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In this article, we develop a novel large volatility matrix estimation procedure for
analyzing global financial markets. Practitioners often use lower-frequency data,
such as weekly or monthly returns, to address the issue of different trading hours
in the international financial market. However, this approach can lead to inefficiency
due to information loss. To mitigate this problem, our proposed method, called
Structured Principal Orthogonal complEment Thresholding (S-POET), incorporates
observation structural information for both global and national factor models. We
establish the asymptotic properties of the S-POET estimator, and also demonstrate
the drawbacks of conventional covariance matrix estimation procedures when using
lower-frequency data. Finally, we apply the S-POET estimator to an out-of-sample
portfolio allocation study using international stock market data.

1. INTRODUCTION

Factor analysis and principal component analysis (PCA) are commonly used for
various applications, including macroeconomic variable forecasting and portfolio
allocation optimization (Stock and Watson, 2002; Bai, 2003; Fan, Furger, and Xiu,
2016). Recent research has highlighted the importance of considering local factors
in addition to global factors. These local factors have an impact on individuals
in each local group and can be defined by regional, country, or industry level
(Kose, Otrok, and Whiteman, 2003; Bekaert, Hodrick, and Zhang, 2009; Fama
and French, 2012; Moench, Ng, and Potter, 2013). To account for different level
factors, a multilevel factor structure has been developed (Bai and Wang, 2015;
Ando and Bai, 2016; Han, 2021).

Several large volatility matrix estimation procedures have been developed based
on latent factor models to account for the strong cross-sectional correlation in
the stock market (Fan et al., 2016; Ait-Sahalia and Xiu, 2017; Fan, Liu, and
Wang, 2018a; Fan and Kim, 2019; Jung, Kim, and Yu, 2022). For instance,
under the single-level factor model, Fan, Liao, and Mincheva (2013) proposed a
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2 SUNG HOON CHOI AND DONGGYU KIM

principal orthogonal component thresholding (POET) covariance matrix estima-
tion procedure when the factors are unobservable. This method can consistently
estimate unobservable factors using PCA and cross-sectionally correlated errors
via thresholding with a large number of assets. Recently, to account for the latent
local factor structure, Choi and Kim (2023) developed a Double-POET (D-POET)
covariance matrix estimation procedure based on the multilevel factor structure.
Specifically, D-POET is a two-step estimation procedure by applying PCA at each
factor level based on the block local factor structure.

The analysis of international financial markets is crucial for constructing global
benchmark indices, such as the MSCI World. When analyzing global financial
market data, it is a common practice to use lower frequencies, such as 2-day
average, weekly, monthly, or quarterly data, instead of daily returns (Chib, Nardari,
and Shephard, 2006; Bekaert et al., 2009; Hou, Karolyi, and Kho, 2011; Fama and
French, 2012; Ando and Bai, 2017). This is because international stock markets
operate at different times, which results in returns being based on different infor-
mation sets when measured on any given date over a short period, such as daily.
Hence, practitioners often opt for using weekly or monthly returns to mitigate
the impact of non-synchronized trading hours in international markets. However,
using lower-frequency data can lead to a loss of information and less efficient
estimators. On the other hand, Burns, Engle, and Mezrich (1998) synchronized
international stock prices using the conditional expected value and compared
the non-synchronized and synchronized volatility matrices. In the high-frequency
financial econometrics literature, several papers considered asynchronous finan-
cial data for covariance estimations by the sample splitting method (Aït-Sahalia,
Fan, and Xiu, 2010; Fan, Li, and Yu, 2012a; Hautsch, Kyj, and Oomen, 2012;
Lunde, Shephard, and Sheppard, 2016; Dai, Lu, and Xiu, 2019; Fan and Kim,
2019; Sun and Xu, 2022). However, unlike a high-frequency model setup, non-
synchronized low-frequency observations can cause not only inefficiency but also
inconsistency because an observation time gap is fixed. Thus, it is important to
study the non-synchronized trading hours in international markets based on low-
frequency observations and develop an efficient and effective large global volatility
matrix estimation procedure.

This article proposes a novel large volatility matrix estimation procedure that
incorporates observation structural information with an entire set of observations
in the global and national factor model. Specifically, we consider the international
financial market and impose a latent multilevel factor structure to account for
both global and national risk factors. To handle the non-synchronized trading
hours in the international market, we assume that the correlation is stationary
with respect to the relative trading hour difference. For example, if the proportion
of the overlapped time goes to one, its corresponding correlation converges to
the correlation of the synchronized time, which is the parameter of interest.
This structure helps theoretically understand the non-synchronized trading hour
problem in the international market, and we study the large global volatility
matrix estimation problem under the proposed stationary global and national factor
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LARGE GLOBAL VOLATILITY MATRIX ANALYSIS 3

model. For example, national factor membership is assumed to be naturally known,
and we further assume that countries within the same continent have the same
information set. To estimate the global volatility matrix, we first apply D-POET
in each continental group using daily returns, which have the finest information in
our model setup. To capture the spillover effect between continents, we conduct
a low-rank approximation to each continental pair using a lower frequency,
which helps mitigate the effect of the non-synchronized trading hours. Finally, to
accommodate the latent global factors, we employ PCA on the structurally fitted
global factor components from previous procedures, which we call Structured-
POET (S-POET). We derive the rates of convergence for S-POET under different
matrix norms and discuss its benefits. The empirical study on portfolio allocation
supports the theoretical findings.

The remainder of the article is organized as follows: In Section 2, we introduce
the model and propose the S-POET estimation procedure. Section 3 provides
an asymptotic analysis of the S-POET estimator. In Section 4, we conduct a
simulation study to evaluate the finite sample performance of the proposed method.
Section 5 applies the proposed method to a real data problem of portfolio allocation
using global stock market data. In Section 6, we conclude the article. We provide
a key proof in Section 7. All the remaining proofs and miscellaneous materials are
presented in the Supplementary Material.

2. MODEL SETUP AND ESTIMATION PROCEDURE

We consider a global and national factor model (Choi and Kim, 2023):

yit = b′
iGt +λl

i
′
f l
t +uit, for i = 1, . . . ,p,t = 1, . . . ,T, and l = 1, . . . ,L, (2.1)

where yit is the ith log price belonging to country l at time t; Gt is a k × 1 vector
of latent global factors, and bi is the global factor loadings; f l

t is an rl × 1 vector
of latent national factors that affect individuals belonging to country l, and λl

i is
the corresponding national factor loadings; and uit is an idiosyncratic error term,
which is uncorrelated with Gt and f l

t . Throughout the article, global and national
factors are uncorrelated, while their factor loadings may not be orthogonal to each
other. In addition, we assume that the numbers of factors, k and rl, are fixed and
the group membership of the national factors is known. Then, we can stack the
observations and write the model (2.1) in a vector form as follows:

yt = BGt +�Ft +ut, (2.2)

where yt = (y1
t
′
, . . . ,yL

t
′
)′, where yl

t = (y
(
∑l−1

j=0 pj+1)t, . . . ,y(
∑l

j=0 pj)t
)′, pl is the number

of assets for country l, and p0 = 0; the p × k matrix B = (b1, . . . ,bp)
′; the p × r

block diagonal matrix � = diag(�1, . . . ,�L), where �l = (λl
1, . . . ,λ

l
pl
)′ is a pl × rl

matrix of local factor loadings for each l such that r = ∑L
l=1 rl; the r × 1 vector

Ft = (f 1
t

′
, . . . ,f L

t
′
)′; and ut = (u1t, . . . ,upt)

′.
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4 SUNG HOON CHOI AND DONGGYU KIM

In this article, we are interested in the p×p covariance matrix of yt and its inverse
matrix:

� = Bcov(Gt)B′ +�cov(Ft)�
′ +�u := �g +�l +�u, (2.3)

where �u = (σu,ij)p×p is a sparse idiosyncratic covariance matrix of ut such that,
for some q ∈ [0,1), mp = maxi≤p

∑
j≤p |σu,ij|q diverges slowly (Bickel and Levina,

2008). We note that the correlation matrix of yt can be obtained by

R0 = (ρ0,ij)p×p = D
− 1

2
0 �D

− 1
2

0 , (2.4)

where D0 is the diagonal matrix consisting of the diagonal elements of �.
Importantly, the correlation between stocks i and j, denoted by ρ0,ij in (2.4), can
be realized through synchronized observations. However, in the context of the
international stock market, each stock exchange operates its own trading hours.
Hence, stocks traded on different exchanges have distinct observation time points,
making it challenging to estimate ρ0,ij if stocks i and j are not in the same
region. To address this issue, we introduce the following model structure. The
ith observations in region s is {yi,t+δs}T

t=1, and δs ∈ [0,1) is the market close time
for s ∈ {1, . . . ,S}. We assume that {(y1,t+δ1, . . . ,yp,t+δS)

′}t≥1 is stationary. Denote
the estimable correlation by ρh,ij for assets i and j that are located in regions

s,q ∈ {1, . . . ,S}, respectively, where the relative time difference h = |δs−δq|
d and the

window size of frequency d = T1−α for α ∈ (0,1]. Finally, we impose the following
Lipschitz condition for ρh,ij:

|ρh,ij −ρ0,ij| ≤ Chβ, (2.5)

for some β > 0 and a positive constant C. This model setup provides a mathe-
matical framework to understand a fraction of the global market. For example,
from the proposed model setup perspective, when using daily return data, ρh,ij does
not converge to the synchronized correlation ρ0,ij. In contrast, when using lower-
frequency data, ρh,ij converges to ρ0,ij. Thus, in practice, researchers often use
weekly or monthly returns instead of daily returns to mitigate the effect of different
trading hours based on daily transaction prices (Chib et al., 2006; Bekaert et al.,
2009; Hou et al., 2011; Fama and French, 2012; Ando and Bai, 2017). However,
this causes inefficiency. We discuss this inefficiency theoretically in Section 3.

In this article, for simplicity, we assume that stocks in the same continent have
the same observation time points; hence, regional membership is the continent.
Naturally, regional membership is known. In addition, we assume that the number
of regions, S, is fixed. Given the regional membership, we can stack the observa-
tions by country within each continent. Then, we define the “estimable” correlation
matrix as follows:

Rh =

⎡⎢⎢⎣
R0,11 Rh,12 · · · Rh,1S

Rh,21 R0,22 · · · Rh,2S

...
...

. . .
...

Rh,S1 Rh,S2 · · · R0,SS

⎤⎥⎥⎦, (2.6)
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LARGE GLOBAL VOLATILITY MATRIX ANALYSIS 5

where R0,ss = (ρ0,ij)ps×ps and Rh,sq = (ρh,ij)ps×pq for s,q ∈ {1, . . . ,S}. For simplicity,
we use the subscript notation h, which is a function of i, j, and d. We note that,
for s �= q, Rh,sq represents the spillover effect between continents s and q, and we
assume that its rank is k∗

sq. Moreover, without loss of generality, each rank is at most
equal to the number of global factors (i.e., k∗

sq ≤ k). We denote the corresponding

covariance matrix by �h = D
1
2
0 RhD

1
2
0 .

Let �s be the covariance matrix for continent s, which is a ps ×ps diagonal block
of �. We then decompose �s as follows:

�s = �s
g +�s

l +�s
u, for s = 1, . . . ,S, (2.7)

where �s
g is the global factor component, �s

l is the national factor component, and
�s

u is the idiosyncratic component. The equation (2.7) represents the multilevel
factor-based covariance matrix. Thus, when we consider markets that have the
same observation time, we can directly apply D-POET proposed by Choi and
Kim (2023) with all possible observations to estimate the covariance matrix �s.
However, when analyzing the global stock market, lower-frequency data are often
used to avoid the issue of varying trading hours, which causes inefficiency. To
handle this issue, we propose a S-POET procedure to estimate � as presented in
Algorithm 3.1. S-POET efficiently estimates global and local factor components
by utilizing all observations and considering the block structure of the local factors.

Remark 2.1. In high-frequency finance, the non-synchronization problem is
usually observed, and synchronization schemes have been developed (Aït-Sahalia
et al., 2010; Fan et al., 2012a; Hautsch et al., 2012). In a high-frequency setup,
the observation time gaps go to zero, and the synchronization scheme tries
to maximize the number of synchronized observations. In contrast, in a low-
frequency setup, a time gap is fixed, which makes it hard to study the low-
frequency non-synchronized observation problem. To handle this, we introduce
the relative time difference that goes to zero. Unlike the high-frequency case, as
the relative time shrinks to zero, the number of synchronized observations also
decreases. Thus, we need to choose appropriate subsampling frequency, which
is different from the high-frequency synchronization schemes. However, after
we choose appropriate subsampling frequency, the synchronized low-frequency
observation looks like the synchronized high-frequency data. Thus, as in Hautsch
et al. (2012), we can synchronize the data for each block and then employ D-POET.
This estimation procedure has the same convergence rate with D-POET using
lower-frequency data because the slowest convergence rate among the blocks
dominates. To overcome this, we propose S-POET that harnesses the multilevel
factor structure. Specifically, the low-frequency non-synchronization is due to the
regional difference that can account for the local factor in the multilevel factor
structure. Thus, S-POET uses this observation structural information to account
for the multilevel factor dynamics. In Section 3, we show a theoretical benefit of
S-POET.
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6 SUNG HOON CHOI AND DONGGYU KIM

Algorithm 1 Structured-POET estimation procedure

1: For each continent s, we compute the Double-POET estimator (Choi and Kim,
2023) using T observations and denote it as �̂

s,D ≡ �̂
s,D
g + �̂

s,D
l + �̂

s,D
u . The

specific procedure is described in Appendix S.2 in the online supplement.
Let �̃

D
g = diag(�̂

1,D
g , . . . ,�̂

S,D
g ), �̃

D
l = diag(�̂

1,D
l , . . . ,�̂

S,D
l ), and �̃

D
u =

diag(�̂
1,D
u , . . . ,�̂

S,D
u ), where we denote diag(A1, . . . ,An) with the diagonal

block entries as A1, . . . ,An. Then, we construct a block diagonal matrix

�̃
D = diag(�̂

1,D
, . . . ,�̂

S,D
) ≡ �̃

D
g + �̃

D
l + �̃

D
u . (2.8)

2: Given a sample covariance matrix using d-day return data, �̂h =
T−α

∑Tα

t=1(yt − ȳ)(yt − ȳ)′, we compute the sample correlation matrix R̂h =
D̂

− 1
2

h �̂hD̂
− 1

2
h , where D̂h is the diagonal matrix consisting of the diagonal

elements of �̂h. We denote the sample correlation matrix R̂h as the following
block matrix form:

R̂h = (ρ̂h,ij)p×p =

⎡⎢⎢⎢⎣
R̂h,11 R̂h,12 · · · R̂h,1S

R̂h,21 R̂h,22 · · · R̂h,2S
...

...
. . .

...
R̂h,S1 R̂h,S2 · · · R̂h,SS

⎤⎥⎥⎥⎦ .

For each (s,q)th off-diagonal partitioned block, we conduct the best rank-

k∗
sq matrix approximation to R̂h,sq such that �̂sq = ∑k∗

sq
i=1 ξ̂îuiŵ′

i, where

{̂ξi,̂ui,ŵi}ps∧pq
i=1 are the ordered singular values, left-singular and right-singular

vectors of R̂h,sq in decreasing order. Then, we define

�̂ =

⎡⎢⎢⎢⎣
0 �̂12 · · · �̂1S

�̂21 0 · · · �̂2S
...

...
. . .

...
�̂S1 �̂S2 · · · 0

⎤⎥⎥⎥⎦ .

3: Let δ̃1 ≥ δ̃2 ≥ ·· · ≥ δ̃k be the k largest eigenvalues of �̃g = (�̃
D
g + D̂

1
2 �̂D̂

1
2 )

and {̃vi}k
i=1 be their corresponding eigenvectors, where D̂ is the diagonal matrix

consisting of the diagonal elements of (2.8). The final estimator of � is then
defined as

�̂
S = Ṽg�̃gṼ

′
g + �̂

S
E , (2.9)

where �̃g = diag(̃δ1, . . . ,δ̃k), Ṽg = (̃v1, . . . ,̃vk), �̂
S
E = �̃

D
l + �̃

D
u , and �̃

D
l and

�̃
D
u are defined in (2.8).
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LARGE GLOBAL VOLATILITY MATRIX ANALYSIS 7

3. ASYMPTOTIC PROPERTIES

This section establishes the asymptotic properties of S-POET. Let λmin(A) and
λmax(A) denote the minimum and maximum eigenvalues of matrix A, respectively.
We denote by ‖A‖F, ‖A‖, ‖A‖1, and ‖A‖max the Frobenius norm, operator norm,
l1-norm, and elementwise norm, which are defined, respectively, as ‖A‖F =
tr1/2(A′A), ‖A‖2 = λ

1/2
max(A′A), ‖A‖1 = maxj

∑
i |aij|, and ‖A‖max = maxi,j |aij|.

When A is a vector, the maximum norm is denoted as ‖A‖∞ = maxi |ai|, and
both ‖A‖ and ‖A‖F are equal to the Euclidean norm. To investigate asymptotic
behaviors, we require the following technical assumption.

Assumption 3.1.

(i) cov(Gt) = Ik, cov(f l
t ) = Irl , and B′B and �l′�l are diagonal matrices for

l ∈ {1, . . . ,L}. In addition, Gt and f l
t are uncorrelated with each other.

(ii) For some constants c ∈ (0,1], a1 ∈ ( 3+2c
5 ,1], and a2 ∈ ( 3

5,1], all eigenvalues
of B′B/pa1 and �l′�l/pa2

l are strictly bigger than zero as p,pl → ∞, for
l ∈ {1, . . . ,L}. In addition, pl  pc, for each country l, and a1 ≥ ca2. There
is a constant C > 0 such that ‖B‖max ≤ C and ‖�‖max ≤ C.

(iii)There exist constants C1,C2 > 0 such that λmin(�u) > C1 and ‖�u‖1 ≤ C2mp.
(iv) Let d = T1−α for α ∈ (0,1). The sample correlation matrix using d-day return

data, R̂h = D̂
− 1

2
h �̂hD̂

− 1
2

h , where D̂h is the diagonal matrix consisting of the
diagonal elements of �̂h = T−α

∑Tα

t=1(yt − ȳ)(yt − ȳ)′, satisfies

‖R̂h −Rh‖max = OP(
√

logp/Tα).

(v) Denote � = (	ij)p×p. The sample covariance matrix using T observations,
�̂ = T−1 ∑T

t=1(yt − ȳ)(yt − ȳ)′ = (	̂ij)p×p, satisfies that, for s ∈ {1, . . . ,S},
max
{i,j}∈s

|	̂ij −	ij| = OP(
√

logp/T).

Remark 3.1. Assumption 3.1(i) is the conventional normalization condition in
the factor model literature. Assumption 3.1(ii) is known as the factor pervasiveness
assumption, which is closely related to the incoherence structure (Fan, Wang,
and Zhong, 2018b). This assumption can hold in macroeconomic and financial
applications and is used for analyzing low-rank matrices (Chamberlain and Roth-
schild, 1983; Stock and Watson, 2002; Bai, 2003; Lam and Yao, 2012; Fan et al.,
2013). Specifically, we allow the global and local factors to be weak by imposing
technical conditions on a1 and a2. Intuitively, their lower bounds imply that both
factors should have enough signals to satisfy the pervasive condition at different
levels (see Choi and Kim, 2023). Assumptions 3.1(iv)–(v) provide a high-level
sufficient condition for analyzing large matrices. The sample correlation matrix
with d-day return data serves as the initial estimator for Rh in Assumption 3.1(iv).
This condition is required to account for the spillover effect between continents.
Here, the correlation matrix is considered to overcome the amplified scale issue
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8 SUNG HOON CHOI AND DONGGYU KIM

of using the sample covariance matrix based on lower-frequency data (see Remark
S.1 in the Supplementary Material). On the other hand, we can impose the element-
wise convergence condition for each continent using the sample covariance matrix
based on all observations (Assumption 3.1(iv)). These element-wise convergence
rate conditions are easily satisfied under the sub-Gaussian condition and mixing
time dependency (Vershynin, 2010; Fan et al., 2018a, 2018b). It can also be
satisfied under heavy-tailed observations with bounded fourth moments (Fan et al.,
2018a; Fan, Wang, and Zhu, 2021).

The following theorem provides the convergence rates for S-POET under
various norms.

Theorem 3.1. Suppose that mp = o(pc(5a2−3)/2) and Assumption 3.1 holds. Let

ωT = p
5
2 (1−a1)+ 5

2 c(1−a2)
√

logp/T + 1/p
5
2 a1− 3

2 +c( 5
2 a2− 7

2 ) + mp/
√

pc(5a2−3). If

mpω
1−q
T = o(1), we have

‖�̂S −�‖max = OP

(
ωT +p5(1−a1)

(√
logp

Tα
+ 1

T(1−α)β

)
+ 1

p5a1−4−c

)
, (3.1)

‖(�̂S
)−1 −�−1‖ (3.2)

= OP

(
mpω

1−q
T +p

c
2 (1−a2)ωT +p

11
2 (1−a1)

(√
logp

Tα
+ 1

T(1−α)β

)
+ 1

p
11
2 a1− 9

2 −c

)
.

In addition, if a1 > 3
4 and a2 > 3

4 , we have

‖�̂S −�‖	 = OP

(
mpω

1−q
T +p

7
2 (1−a1)

(√ logp

Tα
+ 1

T(1−α)β

)+ 1

p
7
2 a1− 5

2 −c

+p
21
2 −10a1

( logp

Tα
+ 1

T2(1−α)β

)+ 1

p10a1− 17
2 −2c

+ m2
p

p5ca2−3c− 1
2

)
, (3.3)

where the relative Frobenius norm is ‖�̂ −�‖	 = p−1/2‖�−1/2�̂�−1/2 − Ip‖F.

Remark 3.2. ωT is related to the estimation of latent local factors and idiosyn-
cratic components using T observations. The additional terms

√
logp/Tα and

1/T(1−α)β are the cost to handle the non-synchronized trading hours, when esti-
mating latent global factors. In particular, the first term is coming from subsam-
pled observations, Tα = T/d, while the second term is the cost to estimate the
synchronized correlation matrix R0. The optimal choice of α is α∗ = 2β

1+2β
, which

simultaneously minimizes the convergence rates.
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LARGE GLOBAL VOLATILITY MATRIX ANALYSIS 9

For simplicity, consider the case of strong global and local factors (i.e., a1 = 1
and a2 = 1), q = 0, and mp = O(1). Then, the proposed S-POET method yields

‖�̂S −�‖	

= OP

(√
logp

Tα
+ 1

T(1−α)β
+ 1

p1−c +pc
+√

p
( logp

Tα
+ 1

T2(1−α)β

)
+ 1

p
3
2 −2c

+ 1

p2c− 1
2

)
,

which can be convergent as long as p = o(Tα) and 1
4 < c < 3

4 . Similar to
the D-POET estimator (Choi and Kim, 2023), the upper and lower bounds
of c are required to estimate both global and national factor components. To
compare S-POET and D-POET, we derive the convergence rate of D-POET and
demonstrate that the convergence rate of S-POET is faster than that of D-POET.
Details can be found in Section S.3 of the Supplementary Material.

4. SIMULATION STUDY

In this section, simulations are carried out to examine the finite sample perfor-
mance of S-POET. We generated non-synchronized observations as described in
Section S.6 of the Supplementary Material. In this simulation study, we fixed the
number of individuals p = 500. We set the number of continents S = 2 and the
number of local groups L = 20 such that each continent group included 10 local
groups (i.e., pl = 25). Also, we chose the numbers of factors as k = 3 and r = L×rl,
where rl = 2 for each local group l. Then, we considered two cases: (i) increasing
T from 100 to 600 in increments of 50 with the size of frequency d ∈ {1,5} (i.e.,
in-sample size is T/d) and (ii) increasing d from 1 to 10 with a fixed T = 600. For
each case, 200 simulations were conducted.

For comparison, the sample covariance matrix (SamCov), POET, D-POET, and
S-POET methods were employed to estimate �. The average estimation errors
were measured under ‖�̂ −�‖	 , ‖�̂ −�‖max, and ‖(�̂)−1 −�−1‖, where �̂ is
one of the covariance matrix estimators. We note that the lower-frequency data
are obtained by summing the observations with d-day window. Therefore, for the
SamCov estimator and the initial pilot estimator of POET and D-POET, we used
d−1�̂h (see Section S.3 of the Supplementary Material). For each estimation, we
determined the number of factors for D-POET and POET using the eigenvalue
ratio methods suggested by Choi and Kim (2023) and Ahn and Horenstein (2013),
with kmax = 10 and rl, max = 10, respectively. For S-POET, we chose the number of
ranks for each off-diagonal block by the largest singular value ratio. In addition,
we employed the soft thresholding scheme for the idiosyncratic covariance matrix
estimation.

Figures 1 and 2 depict the averages of estimation errors under different norms
against T and d, respectively. From Figures 1 and 2, we find that S-POET has
smaller estimation errors than the other methods. Specifically, in Figure 1, as T
increases, the estimation errors of S-POET and estimators with d = 5 decrease,
while the estimation errors of estimators with d = 1 do not decrease. This is
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Figure 1. Averages of ‖�̂ −�‖	 , ‖(�̂)−1 −�−1‖, and ‖�̂ −�‖max for SamCov, POET, D-POET,
and S-POET against T with fixed p = 500 and L = 20. Lines that exceed the upper limits of the y-axis
are excluded for the spectral norm error plot.
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Figure 2. Averages of ‖�̂ −�‖	 , ‖(�̂)−1 −�−1‖, and ‖�̂ −�‖max for SamCov, POET, D-POET,
and S-POET against d with fixed p = 500, T = 600, and L = 20. Lines that exceed the upper limits of
the y-axis are excluded for the spectral norm error plot.

because the estimators with d = 1 actually estimate �h not �0, and when d = 1, �h

is not close to �0. When comparing the estimation procedures with d = 5, S-POET
shows the best performance. This is because S-POET can accurately estimate the
local factors and idiosyncratic components by utilizing whole observations, while
other estimators utilize lower-frequency observations, which causes inefficiency.
Figure 2 indicates that the estimation errors of all methods dramatically drop
from d = 1 to d = 2, which is consistent with the results shown in Figure 1.
S-POET shows stable results and has the minimum estimation errors when d = 5.
In contrast, as the frequency size d increases, the estimation errors of SamCov,
POET, and D-POET tend to increase again due to the smaller sample sizes. That
is, the loss of information is severe only when using lower-frequency observations.
From this result, we can conjecture that for a fixed T, the estimation error resulting
from a small sample size with larger d is greater than the error resulting from
the effect of observation time gaps. However, S-POET incorporates all available
data to estimate the same regional covariance matrices, which helps enjoy the
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LARGE GLOBAL VOLATILITY MATRIX ANALYSIS 11

efficiency. It is worth noting that the estimation errors of POET seem constant
as d increases. This is because POET does not estimate the local covariance
matrix, which may dominate other estimation errors. The above results support
the theoretical findings established in Section 3.

5. EMPIRICAL STUDY

We conducted a minimum variance portfolio allocation study using S-POET with
global financial data. We obtained the daily transaction prices of international
stock markets over 15 countries by the total market capitalization. The whole
sample period is from 3 January 2017 to 30 December 2022. After excluding
stocks with missing returns and no variation, we picked 1,500 stocks based on the
market cap for each country. In particular, we selected 500 firms for each continent
and calculated both daily and weekly log-returns. The distribution of sample is
presented in Table S.1 in the Supplementary Material.

We computed the S-POET, D-POET, POET, and SamCov estimators for each
week. For S-POET, we used weekly or 2-day window returns to estimate the global
factor component and daily returns to estimate the local factor and idiosyncratic
components. We employed all daily, 2-day window, and weekly returns for the
other procedures. For all POET-type procedures, we estimated the idiosyncratic
volatility matrix using information of the 11 Global Industrial Classification
Standard (GICS) sectors (Fan et al., 2016; Ait-Sahalia and Xiu, 2017). Specifically,
we set the idiosyncratic components to zero for the different sectors, while
maintaining them for the same sector. For a robustness check, we used different
numbers of global factors, k, ranging from 1 to 5 for D-POET and from 1 to 20 for
POET. For D-POET, we chose the number of local factors using the eigenvalue
ratio method proposed by Ahn and Horenstein (2013) with rl, max = 10. In the
S-POET procedure, for each off-diagonal partitioned block, we used the best rank-
one approximation as suggested by the largest singular value gap method (see
Section S.1 of the Supplementary Material).

We considered the following constrained minimum variance portfolio allocation
problem (Fan, Zhang, and Yu, 2012b) to analyze the out-of-sample portfolio
allocation performance:

min
ω

ωT�̂ω, subject to ω�1 = 1, ‖ω‖1 ≤ c,

where 1 = (1, . . . ,1)� ∈ R
p, the gross exposure constraint c varies from 1 to

4, and �̂ is one of the volatility matrix estimators obtained from S-POET, D-
POET, POET, and SamCov. At the beginning of each week, we obtained optimal
portfolios based on each estimator using the past 12 months’ returns and held these
portfolios for 1 week. We then computed the square root of the realized volatility
using the weekly log-returns. Their averages were recorded for the out-of-sample
risk. We examined six out-of-sample periods: 2018, 2019, 2020, 2021, 2022, and
the full period from 2018 to 2022.
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Figure 3. Out-of-sample risks of the optimal portfolios constructed by the SamCov, POET, Double-
POET, and S-POET estimators for the global stock market.

Figure 3 illustrates the out-of-sample risks of the portfolios constructed by
SamCov, POET, D-POET, and S-POET under varying exposure constraints. To
draw readable plots, we presented the best performing results among the range
of k for each estimator type and each period. We used subscripts to explicitly
denote the frequency of the data used, with W (blue lines), 2D (purple lines),
and D (red lines) representing weekly, 2-day window, and daily data, respectively.
As shown in Figure 3, S-POET consistently outperforms the other estimators.
Specifically, for all periods except 2021, S-POETW reduces the minimum risks
by 4.7%–10.2% compared to the best estimator among the other methods. When
comparing the estimation procedures with the same frequency observations,
D-POET exhibits lower risks than POET and SamCov. Furthermore, D-POET,
POET, and SamCov estimators using daily data tend to have lower risks than those
using weekly data. This may be because, in practice, the impact of estimation inef-
ficiency resulting from the smaller sample size could be greater than that resulting
from the different observation time points. In addition, we also calculated the out-
of-sample Sharpe ratio and averaged return in Table S.2 in the Supplementary
Material. The results are based on selected estimators with minimum variances
for the full period from 2018 to 2022. The results also indicate that S-POETW

outperforms the other estimators. In summary, for portfolio allocation in the global
stock market, S-POET, which incorporates both daily and weekly returns under the
specific observation structure, outperforms POET and D-POET, which use only
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LARGE GLOBAL VOLATILITY MATRIX ANALYSIS 13

daily, 2-day window, or weekly returns. From this result, we can conjecture that
the estimation accuracy for the national factor and idiosyncratic components can be
improved using more frequent data (i.e., daily returns) for each continent group. In
addition, for global factor estimation, using less frequent data (i.e., weekly returns)
can manage the different trading hour problem.

6. CONCLUSION

In this article, we introduce a novel large global volatility matrix inference
procedure. The proposed S-POET method leverages observation structural infor-
mation from global financial markets based on latent global and national factor
models. We establish the asymptotic properties of S-POET and demonstrate its
efficiency in estimating a large global covariance matrix. In our empirical study,
S-POET shows the best performance in terms of portfolio allocation. This is
because S-POET accurately estimates the latent national factors and idiosyncratic
components using daily returns. Additionally, using weekly returns to estimate
the latent global factors can mitigate the effect of different trading hours across
markets.

On the estimation procedure, we simplify the inter-continent correlation on the
idiosyncratic term to reduce the estimation error because of the loss of information
issue. However, it is interesting and important to handle both estimation error and
model specification error, and thus, we leave this for a future study.

7. PROOFS

We establish (3.1) here and put the remaining proofs for (3.2) and (3.3) in Section
S.4 of the Supplementary Material. Let {δ̄i,v̄i}k

i=1 and {̃δi,̃vi}k
i=1 be the leading

eigenvalues and eigenvectors of BB′ and �̃g, respectively, where �̃g = (�̃
D
g +

D̂
1
2 �̂D̂

1
2 ).

Lemma 7.1. Under Assumption 3.1, for i ≤ k, we have

|̃δi − δ̄i| = OP

(
p

7
2 − 5

2 a1

(√
logp

Tα
+ 1

T(1−α)β

)
+ 1

p
5
2 a1− 5

2 −c

)
,

‖̃vi − v̄i‖∞ = OP

(
p5− 11

2 a1

(√
logp

Tα
+ 1

T(1−α)β

)
+ 1

p
11
2 a1−4−c

)
.

Proof. Let R̃0 = (ρ̃0,ij)p×p, where ρ̃0,ij = 0 if {i,j} ∈ s, and ρ̃0,ij = ρ0,ij if i ∈ s,
j ∈ q, and s �= q. By Assumption 3.1(iv), we have maxi |	̂ii −	ii| = OP(

√
logp/T).

Then, by Lemma S.3 in the Supplementary Material, we can easily obtain that

‖D̂
1
2 �̂D̂

1
2 −D

1
2 R̃0D

1
2 ‖max = OP

(
p

5
2 (1−a1)(

√
logp/Tα +1/T(1−α)β)

)
. (7.1)
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By using the fact that �̃g and �g are low-rank matrices, (S.1) and (7.1), we have

|̃δi − δ̄i| ≤ ‖�̃g −�g‖F

= OP

⎛⎝√
p2

S

(
p5(1−a1)

logp

T
+ 1

p5a1−3−2c

)+ p2(S −1)

S

(
p5(1−a1)(

logp

Tα
+ 1

T2(1−α)β
)
)⎞⎠

= OP

(
p
(

p
5
2 (1−a1)(

√
logp

Tα
+ 1

T(1−α)β
)+ 1

p
5
2 a1− 3

2 −c

))
.

By Theorem 1 of Fan et al. (2018b), (S.1), and (7.1), we have

‖̃vi − v̄i‖∞ ≤ Cp2(1−a1) ‖�̃g −�g‖∞
pa1

√
p

= OP

(
p5− 11

2 a1
(√ logp

Tα
+ 1

T(1−α)β

)+ 1

p
11
2 a1−4−c

)
.

�

Proof of Theorem 3.1. Consider (3.1). Let BB′ = Ṽ�̃Ṽ′, where �̃ =
diag(δ̄1, . . . ,δ̄k) and their corresponding leading k eigenvectors Ṽ = (v̄1, . . . ,v̄k).
By Lemma 7.1, we have

‖Ṽg�̃gṼ′
g −BB′‖max

≤ ‖Ṽg(�̃g − �̃)Ṽ′
g‖max +‖(Ṽg − Ṽ)�̃(Ṽg − Ṽ)′‖max +2‖Ṽ�̃(Ṽg − Ṽ)′‖max

= O(p−a1‖�̃g − �̃‖max +√
pa1‖Ṽg − Ṽ‖max)

= OP

(
p5(1−a1)

(√
logp

Tα
+ 1

T(1−α)β

)
+ 1

p5a1−4−c

)
.

In addition, by (S.2) and (S.3), we have ‖�̃D
l −��′‖max = OP(ωT) and ‖�̃D

u −
�u‖max = OP(ωT). Therefore, we have

‖�̂S −�‖max ≤ ‖Ṽg�̃gṼ′
g −BB′‖max +‖�̃D

l −��′‖max +‖�̃D
u −�u‖max

= OP

(
p5(1−a1)

(√
logp

Tα
+ 1

T(1−α)β

)
+ 1

p5a1−4−c
+ωT

)
. �
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