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Abstract

We prove that a ring R is an n × n matrix ring (that is, R � Mn(S) for some ring S) if and only if there
exists a (von Neumann) regular element x in R such that lR(x) = Rxn−1. As applications, we prove some
new results, strengthen some known results and provide easier proofs of other results. For instance, we
prove that if a ring R has elements x and y such that xn = 0, Rx + Ry = R and Ry ∩ lR(xn−1) = 0, then R
is an n × n matrix ring. This improves a result of Fuchs [‘A characterisation result for matrix rings’, Bull.
Aust. Math. Soc. 43 (1991), 265–267] where it is proved assuming further that the element y is nilpotent of
index two and x + y is a unit. For an ideal I of a ring R, we prove that the ring ( R I

R R ) is a 2 × 2 matrix ring
if and only if R/I is so.
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1. Introduction

Throughout, rings will contain an identity but may not be commutative. For any
element x of a ring, we assume x0 = 1.

Conditions on elements of a ring so that it is a matrix ring have a long history. For
instance, Robson [11, Theorem 2.2] proved that a ring R is an n × n matrix ring if and
only if there exist elements x, a1, a2, . . . , an ∈ R satisfying the conditions xn = 0 and
a1xn−1 + xa2xn−2 + · · · + xn−1an = 1. Later, Lam and Leroy [10, Theorem 4.1] gave a
number of conditions similar to Robson’s condition. Fuchs [4, Theorem 1] proved that
for n ≥ 2, R is an n × n matrix ring if and only if there exist elements x, y ∈ R such that
xn = 0, y2 = 0, x + y is a unit and Ry ∩ lR(xn−1) = 0. In [1, Theorem 1.7] Agnarsson
et al. proved that R is an (m + n) × (m + n) matrix ring, for some positive integers m
and n, if and only if there exist a, b, x ∈ R such that xm+n = 0 and axm + xnb = 1. They
called this a three-element relation and showed in [1, Theorem 2.1] that it does not
work if we take a = b. There is a nice exposition of such results in [9, Ch. 7].

In the main result of this paper, we prove that R is an n × n matrix ring if and
only if there exists a (von Neumann) regular element x such that lR(x) = Rxn−1, where
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lR(x) = {a ∈ R : ax = 0}. Our condition is easier to verify as, unlike most of the
conditions in the literature, it involves only one element x. This is also evidenced by
the various applications of our main result in Section 3. In addition to proving some
new results, we also provide easier proofs of some of the known results. For instance,
we prove that the condition y2 = 0 in Fuchs’ theorem cited above is extraneous and the
condition x + y is a unit can be replaced with the weaker condition Rx + Ry = R. We
also prove that if I is an ideal of ring R, then ( R I

R R ) is a 2 × 2 matrix ring if and only if
R/I is. This explains why for H = Z〈i, j, k〉, the integer quaternion ring, and n an odd
integer, the ring ( H nH

H H ) is a 2 × 2 matrix ring as proved by Robson [11, Theorem 1.5]
and Chatters [3, Theorem 2.4]. We also give easier proofs of the results of Agnarsson
et al. [1] and Robson [11] (see Theorems 3.4 and 3.6).

2. Main result

In this section, we prove the main result of the paper (Theorem 2.4). We first list
some well-known facts. Recall that an element x ∈ R is called regular if x ∈ xRx.

LEMMA 2.1. For a regular element x ∈ R, the following conditions are equivalent:

(i) x ∈ R is unit-regular;
(ii) as left R-modules, R/Rx � lR(x);
(iii) if Rx + Ry = R for some y ∈ R, then there exists an r ∈ R such that x + ry is a unit

(that is, the stable range of x is one).

PROOF. Proof of the equivalence of conditions (i) and (iii) can be found in [7, Theorem
3.5] and that of (i) and (ii) in [6, Theorem 4.1] (although the result is proved globally,
the same proof works elementwise). �

LEMMA 2.2 (See [8, Proposition 21.20]). For two idempotents e and f of a ring R the
following conditions are equivalent:

(1) eR � f R as right R-modules;
(2) Re � R f as left R-modules;
(3) there exist elements a, b ∈ R such that ab = e and ba = f .

In this case, we will call the idempotents e and f isomorphic.

LEMMA 2.3. Let x ∈ R, m, n be positive integers and i, j be nonnegative integers such
that i + j = n + m. Then the following hold:

(1) lR(xm) = Rxn implies that lR(xi) = Rxj;
(2) 1 ∈ Rxm + xnR implies that 1 ∈ Rxi + xjR.

PROOF. (1) Suppose lR(xm) = Rxn. It is enough to show that lR(xm−1) ⊆ Rxn+1 if m > 1
and lR(xm+1) ⊆ Rxn−1 if n > 1.

Suppose m > 1 and k ∈ lR(xm−1) ⊆ lR(xm) = Rxn. Then k = rxn for some r ∈ R. Now
0 = kxm−1 = rxnxm−1 = rxn−1xm, so rxn−1 ∈ lR(xm) = Rxn. If rxn−1 = sxn for some s ∈ R,
then k = rxn = sxn+1.
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Now suppose n > 1 and t ∈ lR(xm+1). Then tx ∈ lR(xm) = Rxn implies that tx = bxn

for some b ∈ R. Then t − bxn−1 ∈ lR(x) ⊆ lR(xm) = Rxn. Thus, t ∈ Rxn−1.
(2) Suppose 1 ∈ Rxm + xnR. It is enough to show that 1 ∈ Rxm+1 + xn−1R assuming

n > 1. If 1 = rxm + xns, for some r, s ∈ R, then

1 = rxm−1(rxm + xns)x + xns = rxm−1rxm+1 + rxmxn−1sx + xns

= rxm−1rxm+1 + (1 − xns)xn−1sx + xns ∈ Rxm+1 + xn−1R. �

THEOREM 2.4. A ring R is an n × n matrix ring if and only if there exists a regular
element x in R such that lR(x) = Rxn−1. Moreover, if a regular element x with lR(x) =
Rxn−1 exists, then R � Mn(EndR(Rxn−1)).

PROOF. Suppose R � Mn(S) for some ring S. Let x = E21 + E32 + · · · + En,n−1. It is
easy to see that x is regular and lR(x) = Rxn−1.

Conversely, suppose that x ∈ R is regular and lR(x) = Rxn−1. By Lemma 2.3(1),
lR(xn−1) = Rx. Thus,

R/Rx = R/lR(xn−1) � Rxn−1 = lR(x).

It follows that x is unit-regular by Lemma 2.1. As x is regular, there exists a ∈ R such
that x = xax. As Rx ⊕ R(1 − ax) = R, by Lemma 2.1, there exists y ∈ R(1 − ax) and a
unit u such that x + y = u−1. Since y ∈ R(1 − ax) and Rx ∩ R(1 − ax) = 0, it follows
that Rx ∩ Ry = 0. Also, lR(xn−1) = Rx, so Ry ∩ lR(xn−1) = 0. Now ux + uy = 1 implies
that yuy − y = −yux ∈ Ry ∩ Rx = 0. So

0 = yuxn−1 = yu(ux + uy)xn−1 = yu2yxn−1 ⇒ yu2y ∈ Ry ∩ lR(xn−1) = 0.

This also implies that 0 = yu2y = yuuy = yu(1 − ux). Since yux = 0,

0 = yu(1 − ux)x = yu2x2.

If n − 1 ≥ 2, then

0 = yu2xn−1 = yu2(ux + uy)xn−1 = yu3yxn−1 ⇒ yu3y ∈ Ry ∩ lR(xn−1) = 0.

This also implies that 0 = yu3y = yu2uy = yu2(1 − ux). As yu2x2 = 0,

0 = yu2(1 − ux)x2 = yu3x3.

Proceeding similarly, for every i ≥ 1 and j ≥ 2,

yuixi = 0 and yu jy = 0.

Now 1 = yu + xu = yu + x(yu + xu)u = yu + xyu2 + x2u2 = yu + xyu2 + x2(yu + xu)u2

= yu + xyu2 + x2yu3 + x3u3. As xn = 0, proceeding similarly, we will finally have

yu + xyu2 + x2yu3 + · · · + xn−1yun = 1.

As yuixi = 0 and yu jy = 0, for every i ≥ 1 and j ≥ 2, it is clear that

{yu, xyu2, x2yu3, . . . , xn−1yun}
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is a complete set of pairwise orthogonal idempotents. Finally, we show that all these
idempotents are isomorphic and Ryu � Rxn−1. As yu2y = 0, by Lemma 2.2,

xyu2 � yu2x = yuux = yu(ux + uy) = yu.

As yu3y = 0, by Lemma 2.2,

x2yu3 � xyu3x = xyu2(uy + ux) = xyu2.

Similarly, we see that all of these idempotents are isomorphic. Thus, R � Mn(S) for
some ring S � EndR(Ryu). We finally show that Ryu � Rxn−1. Note that xn−1yunR =
xn−2xyR = xn−2xR = xn−1R implies that Rxn−1yun � Rxn−1. And so Ryu � Rxn−1yun �
Rxn−1. �

REMARK 2.5. It is not difficult to write down matrix units of R in the previous result
provided we know the elements y and u. If we put ei = xi−1yui, then, as seen above,
{e1, e2, . . . , en} is a complete orthogonal set of pairwise isomorphic idempotents. If we
take E1i = yui and Ei1 = xi−1yu, then E1iEi1 = e1 and Ei1E1i = ei. Now putting Eii = ei
and Eij = Ei1E1j, we have all the matrix units for R in the previous result.

COROLLARY 2.6. A regular ring R is an n × n matrix ring if and only if lR(x) = Rxn−1

for some element x ∈ R.

3. Applications

In this section, we give several applications of Theorem 2.4. The first part of the
following result strengthens Fuchs’ theorem [4, Theorem 1], where the result was
proved assuming extra conditions y2 = 0 and x + y ∈ U(R).

THEOREM 3.1. Let R be a ring with elements x and y such that xn = 0.

(1) If Rx + Ry = R and Ry ∩ lR(xn−1) = 0, then R is an n × n matrix ring.
(2) If Rxn−1 + Ry = R and Ry ∩ lR(x) = 0, then R is an n × n matrix ring.

PROOF. (1) Since Rx ⊆ lR(xn−1), Ry + Rx = R and Ry ∩ lR(xn−1) = 0,

Ry ∩ Rx ⊆ Ry ∩ lR(xn−1) = 0 and R = Ry + Rx ⊆ Ry + lR(xn−1).

Thus,

R = Ry ⊕ Rx = Ry ⊕ lR(xn−1).

This implies Rx = lR(xn−1) and x is regular. So lR(x) = Rxn−1 by Lemma 2.3(1) and the
result follows from Theorem 2.4.

(2) As Rxn−1 ⊆ lR(x), so Ry ∩ Rxn−1 ⊆ Ry ∩ lR(x) = 0. Thus,

R = Ry ⊕ Rxn−1.

Also, as R = Ry ⊕ Rxn−1 ⊆ Ry + lR(x) and Ry ∩ lR(x) = 0, so

R = Ry ⊕ lR(x).
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Now since R = Ry ⊕ Rxn−1 = Ry ⊕ lR(x) and Rxn−1 ⊆ lR(x), it follows that Rxn−1 = lR(x)
and xn−1 is regular. So lR(xn−1) is a summand of RR. As Rxn−1 = lR(x), by Lemma
2.3(1), lR(xn−1) = Rx is a summand of RR. So x is a regular element and the result
follows from Theorem 2.4. �

As another application, we provide a quick proof of the following result of Fuchs
et al. [5, Theorem III.2].

THEOREM 3.2. If x, y ∈ R are such that x2 = 0, y2 = 0 and x + y is a unit, then R is a
2 × 2 matrix ring.

PROOF. Note that Rx ⊕ Ry = R implying that x is regular. Also, Rx ⊆ lR(x) implies
that lR(x) + Ry = R. If ry ∈ Ry ∩ lR(x) and x + y = u, then ryu = ry(x + y) = 0. Thus,
Ry ∩ lR(x) = 0. So lR(x) ⊕ Ry = R implying that Rx = lR(x). Thus the result follows
from Theorem 2.4. �

Let H = Z〈i, j, k〉 be the integer quaternion ring and let n be an integer. Robson [11,
Theorem 1.5] and Chatters [3, Theorem 2.4] proved that ( H nH

H H ) is a 2 × 2 matrix ring
if and only if n is odd (see also [2, Question 2.9]). As another application of our main
result, we prove the following general result.

THEOREM 3.3. Let I be an ideal of a ring R. Then ( R I
R R ) is a 2 × 2 matrix ring if and

only if R/I is so.

PROOF. Let S := ( R I
R R ). As J = ( R I

R I ) is an ideal of S and S/J � R/I, it is clear that if S
is a 2 × 2 matrix ring, then so is R/I.

Conversely, suppose that R := R/I is a 2 × 2 matrix ring. If we denote the element
a + I of R/I by a, then by Theorem 2.4 there exist elements x, y ∈ R such that

xyx = x, lR(x) = Rx.

As lR(x) = R(1 − xy) = Rx, there exists z ∈ R such that

1 − xy − zx ∈ I.

Note that X = ( −x −x2

1 x ) ∈ S and X2 = 0. We show that X is regular in S and lS(X) ⊆ SX.
Then it will follow from Theorem 2.4 that S is a 2 × 2 matrix ring. Note that XE12X =
X. As 1 − xy − zx ∈ I,

Y = E12 + XyE12 − zE12X =
(
−z 1 − xy − zx
0 y

)
∈ S.

Since X2 = 0 and XE12X = X, it follows that XYX = X, implying that X is regular in S.
Lastly, suppose that ( a b

c d ) ∈ lS(X). Now ( a b
c d )X = 0 implies that

ax = b ∈ I and d = cx.
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So a ∈ lR(x) = Rx which implies that a − rx ∈ I for some r ∈ R. Thus,(
a b
c d

)
=

(
a ax
c cx

)
=

(
−r a − rx
0 c

)
X ∈ SX. �

Suppose n is an odd integer. It is well known that −1 ∈ Zn is a sum of two squares,
say a2 + b2 ≡ −1 (mod n). If x = i + aj + bk and y = i − aj − bk, then in H/nH,

x2 = 0, y2
= 0 and x + y = 2i ∈ U(H/nH).

So by Theorem 3.2, H/nH is a 2 × 2 matrix ring and thus by Theorem 3.3, ( H nH
H H )

is a 2 × 2 matrix ring thereby retrieving the results of Robson [11, Theorem 1.5] and
Chatters [3, Theorem 2.4].

As another application of our main result, we give a quick proof of the main result
of Agnarsson et al. [1, Theorem 1.7] (see also [9, Theorem 17.10]).

THEOREM 3.4. Let R be a ring and m, n be fixed positive integers. Then R is an
(m + n) × (m + n) matrix ring if and only if there exist a, b, x ∈ R such that

xm+n = 0 and axm + xnb = 1.

PROOF. Suppose there exist a, b, x ∈ R such that xm+n = 0 and axm + xnb = 1. Clearly
Rxm ⊆ lR(xn). If r ∈ lR(xn), then r = r(axm + xnb) = raxm ∈ Rxm implying that lR(xn) =
Rxm. So lR(x) = Rxm+n−1 by Lemma 2.3(1). Also by Lemma 2.3(2), there exist c, d ∈ R
such that cx + xm+n−1d = 1 implying that xcx = x. So R is an (m + n) × (m + n) matrix
ring by Theorem 2.4.

Conversely, suppose that R is an (m + n) × (m + n) matrix ring. By Theorem 2.4,
there exists a regular element x ∈ R, such that lR(x) = Rxm+n−1. If xyx = x, for some
y ∈ R, then lR(x) = R(1 − xy) = Rxm+n−1. So 1 ∈ Rxm+n−1 + xR and by Lemma 2.3(2),
1 ∈ Rxm + xnR. �

REMARK 3.5. In the proof of the Theorem 3.4, we have proved that the necessary and
sufficient condition of Agnarsson et al. [1, Theorem 1.7] is equivalent to that of our
Theorem 2.4. In hindsight, this might be regarded as a quicker proof of Theorem 2.4.
However, we have given precedence to our derivation because it is independent of the
result of Agnarsson et al. [1, Theorem 1.7].

As another application of our main result, we give an easier proof of the sufficiency
part of Robson [11, Theorem 2.2].

THEOREM 3.6. Let R be a ring and x, a1, a2, . . . , an ∈ R such that xn = 0 and

a1xn−1 + xa2xn−2 + · · · + xn−1an = 1.

Then R is an n × n matrix ring.

PROOF. On multiplying 1 = a1xn−1 + xa2xn−2 + · · · + xn−1an on the left by x, we
have x = xa1xn−1 + x2a2xn−2 + · · · + xn−1an−1x ∈ xRx implying that x is regular. If
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y ∈ lR(x), then on multiplying 1 = a1xn−1 + xa2xn−2 + · · · + xn−1an on the left by y, we
have y = ya1xn−1 ∈ Rxn−1. So lR(x) = Rxn−1 and, by Theorem 2.4, R is an n × n matrix
ring. �
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