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Abstract. We introduce a sequent system which is Gentzen algebraisable with orthomodular
lattices as equivalent algebraic semantics, and therefore can be viewed as a calculus for
orthomodular quantum logic. Its sequents are pairs of non-associative structures, formed via a
structural connective whose algebraic interpretation is the Sasaki product on the left-hand side
and its De Morgan dual on the right-hand side. It is a substructural calculus, because some of
the standard structural sequent rules are restricted—by lifting all such restrictions, one recovers
a calculus for classical logic.

§1. Introduction. A few decades back, the realm of subclassical logics was frag-
mented into several research areas that were pursued, to a large extent, independently of
one another: intuitionistic logic, intermediate logics, fuzzy logics, relevant logics, linear
logic, and whatnot. In the 1990s, the emergence of the powerful unifying framework
of substructural logics [17, 29] provided a common ground where these logics could be
mutually compared and studied by recourse to the same concepts and methods.

At about the same time, a similar impulse towards unification was driving the
work of algebraists, who had long noticed conspicuous similarities between the
structure theories of classes of algebras introduced with very different motivations,
like lattice-ordered groups, Boolean algebras, Heyting algebras, or MV-algebras. The
notion of a residuated lattice, anticipated as early as in the 1930s by Ward and
Dilworth, but formulated and investigated in full generality only at the end of last
century by Constantine Tsinakis, Hiroakira Ono and other authors [6, 17], supplied
the appropriate generalisation subsuming all these examples. And it was not long
before these two processes were shown to be related via the Blok–Pigozzi theory of
algebraisation: all the main substructural logics were indeed proved to be algebraisable
with varieties of residuated lattices as equivalent algebraic semantics. As a matter of
fact, there is good reason to claim that this unification of the above-mentioned research
domains has been one of the most successful achievements of Abstract Algebraic Logic
(AAL) so far.

Some important logics and classes of algebras, however, are hardly pliant to this
approach. Orthomodular lattices and orthomodular quantum logic are cases in point.
Orthomodular lattices have, generally speaking, no pair of operations that behaves
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1178 DAVIDE FAZIO ET AL.

like a residuated pair. Correspondingly, candidate implications in orthomodular
quantum logic lack the minimal requirements that would entitle them to be regarded
as substructural conditionals [15, Chap. 8]. As a consequence, results, tools and
techniques that have proved successful in the area of residuated structures and
substructural logics have been by and large unavailable to quantum logicians.

However, the problem can be circumvented. Although orthomodular lattices make
no instance of residuated lattices, or even of residuated �-groupoids, Coecke and
Smets [12], building on previous work by Hardegree [22], showed that a pointed left-
residuated �-groupoid can be extracted from an ortholattice L iff L is orthomodular.
Later, Chajda and Länger [9] extended this result to a full-blown term equivalence
between orthomodular lattices and a variety of pointed left-residuated �-groupoids
(called orthomodular groupoids) having rather strong properties. This result prompted
some of the present authors to undertake an investigation of the structure theory of
pointed left-residuated �-groupoids, with an eye to building a general theory where
orthomodular lattices (in their incarnation as orthomodular groupoids) could find a
home alongside residuated lattices and other algebras of substructural logics. Some
preliminary results are contained in [30].

The present paper is a continuation of this programme. We intend to press the point
that orthomodular quantum logic is indeed a substructural logic and provide a sequent
calculus obtained from the calculus for classical logic by suitably restricting certain
structural rules (as well as modifying some operational rules). At this point, a word of
caution is in order. Two different logics have been marketed as “orthomodular quantum
logic” in the literature (see below). The one we have in mind is the 1-assertional logic
of the variety OML of orthomodular lattices, which is more closely associated with it
because it is regularly algebraisable with OML as its equivalent variety semantics. We
will show that our calculus is Gentzen algebraisable with orthomodular groupoids as
equivalent algebraic semantics, and in particular that its external consequence relation
(in the sense of Avron [1]) coincides with the 1-assertional logic of the variety OG of
orthomodular groupoids. Hence, in light of the term equivalence mentioned above, it
can be viewed as a calculus for the 1-assertional logic of OML.

The main differences with the existing calculi for orthomodular quantum logic
[13, 28] or for substructural logics are as follows.

(1) First of all, with respect to sequent systems for orthomodular logic, our
sequents are pairs of structures of different data-types. In the calculi of
Nishimura and Cutland-Gibbins, sequents are pairs consisting of sets of
formulas (or of a set of formulas and a formula), and the algebraic
interpretation of comma is lattice meet on the left-hand side and lattice join on
the right-hand side. On the contrary, we operate with certain non-associative
structures, and the algebraic interpretation of comma (here noted as a circle)
is the Sasaki product on the left-hand side and its De Morgan dual on the
right-hand side. This allows us to make the most of the fact that the Sasaki
product and the Sasaki hook form a left-residuated pair.

(2) Secondly, certain structural rules of the calculus, like contraction or weakening
to the left of the circle, can be applied unrestrictedly. Other structural
rules instead, like exchange, associativity or weakening to the right of the
circle, can only be applied when the algebraic interpretations of the involved
structures commute in the sense of the algebraic theory of orthomodular lattices
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(see below). A sequent calculus for classical logic, naturally enough, can be
obtained by lifting all these restrictions.

(3) Finally, with respect to substructural calculi, some nontrivial modifications
in the usual operational rules for the connectives are necessary, because the
standard formulations are tailored to classes of algebras whose underlying
groupoid operation and order relation are compatible and thus form a po-
groupoid. This is not the case in OG, where the Sasaki product obeys
monotonicity from one coordinate, but not generally the other, w.r.t. the lattice
ordering.

Rigorously speaking, our calculus is not a display calculus in the same way as those
examined, e.g., in [4, chap. 6]. Still, it retains at least a flavour of Belnap’s Display
Logic. In particular, the rule (�) below, which allows one to move structures back
and forth to either side of the sequent arrow, is crucial in yielding cut-free proofs of
particular sequents.

Whether this calculus enjoys cut elimination is left as an open problem. Were it
cut-free, it would still fail the subformula property, but the other rules that violate
the property are harmless for analytic proof search. Even if a positive answer to this
problem would not automatically guarantee a decision procedure for the calculus—
and thereby an answer to the long-standing open problem of the decidability of the
equational theory of orthomodular lattices—it would certainly yield important insights
into the issue.

The paper is structured as follows. Although we presuppose that the reader has
a working knowledge of universal algebra and AAL, and a certain familiarity
with residuated structures and substructural logics, in Section 2 we go over some
background notions concerning Gentzen systems, non-associative substructural logics,
orthomodular lattices, and pointed left-residuated �-groupoids, in order to make this
paper reasonably self-contained. In Section 3 we present our calculus OGC and its basic
properties. In Section 4 we show that it is Gentzen algebraisable with OG as equivalent
algebraic semantics. In Section 5 we briefly hint at the modifications needed to obtain
from OGC a calculus for pointed left-residuated �-groupoids. Finally, in Section 6 we
conclude with some final remarks and open problems.

§2. Preliminaries.

2.1. Gentzen systems and Gentzen algebraisability. The notion of a Gentzen
calculus we consider here is more general than the one developed in [16, Definition 1.18
and Sec. 5.6], while it is somewhat closer to the one in [31]. The same holds for the
relation of Gentzen algebraisability, which we view as an instance of the relation of
equivalence between (abstract) consequence relations investigated by Blok and Jónsson
[5] and Galatos and Tsinakis [19]. We will refrain from giving all the formal details,
referring the reader to these papers for any undefined concept. This will involve a
certain amount of handwaving, in the interests of brevity.

Generally speaking, a (sentential) Gentzen calculus G (or sequent calculus) is a formal
deductive system composed of a collection of inference rules, applying which it is
possible to derive sequents from other sequents. A sequent is a pair (X,Y ), often
evocatively written with a separator ⇒, e.g., X ⇒ Y , where the structures X,Y are
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of some specified data-type (e.g., sets, multisets, etc.) of formulas over some fixed
sentential language L. Inference rules are usually distinguished into three kinds:

• Axiom: a rule with no premises, whose consequent is called an initial sequent.
• Structural: a rule which acts solely on the form of the structures involved in the

sequents (i.e., ignoring the shape of the formulas).
• Logical: a rule that acts on the shape of formulas (usually by introducing a

symbol from L in the conclusion).

An inference rule is typically presented schematically via a meta-inference rule, where
it is understood that each substitution-instance of that scheme is an inference rule in
the system G.

Given a set of sequents S ∪ {s}, a proof of s from S inG is a finite rooted labelled
tree D whose nodes are labelled by sequents, such that the root of D is labelled by
s, the sequents labelling each internal node and its children-nodes form an instance
of some (meta-)inference rule from G, and each leaf is labelled by an initial sequent
or a member of S. For a Gentzen system G, there is an associated action-invariant
consequence relation �G in the sense of the general theory by Blok and Jónsson [5] and
Galatos and Tsinakis [19], often called the derivability relation forG, such that S �G s
if and only if there is a proof of s from S in G. A sequent is said to be provable inG if
�G s , i.e., there is a proof of s from the empty set in G.

Let K be a class of algebras in the same language L. The equational consequence
relation forK is the relation |=K such that for every set of L-equations E ∪ {ϕ ≈ �},
E |=K ϕ ≈ � if and only if for every algebra A ∈ K and every valuation h on A, i.e.,
any homomorphism from the algebra of L-formulas to A, if h(�) = h(�) for every
� ≈ � ∈ E then h(ϕ) = h(�).

In essence, a Gentzen system G is said to be algebraisable if there exists a class of
algebras K for which the derivability relation of G and the equational consequence
relation for K are Blok–Jónsson equivalent, in which case K is called an equivalent
algebraic semantics for G (an equivalent variety semantics, if K is a variety). More
precisely, and following the conventions of Raftery [31] (as opposed to [16]), G is
algebraisable, with an equivalent algebraic semantics K, if there exists a pair of
transformers (�, �), both commuting with substitutions, such that for any set of sequents
S ∪ {s} and for all L-formulas ϕ,�:

S �G s ⇐⇒ �[S] |=K �(s) and ϕ ≈ ��⊧K�[�(ϕ ≈ �)].

2.2. Non-associative substructural logics. As explained in the introduction, in this
paper we want to recast orthomodular quantum logic as a non-associative substructural
logic. The study of these logics is not unprecedented. Less deviant forms of non-
associative substructural logics—with two residuals and a monotonic order—have been
considered in the literature. An exhaustive list would be long, but let us mention at least
[11, 18] and papers in the tradition of Lambek calculus [8, 27]. Further information
on substructural logics and residuated structures can be found in [17, 26].

The sequent calculus GL, as developed by Galatos and Ono [18], can be seen as the
basis for substructural logics lacking associativity of the fusion connective and of its
structural counterpart, comma. The system GL is essentially obtained by relaxing from
the full Lambek calculus FL the data-type of the structures within the sequents from
lists to binary trees.
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We recall that a pointed residuated unital �-groupoid is an algebra (G,∧,∨, ·, \, /, 0, 1)
that has a lattice reduct (G,∧,∨), a unital groupoid reduct (G, ·, 1), and further satisfies
the residuation law: for all a, b, c ∈ G ,

b ≤ a\c ⇐⇒ a · b ≤ c ⇐⇒ a ≤ c/b,

where ≤ is the induced lattice-order, with no assumptions placed upon the constant
0. The residuation quasiequations can be replaced by appropriate equations, hence
pointed residuated unital �-groupoids form a varietyPRG. Just as axiomatic extensions
of FL correspond to subvarieties of pointed residuated lattices, axiomatic extensions of
GL correspond to subvarieties of residuated lattice-ordered groupoids; more precisely,
the variety of pointed residuated unital �-groupoids is an equivalent algebraic semantics
for GL.

2.3. Orthomodular lattices and orthomodular quantum logic. Orthomodular lattices
are the algebras at the centre of the standard Birkhoff–von Neumann approach
to quantum logic (for a readable survey of their algebraic theory, see [7]). In
this framework, quantum events (or properties) are mathematically represented by
projection operators on a complex separable Hilbert space. If H is a Hilbert space and
Π(H) is the set of all projection operators on H, the structure

(Π(H),∧,∨, ′, 0, 1),

where 0 (respectively, 1) is the projection onto the one-element (respectively, total)
subspace, (PX )′ is the projection onto the subspace X⊥ orthogonal to X, PX ∧ PY =
PX∩Y , and PX ∨ PY = P(X∪Y )⊥⊥ , is a canonical example of an orthomodular lattice,
a structure defined below.

An ortholattice is an algebra L = (L,∧,∨, ′, 0, 1), where the reduct (L,∧,∨, 0, 1) is
a bounded lattice, with 0 (1) the least (greatest) element, and for which the unary
operation ′ is an ortho-complementation, namely an antitone involution such that the
identity x ∧ x′ ≈ 0 holds in L. An ortholattice L is an orthomodular lattice if it satisfies
the orthomodular law:

x ≤ y =⇒ y ≈ (y ∧ x′) ∨ x,

where ≤ is the induced lattice-order, or equivalently the identity x ∨ ((x ∨ y) ∧ x′) ≈
x ∨ y. The class of orthomodular lattices thus forms a variety, denoted by OML. Of
particular interest for this work are the following term operations which may be defined
in any ortholattice:

x · y := (x ∨ y′) ∧ y (Sasaki product),
y/x := (y ∧ x) ∨ x′ (Sasaki hook),
x + y := (x ∧ y′) ∨ y (Sasaki sum).

We note that, in general, the Sasaki product and sum are neither associative nor
commutative in ortho(modular) lattices.

A certain relation on orthomodular lattices, the commuting relation, is of crucial
importance for this paper. Given an orthomodular lattice L and a, b ∈ L, a is said
to commute with b in case (a ∧ b) ∨ (a′ ∧ b) = b. We flag some known facts about
the commuting relation that will be put to good use hereafter (items (3) and (4) are
known as Kröger’s Lemma [3, Theorem 6.1] and the Gudder–Schelp Theorem [2, 21],
respectively).
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Lemma 1. Let L be an orthomodular lattice, and let a, b, c ∈ L.

(1) The commuting relation is reflexive and symmetric.
(2) If a commutes with b and with c, then it commutes with b′, b ∨ c and b ∧ c.
(3) If b commutes with c, then (a · b) · c = a · (b · c) and b · c = c · b.
(4) If b commutes with c and a commutes with b ∧ c, then a ∨ b′ commutes with c.
(5) a commutes with b if and only if a · b ≤ a.

The next celebrated result is one of the most useful tools for practitioners of the
field:

Theorem 2 (Foulis–Holland [7, Proposition 2.8]). If L is an orthomodular lattice and
a, b, c ∈ L are such that a commutes both with b and with c, then the set {a, b, c} generates
a distributive sublattice of L.

Two different logics can be, and have indeed been, associated with OML: its
1-assertional logic L1

OML
(see e.g., [14, 24]) and its logic of order L≤

OML
(see e.g.,

[15, 20, 23]).
In full, L1

OML
is the logic in the language of OML whose consequence relation is

defined as follows for any set of formulas Γ ∪ {ϕ}:

Γ �L1
OML

ϕ iff {� ≈ 1 : � ∈ Γ} |=OML ϕ ≈ 1.

This logic is regularly algebraisable with OML as equivalent algebraic semantics. The
logic L≤

OML
has the same language but its consequence relation is defined as follows for

any finite set of formulas Γ ∪ {ϕ}:

Γ �
L≤
OML

ϕ iff for any A ∈ OML, any b ∈ A and any valuation h to A,

if b ≤ h(�) for all � ∈ Γ, then b ≤ h(ϕ).

This logic is slightly less well-behaved from the point of view of AAL, although it
fits in a number of frameworks that have been intensively studied (logics of order,
selfextensional logics with conjunction, semilattice-based logics with an algebraisable
assertional companion: see [16, Sec. 7.2]). From general facts in these theories we can
deduce that it is protoalgebraic but not even equivalential, let alone algebraisable, and
yet that the class of algebra reducts of its reduced matrix models is again OML.

The existing calculi for “orthomodular quantum logic”(Nishimura [28] or Cutland
and Gibbins [13]) can be considered, in a weak sense, as proof systems for either of
these logics. Indeed, a sequent Γ ⇒ ϕ, where Γ is a finite set of formulas, is a theorem
of Nishimura’s calculus just in case Γ �

L≤
OML

ϕ; on the other hand ⇒ ϕ is derivable

from the set {⇒ � : � ∈ Γ} just in case Γ �L1
OML

ϕ (and similar reflections hold for the

calculus by Cutland and Gibbins). In a stronger sense, however, they might just as well
be proof systems for neither, since none of such calculi has been proved to be Gentzen
algebraisable with OML as equivalent algebraic semantics.

2.4. Pointed left-residuated �-groupoids. In light of the left residuation property
observed in orthomodular groupoids, a theory of left-residuated lattice-ordered
groupoids has been developed [30] with the aim of placing the theory of substructural
logics and quantum logics within a common framework. A pointed left-residuated
�-groupoid is an algebra L = (L,∧,∨, ·, /, 0, 1) that has a lattice reduct (L,∧,∨),
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a groupoid reduct (L, ·, 1) with a left-unit 1, and furthermore satsifies the left-
residuation law1: for all a, b, c ∈ L,

a · b ≤ c ⇐⇒ a ≤ c/b,
where ≤ is the induced lattice-order.

In [30] it is shown that the class of all pointed left-residuated �-groupoids forms a
variety, denoted by PLRG. As with pointed residuated �-groupoids, 0 is an arbitrary
constant for which no assumptions are placed. However, we will make use of the
term-defined operation ϕ′ := 0/ϕ, where ϕ is any formula in the language of pointed
left-residuated �-groupoids.2 We caution the reader that, in general, this operation is
neither involutive nor antitone in PLRG.

An orthomodular groupoid is a pointed left-residuated �-groupoid that satisfies the
following identities:

x′′ ≈ x (involutive),
(x ∨ y)′ ≤ x′ (antitone),
x · (x ∨ y) ≈ x (strongly idempotent),

x · y ≈ (x ∨ y′) ∧ y (Sasakian),
x/y ≈ (x ∧ y) ∨ y′ (/-Sasakian).

As is such, the class of orthomodular groupoids forms a variety, denoted by OG. In
[9], it is shown that orthomodular groupoids are term equivalent to orthomodular
lattices. The proposition below shows that many of the above identities can be
equivalently replaced by the identity (strongly involutive): y/x ≈ (y′ · x)′.

Proposition 3 [30]. A pointed left-residuated �-groupoid is an orthomodular groupoid
if and only if it is strongly idempotent and strongly involutive.

Remark 4. The following quasi-identities do not generally hold in OG:

x ≤ w & y ≤ z =⇒ x · y ≤ w · z,
x ≤ w & y ≤ z =⇒ (y/w) · x ≤ z.

The above remark draws a stark contrast in PLRG with PRG, whose groupoid
operation · is isotone in both its coordinates, and therefore the two quasi-identities
above are satisfied.

§3. OGC: a calculus for orthomodular groupoids.

3.1. The morphology of the calculus. Essentially following [18], we first specify in
detail the morphological structure of the calculus we are going to present.

Let L be the language (2, 2, 2, 2, 0, 0) with connectives ∧,∨, ·, /, 0, 1, and let FmL be
the formula L-algebra with countably many generators inVarL. Let us denote by Fm∼

L
the set {ϕ∼ : ϕ ∈ FmL} and consider Fm�L = FmL ∪ Fm∼

L . We refer by G(Fm�L) =
(G(Fm�L), ◦, 	) to the unital groupoid freely generated by Fm�L ∪ {	}, where 	 is a new
constant.

1 Sometimes referred to as right-residuation law; for this reason left-residuated �-groupoids
are occasionally called right-residuated as well [10].

2 We note that in the context of residuated �-groupoids, 0/ϕ is usually denoted by – ϕ, while
ϕ\0 is typically denoted by ∼ϕ.
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Now, consider a new symbol . The setG(Fm�L)α is defined inductively as follows:

• ∈ G(Fm�L)α and
• a ∈ G(Fm�L)α and x ∈ G(Fm�L) entail that a ◦ x, x ◦ a ∈ G(Fm�L)α .

Given u ∈ G(Fm�L)α and x ∈ G(Fm�L)α ∪G(Fm�L), we will denote by u[x] the word
obtained by replacing the (unique!) occurrence of in u by x. For example, if u =
(a ◦ (b ◦ )), v = (a ◦ ), and x = (a ◦ b), then u[v] = (a ◦ (b ◦ (a ◦ ))) and u[x] =
(a ◦ (b ◦ (a ◦ b))). To make the operation more explicit we allow ourselves to denote
u[x] by u � x. The elements of G(Fm�L)α are called G-contexts or simply contexts.

A sequent is any pair inG(Fm�L) ×G(Fm�L). Following the customary conventions,
we will denote any sequent (X,Y ) by X ⇒ Y . The set of all such sequents is denoted
by Seq(L).

The calculi that follow will have infinitely many rules of inference organized in
meta-inference rules, or (metarules). In order to formally define metarules, we need
three pairwise disjoint sets of meta-variables: A (of sort SA), G (of sort SG with
SA ⊆ SG) and U (of sort SU ). In our system, we will have A = FmL(F ), where F is
a set of propositional variables distinct from VarL above. A meta-Sasaki word will
be any term of type SG built up by means of the following operations: ∼ : SA → SG ,
◦ : SG × SG → SG , � : SU × SG → SG , and the constant 	 of sort SG . For any u,X
of type SU resp. SG , we set u � X = u[X ]. A meta-sequent (X,Y ) is any pair such
that X and Y are meta-Sasaki words. Meta-rules are pairs (S, s) such that S ∪ {s}
is a set of meta-sequents. An inference rule is said to be an instance of a metarule,
if all metavariables from A, G and U are instantiated to elements of FmL, G(Fm�L)
and G(Fm�L)α , respectively, metasequent operators 	, ◦ and � are replaced by the
corresponding sequent operators, and for any instance ϕ of a metavariable α ∈ A, α∼

is mapped to ϕ∼ ∈ Fm∼
L .

For each formula ϕ ∈ FmL, by ϕ′ we abbreviate the formula 0/ϕ. We define

inductively the following maps (·)� : G
(

Fm�L
)
→ G

(
Fm�L

)
, (·)Π : G

(
Fm�L

)
→ FmL

and (·)Σ : G
(

Fm�L
)
→ FmL:

	� = 	 ϕ� = ϕ∼ (ϕ∼)� = ϕ (X ◦ Y )� = X� ◦ Y�,

	Π = 1 ϕΠ = ϕ (ϕ∼)Π = ϕ′ (X ◦ Y )Π = XΠ · YΠ,

	Σ = 0 ϕΣ = ϕ (ϕ∼)Σ = ϕ′ (X ◦ Y )Σ =
((
X Σ

)′ · (Y Σ
)′)′
.

3.2. The calculus and its heuristic explanation. The inference rules for the calculus
OGC are given in Figure 1, where we use X ⇔ Y as an abbreviation for the conjunction
of sequents X ⇒ YΠ and Y ⇒ XΠ, respectively called the ⇒- and ⇐-sequent,3 and
the double horizontal lines in (�) to indicate that it is a bidirectional rule. While the
letters α, �, ... can be instantiated only by members of FmL, the letters a, b, ... can be
instantiated by any members of Fm�L.

3 We caution the reader that the abbreviation X ⇔ Y is not equivalent to the conjunction of
X ⇒ Y and Y ⇒ X .
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Axioms:

α ⇒ α (id) 0 ⇒ 	 (0l)
	 ⇒ 1

(1r)

Structural Rules:
X ⇔ a u[a] ⇒ Y
u[X ] ⇒ Y (cut)

u[X ◦ X ] ⇒ Y
u[X ] ⇒ Y (conl)

a ◦ X ⇒ a u[a ◦ X ] ⇒ Y
u[X ◦ a] ⇒ Y (el1)

Z ◦ X ⇒ V ◦ Y
(U ◦ Z) ◦ X ⇒ (W ◦ V ) ◦ Y

(w)
X ◦ Z ⇒ Y
X ⇒ Y ◦ Z�

(�) a ◦ X ⇒ a u[X ◦ a] ⇒ Y
u[a ◦ X ] ⇒ Y (el2)

Operational Rules:

α ◦ X ⇒ Y
(α ∧ �) ◦ X ⇒ Y

(∧l1)
� ◦ X ⇒ Y

(α ∧ �) ◦ X ⇒ Y
(∧l2)

X ⇒ α ◦ Y X ⇒ � ◦ Y
X ⇒ (α ∧ �) ◦ Y

(∧r)

α ◦ X ⇒ Y � ◦ X ⇒ Y
(α ∨ �) ◦ X ⇒ Y

(∨l)
X ⇒ α ◦ Y

X ⇒ (α ∨ �) ◦ Y
(∨r1)

X ⇒ � ◦ Y
X ⇒ (α ∨ �) ◦ Y

(∨r2)

u[α ◦ �] ⇒ Y
u[α · �] ⇒ Y (·l)

X ⇒ α Y ⇔ �
X ◦ Y ⇒ α · � (·r)

u[	] ⇒ Y
u[1] ⇒ Y (1l)

X ⇔ α � ⇒ Z
�/α ◦ X ⇒ Z

(/l)
X ◦ α ⇒ �
X ⇒ �/α

(/r)
X ⇒ u[	]
X ⇒ u[0]

(0r)

Fig. 1. The calculus OGC.

In the interest of allowing the reader to intuitively digest the inference rules presented,
a discussion about the intended (algebraic) interpretation is in order. As will be seen in
Section 4, the intended interpretation of a sequentX ⇒ Y will be the inequalityXΠ ≤
Y Σ, i.e., the intended meaning of⇒ is≤, structures X to the left of⇒ represent (Sasaki)
products while structures Y on the right are (Sasaki) sums. With this interpretation in
mind, we can now elucidate and motivate our choice of presentation.

On the one hand, this interpretation makes the genesis of the rule (�) clear: in an
orthomodular lattice A we have the following residuation law(s) relating the Sasaki
operations with the lattice order:

x · z ≤ y ⇐⇒ x ≤ y/z ≈ y + z ′

for all x, y, z ∈ A. Similarly, the conditional exchange rules (el1) and (el2), where active
structures in the right-hand premiss can be swapped if the left-hand premiss is also
available, corresponds to the demand that the algebraic interpretations of a and X
commute (see Lemma 1(5)); i.e., for all a, x ∈ A

a · x ≤ a ⇐⇒ a commutes with x ⇐⇒ x commutes with a ⇐⇒ x · a ≤ x,

or in other words, a commutes with x if and only if a · x = a ∧ x = x · a.
On the other hand, the interpretation also illuminates the peculiarities of the

remaining structural and operational rules based mainly around Remark 4; namely
the failure of the Sasaki operations to preserve (or in the case of hook, reverse) order
in the right-coordinate. This immediately explains, for example, the particular left-
associated versions of familiar inferences rules like the weakening rule (w) as well
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as those rules for the lattice connectives ∧ and ∨. Furthermore, this motivates the
appearance of ⇔, whose intended interpretation corresponds to ≈, in the rules (·r),
(/l), and (cut), which mirror the fact that in OG (or even PLRG) only the following
quasi-identities generally hold:

x ≤ a & y ≈ b =⇒ x · y ≤ a · b,
x ≈ a & b ≤ z =⇒ (b/a) · x ≤ z. (1)

Clearly, the 3-premiss rules (·r) and (/l) violate the subformula property, since e.g.,
the formula YΠ disappears in the conclusion of (·r). However, the search space of all
possible premisses of applications of both rules is always finite.

It is worth noting that need for ⇔ in the cut-rule, for example, can be alleviated with
a related, but syntactically different, version of this calculus. Namely, let OGC′ be the
calculus obtained from: replacing the binary operation / with a unary operation ′ in
L; replacing the rule (cut) by (cut1) [see Lemma 13]; and replacing (/l) and (/r) by
(′l) and (′r) [see below Lemma 7]. Due to the generic nature of (′l) and (′r), it is not
difficult to prove the following claims [see Section 4.2]:

• OGC′ satisfies (cut).
• OGC′ satisfies the rules (/l) and (/r), where ϕ/� := (ϕ′ · �)′.

In fact, following an almost identical argument as seen in Section 4, one can show that
OGC′ is algebraisable with a variety of algebras in the signature 〈∧,∨, ·, ′, 0, 1〉 that is
term-equivalent to OG.

However, ridding entirely the appearance of ⇔ does not seem possible, as it is
necessary for proving completeness [see Lemma 17], for instance, with the (Sasaki)
product operation. It is for this reason, as well as our intention of providing a syntactic
calculus for orthomodular groupoids, that we use this particular presentation.

3.3. Elementary properties of OGC. For the sake of readability, in what follows
we will write xuv as an abbreviation for (xu)v , where u, v ∈ {′,∼, �,Π,Σ} and x is a
(meta-) variable of the proper sort. Also, given a G-context u, we inductively define the
G-context u� as follows: � = ; (v ◦ w)� = v� ◦ w� for v,w ∈ G(Fm�L)α ∪G(Fm�L).
Hence, u[X ]� = u� [X� ] for any structure X.

Also, for the sake of readability, some OGC-derivations contain informal uses of rules
not proper to the calculus; e.g.,

s ′

s [=] &
s1 ··· sn
s0

[�],

where [=] means syntactically equal, while [�] is shorthand for the sub-derivation in
OGC resulting from some lemma, derived rule, or assumption �.

Lemma 5. X�� = X , and consequently X ⇒ Y ◦ Z ��OGC X ◦ Z� ⇒ Y .

Proof. The first claim easily follows by induction on the complexity of X by the
definition of �. Using this and the fact that (�) is a bidirectional rule, we obtain the
second claim.

In light of the above lemma, we will freely use the fact that X�� = X without
reference, and we will abuse notation and write (�) to represent X ⇒ Y ◦ Z ��OGC

X ◦ Z� ⇒ Y .

Lemma 6. X ⇒ Y �OGC Y
� ⇒ X� . Consequently, �OGC a ⇒ a.
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Proof. Observe:

X ⇒ Y
	 ⇒ Y ◦ X�

(�)

Y� ◦ X ⇒ 	
(�)

Y� ⇒ X�
(�)
.

The second claim follows from (id) for a ∈ FmL, and also the above for a ∈ Fm∼
L .

Lemma 7. �OGC ϕ
∼ ⇔ ϕ′ and �OGC ϕ ⇔ ϕ′′. Furthermore,

u[ϕ′] ⇒ X ��OGC u[ϕ∼] ⇒ X and u[ϕ] ⇒ X ��OGC u[ϕ′′] ⇒ X,

X ⇒ u[ϕ′] ��OGC X ⇒ u[ϕ∼] and X ⇒ u[ϕ] ��OGC X ⇒ u[ϕ′′].

Proof. Recallϕ′ := 0/ϕ. First, we observe [�]:�OGC ϕ
∼ ⇒ ϕ′ and [�′]:�OGC ϕ

′ ⇒ ϕ∼

ϕ∼ ⇒ ϕ∼ [Lem.6]

ϕ∼ ◦ ϕ ⇒ 	 (�)

ϕ∼ ◦ ϕ ⇒ 0
(0r)

ϕ∼ ⇒ 0/ϕ
(/r)

ϕ ⇔ ϕ (id) 0 ⇒ 	 (0l)

0/ϕ ◦ ϕ ⇒ 	
(/l)

0/ϕ ⇒ ϕ∼ (�)
.

Hence [�1]: �OGC ϕ
∼ ⇔ ϕ′ by [�] and that fact that �OGC ϕ

′ ⇒ ϕ∼Π is an instance of
(id) since ϕ∼Π = ϕ′ by definition of the operator Π. For [�2]: �OGC ϕ ⇔ ϕ′′, observe:

ϕ′ ⇒ ϕ∼ [�′]

ϕ ⇒ ϕ′∼ [Lem.6]

ϕ ◦ ϕ′ ⇒ 	
(�)

ϕ ◦ ϕ′ ⇒ 0
(0r)

ϕ ⇒ ϕ′′ (/r)

ϕ∼ ⇔ ϕ′ [�1]
0 ⇒ 	 (0l)

0/ϕ′ ◦ ϕ∼ ⇒ 	
(/l)

ϕ′′ ◦ ϕ∼ ⇒ 	
[=]

ϕ′′ ⇒ ϕ
(�)

.

Thus, for either {a, b} = {ϕ′, ϕ∼} or {a, b} = {ϕ,ϕ′′}, we have [�3] :�OGC a ⇔ b and
hence:

a ⇔ b
[�3]

u[b] ⇒ X
u[a] ⇒ X (cut)

.

Whence u[ϕ′] ⇒ X ��OGC u[ϕ∼] ⇒ X and u[ϕ] ⇒ X ��OGC u[ϕ′′] ⇒ X . Lastly, we
observe:

X ⇒ u[ϕ′] ��OGC X ◦ u[ϕ′]� ⇒ 	
= X ◦ u� [ϕ′∼] ⇒ 	

��OGC X ◦ u� [ϕ′′] ⇒ 	
��OGC X ◦ u� [ϕ] ⇒ 	
��OGC X ⇒ u[ϕ∼]

and

X ⇒ u[ϕ] ��OGC X ◦ u� [ϕ∼] ⇒ 	
��OGC X ◦ u� [ϕ′] ⇒ 	
��OGC X ◦ u� [ϕ′′′] ⇒ 	
��OGC X ◦ u� [ϕ′′∼] ⇒ 	
��OGC X ⇒ u[ϕ′′]

.

As a consequence of the lemma above, the following rules are derivable in OGC, for
any ϕ ∈ FmL, X,Y ∈ G(Fm�L), and u ∈ G(Fm�L)α :

u[ϕ∼] ⇒ Y
u[ϕ′] ⇒ Y

(′l)
X ⇒ u[ϕ∼]
X ⇒ u[ϕ′]

(′r)
.
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Lemma 8. u [X ] ⇒ Y ��OGC u
[
XΠ

]
⇒ Y . Consequently, �OGC X ⇒ XΠ.

Proof. We proceed by induction on the construction of X. For X = 	, then the
�-direction is the rule (1l), while the �-direction is derived below:

	 ⇒ 1
(1r)

1 ⇒ 1
(id)

1 ⇒ 	Π
[=]

u[1] ⇒ Y
u[	] ⇒ Y (cut)

.

For X = ϕ, then X = XΠ and there is nothing to prove. For X = ϕ∼, then XΠ = ϕ′,
and the result follows from Lemma 7.

For the inductive step, assume the claim (IH) holds for words of complexity strictly
less than that of X, and suppose X = Z ◦ V . For the �-direction, observe:

u[Z ◦ V ] ⇒ Y
u[ZΠ ◦ VΠ] ⇒ Y

[IH]

u[ZΠ · VΠ] ⇒ Y
(·l)

u[(Z ◦ V )Π] ⇒ Y
[=]
.

And for the �-direction:

ZΠ ⇒ ZΠ
(id)

Z ⇒ ZΠ
[IH]

VΠ ⇔ VΠ
(id)

V ⇔ VΠ
[IH]

Z ◦ V ⇒ ZΠ · VΠ
(·r)

ZΠ · VΠ ⇒ ZΠ · VΠ
(id)

ZΠ · VΠ ⇒ (Z ◦ V )Π
[=]

u[(Z ◦ V )Π] ⇒ Y
u[ZΠ · VΠ] ⇒ Y

[=]

u[Z ◦ V ] ⇒ Y (cut)
.

Lemma 9. �OGC X
�Π∼ ⇔ X Σ and �OGC X

�Π ⇔ X Σ∼.

Proof. For fixed X ∈ G(Fm�L), call the second claim (�X ). Clearly, if the first claim
holds for X then (�X ) follows by the derivations below:

X�Π∼ ⇒ X Σ
[Claim 1]

X Σ∼ ⇒ X�Π
[Lem.6]

X Σ ⇒ X�Π′ [Claim 1]

X Σ ⇒ X�Π∼
[Lem.7]

X�Π ⇒ X Σ∼
[Lem.6]

X�Π ⇒ X Σ′ (′r)
.

We now prove the first claim by induction on the complexity of X. LetX = 	. By the
definitions of the operators, clearly 	�Π∼ = 	Π∼ = 1∼, while 	Σ = 0. Below we observe
the derivation for the ⇒-sequent on the left and the ⇐-sequent on the right:

	 ⇒ 1
(1r)

1∼ ⇒ 	 (�)

1∼ ⇒ 0
(0r)

0 ⇒ 	 (0l)

0 ⇒ 1′
(w)
.

ForX = ϕ, observe ϕ�Π∼ = (ϕ∼)Π∼ = (ϕ′)∼ and ϕΣ = ϕ. Hence the claim follows
by Lemma 7. Similarly forX = ϕ∼, we have (ϕ∼)�Π∼ = ϕΠ∼ = ϕ∼ while (ϕ∼)Σ = ϕ′,
and again the claim follows from Lemma 7.

For the inductive step, assume the claim holds for structures of complexity strictly
less than that of X, and suppose X = Z ◦ V . In particular, the inductive hypothesis
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implies that both (�Z) and (�V ) hold. By definition, we have

(Z ◦ V )�Π∼ = (Z� ◦ V �)Π∼ = (Z�Π · V �Π)∼ and (Z ◦ V )Σ = (ZΣ′ · V Σ′)′.

Below we derive the ⇒-sequent on the left and the ⇐-sequent on the right:

ZΣ∼ ⇒ Z�Π
[�Z]

V Σ∼ ⇔ V �Π
[�V]

ZΣ∼ ◦ V Σ∼ ⇒ Z�Π · V �Π
(·r)

ZΣ′ · V Σ′ ⇒ Z�Π · V �Π
(′l),(·l)

(Z�Π · V �Π)∼ ⇒ (ZΣ′ · V Σ′)∼
[Lem.6]

(Z�Π · V �Π)∼ ⇒ (ZΣ′ · V Σ′)′
(′r)

Z�Π ⇒ ZΣ′
[�Z]

V �Π ⇔ V Σ∼
[�V]

Z�Π ◦ V �Π ⇒ ZΣ′ · V Σ′
(·r)

Z�Π · V �Π ⇒ ZΣ′ · V Σ′
(·l)

(ZΣ′ · V Σ′)∼ ⇒ (Z�Π · V �Π)∼
[Lem.6]

(ZΣ′ · V Σ′)′ ⇒ (Z�Π · V �Π)′
(′l),(′r)

.

Lemma 10. X ⇒ u[Y ] ��OGC X ⇒ u[Y Σ]. Consequently, X Σ �OGC X .

Proof. Below we derive the �-direction on the top and the �-direction on the
bottom:

Y Σ∼ ⇔ Y�Π
[Lem.9]

X ⇒ u[Y ]

X ◦ u[Y ]� ⇒ 	
(�)

X ◦ u� [Y� ] ⇒ 	
[=]

X ◦ u� [Y�Π] ⇒ 	
[Lem.8]

X ◦ u� [Y Σ∼] ⇒ 	
(cut)

X ◦ u[Y Σ]� ⇒ 	
[=]

X ⇒ u[Y Σ]
(�)

Y�Π ⇔ Y Σ∼
[Lem.9]

X ⇒ u[Y Σ]

X ◦ u[Y Σ]� ⇒ 	
(�)

X ◦ u� [Y Σ∼] ⇒ 	
[=]

X ◦ u� [Y�Π] ⇒ 	
(cut)

X ◦ u� [Y� ] ⇒ 	
[Lem.8]

X ◦ u[Y ]� ⇒ 	
[=]

X ⇒ u[Y ]
(�)

.

By Lemmas 8 and 10, we obtain the following.

Corollary 11. X ⇒ Y ��OGC X
Π ⇒ Y Σ

The derivable structural rules in the next lemma express, against the backdrop of
the informal reading suggested for sequents of the form a ◦ b ⇒ a (Section 3.2), some
of the algebraic properties of the commuting relations pinned down in Lemma 1(1)
and (2).
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Lemma 12. The following inference rules are derivable in OGC :

a ◦ Y ⇒ a
a� ◦ Y ⇒ a�

(co1) a ◦ b ⇒ a
b ◦ a ⇒ b (co2)

a ◦ b ⇒ a
a ◦ b� ⇒ a

(co3)

X ⇒ u[Y ◦ Y ]
X ⇒ u[Y ]

(conr)
a ⇒ a ◦ Y X ⇒ u[a ◦ Y ]

X ⇒ u[Y ◦ a]
(er1)

a ⇒ a ◦ Y X ⇒ u[Y ◦ a]
X ⇒ u[a ◦ Y ]

(er2)
.

Proof. Below, we establish (co1) on the left and (er1) on the right:

a ◦ Y ⇒ a
a� ⇒ (a ◦ Y )�

[Lem.6]

a� ⇒ a� ◦ Y�
[=]

a� ◦ Y ⇒ a�
(�)

a ⇒ a ◦ Y
a� ◦ Y� ⇒ a�

[Lem.6]
X ⇒ u[a ◦ Y ]

X ◦ u� [a� ◦ Y� ] ⇒ 	
(�)

X ◦ u� [Y� ◦ a� ] ⇒ 	
(el1)

X ⇒ u[Y ◦ a]
(�)

.

Now, the rules (er2) and (conr) are proven similarly to (er1). Lastly, below we derive
(co2) on the left and using it with (co1) we derive (co3) on the right:

a ◦ b ⇒ a
b ⇒ b

[Lem.6]

a ◦ b ⇒ b (w)

b ◦ a ⇒ b (el1)

a ◦ b ⇒ a
b ◦ a ⇒ b (co2)

b� ◦ a ⇒ b�
(co1)

a ◦ b� ⇒ a
(co2)
.

Lemma 13. The following inference rules are derivable in OGC :

X ⇒ a a ◦ Y ⇒ Z
X ◦ Y ⇒ Z (cut1)

X ◦ Y ⇒ a Y ◦ a ⇒ Z
X ◦ Y ⇒ Z (cut2)

.

Proof. For (cut1), let α = aΠ. Observe:

X ⇒ a
X ⇒ α (R)

X ⇒ XΠ
[Lem.8]

X ⇒ α ∧ XΠ
(∧r)

XΠ ⇒ XΠ
(id)

α ∧ XΠ ⇒ XΠ
(∧l2)

a ◦ Y ⇒ Z
α ◦ Y ⇒ Z (R′)

(α ∧ XΠ) ◦ Y ⇒ Z
(∧l1)

X ◦ Y ⇒ Z (cut)
.

where (R) = (R′) = [=] if a ∈ FmL, otherwise (R) = (′r) and (R′) = (′l) when
a ∈ Fm�L. As for (cut2), observe:

X ◦ Y ⇒ a

X ◦ Y ⇒ a
a ◦ (X ◦ Y ) ⇒ a

(w)
Y ◦ a ⇒ Z

(X ◦ Y ) ◦ a ⇒ Z
(w)

a ◦ (X ◦ Y ) ⇒ Z
(el2)

(X ◦ Y ) ◦ (X ◦ Y ) ⇒ Z
(cut1)

X ◦ Y ⇒ Z (conl)
.

Lemma 14. The following rules are derivable in OGC :

X ⇒ ϕ X ⇒ �
X ⇒ ϕ · �

(·r∗1 )
X ◦ Y ⇒ ϕ Y ⇒ �
X ◦ Y ⇒ ϕ · �

(·r∗2 )
.
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Proof. For (·r∗1 ), we observe:

X ⇒ �
	 ◦ X ⇒ � [=]

X ⇒ ϕ � ⇔ � (id)

X ◦ � ⇒ ϕ · � (·r)

	 ◦ X ⇒ ϕ · � (cut2)

X ⇒ ϕ · � [=]
.

Now, (·r∗2 ) is derived by applying (w) on its right premise and then applying (·r∗1 ).

§4. Algebraisability of OGC and orthomodular groupoids.

4.1. OGC and OG. Recall, to show that OGC is algebraisable with equivalent variety
semantics given by OG, it is enough to find transformers � : Seq(L) → ℘(Fm2

L) and
� : Fm2

L → ℘(Seq(L)) both commuting with substitutions, such that, for all S ∪ {s} ⊆
Seq(L) and for all L-formulas ϕ,�:

• S �OGC s iff �[S] |=OG �(s) and
• ϕ ≈ � �⊧OG �[�(ϕ ≈ �)].

We will see that the appropriate transformers are defined as follows, for all X,Y ∈
G(Fm�L) and ϕ,� ∈ FmL:

�(X ⇒ Y ) := {XΠ ≤ Y Σ} & �(ϕ ≈ �) := {ϕ ⇒ �,� ⇒ ϕ}.

Clearly, � and � commute with substitutions.

Lemma 15. For all ϕ,� ∈ FmL, ϕ ≈ � �⊧OG �[�(ϕ ≈ �)].

Proof. We observe,

ϕ ≈ � �⊧OG �[�(ϕ ≈ �)] iff ϕ ≈ � �⊧OG �[ϕ ⇒ �,� ⇒ ϕ],
iff ϕ ≈ � �⊧OG {ϕ ≤ �,� ≤ ϕ}.

However, this is obvious given the reflexivity and antisymmetry of the induced order
of the lattice reduct in OG.

Lemma 16 (Soundness). For all S ∪ {s} ⊆ Seq(L), if S �OGC s then �[S] |=OG �(s).

Proof. Let s denote the sequent X ⇒ Y . That is, we must prove

S �OGC s implies �[S] |=OG X
Π ≤ Y Σ.

A customary induction on the length of the OGC-proof of X ⇒ Y from S will suffice.
If X ⇒ Y is an axiom, then it is either (id), (1r), or (0l); and it is immediate to
observe that the translations of these axioms make instances of the identity x ≤ x,
valid in all A ∈ OG. If s ∈ S, our claim is trivial. The other rules can be checked with
some occasional help from Lemma 1 and Theorem 2. For the sake of illustration, we
exemplify the inductive step through the rule (·r). Suppose X ◦ Y ⇒ α · � has been
derived from S in OGC via a final application of (·r) to the premises X ⇒ α, Y ⇒ � ,
and � ⇒ YΠ. By the inductive hypothesis, we have that

�[S] |=OG XΠ ≤ α,
�[S] |=OG YΠ ≤ �,
�[S] |=OG � ≤ YΠ.

https://doi.org/10.1017/S1755020322000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000016


1192 DAVIDE FAZIO ET AL.

Note that, by the last two consequences, we obtain �[S] |=OG Y
Π ≈ � . Now, let A ∈

OG and h be a valuation to A, and suppose that �[S] ⊆ ker(h). Hence h(YΠ) = h(�),
and so by Equation (1),

h
(
(X ◦ Y )Π)

= h(XΠ) · h(YΠ) = h(XΠ) · h(�) ≤ h(α) · h(�) = h
(
(α · �)Σ)

,

whence our conclusion follows.

Lemma 17 (Completeness). For all S ∪ {s} ⊆ Seq(L), if �[S] |=OG �(s) then
S �OGC s .

Proof. Suppose contrapositively that S ��OGC s , where s is the sequent X ⇒ Y . We
require the Lindenbaum algebra construction, so let T be the �-theory generated by
S, where � is the closure operator associated with �OGC. Define, for all ϕ,� ∈ FmL:

〈ϕ,�〉 ∈ ΘT ⇐⇒ �(ϕ ≈ �) ⊆ T.

We need an algebra A ∈ OG and a valuation h to A such that �[S] ⊆ ker(h), while
XΠ ≤ Y Σ∉ker(h). Unsurprisingly enough, we choose A = FmL/ΘT , and h as the
valuation uniquely determined by the condition h(x) = x/ΘT . For our choice to be
viable, we must verify the following two assertions:

(1) ΘT is a congruence on FmL and
(2) The quotient FmL/ΘT belongs to OG.

For (1), ΘT is clearly reflexive, symmetric, and transitive by (id) and (cut1). Thus we
need only show compatibility with product, implication, meet, and join, i.e., ϕΘT �
and �ΘT � implies (ϕ � �) ΘT (� � �) for each � ∈ {·, /,∧,∨}. By definition of ΘT
and �, we must therefore show ϕ ⇔ �, � ⇔ � ∈ T implies (ϕ � �) ⇔ (� � �) ∈ T ,
where we abuse the notation x ⇔ y ∈ T to mean �(x ≈ y) ⊆ T . It suffices to show
(ϕ � �) ⇒ (� � �) ∈ T , since the ⇐-sequent is obtained by a symmetric derivation.
Below we catalogue the derivations for each � ∈ {·, /,∧,∨}:

ϕ ⇒ � � ⇔ �
ϕ ◦ � ⇒ � · � (·r)

ϕ · � ⇒ � · � (·l)

� ⇔ � ϕ ⇒ �
ϕ/� ◦ � ⇒ �

(/l)

ϕ/� ⇒ �/�
(/r)

ϕ ⇒ �
ϕ ∧ � ⇒ � (∧l1)

� ⇒ �
ϕ ∧ � ⇒ � (∧l2)

ϕ ∧ � ⇒ � ∧ � (∧r)
.

The derivation for ∨ is similar to that for ∧. Hence ΘT is a congruence.
For (2), observe that ϕ/ΘT ≤A �/ΘT iff ϕ ⇔ ϕ ∧ � ∈ T iff ϕ ⇒ � ∈ T . We base

on this observation the verification that A belongs to OG.
First we show that A ∈ PLRG. As the derivations for verifying A has a lattice

reduct as well as a multiplicative (left-)unit are standard, we only show the defining
inequations for residuation (see [30]):

ϕ ⇒ ϕ (id) � ⇔ � (id)

ϕ ◦ � ⇒ ϕ · � (·r)

ϕ ◦ � ⇒ ϕ · � ∨ � (∨r1)

ϕ ⇒ (ϕ · � ∨ �)/�
(/r)

� ⇔ � (id) � ⇒ � (id)

�/� ◦ � ⇒ �
(/l)

(ϕ ∧ �/�) ◦ � ⇒ �
(∧l2)

(ϕ ∧ �/�) · � ⇒ �
(·l)
.
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So A ∈ PLRG. Hence, by Proposition 3, it is enough to show that A is strongly
idempotent and strongly involutive. For strong idempotency, observe:

ϕ ⇒ ϕ (id)
ϕ ⇒ ϕ (id)

ϕ ⇒ ϕ ∨ � (∨r1)

ϕ ⇒ ϕ · (ϕ ∨ �)
(·r∗1 )

ϕ ⇒ ϕ (id)

ϕ ⇒ ϕ ∨ � (∨r1)

(ϕ ∨ �) ◦ ϕ ⇒ ϕ ∨ �
(w)

ϕ ◦ (ϕ ∨ �) ⇒ ϕ
(co2)

ϕ · (ϕ ∨ �) ⇒ ϕ
(·l)

.

For strong involutivity, observe:

�∼ ⇒ �′ [Lem.7]
ϕ ⇔ ϕ (id)

�∼ ◦ ϕ ⇒ �′ · ϕ
(·r)

�∼ ⇒ (�′ · ϕ) ◦ ϕ∼ (�)

(�′ · ϕ)∼ ◦ ϕ ⇒ �
[Lem.6]

(�′ · ϕ)′ ◦ ϕ ⇒ �
(′l)

(�′ · ϕ)′ ⇒ �/ϕ
(/r)

ϕ ⇔ ϕ (id) � ⇒ � (id)

�/ϕ ◦ ϕ ⇒ �
(/l)

�/ϕ ⇒ � ◦ ϕ∼ (�)

�/ϕ ◦ (�∼ ◦ ϕ) ⇒ 	
(�)

�/ϕ ◦ (�′ · ϕ) ⇒ 	
(′l),(·l)

�/ϕ ⇒ (�′ · ϕ)∼
(�)

�/ϕ ⇒ (�′ · ϕ)′
(′r)

.

Hence ΘT and A are as claimed, and so we need only verify �[S] ⊆ ker(h) but
�[s]∉ ker(h), written in full:

{ZΠ ⇒ V Σ : Z ⇒ V ∈ S} ⊆ ker(h) & XΠ ⇒ Y Σ
∉ker(h).

Now, by Corollary 11,W ⇒ U ∈ �(S) iffW Π ⇒ V Σ ∈ �(S). Since T = �(S), it fol-
lows that �[S] ⊆ ker(h), while �(s)∉ ker(h) since S ��OGC s . Therefore �[S]⊭OG�(s).

Therefore, by Lemmas 15–17 we conclude:

Theorem 18. The calculus OGC is algebraisable with OG as equivalent variety
semantics.

4.2. The alternative calculus OGC′. As it has been already mentioned above, in
OG the identity x/y ≈ (x′ · y)′ holds. Therefore, orthomodular groupoids can be
equivalently regarded as algebras in the signature {∧,∨, ·,′ , 0, 1}, which are unital
lattice-ordered groupoids with an antitone involution satisfying further conditions.
Indeed, it can be shown that once OGC is formulated into the alternative calculus
OGC′ [see Section 3.2] by assuming as a primitive connective ′, and replacing
(/l) and (/r) by

u[α∼] ⇒ X
(′l)

u[α′] ⇒ X
and

X ⇒ u[α∼]
(′r)

X ⇒ u[α′]
,

then the resulting calculus can be still shown to be algebraisable with respect to
orthomodular groupoids in the new signature (by means of the same � and �).
Moreover, OGC′ seems to behave better proof-theoretically. First of all, it can be
shown that (/l) and (/r) can be derived without making use of (cut). In fact
we have
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X ◦ α ⇒ �
(�)

X ⇒ � ◦ α∼
(�)

X ◦ (�∼ ◦ α) ⇒ 	
(′l)

X ◦ (� ′ ◦ α) ⇒ 	
(·l)

X ◦ (� ′ · α) ⇒ 	
(�)+(′r)

X ⇒ (� ′ · α)′

as well as

� ⇒ Z
[Lem.6]

Z� ⇒ �∼
(′r)

Z� ⇒ � ′ X ⇔ α
Z� ◦ X ⇒ � ′ · α

(�)
Z� ⇒ (� ′ · α) ◦ X�

[Lem.6]
(� ′ · α)∼ ◦ X ⇒ Z

(′l)
(� ′ · α)′ ◦ X ⇒ Z

Secondly, it can be shown that (cut) can be replaced by (cut1). To see this, we first
prove the following lemmas.

Lemma 19. For any X ∈ G(Fm∼
L′) there exists a cut-free proof of �OGC X ⇒ XΠ.

Proof. We proceed by induction on X. If X = 	, then �OGC 1 ⇒ 1 follows by means
of a simple application of (id). If X = ϕ∼, one has:

(id)ϕ ⇒ ϕ
[Lem.6].

ϕ∼ ⇒ ϕ∼

Finally, if X = Y ◦ Z, then one has by induction hypothesis that �OGC Y ⇒ YΠ as
well as �OGC Z ⇒ ZΠ. Therefore one has:

Y ⇒ YΠ Z ⇔ ZΠ
(·r).

Y ◦ Z ⇒ YΠ · ZΠ
[=]

X ⇒ XΠ

Lemma 20. X ⇔ a �OGC u[X ] ⇔ u[a].

Proof. We prove the statement by induction on the complexity of u[–] (||u||). If u is
then there is nothing to prove. Suppose that ||u|| > 0. Two cases may occur:

(i) u = Y ◦ u1[ ]. We have the following derivation:

[Lem.19]
Y ⇒ YΠ

[IH]
u1[X ] ⇒ u1[a]Π

[IH]
u1[a] ⇒ u1[X ]Π

(′l)+(·l).
u1[a]Π ⇒ u1[X ]Π

(·r)
Y ◦ u1[X ] ⇒ YΠ · u1[a]Π

[=]
u[X ] ⇒ u[a]Π

Similarly, one proves X ⇔ a �OGC u[a] ⇒ u[X ]Π.
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(ii) u = u1[ ] ◦ Y .

[IH]
u1[X ] ⇒ u1[a]Π

[Lem.19]
Y ⇒ YΠ

(id).
YΠ ⇒ YΠ

u1[X ] ◦ Y ⇒ u1[a]Π · YΠ
[=]

u[X ] ⇒ u[a]Π

Similarly, we have X ⇔ a �OGC u[a] ⇒ u[X ]Π.

Theorem 21. In OGC′(cut) can be equivalently replaced by (cut1).

Proof. Assuming (cut) we derive (cut1) by Lemma 13. Conversely, by Lemma 20,
we have X ⇔ a �OGC u[X ] ⇒ u[a]Π. Therefore, we have:

u[X ] ⇒ u[a]Π

u[a] ⇒ Z
(·l)+(′l)

u[a]Π ⇒ Z
(cut1).

u[X ] ⇒ Z

Indeed, the above results show that, in presence of (′r) and (′l), we do not need to
assume (cut1) in its full generality. In fact the same results follows by replacing (cut1)
by the simple cut:

X ⇒ α α ⇒ Y .
X ⇒ Y

§5. A calculus for PLRG. We now discuss the calculus PLRGC, whose equivalent
algebraic semantics are shown to bePLRG in Theorem 23 by specialising the arguments
from Sections 3 and 4. The calculus OGC can be viewed as an extension of PLRGC, but
we present the latter as a restriction of the former.

A sequent in PLRGC is of the form X ⇒ Π, where X is a (possibly empty) groupoid
word built from formulas and Π (called a stoup) is either a formula or the empty
word 	; i.e., it is pair in G(FmL) × (FmL ∪ {	}).4 We note that sequents in PLRGC are
restrictions of those in OGC in two ways: firstly that the groupoid words are generated
from FmL (instead of Fm�L), and secondly that the right-hand side contains at most a
single formula. The concept of metavariables remains essentially the same.

The rule schemata for PLRGC are essentially the same as in OGC, in particular it has
the same axioms as OGC, but the following exceptions/modifications are required:

• The only structural rule in PLRGC is (cut), but replacing structures Y with stoups
Π in the sequents and a restricted to FmL.

• The same operational rules are present as in OGC, but modified accordingly so
that all the right-hand sides of sequents contain either a formula-symbol or a
stoup, e.g.,

α ◦ X ⇒ Π � ◦ X ⇒ Π

(α ∨ �) ◦ X ⇒ Π
(∨l) X ⇒ α

X ⇒ α ∨ � (∨r1)
,

4 Sequents of this type are often called normal.
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and furthermore the introduction rules for the constants 1 and 0 are replaced
by the following5:

X ⇒ Π
1 ◦ X ⇒ Π

(1l)
X ⇒ 	
X ⇒ 0

(0r)
.

Remark 22. Observe the use of ⇔ in PLRGC (and OGC) for the rules (cut), (·r), and
(/l) in contrast to their respective variants in GL:

X ⇒ α u[α] ⇒ Π
u[X ] ⇒ Π

X ⇒ α Y ⇒ �
X ◦ Y ⇒ α · �

X ⇒ α � ⇒ Π

(�/α) ◦ X ⇒ Π .

This is necessitated by the observations made in Remark 4 and Theorem 18.

It is easy to see that the analogue to the rule (cut1) is derivable in PLRGC from
Lemma 13, where structures Z are replaced with stoups Π and a restricted to FmL.
Similarly, it is also easy to see that an analogue to Corollary 11 holds for PLRGC,
namely that X ⇒ Π ��PLRGC X

Π ⇒ ΠΣ for all X ∈ G(FmL) and Π ∈ FmL ∪ {	}.6

Hence, using basically the same transformers �(X ⇒ Π) := XΠ ≤ ΠΣ and �(ϕ ≈
�) := {ϕ ⇒ �,� ⇒ ϕ}, and the same relevant arguments contained in Lemmas
15–17, we therefore obtain the following theorem:

Theorem 23. The calculus PLRGC is algebraisable with PLRG as equivalent variety
semantics.

§6. Conclusion and open problems. At the present stage, we do not know whether
the rule (cut) is admissible either in OGC or in PLRGC. As already observed, this is not
the unique rule that flouts the subformula property in either calculus, but no other
rule forces the complete bottom-up proof search tree to contain infinite antichains.
Also, notice that rules like (conl) block the immediate conversion of any possible
cut-elimination procedure into a decision procedure for the calculus.

Based on the results we have obtained so far, therefore, the calculi we presented
appear less useful for applications than they are informative about the substruc-
tural character of the logics of orthomodular lattices and pointed left-residuated
�-groupoids. However, it is not out of the question that some helpful insights may
come from their study. As hinted above, the problem as to whether the equational
theory of orthomodular lattices is decidable has been open for some decades now
[7]. Borrowing hitherto untried ideas from neighbouring fields is vital to make some
headway.

Added in Proof. After submitting this article, we became acquainted (courtesy of
the author) with a paper by Kornell [25] which seems to present similarities with our
approach. In future work, we hope to undertake a comparison of these works.

5 Note that the rule (1l) is much weaker than the rule of the same name in OGC: this is because,
in PLRG the constant 1 is only a left-identity for product, while in OG the constant 1 is a
two-sided identity for product.

6 Using the same basic argument in Lemma 8, it follows that X ⇒ α �	PLRGC XΠ ⇒ α, for
α a formula. On the other hand, X ⇒ 	 �	PLRGC XΠ ⇒ 0 easily follows by (0r) for the
	-direction, and (cut1) with (0l) for the �-direction.
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