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Abstract

We address the problem of compiling defeasible theories to Datalog¬ programs. We prove the
correctness of this compilation, for the defeasible logic DL(∂||), but the techniques we use apply
to many other defeasible logics. Structural properties of DL(∂||) are identified that support effi-
cient implementation and/or approximation of the conclusions of defeasible theories in the logic,
compared with other defeasible logics. We also use previously well-studied structural properties
of logic programs to adapt to incomplete Datalog¬ implementations.

KEYWORDS: defeasible logic, program transformation, well-founded semantics, meta-
programming

1 Introduction

A problem faced by defeasible logics – among other logical languages – is that changing

hardware and software architectures are not reflected in implementations. Hardware ar-

chitectures can range from the use of GPUs and other hardware accelerators, through

multicore multithreaded architectures, to shared-nothing cloud computing. Causes for

failure to exploit these architectures include lack of expertise in the architectural fea-

tures, lack of manpower more generally, and difficulty in updating legacy systems. Such

problems can be ameliorated by mapping a logic to logic programming as an intermediate

language.

This is a common strategy in the implementation of defeasible logics. The first imple-

mentation of a defeasible logic, d-Prolog, was implemented as a Prolog meta-interpreter

(Covington et al . 1997). Courteous Logic Programs (Grosof 1997) and its successors

LPDA (Wan et al . 2009), Rulelog (Grosof and Kifer 2013), Flora2 (Kifer et al . 2018),

are implemented in XSB (Swift and Warren 2012).1 The advantages of this approach are

that: (1) the target language is a high-level language with many features of the logic to

be implemented; (2) the problem of optimizing the implementation to take advantage of

the architecture of the underlying hardware is delegated to the implementation of logic

programming; (3) flexibility and portability are consequently enhanced, since there are

1 Not all implementations of defeasible logics use this approach. Delores (Maher et al . 2001) and SPINdle
(Lam and Governatori 2009) are implemented in imperative languages, Phobos (Billington and Rock
2001) and Deimos (Antoniou et al . 2000) are implemented in Haskell, while DR-DEVICE (Bassiliades
et al . 2006) and Situated Courteous Logic Programs (Gandhe et al . 2002) are built on rule systems.
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multiple implementations of logic programming, based on differing architectures; and (4)

the design and optimization of a specific logic can proceed at a higher level of abstraction.

In this paper, we address a defeasible logic designed for large scale reasoning (Maher

et al . 2020) and the compilation of function-free defeasible theories into logic program-

ming – more specifically, Datalog¬ under the well-founded semantics (Van Gelder et al .

1991). There is a multitude of implementations of variations of Datalog, coming from

different motivations, not all suitable for implementing a defeasible logic, and not all

supporting traditional syntax. In addition to implementations developed in the database

(Bishop and Fischer 2008; Wu et al . 2014; Wang et al . 2015; Aref et al . 2015; Brass

and Stephan 2017; Condie et al . 2018; Fan et al . 2019; Alvaro et al . 2010; Cognitect;

Marz 2013) and logic programming (Swift and Warren 2012; Costa et al . 2012; Cat et al .

2018; Gebser et al . 2019; Adrian et al . 2018; Nguyen et al . 2018; Wenzel and Brass 2019;

Martinez-Angeles et al . 2013; Tachmazidis et al . 2014; Tachmazidis et al . 2014) com-

munities, implementations have been developed to service the programming language

analysis (Jordan et al . 2016; Madsen et al . 2016; Avgustinov et al . 2016; Hoder et al .

2011; Whaley et al . 2005; Bembenek et al . 2020; Madsen and Lhoták 2020), graph pro-

cessing (Seo et al . 2015; Wang et al . 2017; Aberger et al . 2017), and artificial intelligence

(Eisner and Filardo 2010; Filardo 2017; Bellomarini et al . 2018; Carral et al . 2019; Chin

et al . 2015) communities. These implementations address a wide range of architectures,

and many provide extension beyond traditional Datalog.

However, the number of currently available implementations that provide complete

support for the well-founded semantics of Datalog¬ is quite few. This leads us to use

structural properties of the compiled program to establish when an incomplete imple-

mentation of Datalog¬ can be used to provide a complete implementation of a defeasible

theory for the defeasible logic. Specifically, we establish how properties of the initial de-

feasible theory and properties of the defeasible logic are reflected in the compiled program

and combine to support complete execution of the compiled program using incomplete

implementations of Datalog¬ (with respect to the well-founded semantics). We also iden-

tify methods to obtain sound approximations to the conclusions of the defeasible theory

using sound but incomplete Datalog¬ implementations.

The compilation builds on existing work. We represent the scalable defeasible logic as

a metaprogram, in the style of Antoniou et al . (2000). We then use a series of unfold

and fold transformations (Tamaki and Sato 1984) to convert the metaprogram, applied

to the defeasible theory, to a specialized logic program. The result is encapsulated as a

mapping from defeasible theories to Datalog¬ programs, which is established as correct

as a consequence of the correctness of the individual transformations. The size of the

resulting program is linear in the size of the defeasible theory.

The remainder of the paper is structured as follows. Sections 2 and 3 introduce the

necessary concepts from logic programming and defeasible reasoning. Section 4 defines

the defeasible logic DL(∂||) (Maher et al . 2020), while Section 5 defines the corresponding

metaprogram and establishes some of its properties. Section 6 compiles the metaprogram

to a simpler form using fold/unfold transformations, while Section 7 establishes the cor-

rectness of the metaprogram with respect to the original, proof-theoretic definition of

DL(∂||). Structural properties of the compiled program are established in Section 8. Sec-

tion 9 then identifies how these properties can be used to establish the correctness of

implementations and approximations using incomplete Datalog¬ systems.
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2 Logic programming

We introduce the elements of logic programming that we will need. The first part defines

notation and terminology for syntactic aspects of logic programs, including dependency

relations. The second part defines the semantics of logic programs we will use.

2.1 Syntax and structure of logic programs

Let Π be a set of predicate symbols, Σ be a set of function symbols, and V be a set of

variables. Each symbol has an associated arity greater or equal to 0. A function symbol

of arity 0 is called a constant, while a predicate of arity 0 is called a proposition. The

terms are constructed inductively in the usual way: any variable or constant is a term; if

f ∈ Σ has arity n and t1, . . . , tn are terms then f(t1, . . . , tn) is a term; all terms can be

constructed in this way. An atom is constructed by applying a predicate p ∈ Π of arity

n to n terms. A literal is either an atom or a negated atom not A, where A is an atom.

A logic program is a collection of clauses of the form

A :- B1, . . . , Bm, not C1, . . . , not Cn,

where A,B1, . . . , Bm, C1, . . . , Cn are atoms (m ≥ 0, n ≥ 0). The positive literals and the

negative literals are grouped separately purely for notational convenience. A is called the

head of the clause and the remaining literals form the body. The set of all clauses with

predicate symbol p in the head are said to be the clauses defining p. We use ground as a

synonym for variable-free. The set of all variable-free instances of clauses in a logic pro-

gram P is denoted by ground(P ). ground(P ) can be considered a propositional logic pro-

gram, but it is generally infinite. For the semantics we are interested in, P and ground(P )

are equivalent with respect to inference of ground literals.

A logic program P is range-restricted if every variable in the head of a clause also

appears in a positive body literal. P is negation-safe if, for every clause, every variable in a

negative body literal also appears in a positive body literal. P is safe (or allowed) if every

variable in a clause also appears in a positive body literal of that clause. Equivalently, P

is safe if it is range-restricted and negation-safe. Safety is a property that ensures domain

independence (Abiteboul et al . 1995), but also it can simplify the execution of a logic

program. Range-restriction guarantees that all inferred atoms are ground; data structures

and algorithms do not need to address general atoms. Safety ensures, in addition, that if

negative literals are evaluated only after the positive part of the clause then, again, only

ground atoms must be treated. These points apply to both top-down and bottom-up

execution.

A Datalog¬ program is a logic program where the only terms are constants and

variables.

We present some notions of dependence among predicates that are derived purely from

the syntactic structure of a logic program P . We follow the definitions and notation of

Kunen (1989). p, q and r range over predicates. We define p �+1 q if p appears in the

head of a rule and q is the predicate of a positive literal in the body of that rule. p �−1 q

if p appears in the head of a rule and q is the predicate of a negative literal in the body

of that rule.

p � q iff p �+1 q or p �−1 q. We say p directly depends on q. ≥ is the transitive closure

of �. If p ≥ q we say p depends on q. p ≈ q iff p ≥ q and q ≥ p, expressing that p and q are
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mutually recursive. p > q iff p ≥ q and not q ≥ p. If, for all p in P , q ≥ p, then we say q

is a ≥-largest predicate. ≥+1 and ≥−1 are defined inductively as the least relations such

that p ≥+1 p, and p �i q and q ≥j r implies p ≥i·j r, where i · j denotes multiplication

of i and j. Essentially ≥+1 denotes a relation of dependence through an even number

of negations and ≥−1 denotes dependence through an odd number of negations. As is

usual, we will write p ≤ q when q ≥ p, and similarly for the other relations. ≥0 denotes

the transitive closure of �+1 .

A program P is stratified if for no predicates p and q in Π does p ≈ q and p ≥−1 q.

Let a predicate-consistent mapping be a function that maps atoms to the non-negative

integers such that, for every predicate, all atoms involving that predicate are mapped

to the same value. Then, alternatively, P is stratified if there is a predicate-consistent

mapping m that, for every clause like the one above, m(A) ≥ m(Bi), for 1 ≤ i ≤ n and

m(A) > m(Cj), for 1 ≤ j ≤ m. The ith stratum Pi is the set of clauses in P with head

predicate p such that m(p) = i. P is call-consistent if, for no predicate p, does p ≥−1 p;

that is no predicate depends negatively on itself. Clearly, any stratified program is call-

consistent. P is hierarchical if for no predicates p and q, does p � q and q ≥ p, that

is, no predicate symbol depends on itself. Equivalently, P is hierarchical if there is a

predicate-consistent mapping m that, for every clause like the one above, m(A) > m(Bi)

and m(A) > m(Cj). Every hierarchical program is stratified.

A set P ⊆ Π of predicates in a program P is downward-closed if whenever p ∈ P and

q ≤ p then q ∈ P. P is downward-closed with floor F if F ⊂ P and both P and F are

downward-closed. A signing for P and P is a function s that maps Π to {−1,+1} such

that, for p, q ∈ P, p ≤i q implies s(p) = s(q)·i. A signing is extended to atoms by defining

s(p(�a)) = s(p). For any signing s for a set of predicates P, there is an inverted signing

s̄ defined by s̄(p) = −s(p). s and s̄ are equivalent in the sense that they divide P into

the same two sets. Obviously, ¯̄s = s. A program P is said to be strict if no predicate p

depends both positively and negatively on a predicate q, that is, we never have p ≥+1 q

and p ≥−1 q. Let all the predicates of P be contained in P. If P has a signing then P is

strict; if P has a ≥-largest predicate and P is strict, then P has a signing (Kunen 1989).

A similar set of dependencies over ground atoms can be defined by applying these

definitions to ground(P ).

Given a program P , an infinite sequence of atoms {qi(�ai)} is unfounded wrt a set of

predicates Q if, for every i, qi �+1 qi+1 and qi ∈ Q. We say a predicate p avoids negative

unfoundedness wrt a signing s on Q if for every negatively signed predicate q on which

p depends, no q-atom starts an unfounded sequence wrt Q.

2.2 Semantics of logic programs

We define the semantics of interest in this paper and identify important relationships

between them.

A 3-valued Herbrand interpretation is a mapping from ground atoms to one of three

truth values: true, false, and unknown. This mapping can be extended to all formulas

using Kleene’s 3-valued logic.

Kleene’s truth tables can be summarized as follows. If φ is a boolean combination of

the atoms true, false, and unknown, its truth value is true iff all the possible ways of

putting in true or false for the various occurrences of unknown lead to a value true
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being computed in ordinary 2-valued logic: φ gets the value false iff ¬φ gets the value

true, and φ gets the value unknown otherwise. These truth values can be extended in

the obvious way to predicate logic, thinking of the quantifiers as infinite disjunction or

conjunction.

Equivalently, a 3-valued Herbrand interpretation I can be represented as the set of

literals {a | I(a) = true} ∪ {not a | I(a) = false}. This representation is used in

the following definitions. The interpretations are ordered by the subset ordering on this

representation.

Some semantics are defined in terms of fixedpoints of monotonic functions over a partial

order. A function F is monotonic if x ≤ y implies F (x) ≤ F (y). A fixedpoint of F is a

value a such that F (a) = a. When F is monotonic on a complete semi-lattice there is

a least (under the ≤ ordering) fixedpoint. We use lfp(F ) to denote the least fixedpoint

of F . When a is an element of the partial order, lfp(F, a) denotes the least fixedpoint

greater than (or equal to) a.

Fitting (1985) defined a semantics for a logic program P in terms of a function ΦP

mapping 3-valued interpretations, which we define as follows.

ΦP (I) = Φ+
P(I) ∪ ¬ Φ−

P(I)
Φ+

P (I) = {a | there is a rule a :- B in ground(P ) where I(B) = true}
Φ−

P (I) = {a | for every rule a :- B in ground(P ) with head a, I(B) = false}
where ¬S denotes the set {not s | s ∈ S}.

Fitting’s semantics associates with P the least fixedpoint of ΦP , lfp(ΦP ). This is the

least 3-valued Herbrand model of the Clark completion P ∗ of P . Thus, the conclusions

justified under this semantics are those formulas that evaluate to true under all 3-valued

Herbrand models of P ∗. Kunen (1987) defined a semantics that justifies as conclusions

those formulas that evaluate to true under all 3-valued models (Herbrand or not) of P ∗.
He showed that these are exactly the formulas that are consequences of ΦP ↑ n for some

finite n.2 When P is a finite Datalog¬ program the two semantics coincide. However, in

general, when function symbols are permitted, Kunen’s semantics is computable, while

other semantics, like Fittting’s semantics, the stratified semantics, and the well-founded

semantics, are not.

The stratified semantics (or iterated fixedpoint semantics) (Apt et al . 1988) applies

only when P is stratified. It is defined in stages, by building up partial models, based on

the strata, until a full model is constructed. Each stratum contains essentially a definite

clause program, given that all negations refer to lower strata, which have already been

defined in the current partial model. Let m be a mapping describing a stratification.

Initially the partial model leaves all predicates undefined, and at each stratum, in turn,

it is extended to define all the predicates defined in that stratum. On each stratum i,

the predicates on lower strata have been defined and, because P is stratified, there is a

least partial model extending the current partial model that defines the predicates. This

model is then used as the basis for the next stratum. For a more precise description,

2 ↑ is defined inductively: ΦP ↑ 0 = Iunknown, where Iunknown is the interpretation that assigns
each atom the value unknown, and ΦP ↑ (k + 1) = ΦP (ΦP ↑ k). For limit ordinals α, ΦP ↑ α =⋃

β<α ΦP ↑ β. The (possibly transfinite) sequence ΦP ↑ 0,ΦP ↑ 1, . . . is called the Kleene sequence

for ΦP .
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see the papers (Apt et al . 1988; Apt and Bol 1994). The stratified semantics extends

Fitting’s semantics, when the program is stratified.

The well-founded semantics (Van Gelder et al . 1991) extends Fitting’s semantics by,

roughly, considering atoms to be false if they are supported only by a “loop” of atoms.

This is based on the notion of unfounded sets.

Given a logic program P and a 3-valued interpretation I, a set A of ground atoms is

an unfounded set with respect to I iff each atom a ∈ A satisfies the following condition:

For each rule r of ground(P ) whose head is a, (at least) one of the following holds:

1. Some literal in the body evaluates to false in I.

2. Some atom in the body occurs in A

The greatest unfounded set of P with respect to I (denoted UP (I)) is the union of

all the unfounded sets with respect to I. Notice that, if we ignore the second part of

the definition of unfounded set wrt I, the definition of unfounded set is the same as the

expression inside the definition of Φ−
P (I). It follows that Φ

−
P (I) ⊆ UP (I), for every I.

The function WP (I) is defined by WP = Φ+
P (I) ∪ ¬ UP (I). The well-founded seman-

tics of a program P is represented by the least fixedpoint of WP . This is a 3-valued

Herbrand model of P ∗. Because Φ−
P (I) ⊆ UP (I), for every I, we have ΦP (I) ⊆ WP (I),

for every I and hence lfp(ΦP ) ⊆ lfp(WP ). That is, Fitting’s semantics is weaker than the

well-founded semantics. If P is stratified then the well-founded semantics is a 2-valued

Herbrand model of P ∗ and equal to the stratified semantics.

Often, as in this paper, we are mainly interested in the positive literals of predicate(s) p

that are consequences of the program, rather than the negative literals of p or the literals

of other predicates. In such cases, we can avoid computing parts of the well-founded

model (Maher 2021). In particular, given a signing s in which s(p) = +1, the positive

literals of p depend on only the positive literals of predicates with a positive sign, and

the negative literals of predicates with a negative sign. Let WF+s denote the semantics

{q | s(q) = +1, q ∈ lfp(WP )} ∪ {not q | s(q) = −1, not q ∈ lfp(WP )} which computes

only such parts of the well-founded model. This can be computed as the least fixedpoint

of a function UUs
P (Maher 2021).

For a ground literal q, we define:

• P |=WF q iff q ∈ lfp(WP )

• P |=F q iff q ∈ lfp(ΦP )

• P |=WF+s q iff q ∈ lfp(UUs
P )

It follows from the discussion above that P |=F q implies P |=WF q, and P |=WF+s q

implies P |=WF q, for every program P and ground literal q.

Let I be a 3-valued Herbrand interpretation of predicates in a set F and let X be a

semantics based on Herbrand models. Then |=I
X denotes consequence in the semantics

X after all predicates in F are interpreted according to I. Such a notion is interesting, in

general, because some predicates might be defined outside the logic programming setting,

or in a different module.

We now summarize two results from the paper (Maher 2021) in the following theorem.

In the first part we see that only the positive or only the negative conclusions for each

predicate need to be computed. The second part establishes conditions under which the
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well-founded semantics and Fitting semantics agree on the truth value of some ground

literals (even if they may disagree on other literals).

Theorem 1 (Maher 2021)

Let P be a logic program, P ⊆ Π be a downward-closed set of predicates with floor F ,

let Q be P\F , and s be a signing for Q. Let I be a fixed semantics for F and p ∈ Q.

1. For any ground atom p(�a):

If s(p) = +1 then P |=I
WF p(�a) iff P |=I

WF+s p(�a)

If s(p) = −1 then P |=I
WF not p(�a) iff P |=I

WF+s not p(�a)

2. Suppose, additionally, that p avoids negative unfoundedness wrt s.

For any ground atom p(�a):

If s(p) = +1 then P |=I
WF p(�a) iff P |=I

F p(�a)

If s(p) = −1 then P |=I
WF not p(�a) iff P |=I

F not p(�a)

3 Defeasible logics

A defeasible theory D is a triple (F,R,>) where F is a finite set of facts (literals), R a

finite set of labelled rules, and > a superiority relation (a binary acyclic relation) on R

(expressed on the labels), specifying when one rule overrides another, given that both

are applicable.

A rule r consists (a) of its antecedent (or body) A(r) which is a finite set of literals,

(b) an arrow, and, (c) its consequent (or head) C(r) which is a literal. Rules also have

distinct labels which are used to refer to the rule in the superiority relation. There are

three types of rules: strict rules, defeasible rules and defeaters represented by a respective

arrow →, ⇒ and �. Strict rules are rules in the classical sense: whenever the premises

are indisputable (e.g., facts) then so is the conclusion. Defeasible rules are rules that

can be defeated by contrary evidence. Defeaters are rules that cannot be used to draw

any conclusions; their only use is to provide contrary evidence that may prevent some

conclusions. We use ↪→ to range over the different kinds of arrows used in a defeasible

theory. Given a set R of rules, we denote the set of all strict rules in R by Rs, and

the set of strict and defeasible rules in R by Rsd. R[q] denotes the set of rules in R

with consequent q. A literal is a possibly negated (using ¬) predicate symbol applied to

a sequence of variables and constants. If q is a literal, ∼q denotes the complementary

literal (if q is a positive literal p then ∼q is ¬p; and if q is ¬p, then ∼q is p).

We will focus on defeasible theories such that any variable in the head of a rule also

occurs in the body, and that every fact is variable-free, a property we call range-restricted

in analogy to the same property in logic programs. When no rule or fact contains a func-

tion symbol, except for constants, we say the defeasible theory is function-free. Given a

fixed finite set of constants in a function-free defeasible theory, any rule is equivalent to

a finite set of variable-free rules, and any defeasible theory D is equivalent to a variable-

free defeasible theory ground(D), for the purpose of semantical analysis. We refer to

variable-free defeasible theories, etc. as propositional, since there is only a syntactic dif-

ference between such theories and true propositional defeasible theories. Consequently,

we will formulate definitions and semantical analysis in propositional terms. However,

for computational analyses and implementation we will also address defeasible theories

that are not propositional.
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A defeasible theory is hierarchical (or acyclic or stratified) if there is a predicate-

consistent mapping m which maps atoms to the non-negative integers such that, for

every rule, the head is mapped to a greater value than any body atom. That is, there is

no recursion in the rules of the defeasible theory, not even through a literal’s complement.

A defeasible theory D is locally hierarchical if ground(D) is hierarchical, where we treat

each variable-free atom as a proposition/0-ary predicate symbol.

Example 2

To demonstrate defeasible theories, we consider the familiar Tweety problem and its

representation as a defeasible theory. The defeasible theory D consists of the rules and

facts

r1 : bird(X) ⇒ fly(X)

r2 : penguin(X) ⇒ ¬fly(X)

r3 : penguin(X) → bird(X)

r4 : injured(X) � ¬fly(X)

f : penguin(tweety)

g : bird(freddie)

h : injured(freddie)

and a priority relation r2 > r1.

Here r1, r2, r3, r4, f, g, h are labels and r3 is (a reference to) a strict rule, while r1 and r2
are defeasible rules, r4 is a defeater, and f, g, h are facts. Thus F = {f, g, h}, Rs = {r3},
Rsd = {r1, r2, r3} and R = {r1, r2, r3, r4} and > consists of the single tuple (r2, r1). The

rules express that birds usually fly (r1), penguins usually dont fly (r2), that all penguins

are birds (r3), and that an injured animal may not be able to fly (r4). In addition, the

priority of r2 over r1 expresses that when something is both a bird and a penguin (that

is, when both rules can fire) it usually cannot fly (that is, only r2 may fire, it overrules

r1). Finally, we are given the facts that tweety is a penguin, and freddie is an injured

bird.

This defeasible theory is hierarchical. One function that demonstrates this maps injured

and penguin to 0, bird to 1, and fly to 2.

A conclusion takes the forms +dq or −dq, where q is a literal and d is a tag indicating

which inference rules were used. Given a defeasible theory D, +d q expresses that q can

be proved via inference rule d from D, while −d q expresses that it can be established

that q cannot be proved from D.

For example, in the paper by Antoniou et al . (2001), a defeasible logic, now called

DL(∂), is defined with the following inference rules, phrased as conditions on proofs3

+Δ) If P (i+ 1) = +Δq then either

(1) q ∈ F ; or

(2) ∃r ∈ Rs[q] ∀a ∈ A(r),+Δa ∈ P [1..i].

−Δ) If P (i+ 1) = −Δq then

(1) q /∈ F , and

(2) ∀r∈Rs[q] ∃a∈A(r),−Δa ∈ P [1..i].

These two inference rules concern reasoning about definitive information, involving

only strict rules and facts. They define conventional monotonic inference (+Δ) and prov-

able inability to prove from strict rules and facts (−Δ). For example, +Δ says that +Δq

3 Here, D is a defeasible theory (F,R,>), q is a variable-free literal, P denotes a proof (a sequence
of conclusions constructed by the inference rules), P [1..i] denotes the first i elements of P , and P (i)
denotes the ith element of P .
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can be added to a proof P at position i+ 1 only if q ∈ F or there is a strict rule r with

head q where each literal a in the antecedent A(r) has been proved (+Δa) earlier in the

proof (P [1..i]).

The next inference rules refer to defeasible reasoning.

+∂) If P (i+ 1) = +∂q then either

(1) +Δq ∈ P [1..i]; or

(2) The following three conditions all hold.

(2.1) ∃r ∈ Rsd[q] ∀a ∈ A(r),

+∂a ∈ P [1..i], and

(2.2) −Δ∼q ∈ P [1..i], and

(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃a ∈ A(s),−∂a ∈ P [1..i]; or

(2.3.2) ∃t ∈ Rsd[q] such that

∀a ∈ A(t),+∂a ∈ P [1..i], and

t > s.

−∂) If P (i+ 1) = −∂q then

(1) −Δq ∈ P [1..i], and

(2) either

(2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r),

−∂a ∈ P [1..i]; or

(2.2) +Δ∼q ∈ P [1..i]; or

(2.3) ∃s ∈ R[∼q] such that

(2.3.1)∀a∈A(s),+∂a∈P [1..i],

and

(2.3.2) ∀t ∈ Rsd[q] either

∃a ∈ A(t),−∂a ∈ P [1..i];

or

not(t > s).

+∂q is a consequence of a defeasible theory D if there is a proof containing +∂q.

In the +∂ inference rule, (1) ensures that any monotonic consequence is also a defea-

sible consequence. (2) allows the application of a rule (2.1) with head q, provided that

monotonic inference provably cannot prove ∼q (2.2) and every competing rule either

provably fails to apply (2.3.1) or is overridden by an applicable rule for q (2.3.2). The −∂

inference rule is the strong negation (Antoniou et al . 2000) of the +∂ inference rule. For

other properties of this and other defeasible logics, the reader is referred to the paper by

Billington et al . (2010).

Example 3

The above inference rules make several inferences from the Tweety defeasible theory in

Example 2.

The +Δ inference rule infers +Δ penguin(tweety), +Δ bird(freddie),

+Δ injured(freddie) from the facts, and +Δ bird(tweety) using r3. Such inferences

are definite conclusions from the theory. The −Δ inference rule infers, among others

−Δ penguin(freddie), −Δ injured(tweety), −Δ ¬injured(tweety), and −Δ ¬bird(tweety),
indicating that the theory is provably unable to come to a definite conclusion about

these statements, because there is no rule (and no fact) for these literals. It also infers

−Δfly(freddie), −Δ¬fly(freddie), −Δfly(tweety), and −Δ¬fly(tweety) because there is
no strict rule for fly or ¬fly and consequently (2) of the −Δ inference rule is vacuously

true.

The +∂ inference rule infers +∂ penguin(tweety), +∂ bird(freddie), and

+∂ injured(freddie), and +∂ bird(tweety) because these statements are known def-

initely. It also concludes +∂ ¬fly(tweety) using rule r2 in (2.1), the previous conclusion

−Δ fly(tweety) in (2.2), and, despite the presence of r1 as s in (2.3), using r2 as t in

(2.3.2) with the priority statement r2 > r1 to overrule r1. It is unable to similarly

conclude +∂ fly(freddie), because of the presence of r3 and the lack of a priority

statement to overrule it.

The −∂ inference rule infers, among others, −∂penguin(freddie) and −∂injured(tweety)

because these statements are known unprovable definitely (1), and (2.1) is satisfied
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vacuously because there is no rule for these predicates. It also infers −∂ fly(freddie),

−∂ ¬fly(freddie), and −∂ fly(tweety).

For clarity, we refer to elements of defeasible theories as rules, and elements of logic

programs as clauses. Also, note the distinction between rules (syntactic elements of a

defeasible theory) and inference rules (criteria for extending proofs). Logic programming

predicates will be written in teletype font, while defeasible logic predicates will be

written in italics . We use not or alternatively not for negation-as-failure in logic pro-

grams, and ¬ for classical negation in defeasible theories. However, “predicate”, “atom”

and “literal” may be used to refer to elements of either a defeasible theory or a logic

program.

To avoid the confusion of existing names with names generated during transformations,

we need a character that is not used in D. For readability in this paper, we choose the

underscore as this character, but any other character would suffice.

4 The scalable defeasible logic DL(∂||)

The defeasible logicDL(∂||) (Maher et al . 2020) was designed to allow defeasible inference

to be scalable to very large data sets. We present the inference rules of that logic here.

DL(∂||) involves three tags: Δ, which expresses conventional monotonic inference; λ,

an auxiliary tag; and ∂||, which is the main notion of defeasible proof in this logic. The

inference rules are presented below, phrased as conditions on proofs4.

+Δ) If P (i+ 1) = +Δq then either

(1) q ∈ F ; or

(2) ∃r ∈ Rs[q] ∀a ∈ A(r),+Δa ∈ P [1..i].

This inference rule concerns reasoning about definitive information, involving only

strict rules and facts. It is identical to the rule for monotonic inference in DL(∂).

For a defeasible theory D, we define PΔ to be the set of consequences in the largest

proof satisfying the proof condition +Δ, and call this the Δ closure. It contains all +Δ

consequences of D.

Once PΔ is computed, we can apply the +λ inference rule. +λq is intended to mean

that q is potentially defeasibly provable in D. The +λ inference rule is as follows.

+λ: If P (i+ 1) = +λq then either

(1) +Δq ∈ PΔ or

(2) (2.1) ∃r ∈ Rsd[q] ∀α ∈ A(r) : +λα ∈ P (1..i) and

(2.2) +Δ∼q /∈ PΔ

Using this inference rule, and given PΔ, we can compute the λ closure Pλ, which

contains all +λ consequences of D.

4 As in the inference rules for DL(∂) in the previous section, D is a defeasible theory (F,R,>), q is a
variable-free literal, P denotes a proof, P [1..i] denotes the first i elements of P , and P (i) denotes the
ith element of P .
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+∂||q is intended to mean that q is defeasibly provable in D. Once PΔ and Pλ are

computed, we can apply the +∂|| inference rule.

+∂||: If P (i+ 1) = +∂||q then either

(1) +Δq ∈ PΔ or

(2) (2.1) ∃r ∈ Rsd[q] ∀α ∈ A(r) : +∂||α ∈ P (1..i) and

(2.2) +Δ∼q /∈ PΔ and

(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃α ∈ A(s) : +λα /∈ Pλ or

(2.3.2) ∃t ∈ Rsd[q] such that

∀α ∈ A(t) : +∂||α ∈ P (1..i) and t > s

The ∂|| closure P∂|| contains all ∂|| consequences of D. We say a set of tagged literals

Q is ∂||-deductively closed if, given closures PΔ and Pλ as defined above, for every literal

q that may be appended to Q∪PΔ ∪Pλ by the inference rule +∂|| (treating Q∪PΔ ∪Pλ

as a proof), q ∈ Q. Clearly, P∂|| is the smallest ∂||-deductively closed set.

Example 4

We now apply these inference rules to the Tweety defeasible theory in Example 2.

As before, the +Δ inference rule infers +Δ penguin(tweety), +Δ bird(freddie), and

+Δ injured(freddie) from the facts, and +Δ bird(tweety) using r3. We have no need of

the −Δ inference rule.

Using the +λ inference rule we infer all the literals inferred by the +Δ inference

rule as +λ conclusions. In addition, the rule infers +λ fly(tweety), +λ fly(freddie), and

+λ ¬fly(tweety).
Using the +∂|| inference rule, again all the +Δ conclusions are inferred as +∂|| conclu-

sions. The only other conclusion that can be drawn with this rule is +∂|| ¬fly(tweety).
The potential inference of fly(tweety) is overruled by r2 inferring +∂|| ¬fly(tweety). On

the other hand, a potential inference of fly(freddie) is not obtained because r1 cannot

overrule r4.

Inference rules ∂ and ∂|| employ the notion of “team defeat”, where it doesn’t matter

which rule overrides an opposing rule, as long as all opposing rules are overridden. This

is expressed in (2.3.2). We can also have a version of ∂|| with “individual defeat”, where

all opposing rules must be overridden by the same rule, which we denote by ∂∗
||. The

inference rule for +∂∗
|| replaces (2.3.2) in ∂|| by r > s.

+∂∗
||: If P (i+ 1) = +∂∗

||q then either

(1) +Δq ∈ PΔ or

(2) (2.1) ∃r ∈ Rsd[q] ∀α ∈ A(r) : +∂∗
||α ∈ P (1..i) and

(2.2) +Δ∼q /∈ PΔ and

(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃α ∈ A(s) : +λα /∈ Pλ or

(2.3.2) r > s

Example 4 does not display the distinction between ∂|| and ∂∗
||: both have the same

consequences. The distinction is visible when there are multiple applicable rules for both

some literal q and its negation ∼q. The following example originates from the paper by

Antoniou et al . (2001).

https://doi.org/10.1017/S1471068421000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000387


Defeasible Reasoning via Datalog¬ 997

Example 5

Consider some rules of thumb about animals and, particularly, mammals. An egg-laying

animal is generally not a mammal. Similarly, an animal with webbed feet is generally not

a mammal. On the other hand, an animal with fur is generally a mammal. Finally, the

monotremes are a subclass of mammal. These rules are represented as defeasible rules

below.

Furthermore, animals with fur and webbed feet are generally mammals, so r2
should overrule r4. And monotremes are a class of egg-laying mammals, so r1 should

overrule r3.

Finally, it happens that a platypus is a furry, egg-laying, web-footed monotreme. Is it a

mammal? (That is, is mammal(platypus) a consequence of the defeasible theory below?)

r1 : monotreme(X)⇒ mammal(X) r3 : laysEggs(X) ⇒ ¬mammal(X)

r2 : hasFur(X) ⇒ mammal(X) r4 : webFooted(X)⇒ ¬mammal(X)

r1 > r3 r2 > r4
monotreme(platypus) laysEggs(platypus)

hasFur(platypus) webFooted(platypus)

It is obvious that all four rules are applicable to the question of mammal(platypus).

Under team defeat, each rule for ¬mammal(platypus) is overcome by some rule for

mammal(platypus), so mammal(platypus) is inferred (which is zoologically correct).

However, there is no single rule for mammal(platypus) that overcomes all rules for

mammal(platypus), so under individual defeat we cannot infer mammal(platypus) (nor

¬mammal(platypus)).

These logics are amenable to the techniques used to establish model-theoretic (Maher

2002) and argumentation (Governatori et al . 2004) semantics for other defeasible logics.

However, the proof-based definitions defined above are sufficient for this paper.

A key feature of DL(∂||) and DL(∂∗
||) inference rules is that they do not use nega-

tive inference rules, unlike DL(∂) which uses −Δ and −∂. Instead they use expressions

+Δq /∈ PΔ and +λq /∈ Pλ. This choice was founded on practical difficulties in scalably im-

plementing existing non-propositional defeasible logics (Maher et al . 2020; Tachmazidis

et al . 2012). However, it has implications for the structure and semantics of the corre-

sponding metaprograms of the logics, as discussed in the next section.

5 Metaprogram for DL(∂||)

Following earlier work (Maher and Governatori 1999; Antoniou et al . 2000), we can map

DL(∂||) to a logic program by expressing the inference rules ofDL(∂||) as a metaprogram.

The metaprogram assumes that a defeasible theory D = (F,R,>) is represented as a set

of unit clauses, as follows.

1. fact(p). if p ∈ F

2. strict(r, p, [q1, . . . , qn]). if r : q1, . . . , qn → p ∈ R

3. defeasible(r, p, [q1, . . . , qn]). if r : q1, . . . , qn ⇒ p ∈ R
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4. defeater(r, p, [q1, . . . , qn]). if r : q1, . . . , qn � p ∈ R

5. sup(r, s). for each pair of rules such that r > s

Note that predicates in D are represented as function symbols. For convenience, we

assume that negated atoms ¬p(�a) in the defeasible theory are represented by not p(�a).

As in papers (Maher and Governatori 1999; Antoniou et al . 2000), the metaprogram is

presented for ease of understanding, rather than formal logic programming syntax. The

full details are available in the appendix.

c1 definitely(X) :-

fact(X).

c2 definitely(X) :-

strict(R,X, [Y1, . . . , Yn]),

definitely(Y1), . . . , definitely(Yn).

c3 lambda(X) :-

definitely(X).

c4 lambda(X) :-

not definitely(∼X),

strict or defeasible(R,X, [Y1, . . . , Yn]),

lambda(Y1), . . . , lambda(Yn).

c5 defeasibly(X) :-

definitely(X).

c6 defeasibly(X) :-

not definitely(∼X),

strict or defeasible(R,X, [Y1, . . . , Yn]),

defeasibly(Y1), . . . , defeasibly(Yn),

not overruled(X).

c7 overruled(X) :-

rule(S,∼X, [U1, . . . , Un]),

lambda(U1), . . . , lambda(Un),

not defeated(S,∼X).

c8 defeated(S,∼X) :-

sup(T, S),

strict or defeasible(T,X, [V1, . . . , Vn]),

defeasibly(V1), . . . , defeasibly(Vn).

For DL(∂∗
||), clauses c6, c7 and c8 are replaced by the following. (Clauses c6 and c7

are modified only slightly.)

c9 defeasibly(X):-

not definitely(∼X),

strict or defeasible(R,X, [Y1, . . . , Yn]),

defeasibly(Y1), . . . , defeasibly(Yn),

not overruled(R,X).
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c10 overruled(R,X):-

rule(S,∼X, [U1, . . . , Un]),

lambda(U1), . . . , lambda(Un),

not defeats(R,S).

c11 defeats(R,S):-

sup(R,S).

We use M∂|| to denote the metaprogram for DL(∂||) (clauses c1–c8) and M∂∗
|| to

denote the metaprogram for DL(∂∗
||) (clauses c1–c5 and c9–c11), or simply M to refer

to either metaprogram. The combination of M and the representation of D is denoted

by M(D).

We interpret M(D) under the well-founded semantics (Van Gelder et al . 1991). Notice

that c1 – c4, together with the representation of D, form a stratified logic program, with

definitely and lambda in different strata. The choice of well-founded semantics means

that the explicit ordering of computing PΔ, then Pλ, then P∂|| is implemented implicitly

by the stratification. For weaker semantics that are not equal to the stratified semantics

on stratified programs, like Fitting’s semantics, the ordering would need to be expressed

explicitly.

A careful comparison of the parts of the inference rules +Δ, +λ, +∂||, and +∂∗
|| with

the clauses of the metaprogram strongly suggests the correctness of the metaprogram

representation. Clauses c1 and c2 represent the +Δ inference rule, and clauses c3 and c4

represent the +λ inference rule. Clauses c5–c8 represent the +∂|| inference rule: clause c5
corresponds to (1) of the inference rule; c5 corresponds to (2), with the body expressing

(2.1) and (2.2) and the negated call to overruled representing (2.3); c7 corresponds

to (2.3.1); and c8 corresponds to (2.3.2). Negations are used to express the universal

quantifier in (2.3) via the implicit logic programming quantifier and ∀ = ¬∃¬. However,
despite this close correspondence, we still need to establish correctness formally, and that

proof will be easier using a transformed program. Consequently, the proof that M(D)

under the well-founded semantics correctly represents the logic defined in Section 4 is

deferred to Section 7.

There have been several mappings of defeasible logics to logic programs. An early

implementation of a defeasible logic, d-Prolog (Nute 1993; Covington et al . 1997), was

defined as a Prolog metaprogram. Courteous Logic Programs (Grosof 1997) were origi-

nally implemented by directly modifying rules to express overriding, but later versions

(such as the work by Wan et al . (2009)) used a metaprogramming approach. Inspired by

d-Prolog, Maher and Governatori (1999) defined the metaprogram approach for DL(∂),

mapping defeasible theories to logic programs under Kunen’s semantics. (See also the

paper by Antoniou et al . (2006).) A key point of the approach of Maher and Governatori

(1999) was the decomposition of defeasible logics into a conflict resolution method, ex-

pressed by the metaprogram, and a notion of failure, expressed by the logic programming

semantics applied to the metaprogram. That paper also introduced well-founded defea-

sible logic (WFDL) and mapped it to logic programs under the well-founded semantics,

as an example of this decomposition. Antoniou et al . (2000) extended that approach to

other defeasible logics, and developed a principled framework for defeasible logics. Gov-

ernatori and Maher (2017) further extended this work to a single formalism supporting

multiple methods of conflict resolution.
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Antoniou et al. (Antoniou and Maher 2002; Antoniou et al . 2006) investigated map-

pings of defeasible theories in DL(∂) to logic programs under the stable semantics, but

achieved only partial results. These works used the metaprogram as a basis, but Anto-

niou and Maher (2002) provided a simpler mapping of propositional defeasible theories

in DL(∂) to logic programs, under the assumption that D was simplified by the trans-

formations of Antoniou et al . (2001). Brewka (2001) mapped the ambiguity propagating

defeasible logic DL(δ) to prioritized logic programs under the well-founded semantics

(Brewka 1996), and showed that the mapping is not sound, nor complete. He concluded

that differences in the treatment of strict rules affected completeness, while differences in

semantics (well-founded versus Kunen) and in treatment of rule priorities affected sound-

ness. More recently, Nute and Maier (Maier and Nute 2006; 2010; Maier 2013) provided

mappings, based on earlier mappings, of the defeasible logic ADL to logic programs un-

der the well-founded semantics, and another mapping in the reverse direction. ADL is

similar to the well-founded defeasible logic WFDL(δ∗) (Maher 2014), but with a more

sophisticated treatment of inconsistency of literals. Maier (2013) also discusses a stable

set semantics for these logics, and relates it to logic programs under the stable semantics.

From the viewpoint of Maher and Governatori’s approach Maher and Governatori (1999),

these works demonstrate that a structured mapping of a defeasible logic under one se-

mantics to logic programming under a different semantics is difficult, while mapping of

a defeasible logic to logic programming under the same semantics is achievable.

These works all focussed on the correctness of the mapping. Beyond d-Prolog and

Courteous Logic Programs, there is little attention to implementation, and there is no

analysis of the structure of the resulting logic programs. That may be because there

is little useful structure to those programs. In contrast, both M∂|| and M∂∗
|| have a

convenient structure.5

Proposition 6

For any defeasible theory D, M∂||(D) is call-consistent and M∂∗
||(D) is stratified.

Proof

Only the predicates defeasibly, overruled, defeated, and loop defeasibly in M∂||
are related by ≈. From the clauses we only have defeasibly �−1 overruled,

overruled �−1 defeated, defeasibly �+1 loop defeasibly, defeated �+1

loop defeasibly, and and loop defeasibly �+1 defeasibly. Thus, for none of these

predicates (or any others) do we have p ≥−1 p. Consequently M∂|| is call-consistent.

Consider the following ordering on predicates in M∂∗
||(D).

defeasibly, loop defeasibly

<

lambda, loop lambda, overruled

<

definitely, loop definitely, defeats

<

neg, sup, fact, strict, defeasible, defeater, strict or defeasible, rule

It is straightforward to verify that this provides a stratification of M∂∗
||(D).

5 Recall that M∂|| is defined in Appendix A, with a more readable version expressed above. The

following propositions and discussion refer to the syntax in the appendix.
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In contrast, the metaprograms for DL(∂) and DL(∂∗) (Antoniou et al . 2000) are not

call-consistent, resulting from the use of −∂ (−∂∗) in (2.3.1).

The metaprogram M∂|| is not strict: both defeasibly and lambda depend on

definitely both positively and negatively. Furthermore, defeasibly depends on

strict or defeasible and neg both positively (via defeated) and negatively (via

lambda). Thus M∂|| does not have a signing. However, if we take a floor consisting

of definitely, lambda and all supporting predicates then the remainder of M∂|| does

have a signing.

Proposition 7

Let D be a defeasible theory, and let Q = {defeasibly, overruled, defeated,
loop defeasibly}.

• M∂||(D) has a signing s for Q such that defeasibly has sign +1 and avoids

negative unfoundedness wrt s and Q.

• M∂∗
||(D) has a signing s for Q such that defeasibly has sign +1 and avoids

negative unfoundedness wrt s and Q.

Proof

Let P be the set of predicates occurring in M∂|| and let F be P\Q. Then P is a

downward-closed set of predicates with floor F . Furthermore,Q has a signing s that maps

defeasibly, defeated and loop defeasibly to +1 and overruled to −1. defeasibly

avoids negative unfoundedness wrt s and Q, because the only negatively signed predicate

is overruled, and overruled does not depend positively on any predicate in Q.

The same reasoning applies for M∂∗
|| with the same signing s.

Notice that we can get a signing for M∂|| and M∂∗
|| with smaller floor (by excluding

lambda and loop lambda), but then defeasibly does not necessarily avoid negative

unfoundedness. For example, if D consists of p ⇒ p then lambda, which would have a

negative sign, has an unfounded sequence lambda(p), loop lambda([p]), lambda(p), . . ..

As a consequence of the previous proposition, Theorem 1 part 2 applies. This means

that, once the values of the predicates in F (particularly definitely and lambda) are

determined, the true defeasibly atoms can be computed under either the Fitting or well-

founded semantics. This reflects the original definition of DL(∂||) in Section 4, where PΔ

and Pλ must be computed before computing P∂|| .

Similarly, by Theorem 1 part 1, if computing using the well-founded semantics, only

the positive parts of defeasibly, defeated and loop defeasibly need be computed,

and only the negative part of overruled is needed. In contrast, in the corresponding

metaprogram M∂ for DL(∂) (see the definition in the papers (Maher and Governatori

1999; Antoniou et al . 2000)) defeasibly depends negatively on itself, via overruled.

Consequently, M∂ is not call-consistent and there is no useful signing for M∂
6, nor for

M∂∗ . Thus, we see that the structure of DL(∂||) (and, hence, of M∂||) allows optimiza-

tions, like those of Theorem 1, that are unavailable to M∂ and M∂∗ .

6 We could set Q = {defeasibly}, to get a signing, but then P\Q is not downward-closed (because
overruled depends on defeasibly), and so cannot serve as a floor. Thus, Theorem 1 cannot be
applied.
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Not all structural aspects of the metaprogram are convenient. M∂|| is safe, but the

representation of D may not be. Furthermore, M∂∗
|| is not safe. In fact, clause c10 is

neither range-restricted nor negation-safe, because the variable R appears in the head

and negative literal, but not in a positive body literal. Furthermore, even when D is

function-free, if it is not propositional then M∂||(D) is not a Datalog¬ program, because

the predicates of D are represented as functions in M∂||(D). These problems will be

addressed by the transformation of M∂||(D) in the next section.

6 Transforming the metaprogram

We seek a logic program that is equivalent to M(D) on definitely, defeasibly and

lambda atoms, but is in Datalog¬ form. We manipulate M(D), using transformations

that preserve the semantics of the program, to achieve this end. Specifically, we use a

series of fold and unfold transformations (Tamaki and Sato 1984; Maher 1988). These are

known to preserve the well-founded semantics (Maher 1990; Aravindan and Dung 1995).

We also introduce rules for new predicates, and delete rules for predicates that are no

longer used. These preserve the semantics of the important predicates (Maher 1990).

6.1 Partial evaluation of the metaprogram

The following transformations are applied to the full metaprogram in Appendix A and

the representation of a theory D. Unfold all occurrences of rule, strict or defeasible,

fact, strict, defeasible, and defeater, to create specialized versions of the clauses

for each applicable rule. Unfold all occurrences of neg, implementing ∼X, and un-

roll (i.e. repeatedly unfold) all occurrences of loop definitely, loop defeasibly and

loop lambda, implementing iteration over each body literal. Because all lists are (termi-

nated) finite lists, unrolling will terminate.

After this process, for any strict or defeasible rule, say

t : p(X,Z),¬p(Z, Y ) ⇒ q(X,Y ),

we have a corresponding version of clause c8

defeated(S, not q(X,Y )) :-

sup(t, S),

defeasibly(p(X,Z)), defeasibly(not p(Z, Y )).

and similar versions of clause c7, etc. Unfolding all occurrences of sup leaves us with

clauses

defeated(s, not q(X,Y )) :-

defeasibly(p(X,Z)), defeasibly(not p(Z, Y )).

for every rule s with t > s in D. Note that if t is not superior to any rule then no clause

is generated for t.

We then delete all clauses defining the predicates we have unfolded. Such a deletion is

correct because the three predicates we are interested in no longer depend on the deleted

predicates.
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After all these transformations, the only function symbols left are the predicates p,

and their counterparts not p, that originate in the representation of D. The resulting

program PD is a partial evaluation ofM∂|| wrt the representation ofD. It is a particularly

transparent translation of the defeasible theory into a logic program.

Example 8

Consider a defeasible theory consisting of the rules

s : p(X,Y ), q(Y,X) ⇒ ¬q(X,Y ),

t : p(X,Z),¬p(Z, Y ) ⇒ q(X,Y ),

with t > s.

The transformed program contains

defeasibly(not q(X,Y )) :-

not definitely(q(X,Y )),

defeasibly(p(X,Y )), defeasibly(q(Y,X)),

not overruled(not q(X,Y )).

overruled(q(X,Y )) :-

lambda(p(X,Y )), lambda(q(Y,X)),

not defeated(s, not q(X,Y )).

defeasibly(q(X,Y )) :-

not definitely(not q(X,Y )),

defeasibly(p(X,Z)), defeasibly(not p(Z, Y )),

not overruled(q(X,Y )).

overruled(not q(X,Y )) :-

lambda(p(X,Z)), lambda(not p(Z, Y )),

not defeated(t, q(X,Y )).

defeated(s, not q(X,Y )) :-

defeasibly(p(X,Z)), defeasibly(not p(Z, Y )).

as well as other clauses defining lambda. The first two clauses are derived from rule s and

the last three come from rule t. There is no defeated clause from s because unfolding

sup(s, S) eliminates the clause, there being no rule that s is superior to.

The correctness of the modified program is straightforward.

Proposition 9

Let D be a defeasible theory, and let PD be the transformed version of M∂||(D). Let q

be a literal.

• M∂||(D) |=WF definitely(q) iff PD |=WF definitely(q)

• M∂||(D) |=WF lambda(q) iff PD |=WF lambda(q)

• M∂||(D) |=WF defeasibly(q) iff PD |=WF defeasibly(q)

Proof

M(D) is transformed to PD by a series of unfolding and deletion transformations that

preserve the well-founded semantics (Maher 1990; Aravindan and Dung 1995).
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6.2 More transformation

We now further transform PD, to make it more compact and to convert it to Datalog¬.
To begin, we introduce new predicates and clauses. For any literal A (of the form q(�a)

or not q(�a)), we use args(A) to denote �a. For each rule r : B1, . . . , Bn ↪→ A in D,

we add the clauses

c12 bodydr(args(A)) :-

defeasibly(B1), . . . , defeasibly(Bn).

c13 bodyλr (args(A)) :-

lambda(B1), . . . , lambda(Bn).

If the rule is strict we also add

c14 bodyΔr (args(A)) :-

definitely(B1), . . . , definitely(Bn).

We then fold clauses derived from clauses c6 and c8 by clause c12, fold clauses derived

from clauses c4 and c7 by clause c13, and fold clauses derived from clauses c2 by clause

c14.

This results in clauses of the form

definitely(A) :-

bodyΔr (args(A)).

lambda(A) :-

not definitely(∼A),

bodyλr (args(A)).

defeasibly(A) :-

not definitely(∼A),

bodydr(args(A)),

not overruled(A).

overruled(A) :-

bodyλs (args(A)),

not defeated(s,∼A).

defeated(s,∼A) :-

bodydt (args(A)).

For example, clauses derived from t in the previous example are now

lambda(q(X,Y )) :-

not definitely(not q(X,Y )),

bodyλt (X,Y ).

defeasibly(q(X,Y )) :-

not definitely(not q(X,Y )),

bodydt (X,Y ),

not overruled(q(X,Y )).
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overruled(not q(X,Y )) :-

bodyλt (X,Y ),

not defeated(t, q(X,Y )).

defeated(s, not q(X,Y )) :-

bodydt (X,Y )).

Next, we unfold clauses c3 and c5 using the clauses for definitely. This results in

additional clauses (including unit clauses) for lambda, and defeasibly corresponding to

the existing clauses for definitely.

At this stage, the transformed program consists of the following clauses. Recall that

we use ↪→ to range over the different kinds of arrows used in a defeasible theory.

The introduced clauses c13–c14 remain.

For every fact F in D, we have the unit clauses definitely(F ), lambda(F ), and

defeasibly(F ) in the program.

For every strict rule r : B1, . . . , Bn → A in D, we have the clauses

c15 definitely(A) :-

bodyΔr (args(A)).

c16 lambda(A) :-

bodyΔr (args(A)).

c17 defeasibly(A) :-

bodyΔr (args(A)).

For every strict or defeasible rule r : B1, . . . , Bn ↪→ A in D, we have the clause

c18 lambda(A) :-

not definitely(∼A),

bodyλr (args(A)).

and the clause

c19 defeasibly(A) :-

not definitely(∼A),

bodydr(args(A)),

not overruled(A).

For every rule s : B1, . . . , Bn ↪→ ∼A in D, we have the clause

c20 overruled(A) :-

bodyλs (args(A)),

not defeated(s,∼A).

For every strict or defeasible rule t : B1, . . . , Bn ↪→ A in D that is superior to a

rule s for ∼A, we have the clause

c21 defeated(s,∼A) :-

bodydt (args(A)).

We now eliminate the function symbols in the clauses. For each predicate p in D, of

arity n, we introduce the clauses
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c22 definitely p(X1, . . . , Xn) :-

definitely(p(X1, . . . , Xn)).

c23 definitely not p(X1, . . . , Xn) :-

definitely(not p(X1, . . . , Xn)).

c24 lambda p(X1, . . . , Xn) :-

lambda(p(X1, . . . , Xn)).

c25 lambda not p(X1, . . . , Xn) :-

lambda(not p(X1, . . . , Xn)).

c26 defeasibly p(X1, . . . , Xn) :-

defeasibly(p(X1, . . . , Xn)).

c27 defeasibly not p(X1, . . . , Xn) :-

defeasibly(not p(X1, . . . , Xn)).

c28 overruled p(X1, . . . , Xn) :-

overruled(p(X1, . . . , Xn)).

c29 overruled not p(X1, . . . , Xn) :-

overruled(not p(X1, . . . , Xn)).

c30 defeated p(S,X1, . . . , Xn) :-

defeated(S, p(X1, . . . , Xn)).

c31 defeated not p(S,X1, . . . , Xn) :-

defeated(S, not p(X1, . . . , Xn)).

We now fold every body literal (except those in the above clauses) in the program

containing a function symbol by the appropriate clause (c22–c31). This is essentially the

replacement of atoms involving a function symbol with an atom with a predicate name

incorporating the function symbol. Then we unfold the body atom of each of the above

clauses (c22–c31). There are now no occurrences of the original predicates in M(D)

(definitely, lambda, defeasibly, overruled and defeated) in the bodies of rules. We

denote the resulting program by TD.

The introduced predicates, such as defeasibly p, together fully represent the original

predicates, such as defeasibly in TD.

Proposition 10

For every literal q(�a),

• TD |=WF definitely(q(�a)) iff TD |=WF definitely q(�a)

• TD |=WF lambda(q(�a)) iff TD |=WF lambda q(�a)

• TD |=WF defeasibly(q(�a)) iff TD |=WF defeasibly q(�a)

Proof

These statements are true once the clauses c22–c31 are introduced, by inspection of those

clauses. The subsequent transformations preserve the semantics of the program.
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6.3 The resulting program

In the following, q (possibly subscripted) may have the form p or not p. We write ∼q as

part of a predicate name to represent, respectively, not p or p. We can now outline what

the final program TD looks like.

For every fact q(�a) in D, there are unit clauses definitely q(�a), lambda q(�a), and

defeasibly q(�a).

For every strict rule r : q1( �a1), . . . , qn( �an) → q(�a) in D, we have the clauses

c32 definitely q(�a) :-

bodyΔr (�a).

c33 lambda q(�a) :-

bodyΔr (�a).

c34 defeasibly q(�a) :-

bodyΔr (�a).

c35 bodyΔr (�a) :-

definitely q1( �a1), . . . , definitely qn( �an).

For every strict or defeasible rule r : q1( �a1), . . . , qn( �an) ↪→ q(�a) in D, we have the

clauses

c36 lambda q(�a) :-

not definitely ∼q(�a),

bodyλr (�a).

c37 defeasibly q(�a) :-

not definitely ∼q(�a),

bodydr(�a),

not overruled q(�a).

c38 bodyλr (�a) :-

lambda q1(�a1), . . . , lambda qn(�an).

For every rule s : q1( �a1), . . . , qn( �an) ↪→ q(�a) in D, we have the clauses

c39 bodydr(�a) :-

defeasibly q1(�a1), . . . , defeasibly qn(�an).

c40 overruled ∼q(�a) :-

bodyλs q(�a),

not defeated q(s,�a).

For every strict or defeasible rule t : q1( �a1), . . . , qn( �an) ↪→ q(�a) in D that is

superior to a rule s for ∼q, we have the clause

c41 defeated ∼q(s,�a) :-

bodydt (�a).

The transformed program TD also contains clauses for definitely, lambda,

defeasibly, overruled and defeated (the original predicates) which are not needed

for computation of the consequences of D in DL(∂||) but are convenient to prove
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correctness of the result. These consist of unit clauses definitely(F ), lambda(F ), and

defeasibly(F ), for each fact F in D, and clauses c15–c21. These clauses will be deleted

shortly.

The size of TD is almost clearly linear in the size of D.7 Almost every clause is derived

from a rule of D (or fact) and is linear in the size of that rule. Further, each rule gives

rise to at most 9 clauses (excluding clauses of the form c41). The only problems are the

clauses of the form c21 and c41. There is one of each such clause for each superiority

statement s < t, but the size of these clauses is not necessarily constant; the size of the

arguments �a is bounded by the size of s and t, but that is not constant. We need to

address such clauses more carefully.

For each predicate p in D, let Dp be the restriction of D to rules defining p and ¬p.
Let Kp be the number of distinct superiority statements in D about rules for p and ¬p,
Mp be the number of rules involved in those superiority statements, and Ap be the arity

of p. Then Kp +1 ≤ Mp ≤ 2Kp, so O(Kp) = O(Mp). Dp must contain at least Mp rules,

each of size greater than Ap. That is, MpAp < size(Dp). The size of the clauses in TD

derived from c41 is bounded by the product of Kp (the number of clauses) and a linear

term in Ap (the size of each clause). It follows that the size of the clauses derived from

c41 is linear in the size of Dp. Thus, the total size of all clauses in TD derived from c41

is O(
∑

p∈Π KpAp) ≤ O(
∑

p∈Π size(Dp)) ≤ O(size(D)).

Thus the modifications can lead only to a linear blow-up from D to TD.

Proposition 11

The size of the resulting program TD is linear in the size of D.

Let us consider now the earlier example of rules in D.

Example 12

Consider a defeasible theory consisting of the rules

s : p(X,Y ), q(Y,X) ⇒ ¬q(X,Y ),

t : p(X,Z),¬p(Z, Y ) ⇒ q(X,Y ),

with t > s, and some facts for p.

The transformed program contains

lambda q(X,Y ) :-

not definitely not q(X,Y ),

bodyλt (X,Y ).

defeasibly q(X,Y ) :-

not definitely not q(X,Y ),

bodydt (X,Y ),

not overruled q(X,Y ).

overruled not q(X,Y ) :-

bodyλt (X,Y ),

not defeated q(t,X, Y ).

defeated not q(s,X, Y ) :-

bodydt (X,Y ).

7 We measure size by the number of symbols in a defeasible theory or logic program.
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bodyλt (X,Y ) :-

lambda p(X,Z), lambda not q(Z, Y ).

bodydt (X,Y ) :-

defeasibly p(X,Z), defeasibly not q(Z, Y ).

lambda not q(X,Y ) :-

not definitely q(X,Y ),

bodyλs (X,Y ).

defeasibly not q(X,Y ) :-

not definitely q(X,Y ),

bodyds(X,Y ),

not overruled q(X,Y ).

overruled q(X,Y ) :-

bodyλs (X,Y ),

not defeated not q(s,X, Y ).

bodyλs (X,Y ) :-

lambda p(X,Y ), lambda q(Y,X).

bodyds(X,Y ) :-

defeasibly p(X,Y ), defeasibly q(Y,X).

The first six clauses are derived from t, and the last five from s.

Notice that DL(∂||) as defined in Section 4 only refers to positive consequences. As a

result, it is only the positive consequences of M∂||(D) for the predicates defeasibly,

definitely and, to a lesser extent, lambda that we must be concerned with. This extends

to the transformed program.

M∂||(D) and the transformed program TD are equivalent under the well-founded se-

mantics.

Proposition 13

Let D be a defeasible theory, and let TD be the transformed version of M∂||(D). Let q

be a literal.

• M∂||(D) |=WF definitely(q) iff TD |=WF definitely(q)

• M∂||(D) |=WF lambda(q) iff TD |=WF lambda(q)

• M∂||(D) |=WF defeasibly(q) iff TD |=WF defeasibly(q)

Proof

M(D) is transformed to TD by a series of unfolding and folding transformations and

additions of clauses defining new predicates, that preserve the well-founded semantics

(Maher 1990; Aravindan and Dung 1995).

Similar results apply for M∂∗
||(D). The structure of the two metaprograms is largely

the same, with minor variations in clauses c9 and c10, and a substantial simplification

in c11. Thus the same transformations apply, except to clauses derived from c11. The

resulting program contains clauses as described in c32–c36, c38–c39, as well as clauses

defining defeasibly q, overruled ∼q, and defeated q.

Reflecting the minor difference between c9 and c6, the transformed M∂∗
||(D) contains

clauses like c42 rather than c37. Similarly, c43 is only a minor variation of c40, while c44
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is a set of unit clauses defeated(r, s) corresponding to the superiority statements r > s

in D.

c42 defeasibly q(�a) :-

not definitely ∼q(�a),

bodydr(�a),

not overruled q(r,�a).

c43 overruled ∼q(r,�a) :-

bodyλs q(�a),

not defeats q(r, s).

c44 defeats q(r, s).

The size of the transformed program is clearly linear in the size of D since the only

problematic clauses c21 and c41 in TD for M∂||(D) are unit clauses in the transformed

program for M∂∗
||(D).

With these variations, we have similar results to Propositions 13 and 11.

Proposition 14

Let D be a defeasible theory, and let T ∗
D be the transformed version of M∂∗

||(D). Let q

be a literal.

• M∂∗
||(D) |=WF definitely(q) iff T ∗

D |=WF definitely(q)

• M∂∗
||(D) |=WF lambda(q) iff T ∗

D |=WF lambda(q)

• M∂∗
||(D) |=WF defeasibly(q) iff T ∗

D |=WF defeasibly(q)

• The size of T ∗
D is linear in the size of D.

Combining the previous results, we summarize the relationship between the applied

metaprogram and the compiled version as follows. Let SD be the transformed pro-

gram TD after deleting the clauses for definitely, lambda, defeasibly, overruled

and defeated, and let S∗
D be T ∗

D after deleting similar clauses.

Theorem 15

Let D be a defeasible theory and SD (S∗
D) be the transformed program. Let q(�a) be a

ground literal. q has the form p or ¬p in D, but p or not p in the transformed metapro-

gram.

• M∂||(D) |=WF definitely(q(�a)) iff SD |=WF definitely q(�a)

• M∂||(D) |=WF lambda(q(�a)) iff SD |=WF lambda q(�a)

• M∂||(D) |=WF defeasibly(q(�a)) iff SD |=WF defeasibly q(�a)

• M∂∗
||(D) |=WF definitely(q(�a)) iff S∗

D |=WF definitely q(�a)

• M∂∗
||(D) |=WF lambda(q(�a)) iff S∗

D |=WF lambda q(�a)

• M∂∗
||(D) |=WF defeasibly(q(�a)) iff S∗

D |=WF defeasibly q(�a)

Proof

By Propositions 9 and 13, M∂||(D) is equivalent to PD and TD on the predicates

definitely, lambda, and defeasibly. Similarly, M∂∗
||(D) is equivalent to P ∗

D and T ∗
D,

by Proposition 14. By Proposition 10, literals such as defeasibly q(�a) are inferred iff
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defeasibly(q(�a)) is inferred in TD (and similarly for T ∗
D). Finally, the deletion of predi-

cates from TD to get SD (and from T ∗
D to get S∗

D) preserves the equivalence because the

predicates of interest in SD do not depend on the deleted predicates.

Additionally, following Proposition 11, SD and S∗
D are linear in the size of D.

The results in this section depend only on the correctness of the transformations used.

Consequently, they extend beyond the well-founded semantics to many other logic pro-

gramming semantics. Indeed, Aravindan and Dung (1995) showed that these transforma-

tions preserve the regular models (You and Yuan 1994), stable theory semantics (Kakas

and Mancarella 1991), and stable semantics (Gelfond and Lifschitz 1988), as well as the

well-founded semantics. Maher (2017) extended this approach to partial stable models

(Przymusinski 1990) and L-stable models (Eiter et al . 1997). Earlier work showed that

these transformations preserved the (two-valued) Clark-completion semantics (Maher

1988) and Fitting’s and Kunen’s semantics (Bossi et al . 1992). However, these latter

semantics do not express the ordering of computation (that is, PΔ then Pλ then P∂||).

The results are also independent of whether D is function-free or not. Moreover, if

constraints (in the sense of constraint logic programming (Jaffar and Maher 1994)) are

permitted in the defeasible theory, they can be expressed in the corresponding CLP

language, and the results still apply.

Finally, a similar sequence of transformations would apply to the metaprogram of

almost any (sensible) defeasible logic. Thus this approach provides a provably correct

compilation of defeasible logics to Datalog¬ using only the metaprogram representation

and a simple fold/unfold transformation system.

This section has established the correctness of the mapping from the metaprogram to

Datalog¬. We now turn to establishing the correctness of the metaprogram.

7 Correctness of the metaprogram

To establish the correctness of the compilation of DL(∂||) (and DL(∂∗
||)) to Datalog¬,

we need to verify that the metaprogram presented in Section 5 is correct with respect to

the proof theory defined in Section 4.

In general, D is not propositional, but the inference rules in Section 4 are formulated

for propositional defeasible theories, so we consider D to be a schema defining the sets of

ground instances of rules in D. As a result, the atoms are essentially propositional and

the inference rules can be applied. Under the well-founded semantics, a logic program

and the ground instances of all its clauses are equivalent. As a result, in the following

proofs we consider only ground rules and ground clauses.

The proofs for Δ and λ are straightforward inductions.

Theorem 16

Let D be a defeasible theory and q be a ground literal. q has the form p(�a) or ¬p(�a) in
D, but p(�a) or not p(�a) in M∂||(D).

• q ∈ PΔ iff M∂||(D) |=WF definitely(q)

• q ∈ Pλ iff M∂||(D) |=WF lambda(q)
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Proof

It is convenient to prove this from the program PD, rather than M∂||(D). As shown

in Proposition 13, these two programs are equivalent for the predicates of interest. For

simplicity of notation, we write P instead of ground(PD).

Part 1 ⇒
The proof is by induction on the length of a proof for q, with induction hypothesis: if

+Δq has proof of length ≤ n then definitely(q) ∈ lfp(WP ). For n = 1, if +Δq has a

proof of length 1 then either q is a fact or q is the head of a strict rule with an empty

body. In either case, definitely(q) is a unit clause in P , so definitely(q) ∈ lfp(WP ).

If +Δq has a proof of length n + 1, then there is an instance q1, . . . , qk → q of a strict

rule in D such that each qi has a proof of length ≤ n. By the induction hypothesis,

definitely(qi) ∈ lfp(WP ), for each i. P must contain a clause

definitely(q) :- definitely(q1), . . . , definitely(qk),

from the definition of P . Hence definitely(q) ∈ lfp(WP ). Thus, by induction, if +Δq

has a proof then definitely(q) ∈ lfp(WP ).

Part 1 ⇐
The proof is by induction on the length of the Kleene sequence, with induction hy-

pothesis: if definitely(q) ∈ WP ↑ n then q ∈ PΔ. If definitely(q) ∈ WP ↑ 1 then

definitely(q) is a unit clause in P . It follows that q is either a fact or the head of a strict

rule with empty body in D. Consequently, q ∈ PΔ. If definitely(q) ∈ WP ↑ (n + 1)

then P must have a clause with head definitely(q), say

definitely(q) :- definitely(q1), . . . , definitely(qk),

where definitely(qi) ∈ WP ↑ n, for i = 1, . . . , k. By the induction hypothesis, +Δqi ∈
PΔ, for i = 1, . . . , k. Hence +Δq ∈ PΔ.

Part 2 ⇒
The proof is by induction on the length of a proof for q, with induction hypothesis: if

+λq has proof of length ≤ n then lambda(q) ∈ lfp(WP ). For n = 1, if +λq has a proof

of length 1 then either q is a fact or q is the head of a strict or defeasible rule with an

empty body. In either case, lambda(q) is a unit clause in P , so lambda(q) ∈ lfp(WP ).

If +λq has a proof of length n + 1, then there is an instance q1, . . . , qk → q of a strict

or defeasible rule in D such that each qi has a proof of length ≤ n and +Δ∼q /∈ PΔ.

By the induction hypothesis, lambda(qi) ∈ lfp(WP ), for each i. By the first part of

this theorem, definitely(∼q) /∈ lfp(WP ), and hence not definitely(∼q) ∈ lfp(WP )

(because the well-founded semantics is total on stratified downward-closed subprograms

like the clauses defining definitely). P must contain a clause

lambda(q) :- not definitely(∼q), lambda(q1), . . . , lambda(qk),

from the definition of P . Hence lambda(q) ∈ lfp(WP ). Thus, by induction, if +λq has a

proof then lambda(q) ∈ lfp(WP ).

Part 2 ⇐
The proof is by induction on the length of the Kleene sequence, with induction hypothesis:

if lambda(q) ∈ WP ↑ n then q ∈ Pλ. If lambda(q) ∈ WP ↑ 1 then lambda(q) is a unit

clause in P . It follows that q is either a fact or the head of a strict or defeasible rule with
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empty body in D. Consequently, q ∈ Pλ. If lambda(q) ∈ WP ↑ (n+ 1) with n > 0, then

P must have a clause with head lambda(q), say

lambda(q) :- not definitely(∼q), lambda(q1), . . . , lambda(qk),

where lambda(qi) ∈ WP ↑ n, for i = 1, . . . , k and not definitely(∼q) ∈ lfp(WP ). By the

induction hypothesis, +λqi ∈ Pλ, for i = 1, . . . , k and, by the first part of this theorem,

+Δq /∈ PΔ. D must have a rule q1, . . . , qk ↪→ q, where ↪→ is → or ⇒, from which the

clause in P mentioned above arises. Thus part (2) of the inference rule for λ applies, and

+λq can be proved. Hence +λq ∈ Pλ. Thus, by induction, if lambda(q) ∈ lfp(WP ) then

+λq ∈ Pλ.

As a consequence of this theorem and Theorem 15, the compilation is correct with

respect to the inference rules +Δ and +λ.

Theorem 17

Let D be a defeasible theory and SD (S∗
D) be the transformed program. Let q(�a) be a

ground literal. q has the form p or ¬p in D, but p or not p in the transformed metapro-

gram.

• q ∈ PΔ iff SD |=WF definitely q(�a) iff S∗
D |=WF definitely q(�a)

• q ∈ Pλ iff SD |=WF lambda q(�a) iff S∗
D |=WF lambda q(�a)

Demonstrating the correctness of the compilation for the main tags is more difficult,

largely because of the greater complexity of the inference rules. We will use the following

lemma to structure the proof.

Lemma 18

Let (L1,≤1) and (L2,≤2) be partial orders. Let Ψ : L1 → L2 and Γ : L2 → L1 be

monotonic functions. Let X1 ∈ L1 and X2 ∈ L2.

If the following conditions hold

1. X2 ≤2 Ψ(X1)

2. X1 ≤1 Γ(X2)

3. Ψ(Γ(X2)) = X2

then X2 = Ψ(X1).

Proof

Ψ(X1) ≤2 Ψ(Γ(X2)) = X2 ≤2 Ψ(X1), using monotonicity of Ψ and the conditions of the

theorem. Hence X2 = Ψ(X1).

In particular, let f1 : L1 → L1 and f2 : L2 → L2 be monotonic functions, and let

(L1,≤1) and (L2,≤2) be complete partial orders, so that X1 = lfp(f1) and X2 = lfp(f2)

exist. Then, under the conditions of this lemma, Ψ(lfp(f1)) = lfp(f2)

In the application of the lemma, (L1,≤1) is the set of Herbrand interpretations of PD

under the containment ordering and (L2,≤2) is the set of sets of tagged literals from D,

again under the containment ordering. f1 is WPD
, so X1 is the well-founded model of PD

and f2 is the function that applies the inference rules of DL(∂||) in every way possible,

so X2 is P∂|| ∪Pλ∪PΔ, the least deductively closed set under the DL(∂||) inference rules.
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Theorem 19

Let D be a defeasible theory and q be a ground literal. q has the form p(�a) or ¬p(�a) in
D, but p(�a) or not p(�a) in M∂||(D).

• D � +∂||q iff M∂||(D) |=WF defeasibly(q)

• D � +∂∗
||q iff M∂∗

||(D) |=WF defeasibly(q)

Proof

It is convenient to prove this from the program PD, rather than M∂||(D). As shown

in Proposition 13, these two programs are equivalent for the predicates of interest. For

simplicity of notation, we write P instead of ground(PD).

Let W denote the well-founded model of P as derived in Section 6. Let X = Ψ(W ),

where Ψ(W ) is defined as {+Δq | definitely(q) ∈ W} ∪ {+λq | lambda(q) ∈ W} ∪
{+∂||q | defeasibly(q) ∈ W}. Clearly Ψ is monotonic. Note that, by Proposition 9, W

is also the well-founded model of M∂||(D) as derived in Section 6.

We claim that X is ∂||-deductively closed from D. Consider a literal p, and suppose

that +∂||p can be inferred from X. Then either (1) +Δp ∈ X or (2) there is a strict

or defeasible rule r where all body literals pi are tagged by ∂|| in X; +Δ∼p /∈ X; and

for every rule s for ∼p either some body literal qi has +λqi /∈ X, or there is a strict or

defeasible rule t where t > s and all body literals p′i are tagged by ∂|| in X. If (1) then we

must have definitely(p) ∈ W . But then, since W is a model of P , defeasibly(p) ∈ W

and hence +∂||p is in X (by the definition of X).

If (2) then (2.1) defeasibly(pi) ∈ W for each body literal pi of r; (2.2)

definitely(∼p) /∈ W ; and (2.3) for every s either lambda(qi) /∈ W or there is a t

with t > s and defeasibly(p′i) ∈ W for every body literal p′i of t. By Corollary 23,

not definitely(∼p) ∈ W and not lambda(qi) ∈ W . Hence, using this fact and (2.1),

P contains a version of c6 instantiated by r with the entire body satisfied in W , except

perhaps for not overruled(p). Furthermore, for every instantiated version of c7 by a

rule s for ∼p in P either lambda(qi) is not satisfied for some body literal qi of s, or there

is an instantiated version of c8 by t such that the body of this version is satisfied in W .

In the former case, lambda(qi) evaluates to false in W . In the later case, since W is a

model of P , defeated(s,∼p) ∈ W Thus, in either case, the body of the version of c7

instantiated by s evaluates to false in W . It follows that not overruled(p) evaluates

to true in W . Hence the body of the version of c6 is satisfied in W and consequently

defeasibly(p) must be in W . Hence +∂||p is in X (by the definition of X).

Since this argument applies for any literal p, X is ∂||-deductively closed. By Theorem

16, X is deductively closed. Hence X ⊇ P∂|| ∪Pλ ∪PΔ, which is the smallest deductively

closed set. This establishes condition 1 of Lemma 18.

We define a function Γ from sets of tagged literals to 3-valued interpretations. For any

set Z of tagged literals, let YZ = {definitely(q) | +Δq ∈ Z} ∪ {lambda(q) | + λq ∈
Z} ∪ {defeasibly(q) | + ∂||q ∈ Z} be the set of corresponding logic programming

atoms. Let W1
P (I) = WP (I) ∪ I. We define Γ(Z) = lfp(W1

P , YZ), the least fixedpoint

of W1
P containing YZ . Notice that this is well-defined, since W1

P (f, Y ) is a monotonic

function on the sub-complete lattice of supersets of Y when f is a monotonic function.

Furthermore, Γ is monotonic, since Z ⊆ Z ′ implies YZ ⊆ YZ′ and lfp(W1
P , Y ) is monotonic

in Y . In addition, WP (Γ(Z)) ⊆ Γ(Z) since Γ(Z) is a fixedpoint of W1
P .
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Now, let Z = P∂|| ∪ Pλ ∪ PΔ be the union of the three closures and U = Γ(Z). Then

WP (U) ⊆ U , that is, U is a prefixedpoint of WP . Hence W ⊆ U = Γ(Z), that is,

X1 ⊆ Γ(X2). This establishes condition 2 of Lemma 18.

To apply Lemma 18 we must establish that Ψ(Γ(X2)) = X2, whereX2 = P∂||∪Pλ∪PΔ,

but we work at a greater level of generality. By definition of Γ, Γ(Z) ⊇ YZ , for any Z.

Hence Ψ(Γ(Z)) ⊇ Ψ(YZ) = Z. For the other direction, we know that equality holds

for Δ and λ conclusions, by Theorem 16. Thus we focus on ∂|| conclusions. We define

(W1
P )

n(YZ) = YZ if n ≤ 0.

Suppose, for some deductively closed set Z of tagged literals and some literal

p, +∂|| p ∈ Ψ(Γ(Z))\Z. Then defeasibly(p) ∈ Γ(Z)\YZ . Let q be one of the

first such literals generated by W1
P . That is, defeasibly(q) ∈ (W1

P )
n+1(YZ) and

Ψ((W1
P )

n(YZ)) = Z. Hence there is a strict or defeasible rule q1, . . . , qk ↪→ q of D

such that not definitely(∼q) ∈ (W1
P )

n(YZ), {defeasibly(q1), . . . , defeasibly(qn)} ⊆
(W1

P )
n(YZ), and not overruled(q) ∈ (W1

P )
n(YZ), since the rule in P must be derived

from c6. By Theorem 16 and Corollary 23 we must have +Δ∼q /∈ PΔ. Because we chose q

to be (one of) the first literals to be derived, defeasibly(qi) ∈ YZ and hence +∂||qi ∈ Z,

for i = 1, . . . , k. Because all rules for overruled are derived from c7, for every rule s for

∼q in D, say p1, . . . , pm ↪→ ∼q, either (1) lambda(pi) /∈ (W1
P )

n−1(YZ), for some i, or (2)

defeated(s, q) ∈ (W1
P )

n−1(YZ). If (1) then, by Theorem 16 and Corollary 23, +λpi /∈ Pλ,

for some i. If (2) then for some strict or defeasible rule t in D of the form q′1, . . . , q
′
h ↪→ q,

t > s and defeasibly(q′i) ∈ (W1
P )

n−2(YZ), for i = 1, . . . , h and, hence, +∂||q′i ∈ Z, for

i = 1, . . . , h.

In summary, there is a strict or defeasible rule q1, . . . , qk ↪→ q of D where: +Δ∼q /∈ PΔ,

+∂||qi ∈ Z, for i = 1, . . . , k, and for every rule s for ∼q in D, say p1, . . . , pm ↪→ ∼q,

either +λpi /∈ Pλ, for some i, or there is a strict or defeasible rule t in D of the form

q′1, . . . , q
′
h ↪→ q with t > s and +∂||q′i ∈ Z, for i = 1, . . . , h.

Thus, by the ∂|| inference rule, and because Z is deductively closed for D, +∂||q ∈ Z.

This contradicts our initial supposition that +∂|| q ∈ Ψ(Γ(Z))\Z. Hence there is no such

q, and we must have Ψ(Γ(Z)) = Z. In particular, X2 = P∂|| ∪ Pλ ∪ PΔ is deductively

closed, so Ψ(Γ(X2)) = X2. This establishes condition 3 of Lemma 18.

Hence, by Lemma 18, P∂|| ∪ Pλ ∪ PΔ = Ψ(W ), where W is the well-founded model of

PD. In particular, D � +∂||q iff PD |=WF defeasibly(q). The first part then follows by

Proposition 9.

The second part is established in a similar manner, using ∂∗
|| and P ∗

D instead of ∂|| and
PD. The argument is slightly simpler, in line with the slightly simpler inference rule of

∂∗
|| and the slightly simpler P ∗

D.

We can now show the correctness of computing with predicates such as defeasibly q.

Theorem 20

Let D be a defeasible theory and SD be the transformed program. Let q(�a) be a ground

literal. q has the form p or ¬p in D, but p or not p in the transformed metaprogram SD.

• D � +Δq(�a) iff SD |=WF definitely q(�a)

• D � +λq(�a) iff SD |=WF lambda q(�a)

• D � +∂||q(�a) iff SD |=WF defeasibly q(�a)

• D � +∂∗
||q(�a) iff S∗

D |=WF defeasibly q(�a)
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Proof

By Theorems 16 and 19, provability from D is represented by inference from M∂||(D)

(or M∂∗
||(D)) under the well-founded semantics. By Theorem 15, such inferences are

equivalent to the inferences from SD stated in the statement of this theorem.

These results establish that the metaprograms M∂|| and M∂∗
|| correctly reflect the

proof-theoretic definitions of Section 4. However, the metaprograms are able to accom-

modate non-propositional defeasible theories, and easily extend to handle constraints,

which are problematic for the proof theory when the constraint domain is infinite. There

is a strong case that metaprogram formulations should be considered the canonical defi-

nitions for defeasible logics.

8 Properties of the compiled program

Some syntactic properties of M∂|| and M∂∗
|| were already established in Section 5. How-

ever, SD has these and further properties that are important to its implementation. We

now establish these properties.

Theorem 21

The transformed program SD for a defeasible theory D over DL(∂||) is:

1. a Datalog¬ program iff D is function-free

2. variable-free iff D is variable-free

3. range-restricted iff D is range-restricted

4. safe iff D is range-restricted

5. call-consistent

6. stratified if D is hierarchical

7. locally stratified if D is locally hierarchical

Proof

1. If D is function-free then the only functions in M(D) are predicates from D. Af-

ter the merging of tags and predicate names, and the deletion of clauses, there are no

functions remaining. Conversely, if SD is a Datalog¬ program then no term involves a

function. But all terms of D appear in SD. Hence D is function-free.

2. By inspection of the final transformed program (clauses c32–c41), the only arguments

have the form �a (possibly with subscript) which come from rules in D or are the argument

s in clauses c40 and c41, which is variable-free. Thus SD is variable-free if D is variable-

free. Every term in D appears in SD. Thus if SD is variable-free then D is variable-free.

3. Suppose D is range-restricted. By inspection of the final program, all heads of

clauses have arguments �a, all negative literals also have arguments �a, and all clauses

have arguments �a in a positive body literal, except for the body clauses. Hence these

clauses are all range-restricted. Body clauses have arguments �a from the head of a rule

in the head of the clause and all the arguments �ai from the body of that rule in positive

literals in the clause body. Hence, since D is range-restricted, these body clauses are

range-restricted.

Conversely, every rule in D is reflected in a clause of the form c38. Since SD is range-

restricted, c38 is range-restricted, and hence all rules in D are range-restricted. Further-
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more, all facts in D are represented in unit clauses in SD, and hence are variable-free.

Thus, D is range-restricted.

4. By inspection of SD, it is negation-safe: only clauses c40 could cause a problem, but

the argument s is a constant. By the previous part, SD is safe iff D is range-restricted.

5. This follows from Proposition 6, and Theorem 6.7 from the paper by Maher (1993)

(or Theorem 1 from the paper by Maher (1990)).

6. Let n : Π → N a mapping demonstrating the hierarchicality of D and define the

function m : Π → N by:

Predicates of the form definitely q and bodyΔr are mapped to 0.

Predicates of the form lambda q and bodyλr are mapped to 1.

Predicates of the form defeasibly q are mapped to 3 ∗ n(q) + 5.

Predicates of the form overruled q are mapped to 3 ∗ n(q) + 4.

Predicates of the form defeated q and bodydr are mapped to 3 ∗ n(q) + 3.

It is straightforward to verify that this defines a stratification of SD. For example, to verify

clauses of the form c39 satisfy the stratification condition we have m(defeasibly qi) =

3 ∗ n(qi) + 5 ≤ 3 ∗ n(q) + 2 < 3 ∗ n(q) + 3 = m(bodydr) for each strict or defeasible rule

r : q1( �a1), . . . , qn( �an) ↪→ q(�a) for q, where we use n(qi) < n(q) from the hierarchi-

cality of D.

7. Let n : HB → N a mapping demonstrating the local hierarchicality of D and define

the function m : Π → N by:

Ground atoms of the form definitely q(�a) and bodyΔr (�a) are mapped to 0.

Ground atoms of the form lambda q(�a) and bodyλr (�a) are mapped to 1.

Ground atoms of the form defeasibly q(�a) are mapped to 3 ∗ n(q(�a)) + 5.

Ground atoms of the form overruled q(�a) are mapped to 3 ∗ n(q(�a)) + 4.

Ground atoms of the form defeated q(�a) and bodydr(�a) are mapped to 3 ∗n(q(�a))+3.

The proof is essentially the same as part 6.

Of these properties, most are a reflection of properties of D. However, the call-

consistency of SD is a reflection of the defeasible logic. In DL(∂||), in the +∂|| infer-

ence rule, +∂|| appears only positively and −∂|| does not appear; in DL(∂) in the +∂

inference rule, −∂ appears. It is this difference that leads to the call-consistency of SD,

independent of D.

For the logic DL(∂∗
||) we have similar properties. An important difference with the pre-

vious theorem is that the transformed program is stratified, whether or not the defeasible

theory is hierarchical.

Theorem 22

The transformed program S∗
D for a defeasible theory D over DL(∂∗

||) is:

1. a Datalog¬ program iff D is function-free

2. variable-free iff D is variable-free

3. range-restricted iff D is range-restricted

4. safe iff D is range-restricted

5. stratified
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Proof

The arguments are essentially the same as for Theorem 21. In particular, the proof of

part 5 is the same as the proof of part 5 of Theorem 21 (notwithstanding the different

properties addressed). In part 4, clauses c42, c43, and c44 are negation-safe because

arguments r and s are constants.

As a corollary, we have that the subset of clauses in S∗
D defining predicates of the

form definitely q and lambda q (and bodyΔr and bodyλr ) is stratified. This is of interest

because the same set of clauses define definitely q and lambda q in SD.

Corollary 23

Let G be the subset of SD and S∗
D defining predicates of the form definitely q,

lambda q, bodyΔr , and bodyλr . Then G is stratified.

Let W be the well-founded model of SD (or S∗
D). Then, for every predicate q in D and

every �a, definitely q(�a) /∈ W iff not definitely q(�a) ∈ W , and lambda q(�a) /∈ W iff

not lambda q(�a) ∈ W .

Proof

G is stratified because S∗
D stratified and G is a subset of S∗

D. G is downward-closed,

and the well-founded model is total on stratified programs (Van Gelder et al . 1991). The

second part then follows.

We saw earlier that computing the defeasibly predicate in M∂||(D) can be achieved

by first computing definitely and lambda, and then applying Fitting’s semantics to

defeasibly and related predicates. The same basic idea applies to SD.

Theorem 24

Let D be a defeasible theory and SD be the program transformed from M∂||(D). Let

P denote the predicates of SD, and F be the set of predicates in SD of the form

definitely q, bodyΔr , lambda q, and bodyλr . Let Q = P\F . Then

• P is downward-closed with floor F
• Q has a signing s where all predicates defeasibly q are assigned +1.

• For any predicate q in D, the predicate defeasibly q avoids negative unfounded-

ness wrt s.

Proof

It is clear, by inspection of SD, that P is downward-closed with floor F . Let s assign

all predicates overruled q the value −1, and all other predicates in Q the value +1.

It is straightforward to verify that this is a signing for Q. Furthermore, any predicate

overruled q does not depend positively on any predicate in Q (it only depends positively

on predicates bodyλr , which are in F). Thus, trivially, every predicate in Q avoids negative

unfoundedness wrt s and, in particular, the predicates defeasibly q.

Thus, the predicates defeasibly q can be computed by first computing definitely q,

then lambda q under the stratified approach, and then applying Fitting’s semantics.

This same result holds for any S∗
D derived from M∂∗

||(D), by essentially the same proof.

However, it is less useful because we have already established that S∗
D is stratified.
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Corollary 25

Let D be a defeasible theory and S∗
D be the program transformed from M∂∗

||(D). Let

P denote the predicates of S∗
D, and F be the set of predicates in S∗

D of the form

definitely q, bodyΔr , lambda q, and bodyλr . Let Q = P\F . Then

• P is downward-closed with floor F
• Q has a signing s where all predicates defeasibly q are assigned +1.

• For any predicate q in D, the predicate defeasibly q avoids negative unfounded-

ness wrt s.

The use of the well-founded semantics to define the meaning of M∂||(D) might at

first appear questionable, especially for propositional defeasible theories. Consequences

of propositional theories can be computed in time linear in the size of the theory, while

the well-founded semantics has only a quadratic upper bound. However, the above results

show that the consequences of a propositional D in DL(∂||) (or DL(∂∗
||)), computed by

the well-founded semantics from SD (or S∗
D), can be derived in linear time. This is because

the subset of SD (or S∗
D) defining predicates definitely q and lambda q is stratified,

and the stratified semantics can be computed in linear time. Furthermore, the size of SD

is linear in the size of D (from Proposition 11). And then, by Theorems 24 and 1 part 2,

it suffices to compute the remaining predicates under Fitting’s semantics, which can be

done in linear time for essentially propositional programs.

More generally, the properties identified in this section provide a partial basis for choos-

ing the implementation of Datalog¬ in which to execute the transformed metaprogram,

and to adapt to available implementations. This will be discussed in detail in the next

section.

9 Executing compiled theories

There are three main implementation techniques for Datalog: top-down execution with

tabling, like XSB; grounding with propositional inference, as used in ASP systems; and

bottom-up execution, using database techniques. In addition, there are novel implemen-

tation techniques: bddbddb (Whaley et al . 2005) is based on BDDs, and there is promise

in implementations based on linear algebra (Sato 2017), which may be able to exploit the

considerable research on software and hardware accelerators for linear algebra. Of the

three main techniques, all can be used both for query-answering and for generating all

conclusions, although their relative efficiency for each scenario is not completely clear.

The compilation of defeasible logics to Datalog¬ is motivated by the variety of Datalog

systems, but the effectiveness of this approach is limited by the number of implemen-

tations of the full well-founded semantics. For example, many systems require safe pro-

grams. Fortunately, this is not a serious barrier in implementing defeasible logics because

defeasible theories are usually range-restricted and so, as shown in the previous section,

the compiled program is safe.

However, many systems have other shortcomings. While some implementations aim to

compute the well-founded model, others only apply to stratified programs, and others

are in between. Nevertheless, they may be sufficient for executing some defeasible the-

ories and/or providing an approximation of the conclusions for theories. In this section

we explore these possibilities. We will briefly discuss the various systems and how the
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properties presented in the previous section can be used to adapt to limitations of the

systems. The systems are organized by the semantics that they can compute.

9.1 Well-founded semantics

XSB (Swift and Warren 2012) is based on top-down execution with tabling, SLG-

resolution. Although SLG-resolution is complete for function-free programs (Chen and

Warren 1996), the current version of XSB does not implement answer completion (Swift

et al . (2017), page 109), one of the operations employed by SLG-resolution. Although it

appears that this is only needed in pathological examples, the result is that, in general,

XSB is sound but not complete (Swift et al . 2017).8

Early versions of Smodels (Niemelä and Simons 1997) computed the well-founded

model, but the system is no longer at the state of the art. DLV (Adrian et al . 2018) is

primarily aimed at computing answer sets for disjunctive logic programs, but the switch

-wf allows the computation of the well-founded model. On the other hand, clingo (Gebser

et al . 2019) does not provide direct access to the well-founded model, but it does provide

an indirect way to compute the well-founded model of SD. It has the switch -e cautious

which generates all literals true in all stable models, and thus gives an upper bound of

the well-founded model. Furthermore, by Theorem 10 in the appendix of the paper by

Maher (2021) (adapted from Theorem 5.11 of the paper by Dung (1995)), for SD this

gives exactly the well-founded model. However, this is likely to be a quite inefficient way

to compute the consequences of D.

IRIS (Bishop and Fischer 2008) was designed as a platform for implementing languages

such as RDFS and description logics. It computes the well-founded semantics, with a

choice of techniques, but development seems to have stalled in 2010.

The system of Tachmazidis et al . (2014) provides a implementation of the well-founded

semantics, based on the MapReduce framework (Dean and Ghemawat 2004). An earlier

system (Tachmazidis and Antoniou 2013) implemented the semantics only for strati-

fied programs. These are more proof-of-concept implementations than production-level

systems.

All these systems can compute the consequences of a defeasible theory D in DL(∂||).
Furthermore, from Theorem 1, for most predicates only the positive or only the negative

part needs to be computed, although it appears that this distinction is only useful for

bottom-up implementations, such as IRIS and the system of Tachmazidis et al . (2014).

9.2 Stratified semantics

The stratified semantics (that is, the well-founded semantics computed only when the

program is stratified) is possibly the easiest form of negation to implement, since it re-

quires only a simple syntactic analysis and the layering of negation-free subprograms.

There are numerous systems that compute this semantics, including LogicBlox (Aref

et al . 2015), Soufflé (Jordan et al . 2016), QL (Avgustinov et al . 2016), RecStep (Fan

8 A complicating issue is that rules such as p(X) ⇒ p(X), which can lead to such pathological exam-
ples, can be used in defeasible theories to ensure that some p-conclusions are undefined, rather than
disproved. Thus the incompleteness of XSB might not affect this usage.
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et al . 2019), VLog (Carral et al . 2019), and Formulog (Bembenek et al . 2020). Fur-

thermore, the grounders gringo (Gebser et al . 2011) and I-DLV (Calimeri et al . 2017),

for clingo and DLV respectively, will compute the well-founded model for stratified pro-

grams. Finally, any implementation of Datalog (without negation) can be used as the

basis for an implementation of the stratified semantics, using a scripting language, for

example. However, that would come with a significant drag on performance, compared

with an integrated implementation of the stratified semantics.

Recall that we are only interested in conclusions of the form +Δq(�a) and +∂||q(�a),
for literals q(�a), and hence only interested in the computation of atoms of the form

defeasibly q(�a) or delta q(�a). The latter can be computed exactly by a system sup-

porting the stratified semantics, while the program for the former is not, in general,

stratified. However, if D is hierarchical then SD is stratified (Theorem 21.6) and such

systems can compute exactly the consequences of M∂||(D).

Even when D is not hierarchical, these systems can provide a sound approximation to

M∂||(D). As we have seen (Theorem 22), S∗
D is stratified. Consequently, these systems

can compute the set of defeasibly q(�a) atoms computed from S∗
D. As established by

Maher et al . (2020) (Theorem 11), ∂∗
|| ⊂ ∂|| so this set of atoms is a sound approximation

of the consequences of M∂||(D). Furthermore, stratified fragments of SD can be used

to potentially improve the sound approximation. In some cases, it can be necessary to

alternate the use of S∗
D and stratified fragments of SD.

9.3 Intermediate and ad hoc semantics

Other semantics for Datalog¬ are less frequently targeted. Locally hierarchical defeasible

theories need the implementation of well-founded semantics only for locally stratified

programs (Theorem 21), which falls in between the stratified semantics and the full

well-founded semantics. Few, if any, implementations specifically address this class.

Nevertheless, the output of the grounder gringo (Gebser et al . 2011) can be used to

infer an underestimate of the well-founded model W of the input program. From its

output we can determine a ∈ W if the fact a is output, and not a ∈ W if no rule for a

is output; this provides us with an underestimate of W . This underestimate is, in fact,

exact for stratified programs (Kaminski 2020). For locally stratified programs, repeated

application of gringo on its output can lead to exactly the well-founded model (Kaminski

2020). Possibly I-DLV (Calimeri et al . 2017) can achieve the same outcome.

Theorems 1 part 2 and 24 show that the defeasibly q predicates can be computed

using a combination of the stratified and Fitting semantics. Although only at the research

stage, the linear algebraic approach is capable of this combination, since it handles definite

clauses (Sato 2017) and Fitting’s semantics (Sato et al . 2020).

Finally, in theory, implementations need only compute one part of each predicate not

in the floor (from Theorem 1). However, as mentioned earlier, it depends very much

on the implementation technique whether this property can be exploited to improve

performance.

10 Conclusions

In this paper we have formulated a metaprogram representation of the defeasible logic

DL(∂||) and proved it correct. We used established transformations to derive a correct
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compilation of defeasible theories to Datalog¬ programs. And, using properties of the

consequent programs, we outlined how they can be used to adapt to limitations of an

underlying Datalog system.

Although we focussed on the logic DL(∂||), the metaprogramming and transforma-

tion approach applies to any defeasible logic. However the design of DL(∂||), motivated

by scalability, induced structure on the resulting Datalog¬ that can simplify computa-

tion and/or made it more efficient than the result of compilation for other defeasible

logics (such as DL(∂)). This structure also supported adaptation and approximation in

response to the limited availability of implementations of the full well-founded seman-

tics for Datalog¬. It suggests that the designers of new defeasible logics should take the

possibility of similar structures into account during the design of these logics.

We also provided more evidence of the usefulness of using a metaprogram to define a

defeasible logic, rather than inference rules such as those in Sections 3 and 4. Those in-

ference rules do not generalize easily to non-propositional defeasible theories over infinite

domains, whereas that is a non-issue for metaprograms. Furthermore, such inference rules

are difficult to reason about. Metaprograms provide access to all the tools of (constraint)

logic programming for reasoning about and implementing the defeasible logics.

The original motivation for this work was to provide alternatives to the bespoke im-

plementation of DL(∂||) by Maher et al . (2020). So, it was disappointing to realize the

limited range of Datalog implementations available that support the full well-founded

semantics. There remains much scope for implementations of the well-founded semantics

on novel architectures.
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queries on relational data. In 30th European Conference on Object-Oriented Programming,
ECOOP 2016, S. Krishnamurthi and B. S. Lerner, Eds. LIPIcs, vol. 56. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2:1–2:25.

Bassiliades, N., Antoniou, G. and Vlahavas, I. P. 2006. A defeasible logic reasoner for the
semantic web. Journal on Semantic Web and Information Systems 2, 1, 1–41.

Bellomarini, L., Sallinger, E. and Gottlob, G. 2018. The Vadalog system: Datalog-based
reasoning for knowledge graphs. Proceedings of the VLDB Endowment 11, 9, 975–987.

Bembenek, A., Greenberg, M. and Chong, S. 2020. Formulog: Datalog for smt-based static
analysis. Proceedings of the ACM on Programming Languages 4, OOPSLA, 141:1–141:31.

Billington, D., Antoniou, G., Governatori, G. and Maher, M. J. 2010. An inclusion
theorem for defeasible logics. ACM Transactions on Computational Logic 12, 1, 6.

Billington, D. and Rock, A. 2001. Propositional plausible logic: Introduction and implemen-
tation. Studia Logica 67, 2, 243–269.

Bishop, B. and Fischer, F. 2008. IRIS - integrated rule inference system. In Proc. Workshop on
Advancing Reasoning on the Web: Scalability and Commonsense. Vol. 350. CEUR Workshop
Proceedings.

Bossi, A., Cocco, N. and Etalle, S. 1992. Transforming normal programs by replacement. In
Proc. Meta-Programming in Logic, 3rd International Workshop. Lecture Notes in Computer
Science, vol. 649. Springer, 265–279.

Brass, S. and Stephan, H. 2017. Pipelined bottom-up evaluation of Datalog programs: The
push method. In Perspectives of System Informatics - 11th International Andrei P. Ershov
Informatics Conference, PSI 2017, A. K. Petrenko and A. Voronkov, Eds. Lecture Notes in
Computer Science, vol. 10742. Springer, 43–58.

Brewka, G. 1996. Well-founded semantics for extended logic programs with dynamic prefer-
ences. Journal of Artificial Intelligence Research 4, 19–36.

Brewka, G. 2001. On the relationship between defeasible logic and well-founded semantics. In
LPNMR. 121–132.
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Appendix A The metaprogram

The presentation ofM∂|| in the body of the paper sacrifices correct syntax for readability.

In this appendix we present M∂|| in correct logic programming syntax. This involves a

number of auxiliary predicates.

The main clauses of M∂|| are as follows:

c45 definitely(X):-

fact(X).

c46 definitely(X):-

strict(R,X, Y ),

loop definitely(Y ).

c47 lambda(X):-

definitely(X).

c48 lambda(X):-

neg(X,X ′),
not definitely(X ′),
strict or defeasible(R,X, Y ),

loop lambda(Y ).

c49 defeasibly(X):-

definitely(X).

c50 defeasibly(X):-

neg(X,X ′),
not definitely(X ′),
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strict or defeasible(R,X, Y ),

loop defeasibly(Y ),

not overruled(R,X).

c51 overruled(R,X):-

neg(X,X ′),
rule(S,X ′, U),

loop lambda(U),

not defeated(S,X ′).

c52 defeated(S,X ′):-
neg(X,X ′),
sup(T, S),

strict or defeasible(T,X, V ),

loop defeasibly(V ).

We still need to define the predicates not defined above. There are additional clauses

to represent sets of rules.

c53 rule(R,H,B):-

strict or defeasible(R,H,B).

c54 rule(R,H,B):-

defeater(R,H,B).

c55 strict or defeasible(R,H,B):-

strict(R,H,B).

c56 strict or defeasible(R,H,B):-

defeasible(R,H,B).

To express the complement of a literal ∼q we define, for each predicate p in D,

c57 neg(p(. . .), not p(. . .)).

c58 neg(not p(. . .), p(. . .)).

The auxiliary predicate loop defeasibly (loop lambda, loop definitely) maps the

representation of a rule body to a corresponding sequence of calls to defeasibly (re-

spectively, lambda, definitely).

c59 loop defeasibly([]).

c60 loop defeasibly([H|T ]) :- defeasibly(H), loop defeasibly(T ).

c61 loop lambda([]).

c62 loop lambda([H|T ]) :- lambda(H), loop lambda(T ).

c63 loop definitely([]).

c64 loop definitely([H|T ]) :- definitely(H), loop definitely(T ).
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