m and S2. Cases I21–I23 are designed for examining
the influence of whether the second interface completes phase reversal on the predictions of (2.23). Cases
I24m–I215m are designed for testing the validity of (2.23) and (2.27) in predicting freeze-out for the second
interface. The superscript ‘m’ denotes that L0 of the cases is calculated using (2.27). Case S2 is a single-mode
case, which is utilized for comparison. In cases I24m–I26m, fluid A is Xe. In cases I27m and I28m, fluid A is Kr
and Ar, respectively. In cases I24m–I27m, fluid B is a mixture of C4F10 and C5H12, and the volume fractions
of C4F10 and C5H12 in cases I24m–I27m are 74.39 % and 25.61 %, 67.30 % and 32.70 %, 64.31 % and 35.69 %,
24.58 % and 75.42 %. In case I28m, fluid B is a mixture of C4H10 and C3H8, and the volume fractions of C4H10
and C3H8 are 59.80 % and 40.20 %. In cases I21–I23 and I29m–I215m, fluid B is SF6, and fluid A is the artificial
gas whose ρA and γA are determined by (2.5) to satisfy the total transmission condition. The units of L0 (Lm

0 ),
λ, a0

1 and a0
2 are mm, the unit of �U is m s−1 and the unit of ρA and ρB is kg m−3.

–0.2 4.4 9.9 9.94.4–0.4–0.2 4.4 9.9

BuBu

SpSp

xB2

xS2

SI1 II2 SI1 II2 SI1 II2SI1 SI2 SI1 SI2 SI1 SI2

TS1TS1TS1

(b) (c)(a)

Figure 9. Numerical schlieren images of the shocked heavy fluid layer for cases I21 (a), I22 (b) and I23 (c).
Here, ‘xB2’ and ‘xS2’ denote the tips of bubbles and spikes for the second interface, respectively. Numbers
denote the dimensionless time k�U(t − t∗).

with cases I24m–I28m, their amplitude growth data are correspondingly higher. Overall, the
second interface’s amplitude growths are roughly frozen for all of these cases, indicating
that both (2.23) and (2.27) are necessary to achieve freeze-out for the second interface.
Additionally, apart from the limitation of Lm

0 , the model (2.23) is insensitive to variations
in Ms, R0, λ and gas species.

In short, the smaller value of a0
2 determined by our freeze-out theory compared with the

value of a0
1 (see table 2) results in a lower-amplitude growth rate for the second interface.

As a result, the bubble of the first interface more effectively squeezes the counterpart of
the second interface, preventing the second interface’s phase reversal when L0 < Lm

0 and
thereby leading to freeze-out for the second interface.
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Figure 10. Time variations of the second interface’s amplitudes for cases I21–I23 in a dimensionless form.
Case S2 is a single-mode case included for comparison.
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Figure 11. Time variations of the second interface’s amplitudes for cases I24m–I215m in a dimensionless
form.

5. Examination of freeze-out for double interfaces and for the fluid-layer width
growth

In this section, we will first explore the feasibility of achieving simultaneous freeze-out for
both the first and second interfaces. Notably, the models (2.22) and (2.23) are insufficient
for predicting the simultaneous freeze-out for double interfaces as these two equations
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Case Ms L0 R0 λ a0
1 a0

2 sin θ∗ �U ρA γA ρB γB

DI1-a, b, c, d 2.0 28.7 3 120 1.0 1.69, 0.76, 1.0, 1.1 0.615 254.8 2.03 4.72 6.08 1.10
DI2-a, b, c, d 2.0 10 3 120 1.0 0.9, 1.0, 1.1, 1.2 0.655 254.8 2.03 4.72 6.08 1.10
DI3 2.0 10 2 120 1.0 1.1 0.647 239.4 3.04 2.89 6.08 1.10
DI4 2.0 10 4 120 1.0 1.1 0.658 262.4 1.52 6.56 6.08 1.10
DI5 1.2 10 3 120 1.0 1.1 0.589 66.5 2.03 3.81 6.08 1.10
DI6 1.6 10 3 120 1.0 1.1 0.645 169.2 2.03 4.41 6.08 1.10

Table 3. Initial conditions of cases designed for testing freeze-out for double interfaces and for fluid-layer
width growth. The units of L0, λ, a0

1 and a0
2 are mm, the unit of �U is m s−1 and the unit of ρA and ρB is

kg m−3.

cannot hold concurrently. Nevertheless, these equations still offer valuable insights into
the simultaneous freeze-out. Specifically, after setting an initial amplitude (a0

1) for the first
interface, we can determine the initial amplitudes of the second interface based on (2.22)
and (2.23), denoted as a01

2 and a02
2 , which correspond to the requirements for individual

freeze-out for the first and second interfaces, respectively. Notably, in the scenarios with
a01

2 or a02
2 , the amplitude growth of one interface has been confirmed to be frozen, as

demonstrated in § 4.2 or § 4.3. However, it remains unclear whether the amplitude growth
of the other interface is frozen. Even if the freeze-out for the other interface is not achieved,
a01

2 and a02
2 would establish the upper and lower bounds in our search for a suitable a0

2 for
the simultaneous freeze-out case. When a0

1 is fixed, our freeze-out theory gives a larger
a01

2 and a smaller a02
2 , i.e. the inequality a01

2 > a0
1 > a02

2 holds. In the range of a01
2 to a02

2 ,
we can identify a value for a0

2 that may be valid for simultaneous freeze-out of double
interfaces. Particularly, the special scenario of a0

2 = a0
1 will be examined.

Cases DI1-a, DI1-b and DI1-c are designed, based on the aforementioned analysis, to
examine the simultaneous freeze-out for double interfaces. In these cases, a0

1 is set to
1 mm, and then, a01

2 and a02
2 are theoretically determined to be 1.69 mm and 0.76 mm.

As a result, including the scenario of a0
2 = a0

1, a0
2 in the three cases is set to 1.69 mm,

0.76 and 1 mm, respectively. Notably, the freeze-out for the second interface requires L0
to be no greater than Lm

0 . Thus, we first examine the simultaneous freeze-out for double
interfaces at L0 = Lm

0 , specifically, 28.7 mm. Other initial parameters for cases DI1-a, b, c
are listed as follows: Ms, R0 and λ are 2.0, 3 and 120 mm, respectively; and the heavy
fluid is SF6. Further details about the initial conditions for the three cases are presented
in table 3.

Figures 12(a), 12(b) and 12(c) show numerical schlieren images illustrating the interface
evolution for cases DI1-a, DI1-b and DI1-c, respectively. These cases exhibit distinct
interface morphologies due to different initial amplitudes for the second interface. The
interface evolutions for cases DI1-a and DI1-b are similar to those presented in figures 7(a)
and 9(a), respectively, and are thus not discussed here. For case DI1-c, as shown in
figure 12(c), the second interface completes the phase reversal with time, and at a late
moment (k�Ut = 9.3), a near-mirror state between the first and second interfaces is
observed.

To assess the freeze-out for each interface in cases DI1-a, b, c, the data of dimensionless
amplitude growth for the first and second interfaces are plotted in figure 13. In the
case of DI1-a, the amplitude growth of the first interface is nearly frozen, while the
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Figure 12. Numerical schlieren images of the shocked heavy fluid layer for cases DI1-a (a), DI1-b (b) and
DI1-c (c). Numbers denote the dimensionless time k�Ut.
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Figure 13. Dimensionless temporal variations of interface amplitudes and fluid-layer widths for cases
DI1-a, b, c, d. The dashed lines, as auxiliary ones, are plotted to better identify the growth behaviour of the
interface amplitude and fluid-layer width, and similarly hereinafter.

second interface exhibits continuous negative amplitude growth. For case DI1-b, the
amplitude growth of the second interface is almost stagnant, whereas the amplitude
of the first interface grows rapidly. These behaviours indicate that the simultaneous
freeze-out for both the first and second interfaces is infeasible, because the freeze-out
for one interface requires the other interface to have a higher initial amplitude (i.e. a
greater amplitude growth rate), leading to an inherent inability to freeze the amplitude
growth of the other interface. In case DI1-c, the amplitude growth for both interfaces
is not stagnant, falling between the amplitude growth of cases DI1-a and DI1-b. This
indicates that, when the difference in amplitude growth rates between the first and
second interfaces is not sufficiently large, the amplitude growth for both interfaces cannot
be frozen.

We turn our attention to the freeze-out of the whole fluid-layer width growth, given that
the simultaneous freeze-out of amplitude growth for both the first and second interfaces
is infeasible. The fluid-layer width (h) is defined as the distance between the leftmost and
rightmost sides of the fluid layer. Notably, the measurement position for h is different
before and after the accomplishment of phase reversal for an interface. Taking case
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DI1-c as an illustrative example, as presented in figure 12(c), h = xB2 − xS1 before the
second interface’s phase reversal; and h = xS2 − xS1 after the second interface’s phase
reversal.

The dimensionless temporal evolution of the fluid-layer width for cases DI1-a, b, c
is presented in figure 13. Disregarding the shock-compression stage (k�Ut < 1.2), the
fluid-layer width for case DI1-a experiences a slight decrease prior to the second
interface’s phase reversal (k�Ut < 4.0). However, after the phase reversal, the fluid-layer
width for case DI1-a undergoes a rapid increase. In the case of DI1-b, the persistent
amplitude growth of the first interface leads to a continuous increase in the fluid-layer
width. These behaviours indicate that both selections of a01

2 and a02
2 are invalid for

freezing the fluid-layer width growth due to the rapid amplitude growth of one of the
fluid-layer interfaces. In case DI1-c, when 1 < k�Ut < 5, the fluid-layer width exhibits
slow growth; however, after the second interface’s phase reversal (k�Ut > 7.5), the
fluid-layer width grows rapidly. Notably, during the interval of 5 < k�Ut < 7.5, although
the second interface does not accomplish the phase reversal, the fluid-layer width increases
relatively rapidly, primarily attributed to the comparatively fast amplitude growth of the
first interface during this period.

A supplementary case, DI1-d (see table 3 for details of this case), is examined, featuring
a slightly higher a0

2 (= 1.1 mm) compared with a0
1. This case is designed to suppress the

amplitude growth for the first interface, and thus to facilitate freeze-out of the fluid-layer
width growth. The temporal variations of interface amplitudes and fluid-layer widths for
case DI1-d are presented in figure 13. One can find that the amplitude growth for the first
interface in case DI1-d is mildly suppressed so that the stagnation of fluid-layer width
growth lasts almost until the moment when the second interface completes phase reversal
(k�Ut ≈ 7).

It is evident that the second interface’s phase reversal is the main reason why the
fluid-layer width growth cannot be frozen. In later examinations, the initial layer thickness
is reduced from Lm

0 (28.7 mm) to approximately Lm
0 /3 (10 mm). This adjustment results

in an increase in interface coupling strength (sin θ∗ increases from 0.615 to 0.655,
approaching the maximum value of 2/3), which may be helpful for the prevention of
the second interface’s phase reversal. Four cases of DI2-a, b, c, d are designed for
further examination. In these cases, a0

1 is consistently set to 1 mm, whereas a0
2 is set to

0.9 mm, 1.0 mm, 1.1 mm and 1.2 mm, respectively. All values of a0
2 fall between a01

1 and
a02

1 determined by our freeze-out theory. Further details of initial conditions for cases
DI2-a, b, c, d are provided in table 3.

Figure 14 illustrates the dimensionless temporal variations of interface amplitudes and
fluid-layer widths for cases DI2-a, b, c, d. One can find that, among the four cases,
case DI2-b, featuring a slightly higher a0

2 (= 1.1 mm) compared with a0
1, offers the most

favourable condition for the freeze-out of fluid-layer width growth, which is similar to the
finding in figure 13. Unfortunately, this freeze-out state is still disrupted after the second
interface’s phase reversal.

Furthermore, cases DI3–DI4 and DI5–DI6, considering variations in R0 and Ms,
respectively, are designed to examine the setting of a slightly larger a0

2. In these cases,
a0

1 = 1 mm, a0
2 = 1.1 mm and L0 = 10 mm. Further details of initial conditions for these

cases are summarized in table 3. Figure 15 presents the temporal variations of interface
amplitudes and fluid-layer widths for cases DI3–DI6, respectively. It is observed that, for
all four cases, the fluid-layer width growth remains nearly stagnant before the second
interface’s phase reversal.
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Figure 14. Dimensionless temporal variations of interface amplitudes and fluid-layer widths for

cases DI2-a, b, c, d.
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Figure 15. Dimensionless temporal variations of interface amplitudes and fluid-layer widths for cases
DI3–DI6. Note that the data for the dimensionless fluid-layer width (kh) in case DI5 are scaled by a factor
of 0.6.

In short, the setting of a slightly higher a0
2 can mildly impede the amplitude growth for

the first interface, favouring the freeze-out of fluid-layer width growth over a relatively
long time. However, this setting makes it infeasible to prevent the phase reversal at the
second interface, ultimately leading to the destruction of freeze-out for the fluid-layer
width growth after the second interface’s phase reversal.
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6. Conclusions

Freeze-out of perturbation growth for heavy fluid layers is investigated both theoretically
and numerically. To achieve freeze-out, reverberating waves, generated by interactions
between the shock and the fluid layer, are eliminated using specific flow conditions
determined through shock dynamics theories. A theoretical model is developed to
predict freeze-out for the fluid-layer interfaces. A compressible flow solver, capable of
simultaneously capturing discontinuities (such as shock wave and material interface) and
resolving small-scale smooth structures, is employed to simulate the freeze-out scenario
involving the shock–layer interaction. Overall, the individual freeze-out for the first and
second interfaces, as well as the freeze-out of the whole fluid-layer width growth, is
achieved.

Physically, to achieve the freeze-out for the first interface, a higher initial amplitude of
the second interface is required. This causes a higher initial amplitude growth rate for
the second interface, effectively squeezing the first interface’s bubble and thus inhibiting
the interface evolution. Conversely, to achieve the freeze-out for the second interface, a
higher initial amplitude of the first interface and a relatively small initial layer thickness
are necessary to prevent the phase reversal of the second interface. Since the freeze-out for
one interface requires the other interface to have a higher initial amplitude, the freeze-out
conditions for the two interfaces cannot be satisfied simultaneously. In other words, the
simultaneous freeze-out of both the first and second interfaces is infeasible. By setting
a slightly larger initial amplitude for the second interface to mildly inhibit the amplitude
growth of the first interface, the whole fluid-layer width growth is effectively arrested
before the second interface’s phase reversal.

Theoretically, the individual freeze-outs for the first and second interfaces are predicted.
First, by revising the model of Mikaelian (1995) with reasonable post-shock quantities,
a theory is established to quantify the parameters required for freeze-out, including the
initial amplitudes of the first and second interfaces and the interface coupling strength.
Then, a model, as the supplementary condition for the second interface’s freeze-out is
developed to characterize the maximum initial layer thickness, which prevents the second
interface’s phase reversal. When the initial layer thickness is below this threshold, the
freeze-out of the second interface becomes feasible. The effectiveness of the theory in
predicting individual freeze-outs of the first and second interfaces is validated numerically
over a broad range of initial conditions.

These findings enhance our understanding of suppressing interfacial instabilities in ICF.
Moreover, the theory developed in this work may remain effective in predicting freeze-out
for a light fluid layer, which is more relevant to double-shell implosion in ICF. In a
following work, this will be examined.
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Figure 16. The ρ–γ plot for 56 real gases. The envelope curve represents the limit of ρ and γ achievable by
real gases and their mixtures. The TT line denotes the total transmission line. By selecting any two gases from
the TT line as fluids A and B on both sides of an interface, total transmission can be achieved.

Gas Formula ρ (kg m−3) γ Cp (J mol−1 K−1) Cv (J mol−1 K−1)

Hydrogen H2 0.084 1.405 28.85 20.53
Parahydrogen H2

∗ 0.084 1.385 29.93 21.61
Helium He 0.17 1.666 20.79 12.47
Neon Ne 0.84 1.667 20.79 12.47
Ethane C2H6 1.25 1.193 53.05 44.48
Argon Ar 1.66 1.670 20.83 12.48
Propane C3H8 1.84 1.135 74.63 65.72
Butane C4H10 2.42 1.104 101.06 91.51
Neopentane C5H12 3.00 1.086 124.32 114.48
Krypton Kr 3.49 1.672 20.88 12.49
Xenon Xe 5.47 1.677 21.01 12.53
Decafluorobutane C4F10 9.91 1.049 207.61 197.91

Table 4. Properties of the 12 gases on the envelope curve in figure 16. Here, Cp (Cv) are the specific heat
at constant pressure (volume). Here, γ = Cp/Cv . The formulas represented by (·) and (·)∗ indicate structural
isomers of each other.

Appendix A. Total transmission under real-gas conditions

Figure 16 shows the ρ–γ plot for 56 real gases that exist under normal temperature and
pressure conditions (in this work, at 295 K and 101.3 kPa). The details of these 56 real
gases are provided in tables 4 and 5. It is found that H2 has the smallest density, while
decafluorobutane (C4F10) has the largest; C4F10 has the smallest adiabatic index, whereas
Xe has the largest. For all real gases, the density (ρ) varies from 0.084 to 9.91 kg m−3, and
the adiabatic index (γ ) varies from 1.049 to 1.677.

The total transmission imposes strict criteria on the density and adiabatic index of the
gases. To fulfil these requirements, we can generate a gas mixture by blending two distinct
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Gas Formula ρ (kg m−3) γ Gas Formula ρ (kg m−3) γ

Deuterium D2 0.17 1.398 R143a C2H3F3 3.50 1.128
Methane CH4 0.67 1.305 R22 CHClF2 3.60 1.184
Ammonia NH3 0.71 1.316 R14 CF4 3.66 1.160
Carbon monoxide CO 1.17 1.401 R142b C2H3ClF2 4.18 1.124
Nitrogen N2 1.17 1.401 R134a C2H2F4 4.25 1.119
Ethene C2H4 1.17 1.245 R21 CHCl2F 4.28 1.179
Oxygen O2 1.33 1.396 R13 CClF3 4.35 1.147
R41 CH3F 1.42 1.293 R125 C2HF5 5.00 1.103
Hydrogen sulphide H2S 1.42 1.331 R12 CCl2F2 5.03 1.138
Fluorine F2 1.58 1.363 R245ca C3H3F5 5.58 1.089
Propyne C3H4 1.67 1.169 R245fa C3H3F5

∗ 5.58 1.093
Propene C3H6 1.75 1.156 R124 C2HClF4 5.68 1.103
Cyclopropane C3H6

∗ 1.75 1.186 R11 CCl3F 5.72 1.138
Carbon dioxide CO2 1.83 1.293 R116 C2F6 5.75 1.089
Dinitrogen N2O 1.83 1.280 Sulphur SF6 6.08 1.098

monoxide hexafluoride
R32 CH2F2 2.17 1.251 R236ea C3H2F6 6.33 1.081
Isobutane C4H10

∗ 2.42 1.104 R236fa C3H2F6
∗ 6.33 1.083

Carbonyl sulphide COS 2.50 1.260 R115 C2ClF5 6.43 1.088
Sulphur dioxide SO2 2.67 1.280 R227ea C3HF7 7.08 1.074
R152a C2H4F2 2.75 1.154 R114 C2Cl2F4 7.12 1.085
R23 CHF3 2.91 1.200 R218 C3F8 7.83 1.066
Nitrogen trifluoride NF3 2.96 1.187 RC318 C4F8 8.33 1.064

Table 5. Properties of the 44 gases within the envelope curve in figure 16. The formulas represented by (·) and
(·)∗ indicate structural isomers of each other. Notably, isobutane (C4H10

∗) is the structural isomer of butane
(C4H10) presented in table 4.

gases. The density (ρmix) and adiabatic index (γmix) of the gas mixture can be expressed as
follows:

ρmix = (1 − ε)ρ1 + ερ2, (A1)

γmix = γ1(γ2 − 1) + ε(γ1 − γ2)

γ2 − 1 + ε(γ1 − γ2)
, (A2)

where ρ1 (γ1) and ρ2 (γ2) denote the densities (adiabatic indices) of gas 1 and gas 2,
respectively; the parameter ε ∈ (0, 1) denotes the volume fraction. Using the example of
two gases, Kr and Xe, we can vary the value of ε from 0 to 1, generating the theoretical
ρ–γ curve denoted by the green line between the data points of Kr and Xe in figure 16. This
line represents the ensemble of density and adiabatic index for the gas mixture obtained by
mixing Kr and Xe in various proportions. Furthermore, by mixing the two neighbouring
gases among the outermost 12 gases (see table 4 for details) denoted by dark blue symbols
in figure 14, we can derive the theoretical ρ–γ envelope curve, depicted as the closed
green line. The envelope curve represents the limit of ρ and γ achievable by the real gases
and their mixtures. The remaining 44 gases (see table 5 for details), indicated by light
blue symbols, are within the envelope curve. Moreover, the values of ρ and γ at any point
within the envelope curve can be determined by mixing three gases: the two real gases
located on the envelope curve and one real gas from within the envelope curve.

Utilizing real gases, we explore the maximum attainable R0 (Rmax
0 ) under the total

transmission condition. Taking Ms = 2.0 as an example, several total transmission (TT)
lines denoted by purple curves are presented in figure 16. By selecting any two gases from
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Figure 17. Variations of Rmax
0 vs Ms under total transmission conditions formed by real gases.

a TT line as fluids A and B on both sides of the interface, TT can be achieved. As shown
in figure 16, the TT lines become increasingly inclined from left to right. This indicates
that to achieve a larger R0, one should select the two gases represented by the intersections
of the TT line with the uppermost and lowermost portions of the envelope curve; and the
further to the right the TT line, the more conducive it is to achieving a larger R0. For the
A/B/A-type heavy fluid layer generated by real gases, the Rmax

0 under TT conditions occurs
in this case: Xe is selected as fluid A, and the gas determined by the intersection of the TT
line passing through the Xe point with the lowermost envelope curve is selected as fluid
B. Specifically, at Ms = 2.0, 1.6 and 1.2, fluid B corresponds to the gases represented by
points 1, 2 and 3, as illustrated in figure 16. In these three cases, Rmax

0 is determined to be
1.36, 1.40 and 1.49, respectively.

To further investigate the relationship between Rmax
0 and Ms, figure 17 presents the

Ms–Rmax
0 curves for five typical cases. In these cases, the five gases, He, Ne, Ar, Kr and

Xe, are respectively selected as fluid A, and the gases corresponding to the intersections
of the TT lines passing through the points of these five gases with the lowermost envelope
curve are respectively selected as fluid B. As illustrated in figure 17, as the value of Ms
increases, the value of Rmax

0 decreases.
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