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Abstract

The hydroelastic interaction between water waves and multiple submerged porous
elastic plates of arbitrary lengths in deep water is examined using the Galerkin
approximation technique. We observe the influence of flexible porous plates of arbitrary
lengths by analysing the reflection coefficient, dissipated energy and wave forces
acting on the plates. Results are presented for various values of angle of incidence,
separation lengths of plates, porosity levels, submergence depth and flexural rigidity.
The convergence and accuracy of the method are verified by comparing the results with
existing literature. The significant impact of flexural rigidity in the presence of porosity
on wave reflection, dissipated energy and wave forces is demonstrated. Moreover, a
notable reduction in wave load is observed with an increase in the number of plates.

2020 Mathematics subject classification: 76B.

Keywords and phrases: water wave interaction, reflection and transmission coefficients,
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1. Introduction

The interaction of surface gravity waves with submerged breakwaters has been
a subject of significant research and interest among ocean engineers and coastal
scientists. Submerged breakwaters, designed to mitigate the impact of waves on coastal
regions, play a crucial role in wave energy dissipation and sediment redistribution.
Their effectiveness hinges on several factors including their geometrical configuration,
structural integrity, material composition and placement relative to the shoreline.
Traditional rigid breakwaters often fail under substantial wave loads, leading to
collapse and ineffective protection. To address these challenges, hydroelastic analysis
has gained considerable attention due to its critical role in the design of various engi-
neering structures across multiple fields, including coastal, marine, offshore, aerospace
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and civil engineering. The study of the interaction between fluid and structures, in
such a way that the hydrodynamic force of the fluid and the elastic force of the solid
body are considered, is referred to as hydroelasticity of marine structures [13, 47].
In recent years, there has been significant growth in the study of hydrodynamic
performance of flexible/elastic porous structures. The flexible structures provide an
additional feature of wave attenuation through structural deformation compared with a
rigid structure. Further, flexible structures are light in weight, cost-effective, reusable
and environmentally friendly compared with their rigid counterparts.

Over the past few decades, there has been substantial research interest in the
problem of water wave scattering by fixed, rigid obstacles of various geometrical
shapes. Dean [9] was among the first to tackle the issue, solving the problem of
time-harmonic waves normally incident on a vertical barrier extending downward from
a point below the free surface using complex variable methods. Shortly after, Ursell
[45] derived the solution for the complementary problem of a vertical barrier extending
upwards through the free surface from a point below the free surface. Subsequently,
several researchers developed more complex explicit solutions for vertical barrier
problems in both infinitely deep and finite-depth water. These researchers included
Porter [31], Smith [41], Williams [46], Losada et al. [22], Porter and Evans [32],
Chakrabarti et al. [4] and others who focused on single barrier scattering problems.
Significant progress in the study of wave interaction with two, three or more thin
identical or nonidentical vertical barriers was made by Levine and Rodemich [19],
Jarvis [16], Evans and Morris [10], Newman [29], Morris [28], McIver [26], Isaacson
et al. [14], De et al. [8], Roy et al. [33] and others.

The interaction of water waves with vertical elastic bodies has not been extensively
studied within the framework of linear theory, resulting in limited mathematical
techniques available in the literature. Meylan [27] investigated the scattering of water
waves by a surface-piercing thin vertical elastic plate using Green’s function method.
The time-dependent version of this problem was solved by Peter and Meylan [30]
using a generalized eigenfunction expansion. Chakraborty and Mandal [5] employed
the method described by Meylan [27] to study the scattering of water waves by a
thin vertical elastic plate submerged in both deep and finite-depth water. Additionally,
Chakraborty et al. [6] explored the behaviour of elastic plates with both clamped
and free ends, floating in deep water or water of uniform finite depth, using the
hypersingular integral equation method.

To enhance the environmental friendliness of vertical breakwaters, rigid vertical
structures can be replaced with porous barriers placed at various positions in the
ocean. Sollitt and Cross [43] initially studied the effect of barrier permeability on
incident surface waves and modified Darcy’s law, which many researchers later used
in the field of porous breakwaters. Macaskill [23] solved the problem of normally
incident wave scattering involving a permeable thin barrier in water of infinite depth by
reducing it to integro-differential equations using Green’s integral theorem. Chwang
[7] developed a porous wavemaker theory to investigate the propagation of surface
waves by the horizontal oscillation of a vertical porous plate. Yu [48] applied an
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approximate method to solve the problem of diffraction of surface water waves by
a semi-infinite porous breakwater using a boundary condition based on Sollitt and
Cross [43]. Isaacson et al. [15] used a matched eigenfunction expansion method to
develop numerical solutions for the interaction of normally incident waves with a
surface-piercing porous barrier and verified their results experimentally. Karmakar and
Soares [17] investigated wave scattering by multiple bottom-standing flexible porous
barriers using both the direct method and the wide-spacing approximation. Gayen
and Mondal [11] explored the scattering of small-amplitude surface water waves by
two symmetric vertical thin porous plates using the collocation method. Li et al.
[20] developed an accurate solution to water wave scattering by porous barriers of
different structures, including surface-piercing and bottom-standing barriers, using a
multi-term Galerkin approximation. Manam and Sivanesan [24] used an analytical
approach to solve deepwater wave motion over surface-piercing or bottom-standing
porous barriers. Behera and Ng [2] employed eigenfunction expansions to investigate
oblique wave scattering by multiple bottom-standing flexible porous barriers near a
rigid wall. Sasmal et al. [38] and Sasmal and De [34, 35, 37] studied the scattering of
water waves by various configurations of multiple porous barriers extending to infinite
depth in a series of works.

In many of the studies documented above which examine various barrier configura-
tions, the barriers are generally considered to be either impermeable or permeable.
Furthermore, hydroelasticity theories for structures like floating elastic plates of
arbitrary shapes and disks have been widely studied and reviewed by researchers in
recent years. For instance, Sturova [44] investigated the linear hydroelastic problem
of periodic surface pressures acting on plates of arbitrary shapes. Hassan et al.
[12] studied the problem of water wave interaction with a submerged elastic plate
of negligible thickness by the eigenfunction-matching method. Zheng et al. [50]
developed a semi-analytical model based on linear potential flow theory and an
eigenfunction expansion method to study wave scattering by a floating porous elastic
plate with an arbitrary shape. The interaction of water waves with submerged porous
elastic disks was also investigated by Zheng et al. [51]. Liu et al. [21] developed new
analytical solutions for oblique wave scattering by porous rubble-mound breakwaters
and seawalls based on contour integrals without finding complex roots. Zheng et al.
[52] further developed a theoretical model based on linear potential flow theory
and an eigenfunction matching method to investigate wave scattering by multiple
circular floating porous elastic plates. Smith et al. [42] investigated the problem of
water-wave scattering by a semi-infinite submerged thin elastic plate, whether porous
or non-porous, using the Wiener–Hopf technique. Ashok et al. [1] presented explicit
solutions to the problem of scattering of normally incident waves by a submerged
flexible porous thin plate. Surface gravity wave interaction with an articulated flexible
submerged plate in the presence of lateral compressive force was investigated by Boral
et al. [3]. The problem of water wave scattering by a vertical porous elastic plate
completely submerged in water of infinite depth in the presence of surface tension
at the free surface was investigated by Singh and Gayen [39]. Singh and Kaligatla [40]

https://doi.org/10.1017/S1446181124000257 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000257


4 A. Sasmal and S. De [4]

studied the combined effect of refraction-diffraction due to bottom topography on
water wave scattering by a vertical flexible-porous structure by employing the Galerkin
approximation method. Recently, Sasmal and De [36] investigated the scattering
of water waves with multiple flexible porous barriers by employing the Galerkin
approximation method.

This paper investigates the feasibility of integrating hydro elasticity into the analysis
of surface gravity wave interactions with multiple flexible, porous plates of arbitrary
lengths in infinitely deep water. The potential function is simplified into linear integral
equations using the Havelock inversion formula, followed by a matching process.
These equations are solved using a single-term Galerkin approximation. Numerical
estimates for the reflection coefficient, energy dissipation and wave force coefficients
are provided for various parameter values. The method’s convergence and accuracy are
validated by comparing our results with existing literature. The findings indicate that
the flexural rigidity of the porous plates significantly affects wave reflection, energy
dissipation and wave forces. Moreover, the wave load decreases substantially as the
number of plates increases.

2. Mathematical model

Here, we consider N number of porous elastic plates. Cartesian coordinate axes
are chosen with the x-axis directed along the mean water surface, taking the y-axis
vertically downwards. It is assumed that N number of unequal poroelastic plates are
placed vertically, as shown in Figure 1. The jth vertical poroelastic plate is situated at
x = aj, y ∈ Lj ≡ (h2j−1, h2j), j = 1, 2, 3, . . . , N. For the convenience of study, the fluid
region is divided into N + 1 subregions, namely,

R1 ≡ (−∞ < x < a1, 0 < y < ∞),
Rj ≡ (aj−1 < x < aj, 0 < y < ∞), j = 2, 3, . . . , N,

RN+1 ≡ (aN < x < ∞, 0 < y < ∞).

We use N + 1 velocity potentials φj, j = 1, 2, 3, . . . , N + 1 for the N + 1 subregions
and Lj ≡ (0,∞) − Lj, j = 1, 2, 3, . . . , N to denote the fluid area of gaps of plates. It
is assumed that the fluid is inviscid, incompressible, and the motion irrotational
and simple harmonic in time with angular frequency ω. Assuming linear theory,
the time-harmonic motions of the fluid are described by the velocity potential
Φj(x, y, z, t) = Re{φj(x, y)eiνz−iωt}, where Re denotes the real part and ν is defined by
ν = K sin θ, where K = ω2/g, g being the acceleration due to gravity, and θ is the
angle of the incident wave to the x-axis. The spatial velocity potential φj(x, y) for
j = 1, 2, 3, . . . , N + 1 in each sub-region satisfies the governing Helmholtz equations
given by

(∇2 − ν2)φj = 0, −∞ < x < ∞, 0 < y < ∞, (2.1)
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FIGURE 1. Schematic diagram of the physical domain demonstrating oblique scattering of surface gravity
waves by an array of vertical flexible plates of arbitrary lengths.

where ∇2 is the horizontal Laplacian operator and the subscript corresponds to the
total wave field in each subregion.

The linearized kinematic and dynamic boundary conditions on the free surface can
be merged into

(
∂

∂y
+ K
)
φj = 0 on y = 0. (2.2)

The no-flux boundary condition on the seabed is

|∇φj| → 0 as y→ ∞, (2.3)

where ∇ = (∂/∂x, ∂/∂y).
The plate is deflected horizontally with the displacement ηj(y, t) = Re[vj(y)e(−1)jiωt],

j = 1, 2, 3 . . . , N, where vj(y), j = 1, 2, 3, . . . , N is the complex quantity whose absolute
value is assumed to be small. The conditions on the porous plates are given by (see the
paper by Ashok et al. [1])

∂φj

∂x
=
∂φj+1

∂x
= −iKGj(φj+1 − φj) − iωvj(y), x = xj, y ∈ Lj, j = 1, 2, 3, . . . , N, (2.4)

where Gj = Gr
j + iGi

j, j = 1, 2, 3, . . . , N are the dimensionless porous effect parameters
of poroelastic plates. The complex porous effect parameters can be written as [49]

Gj =
εj(fj + iSj)

Kαj(f 2
j + S2

j )
,

in which εj are the porosity constant, fj are the resistance force coefficient, Sj are the
inertial force coefficient and αj are the thickness of the porous medium. The real part
Gr

j represents the resistance effect of the porous material against the flow, while the
imaginary part Gi

j represents the inertia effect of the fluid inside the porous material.
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The displacement amplitude vj(y), j = 1, 2, 3, . . . , N satisfies (see [1])

∂4vj

∂y4 − λ
2vj = −

iωρ
EI

(φj+1 − φj), y ∈ Lj, j = 1, 2, 3, . . . , N, (2.5)

where λ = ω
√

mb/EI, EI is uniform flexural rigidity of porous barrier, mb is uniform
mass per unit length and ρ is the density of water.

In the vicinity of sharp submerged edges, the velocity potential behaves as [18, 25]

|∇φj| = O(r−1/2) as r → 0, (2.6)

where r =
√

(x − aj)2 + (y − h)2, where h = h2j−1, h2j, j = 1, 2, 3, . . . , N.
The conditions at infinity are given by

φ1(x, y) = Tφinc(x, y) as x→ −∞,
φN+1(x, y) = φinc(x, y) + Rφinc(−x, y) as x→ ∞, (2.7)

where R and T are the unknown complex reflection and transmission coefficients to be
determined, and φinc(x, y) = e−Ky−iμ(x−aN ), μ = K cos θ.

At the common boundary of the region, velocity potential φj and gradient of velocity
potential ∂φj/∂x are continuous across the gap. Let us consider

fj(y) =
∂φj(aj, y)

∂x
=
∂φj+1(aj, y)

∂x
, ξj(y) = φj+1(aj, y) − φj(aj, y) (2.8)

for j = 1, 2, 3, . . . , N. Eliminating vj(y), j = 1, 2, 3, . . . , N, from (2.4) and (2.5) along
with (2.8),
(
∂4

∂y4 − λ
2
)∂φj

∂x
=

(
∂4

∂y4 − λ
2
)∂φj+1

∂x

= −iKGj
∂4ξj(y)

∂y4 + λ2
(
iKGj −

ρ

mb

)
ξj(y), y ∈ Lj, j = 1, 2, 3, . . . , N.

(2.9)

3. Solution procedure

Applying the method of separation of variables, along with (2.1)–(2.7), Havelock’s
expansion of velocity potentials φj(x, y), j = 1, 2, 3, . . . , N for each of the subregions is
given by

φ1(x, y) = Tφinc(x, y) +
∫ ∞

0
A(k)eζ(x−a1)(k cos ky − K sin ky) dk in R1, (3.1)

φj(x, y) = e−Ky(cjeiμx + dje−iμx)

+

∫ ∞
0
{Mj(k)e−ζx + Nj(k)eζx}(k cos ky − K sin ky) dk in Rj, j = 2, 3, . . . , N,

(3.2)
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φN+1(x, y) = φinc(x, y) + Rφinc(−x, y)

+

∫ ∞
0

B(k)e−ζ(x−aN )(k cos ky − K sin ky) dk in RN+1, (3.3)

where ζ =
√

k2 + ν2, and cj, dj are arbitrary constants, and A(k), B(k), Mj(k), Nj(k),
j = 2, 3, . . . , N are unknown functions and, in the mathematical analysis below in
which they appear, are convergent.

Now, using the expression of velocity potentials φj from (3.1)–(3.3) in (2.8) and
applying Havelock’s inversion formula,

− Te−iμ(a1−aN ) = c2eiμa1 − d2e−iμa1 , −1 + Re2iμaN = cNeiμaN − dNe−iμaN , (3.4)

cjeiμaj − dje−iμaj = cj+1eiμaj − dj+1e−iμaj , j = 2, 3, . . . , N − 1, (3.5)

A(k) = N2(k)eζa1 −M2(k)e−ζa1 , B(k) = NN(k)eζaN −MN(k)e−ζaN , (3.6)

Nj(k)eζaj −Mj(k)e−ζaj = Nj+1(k)eζaj −Mj+1(k)e−ζaj , j = 2, 3, . . . , N − 1, (3.7)

− Te−iμ(a1−aN ) + c2eiμa1 + d2e−iμa1 = 2K
∫

L1

e−Kyξ1(y) dy, (3.8)

(cj+1 − cj)eiμaj + (dj+1 − dj)e−iμaj = 2K
∫

Lj

e−Kyξj(y) dy, j = 2, 3, . . . , N − 1, (3.9)

1 + Re2iμaN − cNeiμaN − dNe−iμaN = 2K
∫

LN

e−KyξN(y) dy, (3.10)

M2(k)e−ζa1 + N2(k)eζa1 − A(k) =
2

π(k2 + K2)

∫
L1

ξ1(y)(k cos ky − K sin ky) dy, (3.11)

(Mj+1(k) −Mj(k))e−ζaj + (Nj+1(k) − Nj(k))eζaj

=
2

π(k2 + K2)

∫
Lj

ξj(y)(k cos ky − K sin ky) dy, j = 2, 3 . . . , N − 1, (3.12)

B(k) −MN(k)e−ζaN − NN(k)eζaN =
2

π(k2 + K2)

∫
LN

ξN(y)(k cos ky − K sin ky) dy.

(3.13)
Equations (3.8)–(3.10) can be reconstructed using the expressions from (3.4) and
(3.5) as

2K
∫

L1

ξ1(y)e−Ky dy = (i cot(μ(a1 − a2)) − 1)Te−iμ(a1−aN )

+ i csc(μ(a1 − a2))(c2eiμa2 − d2e−iμa2 ), (3.14)

2K
∫

L2

ξ2(y)e−Ky dy

= −i csc(μ(a1 − a2))Te−iμ(a1−aN ) + i sin(μ(a3 − a1)) csc(μ(a3 − a2))

× csc(μ(a2 − a1))(c2eiμa2 − d2e−iμa2 ) − i csc(μ(a3 − a2))(c3eiμa3 − d3e−iμa3 ),
(3.15)
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2K
∫

Lj

ξj(y)e−Ky dy = −i csc(μ(aj − aj−1))(cj−1eiμaj−1 − dj−1e−iμaj−1 )

+ i sin(μ(aj+1 − aj−1)) csc(μ(aj − aj−1)) csc(μ(aj+1 − aj))(cjeiμaj − dje−iμaj )

− i csc(μ(aj+1 − aj))(cj+1eiμaj+1 − dj+1e−iμaj+1 ), j = 3, 4, . . . , N − 2, (3.16)

2K
∫

LN−1

ξN−1(y)e−Ky dy = −i csc(μ(aN−1 − aN−2))(cN−2eiμaN−2 − dN−2e−iμaN−2 )

+ i sin(μ(aN − aN−2)) csc(μ(aN−1 − aN−2)) csc(μ(aN − aN−1))

× (cN−1eiμaN−1 − dN−1e−iμaN−1 ) − i csc(μ(aN − aN−1))(1 − Re2iμaN ), (3.17)

2K
∫

LN

ξN(y)e−Ky dy = −i csc(μ(aN − aN−1))(cN−1eiμaN−1 − dN−1e−iμaN−1 )

+ 1 − i cot(μ(aN − aN−1)) + (1 + i cot(μ(aN − aN−1)))Re2iμaN . (3.18)

Substituting the expressions of A(k), B(k), Mj(k), Nj(k), j = 2, 3, . . . , N from
(3.11)–(3.13) after using the relation of (3.6) and (3.7) in (2.9),

N∑
m=1

∫
Lm

ξm(t)Hnm(y, t)dt + Eξn(y) = Sn(y), n = 1, 2, 3, . . . , N, (3.19)

where

E = λ2(iKGn − ρ/mb)/(K4 − λ2);

S1(y) = −iμTeiμ(aN−a1)−Ky; SN(y) = −iμe−Ky(1 − Re2iμaN );

Sj(y) = iμe−Ky(cjeiμaj − dje−iμaj ), j = 2, 3, . . . , N − 1,

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hnn(y, t) = − 2iK6Gn

(K4 − λ2)
e−K(y+t) +

1
π(K4 − λ2)

×
∫ ∞

0

(
ζ(k4 − λ2)
k2 + K2 −

2iKGnk4

k2 + K2

)
(k cos ky − K sin ky)(k cos kt − K sin kt) dk,

Hmn(y, t) = Hnm(y, t) =
1

π(K4 − λ2)

×
∫ ∞

0

ζ(k4 − λ2)
k2 + K2 eζ(am−an)(k cos ky − K sin ky)(k cos kt − K sin kt) dk;

m, n = 1, 2, . . . , N.
(3.20)

Let us consider potential difference function ξm(t) as

ξm(t) = −iμTeiμ(aN−a1)Xm1(t) − iμ(1 − Re2iμaN )XmN(t)

+ iμ
N−1∑
j=2

(cjeiμaj − dje−iμaj )Xmj(t), m = 1, 2, 3, . . . , N. (3.21)
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[9] Wave scattering by poroelastic plates 9

After using the expressions of gm(t) from (3.21), the integral equations in (3.19) can be
reduced as

N∑
m=1

∫
Lm

Xmj(t)Hnm(y, t) dt + EXnj(y) = δnje−Ky, y ∈ Ln, n, j = 1, 2, 3, . . . , N, (3.22)

where δnj is the Kronecker delta symbol.

3.1. Solutions of integral equations using Galerkin’s approximation technique
The integral equations given by (3.22) have been solved using the single-term Galerkin
technique. The unknown functions Xij(y) are chosen in the following form:

Xmj(t) = bmj Fm(t), m, j = 1, 2, 3, . . . , N, (3.23)

where Fj(t) are suitably chosen basis functions and bmj, unknown constants, are to be
found.

To deduce the unknown constants bmj appearing in (3.23), we substitute the
expressions of Xmj(t) (m, j = 1, 2, 3, . . . , N) from (3.23) into the integral equations in
(3.22), then multiply the mth integral equation in (3.22) by Fm(t) and integrate over
Lm. This yields the following linear systems of equations in bmj (m, j = 1, 2, 3, . . . , N):

N∑
m=1

bmjCnm = δnjDn, n, j = 1, 2, 3, . . . , N, (3.24)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cnn =

∫
Ln

Fn(y)
{ ∫

Ln

Fn(t)Hnn(y, t) dt
}

dy + E
∫

Ln

[Fn(y)]2 dy,

Cnm = Cmn =

∫
Ln

Fn(y)
{ ∫

Lm

Fm(t)Hnm(y, t) dt
}

dy, n � m,

Dn =

∫
Ln

Fn(y)e−ky dy, n, m = 1, 2, 3, . . . , N.

(3.25)

We choose the basis function Fm(y), m = 1, 2, 3, . . . , N as follows (see [40]):

Fm(y) = e−Ky
[ ∫ y

h2m−1

(d2
m − z2)eKz√

(z2 − h2
2m−1)(h2

2m − z2)
dz
]
, h2m−1 < y < h2m, (3.26)

where

d2
m =

∫ h2m

h2m−1

z2eKz√
(z2−h2

2m−1)(h2
2m−z2)

dz
∫ h2m

h2m−1

eKz√
(z2−h2

2m−1)(h2
2m−z2)

dz
, m = 1, 2, 3, . . . , N.
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Substituting the expressions of Fm(y) from (3.26) andHmn(y, t) from (3.20) into (3.25),

Cnn =
1

π(K4 − λ2)

∫ ∞
0

(
ζ(k4 − λ2)
k2 + K2 −

2iKGnk4

k2 + K2

)[ ∫ h2n

h2n−1

(d2
n − z2) sin kz√

(z2 − h2
2n−1)(h2

2n − z2)
dz
]2

dk

− iK4Gn

2(K4 − λ2)

[ ∫ h2n

h2n−1

(d2
n − z2)e−Kz√

(z2 − h2
2n−1)(h2

2n − z2)
dz
]2
+
λ2(iKGn − ρ

mb
)

K4 − λ2

×
∫ h2n

h2n−1

e−2Kt
[ ∫ t

h2n−1

(d2
n − z2)eKz√

(z2 − h2
2n−1)(h2

2n − z2)
dz
]2

dt, n = 1, 2, 3, . . . , N,

Cmn = Cnm =
1

π(K4 − λ2)

∫ ∞
0

ζ(k4 − λ2)eζ(am−an)

k2 + K2

[ ∫ h2m

h2m−1

(d2
m − z2) sin kz√

(z2 − h2
2m−1)(h2

2m − z2)
dz
]

×
[ ∫ h2n

h2n−1

(d2
n − z2) sin kz√

(z2 − h2
2n−1)(h2

2n − z2)
dz
]

dk, m, n = 1, 2, 3, . . .N,

Dn =
1

2K

∫ h2n

h2n−1

(d2
n − z2)eKz√

(z2 − h2
2n−1)(h2

2n − z2)
dz, n = 1, 2, 3, . . . , N.

3.2. Determination of reflection and transmission coefficients To determine the
coefficients R and T, we substitute the expression from (3.21) into (3.14)–(3.18), then
these equations can be written in the matrix notation as

(P + Q)V = W, (3.27)

where

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i + cot(μ(a1 − a2)) − csc(μ(a1 − a2)) − − − − − 0
− csc(μ(a1 − a2)) sin(μ(a3 − a1)) csc(μ(a3 − a2)) csc(μ(a2 − a1)) − − − − − 0

− − − − − − − −
− − − − − − − −
− − − − − − − −
0 − − − − − − csc(μ(aN − aN−1))
0 0 − − − − − i − cot(μ(aN − aN−1))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Teiμ(aN−a1 )

(c2eiμa2 − d2e−iμa2 )
−
−
−
−

(cN−1eiμaN−1 − dN−1e−iμaN−1 )
Re2iμaN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2KμP1N

2KμP2N

−
−
−
−

2KμP(N−1)N + csc(μ(aN − aN−1))
2KμPNN − i − cot(μ(aN − aN−11))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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P = 2Kμ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11 P12 − − − − P1N

P21 P22 − − − − P2N

− − − − − − −
− − − − − − −

PN1 PN2 − − − − PNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with Pmj =
∫

Lm
Xmj(t)e−Kt dt, m, j = 1, 2, 3, . . . , N. Once the unknown constants

bmj, m, j = 1, 2, 3, . . . , N are obtained after solving the system of equations (3.24),
then Xmj, m, j = 1, 2, 3, . . . , N from relations of (3.23) can be obtained. Hence, R and T
can be determined by solving (3.27).

3.3. Dynamic wave force The dynamic pressure P(x, y) can be obtained according
to the Bernoulli equation (see [20, 39]),

P(x, y) = −iρω
N∑

j=1

ξj(y).

The magnitude of horizontal wave force acting on plates can be obtained by integrating
the dynamic pressure along the porous plates as follows [20, 39]:

Cf = −iρω
N∑

j=1

∫
Lj

ξj(y) dy.

The nondimensional form of the horizontal force coefficient on the vertical porous
plates is given by

Kf =
K |Cf |
ρg

.

3.4. Energy identity relation The energy identity plays an important role in the
theoretical study of water wave scattering by plates. Some of the incident wave energy
can be dissipated by the porous plates. The absolute values of the reflection and
transmission coefficients are connected by the relation (see [39])

|R|2 + |T |2 = 1 − J. (3.28)

Here, J signifies the amount of dissipated energy due to the permeability of plates
and its expression in terms of the potential differences across the plates is found to be
(see [39])

J =
2K2

μ

N∑
j=1

Gr
j

∫
Lj

|ξj(y)|2 dy,

where Gr
j is the real part of the porous effect parameters. It is noticed from the

expression of J that the integrand in the right-hand side of (3.28) is always positive
for a nonzero Gr

j so that |R|2 + |T |2 < 1 for the case of permeable barriers, whereas for
impermeable plates, the energy identity relation satisfy |R|2 + |T |2 = 1, which provides
the convergence of result in the present study.
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TABLE 1. Values of |R|, |T |, |R|2 + |T |2 and 1 − J against KH2 with x1 = 0.5, x2 = 1.5, x3 = 2.5,
x4 = 3.5, E = 0.4, M = 0.01, G1 = G2 = G3 = G4 = 1, H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1,
θ = 45◦.

KH2 |R| |T | |R|2 + |T |2 1 − J

0.100 0.000206133 0.999998 1 1
0.385 0.004231140 0.999991 0.99999935 0.9999950
0.670 0.136105000 0.990694 0.99999915 0.9998059
0.955 0.311106000 0.950375 0.99999975 0.9971371
1.240 0.677203000 0.735796 0.99999934 0.9912569

TABLE 2. Values of |R|, |T | and |R|2 + |T |2 against KH2 with x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5,
E = 0.4, M = 0.01, G1 = G2 = G3 = G4 = 0, H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1, θ = 45◦.

KH2 |R| |T | |R|2 + |T |2

0.100 0.00286705 0.999996 1.0000
0.385 0.00671552 0.999977 1.0000
0.670 0.30467700 0.952456 1.0000
0.955 0.34799000 0.937498 1.0000
1.240 0.80539100 0.592744 1.0000

TABLE 3. Values of |J| against KH2 with E = 0.4, M = 0.01, θ = 45◦ and GN = 1(N = 1, 2, . . . , 6).

KH2 |J|(N = 1) |J|(N = 2) |J|(N = 3) |J|(N = 4) |J|(N = 5) |J|(N = 6)

0.10 0.0000000003 0.0000000027 0.0000000152 0.0000000182 0.0000000298 0.0000000345
0.45 0.0000451634 0.0000996050 0.0001797899 0.0003535529 0.0004334520 0.0006272150
0.80 0.0028337400 0.0060043800 0.0120460000 0.0144364000 0.0184780200 0.0198684200
1.15 0.0351156000 0.0554706000 0.0707459000 0.1043440000 0.1196193000 0.1532174000
1.50 0.0994097000 0.2403220000 0.2901240000 0.3854800000 0.4352820000 0.4936380000

For different values of KH2, the above relations (3.28) and |R|2 + |T |2 = 1 can be
verified as in the last column of Tables 1 and 2 which certainly gives a partial check
on the validation of the problem studied here for N = 4. Table 1 represents the set
of values |R|, |T |, |R|2 + |T |2 and 1 − J as a function of the wave number KH2 for
the case of porous plates. Table 2 shows |R| and |T |, and that |R|2 + |T |2 satisfies the
energy identity for impermeable plates. These two tables imply the convergence of the
numerical results obtained in the present manuscript. Table 3 represents the amount of
dissipated energy |J| for the different number of plates. It is observed that |J| increases
monotonically as KH2 increases, regardless of the number of plates included in the
array. Additionally, Table 3 shows that arrays containing more plates lead to larger
values of |J| for the whole computed range of wave conditions. This suggests that the
use of multiple plates can be more effective in dissipating wave energy.

https://doi.org/10.1017/S1446181124000257 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000257


[13] Wave scattering by poroelastic plates 13

4. Results and discussion

In this section, the characteristics of arbitrary poroelastic plates are demonstrated
in attenuating wave forces and dissipating wave energy through numerous results.
The numerical results are calculated assuming N = 4 for four poroelastic plates. The
numerical results are plotted for the reflection coefficient, the transmission coefficient,
the total energy and the deflection of the structure. Consider the dimensionless param-
eters M = mb/ρh2, E = EI/ρgh4

2 for the elastic porous plates. All results are presented
versus the nondimensional frequency, which is defined as KH2. The parametric values
that are kept constant throughout the numerical computations are given by fluid density
ρ = 1025.0 kg/m3 and g = 9.81 m/s2. The nondimensional parameters are given as

xj =
aj

h2
, j = 1, 2, 3, 4; Hj =

hj

h2
, j = 1, 2, 8; dj = xj − xj−1, j = 2, 3, 4.

4.1. Model validation with existing results In this section, we compared the
present results with known limiting cases when certain parameters are assumed to
be absent. It helps validate theoretical models and computational methods. When
specific parameters are neglected or set to zero, it induces significant alterations in
the behaviour of structures, particularly evident in plate structures.

We verified the results for permeable plates obtained in this study by comparing
them with those obtained by Gayen and Mondal [11], who employed the hypersingular
integral equation method for analysing two equal plates. Gayen and Mondal [11]
plotted |R| against dimensionless wave number K(d + b)(≡ Kh2 in this study) for three
different values of μ = (d − b)/(d + b)(≡ H1 = H3 in this study) while keeping the
length of separation between plates, porosity and incident wave angle fixed in their
figure 4. In this paper, we plotted |R| against KH2 for specific values: x1 = −0.3, x2 =

x3 = x4 = 0.3, H4 = 1, G1 = G2 = 1, G3 = G4 = 0, and H1 = H3 = 0.01, 0.05, 0.25 and
θ = 0o, M = 0.001, E = 0.999 in Figure 2. It is observed that the corresponding curves
from Gayen and Mondal [11] for two equal plates nearly coincide with those depicted
in Figure 2. This comparison provides additional validation for our results and suggests
agreement between the methodologies employed in both studies.

Finally, we assessed our solutions for a single elastic barrier by comparing them
with numerical results derived from Green’s function, as developed by Meylan [27].
For this comparison, we normalized the parameters and constructed Figure 3 for
normal incident waves with a wavelength denoted by ς, where ς = 2π/K, as was done
by Meylan [27]. In Figure 3, we plotted the curves of |R| against the depth of the
plate l(h2/ς) for various values of E1 ≡ (E/ς) in the case of normal incident wave.
The curves of Figure 3 almost coincide with those presented by Meylan [27]. This
agreement further validates the accuracy and reliability of our method.

4.2. Effects of various parameters on results This subsection presents computed
results for various parameter values of flexible porous plates. The accompanying
graphs provide a visual representation of these findings.
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FIGURE 2. |R| against KH2 for x1 = −0.3, x2 = x3 = x4 = 0.3, E = 0.999, M = 0.001, G1 = G2 = 1,
G3 = G4 = 0, θ = 0o, H4 = 1.

FIGURE 3. |R| against depth of the plate l(= h2/ς) for a1/ς = a2/ς = a3/ς = a4/ς = 0, h1/ς = 0.001,
M = 0.01, G1 = G2 = G3 = G4 = 0, θ = 0o, (E1 ≡ (E/ς)).

Reflection coefficient |R| is plotted against wave number KH2 for the angle of
incidence θ = 0◦, 30◦, 45◦, 60◦ in Figures 4 and 5. The peak value of the reflection
coefficient decreases as the angle of incidence increases. This trend is attributed to
the mutual interaction between incident and reflected waves within the plates. The
maximum and minimum values of |R| shift from left to right as the angle of incidence
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FIGURE 4. |R| against KH2 for x1 =0.5, x2 =1.5, x3 =2.5, x4 =3.5, E=0.4, M=0.01, G1 =G2 =G3 =G4 =1,
H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1.

FIGURE 5. |R| against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, E= 0.4, M = 0.01, G1 = 1, G2 = 1.5,
G3 = 1.75, G4 = 2, H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1.

increases. This shift suggests changes in the behaviour of reflected waves with varying
angles of incidence. Comparing figures of equal and nonequal porosity, there is a
significant increase in the maximum and minimum values of |R| for equal porosity.
This indicates that porosity influences the reflection properties of the plates, with equal
porosity leading to higher reflection coefficients. The reflection coefficients exhibit an
oscillatory nature for larger wave numbers. Moreover, higher oscillations are observed
for smaller values of θ, indicating a dependence on the angle of incidence. From all
these figures, we can conclude that the reflection coefficient tends to be small when
the porosity is large.
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FIGURE 6. |R| against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, E = 0.4, M = 0.01, H1 = H3 = H5 =

H7 = 0.05, H4 = H6 = H8 = 1θ = 0◦.

FIGURE 7. |R| against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, E = 0.4, M = 0.01, H1 = H3 = H5 =

H7 = 0.05, H4 = H6 = H8 = 1, θ = 45◦.

Figures 6 and 7 depict the reflection coefficient |R| versus the nondimensional wave
number KH2 for different porosity values. The figures illustrate how the reflection
coefficient |R| changes for four identical flexible plates subjected to normal and oblique
incident waves. The minimum and maximum values of |R| occur at specific wave
numbers. However, as the porosity increases, the reflection coefficient |R| decreases.
This decrease is attributed to the increase in wave energy dissipation associated with
higher porosity. The porous effect parameters influence the behaviour of the reflection
coefficient. Similar to previous observations, the reflection coefficients exhibit an
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FIGURE 8. |R| against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, M = 0.01, G1 = G2 = G3 = G4 = 1,
H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1, θ = 0◦.

FIGURE 9. |R| against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, M = 0.01, G1 = G2 = G3 = G4 = 1,
H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1, θ = 45◦.

oscillatory behaviour for larger wave numbers. This oscillation pattern is characteristic
of the interaction between waves and the porous plates.

Figures 8–11 analyse the reflection coefficient |R| versus the nondimensional wave
number KH2 for different values of flexural rigidity E. Figures 8 and 9 focus on
the impact of flexural rigidity on |R| involving equal plates with identical porosity,
corresponding to normal and oblique incident waves, respectively. Figures 10 and
11 examine the influence of flexural rigidity on wave reflection under conditions of
nonidentical porosity, covering both normal and oblique incident waves. The trend
observed across all figures is that the values of |R| increase as the flexural rigidity E
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FIGURE 10. |R| against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, M = 0.01, G1 = 1, G2 = 1.5, G3 = 2,
G4 = 2.5, H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1, θ = 0◦.

FIGURE 11. |R| against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, M = 0.01, G1 = 1, G2 = 1.5, G3 = 2,
G4 = 2.5, H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1, θ = 45◦.

increases. This suggests that higher flexural rigidity enhances the reflection of waves
when flexible porous plates are present. However, there is a notable difference in the
peak values of |R| between curves with equal and nonidentical porosity. In the case
of nonidentical porosity, the peak values of |R| are reduced compared with those with
equal porosity. This indicates that variations in porosity between the plates influence
the reflection characteristics, likely due to differences in how the waves interact with
the plates.

Figures 12 and 13 provide an analysis of the reflection coefficients |R| as a function
of the nondimensional wave number KH2 for various values of plate separation length.
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FIGURE 12. |R| against KH2 for E = 0.4, M = 0.01, G1 = G2 = G3 = G4 = 1, H1 = H3 = H5 = H7 = 0.05,
H4 = H6 = H8 = 1, θ = 0◦.

FIGURE 13. |R| against KH2 for E = 0.4, M = 0.01, G1 = G2 = G3 = G4 = 1, H1 = H3 = H5 = H7 = 0.05,
H4 = H6 = H8 = 1, θ = 45◦.

As the separation length between the plates decreases, the values of |R| shift towards
the right. This indicates a correlation between plate separation length and the position
of the peak reflection coefficient. The peak value of |R| is observed to decrease in the
case of an oblique incident wave compared with a normal incident wave. Across all
figures, the oscillation of |R| increases as the plate’s separation length increases. This
phenomenon can be attributed to constructive and/or destructive interference between
incident and reflected waves within the flexible porous plates.

The reflection coefficient |R| is plotted against KH2 for varying submergence depths
of the plates in Figures 14 and 15, corresponding to normal and oblique incident
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FIGURE 14. |R| against KH2 for E = 0.4, M = 0.01, G1 = G2 = G3 = G4 = 1, H1 = H3 = H5 = H7 = 0.05,
H4 = H6 = H8 = 1, θ = 0◦.

FIGURE 15. |R| against KH2 for E = 0.4, M = 0.01, G1 = G2 = G3 = G4 = 1, H1 = H3 = H5 = H7 = 0.05,
H4 = H6 = H8 = 1, θ = 0◦.

waves, respectively. It is noted that as the submergence depth of the plates decreases,
the values of |R| shift towards the right. Additionally, the peak value of |R| is lower
for oblique incident waves compared with normal incident waves. In the case of
oblique incident waves, the overall reflection coefficient is generally lower across all
submergence depths, highlighting the effect of wave direction on the interaction with
submerged plates.

Figures 16 and 17 depict the dimensionless amplitudes of wave forces acting on
plates plotted against the nondimensional wave number KH2 for different values of the
porous effect parameter. These figures provide insight into how the amplitude of wave
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FIGURE 16. |Kf | against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, E = 0.4, M = 0.01, H1 = H3 =

H5 = H7 = 0.05, H4 = H6 = H8 = 1, θ = 0◦.

FIGURE 17. |Kf | against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, E = 0.4, M = 0.01, H1 = H3 =

H5 = H7 = 0.05, H4 = H6 = H8 = 1, θ = 60◦.

forces varies with changes in both the wave number and the porous effect parameter.
The observations from Figures 16 and 17 suggest that as the porosity increases, the
coefficient of wave force decreases. Additionally, due to inertial effects, the values of
|Kf | for complex porosity are lower than those for real porosity. This implies that the
presence of pores within the material affects the amplitude of wave forces differently
depending on whether the porosity is real or complex. The decrease in wave force
coefficient with increasing porosity likely reflects a reduction in the resistance offered
by the porous material to the incoming waves. However, Figures 18 and 19 illustrate
the effect of wave forces on flexible porous barriers across four different values of
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FIGURE 18. |Kf | against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, M = 0.01, G1 = G2 = G3 = G4 = 1,
H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1, θ = 0◦.

FIGURE 19. |Kf | against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, M = 0.01, G1 = G2 = G3 = G4 = 1,
H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1, θ = 60◦.

flexural rigidity. It is observed from Figures 18 and 19 that the coefficient of wave
force increases as the flexural rigidity of the porous plate increases. This suggests that
flexural rigidity plays a significant role in enhancing the wave forces experienced by
plates. A higher flexural rigidity likely results in increased resistance to bending or
deformation when subjected to wave forces, leading to a higher coefficient of wave
force. It is also observed that the maximum values of the wave forces |Kf | are lower for
obliquely incident waves compared with normal incident waves.

Figures 20 and 21 illustrate the amount of dissipated energy |J| plotted against wave
number KH2 for various porosity values. These figures likely provide insights into
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FIGURE 20. |J| against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, E = 0.4, M = 0.01, H1 = H3 = H5 =

H7 = 0.05, H4 = H6 = H8 = 1, θ = 0◦.

FIGURE 21. |J| against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, E = 0.4, M = 0.01, H1 = H3 = H5 =

H7 = 0.05, H4 = H6 = H8 = 1, θ = 60◦.

how the dissipation of energy varies with changes in the wave number and porosity of
the material. The observations from Figures 20 and 21 suggest that energy dissipation
decreases as porosity increases. The addition of an imaginary part to the porous effect
parameter results in a decrease in the value of dissipated energy. This suggests that
incorporating certain imaginary components, possibly related to inertial effects, leads
to a reduction in energy dissipation. However, dissipated energy |J| for various flexural
rigidity values is plotted against the wave number in Figures 22 and 23. Through
Figures 22 and 23, it can be noticed that with increasing flexural rigidity of the
barriers, the amount of dissipated energy |J| increases. The higher flexural rigidity
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FIGURE 22. |J| against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, M = 0.01, G1 = G2 = G3 = G4 = 1,
H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1, θ = 0◦.

FIGURE 23. |J| against KH2 for x1 = 0.5, x2 = 1.5, x3 = 2.5, x4 = 3.5, M = 0.01, G1 = G2 = G3 = G4 = 1,
H1 = H3 = H5 = H7 = 0.05, H4 = H6 = H8 = 1, θ = 60◦.

likely allows the plates to absorb and dissipate more energy, resulting in higher values
of |J|. Comparing Figures 20–23, it is observed that the maximum values of the
dissipated energy |J| are lower for obliquely incident waves compared with normal
incident waves.

5. Conclusion

This paper presents a mathematical model and analysis of how surface waves
interact with multiple flexible porous plates, using the Galerkin approximation method.
This study computes and presents several hydrodynamics quantities, including reflec-
tion and transmission coefficients, hydrodynamic force, and energy dissipation. These
hydrodynamics quantities are crucial for understanding how waves interact with
the flexible porous plates and how they affect each other. The proposed model’s
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validity is established by comparing its results with existing data from the literature.
The computed reflection and transmission coefficients satisfy the energy identity for
both permeable and impermeable flexible plates, affirming the model’s accuracy. A
decrease in the reflection coefficient with an increase in the angle of incidence is
observed. Vertical plates are found to be better reflectors. Additionally, the oscillation
of the reflection coefficient increases with increasing plate separation length, indi-
cating interference effects within the flexible porous plates. The flexural rigidity of
the plates significantly influences hydrodynamic coefficients. Higher flexural rigidity
leads to increased reflection coefficients, especially in the presence of porosity.
Wave load is initially higher at the first plate but decreases as waves propagate
over subsequent plates, aligning with expectations. However, increasing porous effect
parameters leads to a decrease in the reflection coefficient due to enhanced wave
energy dissipation. Higher energy dissipation is achieved by minimizing the inertial
effect of flexible porous plates, indicating their effectiveness in dissipating wave
energy. Compared with rigid plates, multiple flexible porous plates demonstrate a
reduction in reflection, dissipated energy and wave force. This finding suggests their
suitability for constructing breakwaters and mitigating wave effects on coastal and
marine facilities. Overall, the analysis provides valuable insights into the role of
multiple flexible porous structures in dissipating wave energy and attenuating wave
load, which is crucial for coastal and marine engineering applications.

Acknowledgements

The authors would like to gratefully acknowledge the Editor and Reviewers for their
valuable comments and suggestions to improve the quality of the manuscript. This
work is partially supported by a SERB, DST, India (grant number TAR/2022/000107).

References

[1] R. Ashok, C. Gunasundari and S. R. Manam, “Explicit solutions of the scattering problems
involving vertical flexible porous structures”, J. Fluids Struct. 99 (2020) Article ID: 103149;
doi:10.1016/j.jfluidstructs.2020.103149.

[2] H. Behera and C. O. Ng, “Interaction between oblique waves and multiple bottom-standing flexible
porous barriers near a rigid wall”, Meccanica 53 (2018) 871–885; doi:10.1007/s11012–017–0789–8.

[3] S. Boral, T. Sahoo and M. H. Meylan, “Gravity wave interaction with an articulated submerged
plate resting on a Winkler foundation”, Appl. Math. Model. 113 (2022) 416–438;
doi:10.1016/j.apm.2022.09.007.

[4] A. Chakrabarti, S. Banerjea, B. N. Mandal and T. Sahoo, “A Unified approach to problems of
scattering of surface water waves by vertical barriers”, J. Aust. Math. Soc. Ser. B 39 (1997) 93–103;
doi:10.1017/S0334270000009231.

[5] R. Chakraborty and B. N. Mandal, “Scattering of water waves by a submerged thin vertical elastic
plate”, Arch. Appl. Mech. 84 (2014) 207–217; doi:10.1007/s00419-013-0794-x.

[6] R. Chakraborty, A. Mondal and R. Gayen, “Interaction of surface water waves with a vertical elastic
plate: a hypersingular integral equation approach”, Z. Angew. Math. Phys. 67 (2016) 115;
doi:10.1007/s00033-016-0709-0.

[7] A. T. Chwang, “A porous wave maker theory”, J. Fluid Mech. 132 (1983) 395–406;
doi:10.1017/S0022112083001676.

https://doi.org/10.1017/S1446181124000257 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.jfluidstructs.2020.103149
http://dx.doi.org/10.1007/s11012--017--0789--8
http://dx.doi.org/10.1016/j.apm.2022.09.007
http://dx.doi.org/10.1017/S0334270000009231
http://dx.doi.org/10.1007/s00419-013-0794-x
http://dx.doi.org/10.1007/s00033-016-0709-0
http://dx.doi.org/10.1017/S0022112083001676
https://doi.org/10.1017/S1446181124000257


26 A. Sasmal and S. De [26]

[8] S. De, B. N. Mandal and A. Chakrabarti, “Use of Abel integral equations in water wave scattering
by two surface piercing barriers”, Wave Motion 47 (2010) 279–288;
doi:10.1016/j.wavemoti.2009.12.002.

[9] W. R. Dean, “On the reflection of surface waves by submerged plane barriers”, Math. Proc.
Cambridge Philos. Soc. 41 (1945) 231–238; doi:10.1017/S030500410002260X.

[10] D. V. Evans and C. A. N. Morris, “Complementary approximations to the solution of a problem in
water waves”, J. Inst. Math. Appl. 10 (1972) 1–9; doi:10.1093/imamat/10.1.1.

[11] R. Gayen and A. Mondal, “Scattering of water waves by a pair of vertical porous plates”, Geophys.
Astrophys. Fluid Dyn. 109 (2015) 480–496; doi:10.1080/03091929.2015.1076812.

[12] M. U. Hassan, M. H. Meylan and M. A. Peter, “Water-wave scattering by submerged elastic plates”,
QJMAM 62 (2009) 321–344; doi:10.1093/qjmam/hbp008.

[13] S. R. Heller and H. N. Abramson, “Hydroelasticity: a new naval science”, J. Amer. Soc. Naval Eng.
71(2) (1959) 205–209; doi:10.1111/j.1559-3584.1959.tb02326.x.

[14] M. Isaacson, J. Baldwin, S. Premasiri and G. Yang, “Wave interactions with double slotted
barriers”, Appl. Ocean Res. 21 (1999) 81–91; doi:10.1016/S0141-1187(98)00039-X.

[15] M. Isaacson, S. Premasiri and G. Yang, “Wave interactions with vertical slotted barriers”,
J. Waterway Port Coastal Ocean Eng. 124 (1998) 118–126;
doi:10.1061/(ASCE)0733-950X(1998)124:3(118).

[16] R. J. Jarvis, “The scattering of surface waves by two vertical plane barriers”, J. Inst. Math. Appl. 7
(1971) 207–215.

[17] D. Karmakar and C. G. Soares, “Wave transformation due to multiple bottom-standing porous
barriers”, Ocean Eng. 80 (2014) 50–63; doi:10.1016/j.oceaneng.2014.01.012.

[18] N. S. Karp and C. F. Karal, “The elastic field behaviour in the neighbourhood of a crack of arbitrary
angle”, Comm. Pure Appl. Math. 15 (1962) 413–421; doi:10.1002/cpa.3160150404.

[19] H. Levine and E. Rodemich, “Scattering of surface waves on an ideal fluid”, Technical Report 78,
Mathematics and Statistics Laboratory, Standford University, 1958.

[20] A. J. Li, Y. Liu and H. J. Li, “Accurate solutions to water wave scattering by vertical thin porous
barriers”, Math. Problem Eng. 2015 (2015) 1–11; doi:10.1155/2015/985731.

[21] Y. Liu, A. J. Li and Z. B. Fang, “Oblique wave scattering by porous breakwaters/seawalls: novel
analytical solutions based on contour integral without finding complex roots”, Appl. Ocean Res.
101 (2020) Article ID: 102258; doi:10.1016/j.apor.2020.102258.

[22] I. J. Losada, M. A. Losada and A. J. Roldan, “Propagation of oblique incident waves past rigid
vertical thin barriers”, Appl. Ocean Res. 14 (1992) 191–199; doi: 10.1016/0141-1187(92)90014-B

[23] C. Macaskill, “Reflection of water waves by a permeable barrier”, J. Fluid Mech. 75 (1979)
141–157; doi:10.1017/S0022112079001385.

[24] S. R. Manam and M. Sivanesan, “Scattering of water waves by vertical porous barriers: an
analytical approach”, Wave Motion 67 (2016) 89–101; doi:10.1016/j.wavemoti.2016.07.008.

[25] B. N. Mandal and A. Chakrabarti, Water wave scattering by barriers, 1st edn (WIT Press,
Southampton, UK, 2000).

[26] P. McIver, “Scattering of surface waves by two surface piercing vertical barriers”, IMA J. Appl.
Math. 35(1) (1985) 1–17; doi:10.1093/imamat/35.339.

[27] M. Meylan, “A flexible vertical sheet in waves”, Int. J. Offshore Polar Eng. 5 (1995) 105–110.
[28] C. A. N. Morris, “A variational approach to an unsymmetric water wave scattering problem”,

J. Eng. Math. 9 (1975) 291–300; doi:10.1007/BF01540666.
[29] J. N. Newman, “Interaction of water waves with two closely spaced vertical obstacles”, J. Fluid

Mech. 66 (1974) 97–106; doi:10.1017/S0022112074000085.
[30] M. A. Peter and M. Meylan, “A general spectral approach to the time-domain evolution of linear

water waves impacting on a vertical elastic plate”, SIAM J. Appl. Math. 70 (2010) 2308–2328;
doi:10.1137/09075655.

[31] D. Porter, “The transmission of surface waves through a gap in a vertical barrier”, Math. Proc.
Cambridge Philos. Soc. 71 (1972) 411–421; doi:10.1017/S0305004100050647.

[32] R. Porter and D. V. Evans, “Complementary approximations to solve wave scattering by vertical
barriers”, J. Fluid Mech. 294 (1995) 155–180; doi:10.1017/S0022112095002849.

https://doi.org/10.1017/S1446181124000257 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.wavemoti.2009.12.002
http://dx.doi.org/10.1017/S030500410002260X
http://dx.doi.org/10.1093/imamat/10.1.1
http://dx.doi.org/10.1080/03091929.2015.1076812
http://dx.doi.org/10.1093/qjmam/hbp008
http://dx.doi.org/10.1111/j.1559-3584.1959.tb02326.x
http://dx.doi.org/10.1016/S0141-1187(98)00039-X
http://dx.doi.org/10.1061/(ASCE)0733-950X(1998)124:3(118)
http://dx.doi.org/10.1016/j.oceaneng.2014.01.012
http://dx.doi.org/10.1002/cpa.3160150404
http://dx.doi.org/10.1155/2015/985731
http://dx.doi.org/10.1016/j.apor.2020.102258
http://dx.doi.org/10.1016/0141-1187(92)90014-B
http://dx.doi.org/10.1017/S0022112079001385
http://dx.doi.org/10.1016/j.wavemoti.2016.07.008
http://dx.doi.org/10.1093/imamat/35.339
http://dx.doi.org/10.1007/BF01540666
http://dx.doi.org/10.1017/S0022112074000085
http://dx.doi.org/10.1137/09075655
http://dx.doi.org/10.1017/S0305004100050647
http://dx.doi.org/10.1017/S0022112095002849
https://doi.org/10.1017/S1446181124000257


[27] Wave scattering by poroelastic plates 27

[33] R. Roy, S. De and B. N. Mandal, “Water wave scattering by three thin vertical barriers arranged
asymmetrically in deep water”, Fluid Dyn. Res. 51 (2019) Article ID 045508, 23 pages;
doi:10.1088/1873-7005/ab2d4d.

[34] A. Sasmal and S. De, “Oblique water wave diffraction by two vertical porous barriers with
nonidentical submerged gaps”, Meccanica 54 (2019) 1525–1544; doi:10.1007/s11012-019-01031-1.

[35] A. Sasmal and S. De, “Energy dissipation and oblique wave diffraction by three asymmetrically
arranged porous barriers”, Ships Offshore Struct. 17 (2020) 105–115;
doi:10.1080/17445302.2020.1816783.

[36] A. Sasmal and S. De, “Hydroelastic analysis of surface gravity wave interaction with multiple
flexible porous structures”, J. Fluids Struct. 120 (2023) Article ID: 103906;
doi:10.1016/j.jfluidstructs.2023.103906.

[37] A. Sasmal and S. De, “Mitigation of wave force and dissipation of energy by multiple arbitrary
porous barriers”, Waves Random Complex Media 34 (2024) 523–546;
doi:10.1080/17455030.2021.1915514.

[38] A. Sasmal, S. Paul and S. De, “Effect of porosity on oblique wave diffraction by two unequal
vertical porous barriers”, J. Mar. Sci. Appl. 18 (2019) 417–432;
doi:10.1007/s11804-019-00107-4.

[39] M. Singh and R. Gayen, “Scattering of linear gravity-capillary waves by a completely submerged
vertical porous elastic plate”, Waves Random Complex Media (2022) 1–21;
doi: 10.1080/17455030.2022.2120220.

[40] S. Singh and R. Kaligatla, “The combined refraction-diffraction effect on water wave scattering by
a vertical flexible-porous structure”, J. Fluids Struct. 116 (2023) Article ID: 103791;
doi:10.1016/j.jfluidstructs.2022.103791.

[41] C. M. Smith, “Some problems in linear water wave theory”, Ph. D. Thesis, University of Bristol,
Bristol, 1983.

[42] M. J. A. Smith, M. A. Peter, I. D. Abrahams and M. H. Meylan, “On the Wiener–Hopf solution
of water-wave interaction with a submerged elastic or poroelastic plate”, Proc. Roy. Soc. London A
Math. Phy. Sci. 476 (2020) Article ID: 2242; doi:10.1098/rspa.2020.0360.

[43] C. K. Sollitt and R. H. Cross, “Wave transmission through permeable breakwaters”, Coastal Eng.
Proc. 1 (1972) 1827–1846; doi:10.1061/9780872620490.106.

[44] I. V. Sturova, “The effect of periodic surface pressure on a rectangular elastic plate floating on
shallow water”, ZAMM 70 (2006) 378–386; doi:10.1016/j.jappmathmech.2006.07.016.

[45] F. Ursell, “The effect of a fixed vertical barrier on surface waves in deep water” Math. Proc.
Cambridge Philos. Soc. 43 (1947) 374–382; doi:10.1017/S0305004100023604.

[46] W. E. Williams “Note on the scattering of water waves by a vertical barrier”, Math. Proc.
Cambridge Philos. Soc. 62 (1988) 507–509; doi:10.1017/S0305004100040135.

[47] Y. S. Wu, “Numerical and experimental hydroelasticity of marine structures–a review”, in:
ICHD’94 Proc. Int. Conf. on Hydrodynamics, Wuxi, China, 30 October–3 November 1994
(editorial board for Journal of Hydrodynamics), 30–41.

[48] X. Yu, “Diffraction of water waves by porous breakwaters”, J. Waterway Port Coastal Ocean Eng.
121 (1995) 275–282; doi:10.1061/(ASCE)0733-950X(1995)121:6(275).

[49] X. Yu and A. T. Chwang, “Wave motion through porous structures”, ASCE J. Eng. Mech. 120(5)
(1994) 989–1008; doi:10.1061/(ASCE)0733-9399(1994)120:5(989).

[50] S. Zheng, M. H. Meylan, L. Fan, D. Greaves and G. Iglesias, “Wave scattering by a floating porous
elastic plate of arbitrary shape: a semi-analytical study”, J. Fluids Struct. 92 (2020) Article ID:
102827; doi:10.1016/j.jfluidstructs.2019.102827.

[51] S. Zheng, M. H. Meylan, D. Greaves and G. Iglesias, “Water-wave interaction with submerged
porous elastic disks”, Phys. Fluids. 32 (2020) Article ID: 047106; doi:10.1063/5.0006119.

[52] S. Zheng, M. H. Meylan, G. Zhu, D. Greaves and G. Iglesias, “Hydroelastic interaction between
water waves and an array of circular floating porous elastic plates”, J. Fluid Mech. 900 (2020)
Article ID: A20; doi:10.1017/jfm.2020.508.

https://doi.org/10.1017/S1446181124000257 Published online by Cambridge University Press

http://dx.doi.org/10.1088/1873-7005/ab2d4d
http://dx.doi.org/10.1007/s11012-019-01031-1
http://dx.doi.org/10.1080/17445302.2020.1816783
http://dx.doi.org/10.1016/j.jfluidstructs.2023.103906
http://dx.doi.org/10.1080/17455030.2021.1915514
http://dx.doi.org/10.1007/s11804-019-00107-4
http://dx.doi.org/10.1080/17455030.2022.2120220
http://dx.doi.org/10.1016/j.jfluidstructs.2022.103791
http://dx.doi.org/10.1098/rspa.2020.0360
http://dx.doi.org/10.1061/9780872620490.106
http://dx.doi.org/10.1016/j.jappmathmech.2006.07.016
http://dx.doi.org/10.1017/S0305004100023604
http://dx.doi.org/10.1017/S0305004100040135
http://dx.doi.org/10.1061/(ASCE)0733-950X(1995)121:6(275)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1994)120:5(989)
http://dx.doi.org/10.1016/j.jfluidstructs.2019.102827
http://dx.doi.org/10.1063/5.0006119
http://dx.doi.org/10.1017/jfm.2020.508
https://doi.org/10.1017/S1446181124000257

	1 Introduction
	2 Mathematical model
	3 Solution procedure
	3.1 Solutions of integral equations using Galerkin's approximation technique
	3.2 Determination of reflection and transmission coefficients
	3.3 Dynamic wave force
	3.4 Energy identity relation

	4 Results and discussion
	4.1 Model validation with existing results
	4.2 Effects of various parameters on results

	5 Conclusion

