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Abstract

We give explicit combinatorial descriptions of three Schur functors arising in the theory
of pre-Lie algebras. The first of them leads to a functorial description of the underlying vec-
tor space of the universal enveloping pre-Lie algebra of a given Lie algebra, strengthening
the Poincaré–Birkhoff–Witt (PBW) theorem of Segal. The two other Schur functors pro-
vide functorial descriptions of the underlying vector spaces of the universal multiplicative
enveloping algebra and of the module of Kähler differentials of a given pre-Lie algebra. An
important consequence of such descriptions is an interpretation of the cohomology of a pre-
Lie algebra with coefficients in a module as a derived functor for the category of modules
over the universal multiplicative enveloping algebra.

2020 Mathematics Subject Classification: 18M80 (Primary); 18G10, 18G15,
18M70 (Secondary)

1. Introduction

In this paper, we establish several new results on pre-Lie algebras. The algebraic structure
of a pre-Lie algebra, or a right-symmetric algebra, is formally defined as a vector space V
equipped with a binary operation � satisfying the identity

(a1 � a2) � a3 − a1 � (a2 � a3) = (a1 � a3) � a2 − a1 � (a3 � a2).

Any pre-Lie algebra is a Lie algebra with respect to the commutator [a1, a2] := a1 � a2 −
a2 � a1, so one may consider universal enveloping pre-Lie algebras of Lie algebras. They
have been first studied by Segal in [34] who was motivated by geometric questions such
as the classification problem of left invariant locally flat affine structures on Lie groups; the
relevance of pre-Lie algebras for such purposes was discovered by Vinberg [36]. Segal found
a certain basis of nonassociative words for the universal enveloping pre-Lie algebra of a Lie
algebra L; his answer only depends on the underlying vector space of L, and therefore one
can say that an analogue of the classical Poincaré–Birkhoff–Witt (PBW) theorem holds for
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universal enveloping pre-Lie algebras of Lie algebras, along the lines of the general approach
to PBW theorems proposed by Mikhalev and Shestakov in [30]. Moreover, Bolgar proved
in [3] that for the natural filtration on the universal enveloping pre-Lie algebra of a Lie
algebra L, the associated graded pre-Lie algebra is isomorphic to the universal enveloping
pre-Lie algebra of the abelian Lie algebra with the same underlying vector space as L, which
brings universal enveloping pre-Lie algebras closer to the context of the category theoretical
approach to PBW theorems proposed by the first author and Tamaroff in [12] who proved
that a functorial PBW theorem holds in this case using a previous result [9] of the first author.
Neither of the abovementioned results, however, leads to an explicit description of the Schur
functor computing the underlying vector space of the universal enveloping pre-Lie algebra.
The first part of the paper is concerned with furnishing such a description.

The classical Poincaré–Birkhoff–Witt theorem in the associative case is centered around
the space of symmetric tensors S(L). It is well known that monomials in pre-Lie are rooted
trees whose vertices are labelled by generators: implicit in the works of Cayley [5], it has
been proved rigorously in [7]. The first result of this paper gives an explicit description of
the Schur functor of the universal enveloping pre-Lie algebra of a Lie algebra in a way that is
reminiscent of the classical Poincaré–Birkhoff–Witt theorem and at the same time highlights
the appealing combinatorics of rooted trees.

THEOREM (Theorem 1). Let L be a Lie algebra. The underlying vector space of the uni-
versal enveloping pre-Lie algebra of L is isomorphic to RT �=1(S(L)), where RT �=1 is the
linear species of rooted trees for which no vertex has exactly one child; moreover, these
isomorphisms can be chosen in a way that is natural with respect to Lie algebra morphisms.

Our proof uses a modification of the homological criterion of freeness [12, proposition
4·1] that allows us to utilise the underlying rooted tree structure, bringing in standard tech-
niques for working with graph complexes [37]. The species we found has been previously
studied by graph theorists who established that it can also be viewed as the species of
“labelled connected P4-free chordal graphs”, see [4] and [35, entry A058863] for details.

This result has some immediate applications, of which we give three: a proof of a similar
result for the operad of F-manifold algebras [9], a formula for the permutative bar homology
of an associative commutative algebra, and a hint that can hopefully be used to construct a
conjectural good triple of operads [27] (X c, PreLie, Lie) that would allow one to prove a
Milnor–Moore type theorem for universal enveloping pre-Lie algebras.

The second part of the paper is concerned with similar results concerning universal mul-
tiplicative enveloping algebras and modules of Kähler differentials of pre-Lie algebras. In
general, for an operad P and a P-algebra L, the universal multiplicative enveloping algebra,
is the associative algebra UP (L) whose category of left modules is equivalent to the category
of operadic L-modules. For a pre-Lie algebra L, this object was studied in [24] by means
of noncommutative Gröbner bases, and its monomial basis was constructed. In this paper,
we use the approach of [21] to prove the following functorial version of the description of
universal multiplicative enveloping algebras of pre-Lie algebras.

THEOREM (Theorem 2). Let L be a pre-Lie algebra. There is a vector space isomorphism

UPreLie(L) ∼= T(L) ⊗ S(L).

Moreover, these isomorphisms can be chosen in a way that is natural with respect to pre-Lie
algebra morphisms.
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In [24], a basis of the module of Kähler differentials �1
PreLie(L) of a given pre-Lie algebra

L was also constructed. We prove a new functorial PBW theorem for modules of Kähler
differentials of algebras over operads and apply it in the case of pre-Lie algebras, obtaining
the following result.

THEOREM (Theorem 3). Let L be a pre-Lie algebra. There is a vector space isomorphism

�1
PreLie(L) ∼= T(L),

where T(L) is the augmentation ideal of the tensor algebra. Moreover, these isomorphisms
can be chosen in a way that is natural with respect to pre-Lie algebra morphisms.

We then apply these two results to give a new recipe for calculation of the cohomology of
a pre-Lie algebra L with coefficients in a module E, proving that

H•
PreLie(L, E) ∼= Ext•UPreLie(L)(�

1
P (L), E).

Conventions.

This is a short paper, and we do not intend to overload it with excessive recollections.
We refer the reader to [28] for relevant information on symmetric operads, Koszul duality
and operadic twisting cochains, and to [2] for information on combinatorics of species.
In particular, following [28], we refer to analytic endofunctors on the category of vector
spaces as Schur functors, and use the notation κ for the twisting morphism between an
operad and its Koszul dual cooperad. All operads in this paper are defined over a field k of
characteristic zero. Additionally, we assume each operad P reduced (the space of nullary
operations vanishes), connected (the space of unary operations is spanned by the unit), and
weight graded (where the weight grading is non-negative and the vector space of elements
of weight zero is precisely the linear span of the unit). We denote by I the trivial operad (the
linear span of the unit). All chain complexes are homologically graded (with the differential
of degree −1); we use the notation s to implement shifts of homological degree. When
writing down elements of operads, we use Latin letters as placeholders; when working with
algebras over operads that carry nontrivial homological degrees, there are extra signs which
arise from applying operations to arguments via the usual Koszul sign rule. Finally, for a
vector space L, we denote by the same letter the “constant Schur functor” (a symmetric
sequence supported at arity zero) whose only non-zero value is given by L; this way, the
evaluation of a Schur functor F on L is the composite product F ◦ L, and if P is an operad
for which L is an algebra, the corresponding Schur functor becomes a left P-module.

2. Functorial PBW theorems

We begin with giving a brief recollection of the recent results on functorial Poincaré–
Birkhoff–Witt theorems, and proving a similar new result on Kähler differentials.

2·1. Universal enveloping Q-algebras of P-algebras

The universal enveloping algebras of the first kind are defined whenever one is given a
morphism of operads

φ : P −→Q.
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Such a morphism leads to a natural functor φ∗ from the category of Q-algebras to the cat-
egory of P-algebras (pullback of the structure). It is well known [14, 25] that this functor
admits a left adjoint φ! which is sometimes called the universal enveloping Q-algebra of L.
Moreover, we shall use the observation [33] that this left adjoint can be computed via the
relative composite product formula

φ!(L) =Q ◦P L.

In joint work with Tamaroff [12], the first author gave a categorical definition of what it
means for the datum (P , Q, φ) to have the PBW property: by definition, one requires that
there exists a Schur functor X such that for every P-algebra L the underlying object of the
universal enveloping Q-algebra of L is isomorphic to the evaluation of the Schur functor
X on L (given by X ◦ L) naturally with respect to P-algebra morphisms. According to [12,
theorem 3·1], the datum (P , Q, φ) has the PBW property if and only if the right P-module
action on Q via φ is free; in this case, the Schur functor X that generates that right module
satisfies the above condition:

φ!(L) ∼=X ◦ L

naturally with respect to P-algebra morphisms.

2·2. Universal multiplicative enveloping algebras of P-algebras

The universal enveloping algebra of the second kind is defined for any algebra L over an
operad P : it is an associative algebra UP (L) whose category of left modules is equivalent
to the category of L-modules defined by means of operad theory; in the “pre-operad” litera-
ture, this object is often referred to as the universal multiplicative enveloping algebra. Let us
briefly summarise the relevant background information here, following [17, 21]. First, one
considers a particular type of {1, 2}-coloured operads, namely those whose structure opera-
tions can either have all inputs and the output of colour 1 or all inputs but one of colour 1
and the remaining input as well as the output of colour 2. Such an operad is a pair (Q, R),
where Q is a usual operad, and R is a right Q-module in the category of twisted associative
algebras, or in other words, a Ass-Q-bimodule.

For a usual operad P , one can consider the derivative ∂(P) defined by

∂(P)(I) := P(I 
 {�}),
and define a {1, 2}-coloured Schur functor (P , ∂(P)), where by definition the input � and
the output of ∂(P) are of colour 2. This Schur functor has a {1, 2}-coloured operad structure
arising from the operad structure on P , and algebras (L, M) over this coloured operad
are precisely a P-algebra L and an L-module M. As we assume all operads connected,
the augmentation P → I of the operad P may be used to make the pair (P , ∂(I)) a
{1, 2}-coloured operad. The unit η : I→P of the operad P gives rise to a morphism of
two-coloured operads

ψ : (P , ∂(I)) −→ (P , ∂(P)),

and if one denotes by k the one-dimensional trivial L-module (that is, the module on which
all the operations of the augmentation ideal of P vanish), we have

(L, UP (L)) ∼= (P , ∂(P)) ◦(P ,∂(I)) (L,k).
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From this observation and [12, theorem 3·1], it immediately follows that a functorial PBW
type theorem for universal multiplicative enveloping algebras holds if and only if the Schur
functor ∂(P) is a free right P-module; in this case, the Schur functor Y that generates that
right module satisfies UP (L) ∼=Y ◦ L naturally with respect to P-algebra morphisms.

2·3. Kähler differentials of P-algebras

Mimicking the classical definition from commutative algebra, one may define the UP (L)-
module of Kähler differentials�1

P (L) for any given operad P and any given P-algebra L [17,
section 4·4]. The intrinsic definition states that �1

P (L) is the UP (L)-module that represents
the functor of derivations Der(L, E) with values in a UP (L)-module E. It is known that
this module can be constructed in a very explicit way: it is spanned by formal expressions
p(a1, . . . , dai, . . . , am), where p ∈P(m), and a1, . . . , am ∈ L, modulo the relations

p(a1, . . . , q(ai, . . . , ai+n−1), . . . , daj, . . . , am+n−1)

= (p ◦i q)(a1, . . . , ai, . . . , ai+n−1, . . . , daj, . . . , am+n−1),

p(a1, . . . , dq(ai, . . . , ai+n−1), . . . , am+n−1)

=
i+n−1∑

j=i

(p ◦i q)(a1, . . . , ai, . . . , daj, . . . , ai+n−1, . . . , am+n−1).

In these formulas, we rewrite the elements p(a1, . . . , dai, . . . , am) for which one of a1, . . .,
am is computed using the P-algebra structure. However, according to [17, section 10·3], one
may also view q in these formulas as the right P-module action on p(a1, . . . , dai, . . . , am),
and observe that, similarly to the universal multiplicative enveloping algebras, there exists a
universal right P-module of Kähler differentials �1

P such that

�1
P (L) ∼=�1

P ◦P L.

It is probably prudent to warn the reader that the standard notation is very misleading here:
�1

P (L) looks like the evaluation of the Schur functor �1
P on a vector space L, given by

the composite product �1
P ◦ L, while in reality it is equal to the relative composite product

�1
P ◦P L.
We shall say that a PBW theorem holds for the modules of Kähler differentials if there

exists a Schur functor Z such that for every P-algebra L the underlying object of �1
P (L) is

isomorphic to Z ◦ L naturally with respect to P-algebra morphisms.

PROPOSITION 1. Given an operad P , there is a PBW theorem for the modules of Kähler
differentials if and only if the right P-module action on �1

P is free; in this case, the Schur
functor Z that generates that right module satisfies the above condition:

�1
P (L) ∼=Z ◦ L

naturally with respect to P-algebra morphisms.

Proof. This is analogous to [12, theorem 3·1]. Indeed, if there is a right module
isomorphism �1

P ∼=Z ◦P , we have

�1
P (L) ∼=�1

P ◦P L ∼= (Z ◦P) ◦P L ∼=Z ◦ L
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naturally with respect to P-algebra morphisms. On the other hand, if there is a PBW theorem
for the modules of Kähler differentials, we shall examine the isomorphism Z ◦ L ∼=�1

P (L)
for a free algebra L =P ◦ V , obtaining

Z ◦ (P ◦ V) ∼=�1
P (P ◦ V) ∼=�1

P ◦P (P ◦ V) ∼=�1
P ◦ V ,

and it remains to note that this is natural in V (since any map from generators of a free
algebra induces an algebra morphism), so we have Z ◦P ∼=�1

P , as required.

We note that the PBW property for the modules of Kähler differentials is discussed in
[31] where it is erroneously claimed

1
that it follows from the PBW property for univer-

sal multiplicative enveloping algebras; this fails in many cases, starting from the operad of
commutative associative algebras.

3. The universal enveloping pre-Lie algebra of a Lie algebra
3·1. The Schur functor

In this section, we prove the first main result of this paper, the functorial version of the
Poincaré–Birkhoff–Witt theorem for pre-Lie algebras [34, theorem 2] which gives a pre-
cise description of the underlying vector space of the universal enveloping algebra via a
combinatorially defined Schur functor.

To achieve that goal, we recall that according to [7], the underlying Schur functor of the
operad PreLie is the linear species of rooted trees RT, and the operad structure is defined in a
simple combinatorial way: if T1 ∈ RT(I), and T2 ∈ RT(J), then for i ∈ I, the element T1 ◦i T2

is given by

T1 ◦i T2 =
∑

f : in(T1,i)→vert(T2)

T1 ◦f
i T2.

Here in(T1, i) is the set of incoming edges of the vertex i in T1 and vert(T2) is the set of all
vertices of T2; the tree T1 ◦f

i T2 is obtained by replacing the vertex i of the tree T1 by the
tree T2, and grafting the subtree corresponding to the input v of i at the vertex f (v) of T2. For
example, we have

1 3

2
◦2

a

c
=

1 a 3

c
+

1 3

a

c

+

3

1 a

c

+

1

a 3

c

.

There exists a morphism of operads φ : Lie → PreLie defined on the only generator of
Lie as

φ([a1, a2]) =
2

1
− 1

2
.

The universal enveloping pre-Lie algebra of a Lie algebra L is nothing but φ!(L).

THEOREM 1. Let L be a Lie algebra. The underlying vector space of the universal
enveloping pre-Lie algebra of L is isomorphic to RT �=1(S(L)), where RT �=1 is the lin-
ear species of rooted trees for which no vertex has exactly one child; moreover, these
isomorphisms can be chosen in a way that is natural with respect to Lie algebra morphisms.

1 In the arXiv version https://arxiv.org/abs/0806.4405v6 recently uploaded by the author of [31] following
an exchange with the first author of the present paper, this issue is fixed.
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Proof. We shall use the following result (the argument below is a slight elaboration of
that of [17, section 17·1·3]).

LEMMA 1. Let P be a Koszul operad equipped with a standard weight grading for which
generators are of degree one, and let M be a weight graded right P-module. There exists a
differential making M ◦P ¡ into a chain complex, such that the module M is free if and only
if the homology of that complex is concentrated in degree zero; whenever that is the case,
the homology represents the Schur functor that freely generates M as a right P-module.

Proof. Let us consider the derived composite product M ◦LP I, where I is given a structure
of a left P-module via the augmentation P → I. According to results of [17, section 15·2],
we may compute it using any cofibrant replacement of M in the model category of right P-
modules or, alternatively, any cofibrant replacement of I in the semi-model category of left
P-modules. If we take the minimal free resolution X• ◦P of M as a cofibrant replacement,
we find that the homological degree p part of M ◦LP I is isomorphic to Xp, since the relative
composite product with I kills the minimal differential. On the other hand, if we take the
left Koszul complex P ◦κ P ¡ = (P ◦P ¡, dκ ) [28, section 7·4] as a cofibrant replacement of
I, we see that we can compute the derived composite product using the differential id ◦P dκ
on M ◦P (P ◦P ¡) ∼=M ◦P ¡. Since a right P-module is free if and only if its minimal free
resolution coincides with itself, the statement follows.

In the case of the operad P = Lie, this complex has a particularly simple description.
Indeed, since the Koszul dual operad of Lie is Com, the Koszul dual cooperad Lie ¡ is
isomorphic to the operadic desuspension of the linear dual Com∗; thus, for each n the vec-
tor space Lie ¡(n) is the one-dimensional sign representation of symmetric group placed in
homological degree n − 1. We shall denote the only basis element of that vector space by
e1 ∧ e2 ∧ · · · ∧ en. The differential dκ of the left Koszul complex Lie ◦κ Lie ¡ has the fol-
lowing description: it is the unique derivation of left Lie-modules sending each element
id ◦ (e1 ∧ e2 ∧ · · · ∧ en) to

∑

I
J={1,...,n}
εI,J[−, −] ◦ (eI ⊗ eJ),

where eI and eJ are the basis elements of Lie ¡(I) and Lie ¡(J) respectively, and εI,J is the
Koszul sign, which in this case is simply the coefficient of proportionality between eI ∧ eJ

and e1 ∧ e2 ∧ · · · ∧ en.
We wish to apply this construction to M= PreLie. Since the underlying Schur functor of

the operad PreLie is the linear species of rooted trees, each component PreLie ◦ Lie ¡(n) has a
basis of rooted trees whose vertices are decorated by elements eI , so that the subsets I form
a partition of {1, . . . , n}. Since the morphism from Lie to PreLie sends the bracket to the
difference of two rooted trees of arity two, the description of the composition in the operad
PreLie implies that the differential id ◦Lie dκ on PreLie ◦ Lie ¡ is reminiscent of the usual
graph complex differential [37]: it is equal to the sum of all possible ways to split a vertex
of a tree into two vertices connected with an edge and to distribute everything (the edges
adjacent to that vertex and the wedge factors of its eI label) in all possible ways between
the two new vertices; the sign of this term is the same Koszul sign as the one given in the
formula for dκ above. For example, we have
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id ◦ dκ

⎛
⎜⎝ 3

e1 ∧ e2

⎞
⎟⎠ =

3

�
◦�

(
2

1
− 1

2

)
=

3

2

1

+
3 2

1
− 3 1

2
−

3

1

2

,

where the right-hand side is an element of PreLie ∼= PreLie ◦ id ⊂ PreLie ◦ Lie ¡.
To proceed, we define the frame of a rooted tree as the longest path starting from the root

and consisting of vertices that have exactly one child (the last point of the frame is the first
vertex with at least two children or a leaf). Clearly, the frame is unique, since the moment
there is ambiguity is the moment one has to stop; for instance, if the root has more than one
child, the frame simply coincides with the root; we define by 
(T) the length of the frame
of T . If we examine the above description of the differential, we see that for a basis element
u ∈ PreLie ◦ Lie ¡ whose underlying rooted tree T has 
(T) = d, the element id ◦Lie dκ (u) is
a sum of basis elements whose underlying rooted trees T’ have 
(T ′) ≤ d + 1; moreover, the
only terms with the frame of length d + 1 are those where we only split vertices of the frame,
and in each such case we reconnect all the children to the new vertex that is further from the
root.

Let us define for each p the graded vector space Fp(PreLie ◦κ Lie ¡)(n) as the span of all
basis elements for which 
(T) + d ≤ p; here, as above, 
(T) is the length of the frame of
the underlying rooted tree T and d is the homological degree (that comes from the labels
of vertices; as indicated above, the degree of eI is |I| − 1). These spaces form an increasing
filtration of PreLie ◦κ Lie ¡(n). Moreover, each space Fp(PreLie ◦κ Lie ¡)(n) is preserved by
the differential: as we noted above, the differential of a basis element with the given values
of parameters 
(T) and d is a sum of basis elements for which the corresponding parameters
are 
(T ′) ≤ 
(T) + 1 and d′ = d − 1 respectively, so that


(T ′) + d′ ≤ 
(T) + d ≤ p.

For each n, the complex PreLie ◦κ Lie ¡(n) is finite-dimensional, therefore the spectral
sequence associated to our filtration converges to the homology of this complex.

Let us examine the first page of our spectral sequence. The differential of the associated
graded complex is much simpler, since the only terms from id ◦Lie dκ that are kept are those
where the length of the frame increases by 1. The frame of a rooted tree can be identi-
fied with an element of Ass(I), where I is the set of vertices of the frame, therefore, the
decorated frame of a decorated rooted tree from PreLie ◦κ Lie ¡ can be identified with an
element of Ass ◦ Lie ¡(J), where J is the union of all subsets I for all decorations eI of ver-
tices of the frame. Since the associated graded differential only modifies the frame and does
not change the rest of the tree, the associated graded chain complex is isomorphic to the
direct sum of complexes with the fixed set J decorating the frame, each such complex being
a tensor product of the complex Ass ◦ Lie ¡(J) with a certain graded vector space (a chain
complex with zero differential). Moreover, the differential of the complex Ass ◦ Lie ¡(J) is
precisely id ◦Lie dκ , if we identify Ass ◦ Lie ¡ with Ass ◦Lie (Lie ◦ Lie ¡), so the homology of
this complex is simply Com(J) concentrated in degree zero, since the operad Ass is free as
a right Lie-module, and the generators may be identified with the underlying Schur functor
of Com. Thus, computing the homology of the first page of the spectral sequence amounts
to collapsing the frame of each tree to a root labelled by an element of Com concentrated in
homological degree zero. Each child of this root is a root of a subtree from PreLie ◦κ Lie ¡(n),
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and each further differential of the spectral sequence is acting on those trees indepen-
dently, so one may complete the proof by induction on arity, showing that the homology is
concentrated in degree zero and is isomorphic to the Schur functor RT �=1 ◦ Com. As a con-
sequence, the underlying vector space of the universal enveloping algebra of L is naturally
isomorphic to

PreLie ◦Lie L ∼= (RT �=1 ◦ Com ◦ Lie) ◦Lie L ∼= (RT �=1 ◦ Com) ◦ L ∼= RT�=1(S(L)),

as required.

3·2. Applications

In this section, we record several consequences of Theorem 1, and new directions
prompted by it.

3·2·1. The operad of F-manifold algebras

Recall [9] that the operad FMan of F-manifold algebras is generated by a symmet-
ric binary operation − ◦ − and a skew-symmetric binary operation [−, −] satisfying the
associativity relation and the Jacobi identity

(a1 ◦ a2) ◦ a3 = a1 ◦ (a2 ◦ a3),

[[a1, a2], a3] + [[a2, a3], a1] + [[a3, a1], a2] = 0,

and related to each other by the Hertling–Manin relation [19]

[a1 ◦ a2, a3 ◦ a4]

= [a1 ◦ a2, a3] ◦ a4 + [a1 ◦ a2, a4] ◦ a3 + a1 ◦ [a2, a3 ◦ a4] + a2 ◦ [a1, a3 ◦ a4]

− (a1 ◦ a3) ◦ [a2, a4] − (a2 ◦ a3) ◦ [a1, a4] − (a2 ◦ a4) ◦ [a1, a3] − (a1 ◦ a4) ◦ [a2, a3].

COROLLARY 1. The operad FMan is a free right Lie-module; the Schur functor of
generators is isomorphic to RT�=1 ◦ Com.

Proof. The main theorem asserts that the associated graded of the operad FMan with
respect to the filtration defined by powers of the ideal generated by Lie is isomorphic to
the operad PreLie. This means that the underlying Schur functors of FMan and PreLie are
isomorphic. Moreover, the proof of the main theorem of [9] shows that shuffle trees that are
not divisible by the trees corresponding to the operations

[a1 ◦ a2, a3 ◦ a4], [a1 ◦ a3, a2 ◦ a4], [a1 ◦ a4, a2 ◦ a3]

form a basis of the operad FMan. The rest of the proof proceeds similarly to [8, theorem
4(2)]. First, we see that the shuffle operad FManf associated to FMan is a free right module
over the shuffle operad Lief associated to Lie: for the generators of that module, one may
take all shuffle trees from the basis above satisfying one extra property: no vertex labelled
[−, −] has both children being leaves. For the ordered species Y spanned by such shuffle
trees, the natural map from the shuffle composition of Y and Lief to FManf is an isomor-
phism. Second, we note that freeness of the right module can be encoded by vanishing of
homology groups of the appropriate bar construction [12, proposition 4·1], and therefore can
be checked on the level of associated shuffle operads [11].
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We note that our calculation implies that the underlying Schur functor of the operad FMan
is RT �=1 ◦ Poisson. Given that the Hertling–Manin relation may be viewed [19] as a weak-
ened version of the derivation rule in a Poisson algebra, it would be interesting to give a
more direct proof of this result.

3·2·2. Permutative homology of commutative algebras

Suppose that f : P →Q is a map of Koszul operads. Using the Koszul dual map
f ¡ : P ¡ →Q ¡, one makes P ¡ a right Q ¡-comodule. In [18, theorem 3·7(II)], Griffin estab-
lishes that if that right comodule is cofree with X as the Schur functor of cogenerators, then
for each Q-algebra A, one has an isomorphism of complexes

BP (f ∗A) ∼=X ◦ BQ(A).

Here f ∗A is the P-algebra obtained from the algebra A by the pullback of structure via f .
We may apply this result in the case where P = Perm is the operad of permutative algebras
[6] (which is the Koszul dual of the operad PreLie), Q= Com, and f : Perm → Com is the
obvious projection (this map is discussed in [18, example 3·8], but without the knowledge
of the Schur functor of cogenerators it is not possible to write down a specific formula).

COROLLARY 2. Let A be a commutative associative algebra, and let BPerm(A) be the bar
construction of that algebra considered as a permutative algebra. There is an isomorphism
of complexes

BPerm(A) ∼= s−1RT �=1(Com(sBCom(A)) ∼= (S−1(RT �=1 ◦ Com))(BCom(A)),

where S−1 is the operadic desuspension. The same relationship holds on the level of
homology of bar constructions:

HPerm• (A) ∼= s−1RT �=1(Com(sHCom• (A)) ∼= (S−1(RT �=1 ◦ Com))(HCom• (A)).

Proof. For a Koszul operad P , the underlying graded vector space of the bar construction
BP (A) is

P ¡(A) ∼= s−1(P !)∗(sA).

If we denote by X = RT �=1 ◦ Com the Schur functor of generators of PreLie as a right Lie-
module, the Schur functor X ∗ is clearly the species of cogenerators of PreLie∗ as a right
Lie∗-comodule, so that PreLie∗ ∼=X ∗ ◦ Lie∗. It follows that

BPerm(A) ∼= s−1PreLie∗(sA) ∼= s−1(X ∗ ◦ Lie∗)(sA)
∼= s−1X ∗(Lie∗(sA)), ∼= s−1X ∗(ss−1Lie∗(sA)) ∼= s−1(X ∗(sBCom(A)).

Finally, we note that on the level of Schur functors we have X ∗ ∼=X (for instance, since all
irreducible representations of symmetric groups are defined over Q and are self-dual), and
that for every Schur functor F , the Schur functor V �→ s−1F (sV) is naturally isomorphic
to the operadic desuspension S−1 ⊗

H
F , completing the proof of the first statement. The

Künneth formula for the composite product of Schur functors implies the same result on the
level of homology.

https://doi.org/10.1017/S0305004123000580 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000580


Three Schur functors related to pre-Lie algebras 451

This result ultimately leads to a question of a definition of a homotopy invariant notion
of the universal enveloping pre-Lie algebra (of a Lie algebra up to homotopy). A general
framework for addressing questions like that is discussed in a paper of Khoroshkin and
Tamaroff [22]; it would be interesting to apply their methods in this particular case.

One may also look at the permutative (co)homology with coefficients of a commutative
associative algebra A; an interesting example is given by the deformation complex of the
algebra A in the category of permutative algebras. According to [18, theorem 4·6], for ques-
tions like that it is reasonable to use information on the structure of the operad PreLie as a
Lie-bimodule. That seems a much harder question; the corresponding bimodule is certainly
not free, and not much is known about it. It would be interesting to construct its minimal res-
olution by free resolution of PreLie by free Lie-bimodules. We hope to address this question
elsewhere.

3·2·3. A conjectural good triple (X c, PreLie, Lie)
In the case of universal enveloping associative algebras of Lie algebras, the celebrated

Milnor–Moore theorem [32] states that a connected graded cocommutative bialgebra is
the universal enveloping associative algebra of its Lie algebra of primitive elements.
Conceptually, that result is a manifestation of the general theory of good triples of operads
[27]: in modern terms, it follows from the fact that there exists a good triple

(Comc, Ass, Lie).

Thus, a direct generalisation of that criterion to the case of universal enveloping pre-Lie
algebras would require to find a good triples of operads

(X c, PreLie, Lie),

so that the universal enveloping pre-Lie algebra of L has a coalgebra structure over the
cooperad X c for which L is a space of primitive elements. To the best of our knowledge,
the question of existence of such good triple remains open; it was asked by Loday about
fifteen years ago and is recorded as [29, problem 7·3]. Theorem 1 offers a useful hint for this
question, implying that the underlying species of the cooperad X must be RT�=1 ◦ Com.

4. Universal multiplicative envelopes and Kähler differentials

In this section, we prove two other functorial Poincaré–Birkhoff–Witt theorems in the
context of pre-Lie algebras. The proofs of the two results are quite similar; both of them use
combinatorics related to that of the vertebrate species of Joyal [20] and the operad NAP of
nonassociative permutative algebras. Algebras over the operad NAP have a binary product
� satisfying the identity (a1 � a2) � a3 = (a1 � a3) � a2. It is known [26] that the underly-
ing Schur functor of this operad is also the linearisation of the species RT of rooted trees,
equipped with the combinatorial substitution given by the single tree T1 ◦f

i T2 for the unique
function f sending every vertex of in(T1, i) to the root of T2.

4·1. The universal multiplicative enveloping algebra of a pre-Lie algebra

The result of this section is a strengthening of the PBW theorem for universal multiplica-
tive envelopes of pre-Lie algebras [24, theorem 1]. A possibility of such a result is indicated
in [21, theorem 5·4]; however, the proof of that paper utilises the shuffle operad criterion
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of freeness [8, theorem 4], and therefore no filtrations of algebras can be obtained from
filtrations of operads, and no direct conclusion about Schur functors can be made.

THEOREM 2. Let L be a pre-Lie algebra. There is a vector space isomorphism

UPreLie(L) ∼= T(L) ⊗ S(L).

Moreover, these isomorphisms can be chosen in a way that is natural with respect to pre-Lie
algebra morphisms.

Proof. To analyse the associative universal enveloping algebra UPreLie(V), one has to con-
sider the right PreLie-module ∂(PreLie). We note that the corresponding Schur functor is
the linearisation of the species ∂(RT) of rooted trees where all of the vertices but one are
labelled.

To show that the right PreLie-module ∂(PreLie) is free, we shall first prove the same for
the operad NAP.

LEMMA 2. The species derivative ∂(NAP) is a free right NAP-module; specifically, we
have a right module isomorphism

∂(NAP) ∼= (uAss ⊗ uCom) ◦ NAP.

Proof. This statement is almost obvious. We realise the Schur functor uAss ⊗ uCom
inside ∂(NAP) as the linearisation of the species of rooted trees for which each vertex on
the unique path from the root to the unlabelled vertex different from the starting point and
the end point of the path has exactly one child, and each child of the unlabelled vertex has
no children of its own. Thus, the vertices on the path from the root to the unlabelled ver-
tex represent uAss, the children of the unlabelled vertex represent uCom, and the way the
tree is assembled of those corresponds to computing the tensor product. Substitution in the
operad NAP amounts to grafting trees at all these vertices, and it is true by direct inspection
that each rooted tree is obtained from uAss ⊗ uCom by the right NAP-module action in the
unique way (by forming the subgraph consisting of the path from the root to the unlabelled
vertex and substituting the “missing parts” into the labelled vertices of this subgraph).

Let us show now that we have a right module isomorphism

∂(PreLie) ∼= (uAss ⊗ uCom) ◦ PreLie.

For that, we shall use the same embedding of Schur functors

uAss ⊗ uCom ↪→ ∂(PreLie)

as in the proof of Lemma 2. This embedding leads to a map

(uAss ⊗ uCom) ◦ PreLie ↪→ ∂(PreLie) ◦ PreLie → ∂(PreLie),

where the second map is simply the right action of PreLie. Our goal is to establish that this
composite map
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α : (uAss ⊗ uCom) ◦ PreLie → ∂(PreLie)

is an isomorphism. According to Lemma 2, we have an equality of the exponential
generating functions of dimensions of components

f∂(NAP)(t) = fuAss⊗uCom(fNAP(t)),

which, of course means that

f∂(PreLie)(t) = fuAss⊗uCom(fPreLie(t)),

since the operads NAP and PreLie have the same underlying Schur functor, and so do the
corresponding right modules ∂(NAP) and ∂(PreLie). Since all Schur functors in this formula
have finite-dimensional components, we only need to prove that the map α is surjective: a
surjective map of finite-dimensional vector spaces of the same dimension is an isomorphism.

Recall that one may view NAP as a degeneration of the operad PreLie in the following
way [10]. If we consider, for each rooted tree, the partial order on its set of vertices induced
by it, then for any i ∈ I, and for any trees T ∈ RT(I) and S ∈ RT(J), the composition T ◦i S
in the operad PreLie is the sum of all trees whose partial order on I ◦i J refines the order
obtained from the orders on I and on J by identification of the root vertex of S with i and
whose restrictions to I and to J coincide with the partial orders prescribed by S and by T
respectively.

Let us show that the map α is surjective. Elements of ∂(PreLie) are linear combinations of
rooted trees with one unlabelled vertex, and we shall now use the degeneration from PreLie
to NAP. Note that the set of all partial orders on a finite set I is finite, so if we partially order
that set by refinement, it is a partial well order, and so we may use Noetherian induction. For
every rooted tree T ∈ ∂(PreLie)(I), Lemma 2 guarantees us that T can be written as a result
of substitutions of rooted trees in vertices of a rooted tree of uAss ⊗ uCom, if we compute
those substitutions in the operad NAP. If we compute the same substitutions in the operad
PreLie instead, the result will differ from T by a linear combination of trees for which the
induced partial order on I refines the partial order given by T . By induction hypothesis, we
may assume that all those trees are in the image of the map α, which completes the proof of
surjectivity.

It remains to notice that

UPreLie(L) ∼= ∂(PreLie) ◦PreLie L
∼= ((uAss ⊗ uCom) ◦ PreLie) ◦PreLie L ∼= (uAss ⊗ uCom) ◦ L ∼= T(L) ⊗ S(L),

the isomorphism being natural in L, as required.
Let us remark that there is one interesting question about universal multiplicative envelop-

ing algebras of pre-Lie algebras that still awaits a clear answer. It follows from the results
of the first author and Umirbaev [13] that for a free pre-Lie algebra L, the associative alge-
bra UPreLie(L) is free. In the language of species, the twisted associative algebra ∂(PreLie)
is free, and one may wish to describe its species of generators. It is easy to show that the
corresponding species is not obtained as the linearisation of a species of finite sets, so the
answer is of more intricate nature than those found in the present paper.
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4·2. The module of Kähler differentials of a pre-Lie algebra

The result of this section is a strengthening of the PBW theorem for modules of Kähler
differentials of pre-Lie algebras [24, corollary 4].

THEOREM 3. Let L be a pre-Lie algebra. There is a vector space isomorphism

�1
PreLie(L) ∼= T(L),

where T(L) is the augmentation ideal of the tensor algebra. Moreover, these isomorphisms
can be chosen in a way that is natural with respect to pre-Lie algebra morphisms.

Proof. Let us start by recalling the Sn-module isomorphism [17, section 10·3]

�1
P (n) ∼= (∂(P)(n − 1)) ⊗kSn−1 kSn

expressing the fact that elements of both ∂(P) and �1
P have one special vertex, � in the

former case and the vertex where d is applied in the latter case, and the only difference
is that in the latter case we may act by Sn on all vertices including the special one. In the
case of the operads PreLie and NAP, this property allows one to view the Schur functor
of the corresponding modules of Kähler differentials as the linearisation of the species of
vertebrates [20], which encodes labelled trees with two special vertices, the head and the tail.
Indeed, the induction from Sn−1 to Sn can be viewed as allowing the previously unlabelled
vertex of a tree from ∂(RT) to have a label, and we declare the root of the tree to be the head
of the vertebrate, and the previously unlabelled vertex to be the tail.

As in Theorem 2, we shall first establish an appropriate freeness result for the operad
NAP.

LEMMA 3. The right NAP-module �1
NAP is free; specifically, we have a right module

isomorphism

�1
NAP

∼= Ass ◦ NAP.

Proof. Let us consider, for each vertebrate from�1
NAP, its vertebral column, defined as the

unique path from the head to the tail. Note that the species of vertebral columns is the same as
the species of nonempty linear orders, whose linearisation is the underlying Schur functor of
the operad Ass. We shall show that the latter Schur functor freely generates �1

NAP as a right
NAP-module. By definition of the module of Kähler differentials, operadic compositions
at all vertices except for the tail of the vertebral column are the NAP-compositions, and
the operadic composition at the tail is slightly more complicated. Specifically, that latter
composition corresponds to performing the operadic composition, and then summing up
all possible ways to insert d at the vertices of the inserted tree. In other words, if T1 is a
vertebrate, T2 is a rooted tree, and t is the tail of T1, one computes the right NAP-action
T1 ◦t T2 by composing T1 and T2 in the operad NAP and then summing up all ways to make
that rooted tree into a vertebrate by choosing a vertex coming from T2.

We may consider the decreasing filtration of the module �1
NAP by the length of the verte-

bral column: Fp�1
NAP consists of vertebrates with the vertebral column of length at least p.

We have just seen that the right module action has the terms where the length of the vertebral
column is unchanged and some terms where it increases. The associated graded module is
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manifestly isomorphic to Ass ◦ NAP: each vertebrate is obtained from Ass by the right NAP-
module action in the unique way (by considering the vertebral column and substituting the
“missing parts” into the its vertices). We shall now use Lemma 1. For that, we notice that
the filtration of the right module �1

NAP induces a filtration of the complex �1
NAP ◦κ NAP ¡

for which vanishing of homology in positive degrees is equivalent to freeness (since the
operad NAP is well known to be Koszul). For each n, the complex �1

NAP ◦κ NAP ¡(n) is
finite-dimensional, therefore the spectral sequence associated to the filtration converges to
the homology of this complex. Since the associated graded module is free, the homology of
the first page of the spectral sequence is concentrated in degree zero, so the same is true for
the complex �1

NAP ◦κ NAP ¡, meaning that the right NAP-module �1
NAP is free.

To prove that there is a right module isomorphism

�1
PreLie

∼= Ass ◦ PreLie,

we shall use an argument similar to that of Theorem 2. Specifically, we shall use the same
embedding of Schur functors Ass ↪→�1

PreLie as in the proof of Lemma 3. This embedding
leads to a map

Ass ◦ PreLie ↪→�1
PreLie ◦ PreLie →�1

PreLie,

where the second map is simply the right action of PreLie. Our goal is to establish that this
composite map

β : Ass ◦ PreLie →�1
PreLie

is an isomorphism. According to Lemma 3, we have an equality of the exponential
generating functions of dimensions of components

f�1
NAP

(t) = fAss(fNAP(t)),

which, of course means that

f�1
PreLie

(t) = fAss(fPreLie(t)),

since the operads NAP and PreLie have the same underlying Schur functor, and so do the
corresponding right modules �1

NAP and �1
PreLie. Since all Schur functors in this formula

have finite-dimensional components, we only need to prove that the map β is surjective: a
surjective map of finite-dimensional vector spaces of the same dimension is an isomorphism.

Let us show that the map β is surjective. In the case of vertebrates, we now have a special
substitution into the tail vertex, where the operation d is applied. However, this does not
change much: if t is the tail of our vertebrate T , insertion T ◦t S of a rooted tree S into that
vertex means that we should apply d, amounting to replacing S by the sum over all vertices
v of S of copies Sv of S where the vertex v is declared to be the new tail, and then computing
the composition T ◦t Sv in the operad PreLie. This allows us to argue by Noetherian induc-
tion again. Specifically, for every vertebrate T ∈�1

PreLie(I), Lemma 3 guarantees us that T
can be written as a linear combination of substitutions of rooted trees in vertices of a verte-
bral column from Ass, if we compute those substitutions in the operad NAP. Moreover, the
compositions computed in the operad NAP do not change the underlying tree of the verte-
brate, so we may assume that our expression for T is a linear combination of elements with
the same underlying tree. If we compute the same substitutions in the operad PreLie instead,
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the result will differ from T by a linear combination of trees for which the induced partial
order on I refines the partial order given by T . By induction hypothesis, we may assume that
all those trees are in the image of the map β, which completes the proof of surjectivity.

Finally, we notice that

�1
PreLie(L) ∼=�1

PreLie ◦PreLie L ∼= (Ass ◦ PreLie) ◦PreLie L ∼= Ass ◦ L ∼= T(L),

the isomorphism being natural in L, as required.

4·3. Application to pre-Lie algebra cohomology

Let us discuss the meaning of our results in the context of computing cohomology of pre-
Lie algebras with coefficients in their modules. We believe that the first explicit definition
of cohomology of an algebra L over a Koszul operad P generated by binary operations
with coefficients in a module E was given in papers of Kimura and Voronov [23] and Fox
and Markl [16] (their definition works for any quadratic operad, but is meaningful from the
homotopy theory point of view only in the Koszul case). This cohomology theory was further
studied by Balavoine [1] who in particular gave a more concrete formula for the differential.
In modern terms, this cohomology of a P-algebra L with coefficients in a module E is
computed by a complex

C•
P (L, E) := (Hom(P ¡ ◦ L, E), d),

where the differential d is defined by including that complex in a bigger complex, the
operadic deformation complex of the square-free extension algebra L ⊕ E. In particular, this
may be applied to the Koszul operad PreLie for which PreLie ¡ ◦ L ∼= L ⊗ Com∗(sL).

Another definition, this time specific to the case of pre-Lie algebras, is the ad hoc def-
inition of cohomology proposed by Dzhumadildaev [15]. According to that definition, the
cohomology is computed using a particular cochain complex constructed by hand; it is given
by Hom(L ⊗�(L), E) in positive cohomological degrees and a certain space constructed by
hand in cohomological degree zero. Here�(L) is the Grassmann algebra of L, whose under-
lying vector space is naturally identified with Com∗(sL), so up to a degree shift by one, the
main part of this cochain complex matches that of Balavoine (and the differentials match
as well). In [15], this cohomology is referred to as a derived functor in the category of
UPreLie(L)-modules, though this assertion is never proved (and is unlikely, given that the
“derived functor” calculation does not seem to use projective resolutions).

In general, contrary to the intuition coming from studying cohomology of Lie algebras
and of associative algebras, cohomology of algebras over operads is not always given by the
Ext-functor over the universal multiplicative enveloping algebra. We shall now show that it
is true in the case of pre-Lie algebras.

COROLLARY 3. For every pre-Lie algebra L and every L-module E, we have

H•
PreLie(L, E) ∼= Ext•UPreLie(L)(�

1
PreLie(L), E).

Proof. We shall apply the general result of Fresse [17, theorem 17·3·4] that gives a
criterion for the isomorphism

H•
P (L, E) ∼= Ext•UP (L)(�

1
P (L), E)
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to hold. This criterion requires that the operad P is �∗-cofibrant (which is automatic over a
field of zero characteristic) and that ∂(P) and �1

P are cofibrant as right P-modules (which
is true for free right modules over an operad with zero differential). Since in the proof of
Theorem 2 we established that ∂(PreLie) is a free right PreLie-module and in the proof of
Theorem 3 we established that �1

PreLie is a free right PreLie-module, the result follows.
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