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Abstract

The scale function plays a significant role in the fluctuation theory of Lévy processes,
particularly in addressing exit problems. However, its definition is established through
the Laplace transform, which generally lacks an explicit representation. This paper intro-
duces a novel series representation for the scale function, utilizing Laguerre polynomials
to construct a uniformly convergent approximation sequence. Additionally, we conduct
statistical inference based on specific discrete observations and propose estimators for
the scale function that are asymptotically normal.
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1. Introduction

On a stochastic basis (�,F , P; F), where F= (Ft)t≥0 is a (right-continuous) filtration, we
consider a spectrally negative Lévy process X = (Xt)t≥0 starting at x ∈R,

Xt = x + ct + σWt − Lt, t ≥ 0,

where x, c ∈R are constants, W = (Wt)t≥0 is an F-Wiener process, and L = (Lt)t≥0 is an
F-Lévy subordinator (possibly of infinite activity) with the Lévy measure ν on (0,∞)
satisfying ∫ 1

0
z ν(dz)<∞, ν([1,∞))<∞.

Note that W0 = L0 = 0 a.s. The Laplace exponent of X is defined as

ψX(θ ) := log E[eθ(X1−x)] = cθ + σ 2

2
θ2 +

∫ ∞

0
(e−θz − 1) ν(dz), θ ≥ 0.

We are interested in the q-scale function of X, W(q) : R→R+ := [0,∞) for some q ≥ 0,
defined as follows: W(q)(x) = 0 on (−∞, 0) and otherwise W(q) is the unique continuous
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2 H. IRIE AND Y. SHIMIZU

function that is right-continuous at the origin with the Laplace transform∫ ∞

0
e−θzW(q)(z) dz = 1

ψX(θ ) − q
for θ >�(q),

where �(q) is called the Lundberg exponent:

�(q) := sup{θ ≥ 0 |ψX(θ ) = q}.
The scale functions play essential roles in fluctuation theory of Lévy processes and have
various applications in insurance and finance. For example, defining two stopping times
τ+
α = inf{t> 0 | Xt >α} and τ−

α = inf{t> 0 | Xt <α} for each α ∈R, we have a fluctuation
identity for a> 0 such that

E
[
e−qτ+

a 1{τ+
a <τ

−
0 }
]= W(q)(x)

W(q)(a)
for x ∈ [0, a],

which is an essential identity in the theory of two-sided exit problems and useful in ana-
lyzing credit risks and barrier options, among others. As q = 0, we have P(τ−

0 < τ+
a ) =

1 − W(0)(x)/W(0)(a), and so assuming that

ψ ′(0 + ) = c −
∫ ∞

0
z ν(dz)> 0,

called the net profit condition in ruin theory, which implies that W(0)(∞) = 1/ψ ′(0 + ), we
have the well-known identity for the ruin probability in classical ruin theory:

P(τ−
0 <∞) = 1 −ψ ′(0 + )W(0)(x). (1.1)

See Kyprianou [14] for details regarding these identities. Moreover, Biffis and Kyprianou [5],
as well as Feng and Shimizu [9], demonstrated that scale functions are useful tools for rep-
resenting more general ruin-related risks. They showed that certain generalized Gerber–Shiu
functions – whose classical version was introduced by Gerber and Shiu [10] – can also be
expressed in terms of q-scale functions.

Scale functions also play a significant role in optimal dividend problems; see Loeffen [17].
Additionally, they are involved in the study of Parisian ruin probabilities, as explored by
Loeffen et al. [18] and Baurdoux et al. [1], among others.

The connection between ruin theory and q-scale functions is deeply rooted in the poten-
tial theory of spectrally negative Lévy processes and the Wiener–Hopf factorization; see
e.g. Bertoin [3, 4] and Roger [20]. For further details, the reference lists in Kyprianou [14],
Kyprianou and Rivero [15], Feng and Shimizu [9], and Kuznetsov et al. [13] provide useful
historical context and insights into their applications across various fields.

In considering such an application, it is important to recognize the practical need to iden-
tify the scale function and estimate it statistically from observations of a given Lévy process.
Indeed, the identification and approximation of scale functions have attracted considerable
attention in recent years.

We can find an explicit representation for some simple cases, such as compound Poisson
processes; see e.g. Hubalek and Kyprianou [11]. However, obtaining a general representation
via the Laplace transform is generally challenging because Laplace inversion is too difficult
to implement. Therefore, attempts have been made to obtain an approximate representation.
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Approximation and estimation of scale functions 3

The earliest work on an approximation of scale functions is due to Egami and Yamazaki [8],
who constructed an approximate sequence of q-scale functions using a compound Poisson-
type Lévy process with phase-type jumps, forming a dense family in the class of spectrally
negative Lévy processes. Landrault and Willmot [16] proposed an asymptotic expansion for
Wiener–Poisson risk models by inverting the Laplace transform of scale functions and investi-
gating some examples where explicit expansions are obtained. Behme et al. [2] extended their
results to more general Lévy processes with infinite jumps. Moreover, Xie et al. [27] focused
on a specific probabilistic representation of the q-scale function and provided an approxima-
tion formula using a Laguerre series expansion. See also Martín-González et al. [19] for an
alternative expansion, and Surya [25] for numerical methods, among others.

Thus there are many discussions on the approximation of scale functions, but to the best of
our knowledge, statistical inference based on underlying data has not yet been discussed. Our
paper’s novelty lies not only in providing a new series approximation of the q-scale function
but also a data-based statistical estimation of it. Among these, we are particularly concerned
with problems in insurance actuarial practice. In modern actuarial practice, it is standard to use
the spectrally negative Lévy process X = (Xt)t≥0 for the surplus or asset processes of insur-
ance companies, and certain discrete observations of X are available as real data; see Section
3.1. However, it is usually not clear from the data which Lévy process these data follow. We
therefore propose a method for estimating scale functions without specifying a model of X, by
using a non-parametric method for estimating quantities associated with the Lévy measure.

We must take two steps to identify the q-scale function in practice. First we introduce
a new approximation formula. We focus on a compound geometric integral representation
of the q-scale function obtained by Feng and Shimizu [9]. We derive a Laguerre series
expansion of the corresponding compound geometric distribution function, and the Stieltjes
integral with respect to it gives the expansion of the q-scale function. Although we also use a
Laguerre expansion, as in Xie et al. [27], our approach differs from theirs, and the formula is
fundamentally different, which constitutes the primary contribution of this paper.

Second, we proceed to statistical inference. Two studies, by Zhang and Su [29] and Shimizu
and Zhang [24], are instructive in this regard. The former proposes an estimator of Gerber–
Shiu functions by deriving its Laguerre series expansion and estimating the coefficients for
each term. They show the consistency of their proposed estimator. Shimizu and Zhang [24]
applied the same approach to ruin probability and further showed that the estimator is asymp-
totically normal. As shown in equation (1.1), the ruin probability is represented by W(0)(x), so
their estimator is also an asymptotically normal estimator for the 0-scale function. This paper
constructs an asymptotically normal estimator of the q-scale function, which generalizes the
results of [24].

The paper is organized as follows. Section 2 introduces the series representation of the
q-scale function obtained by Feng and Shimizu [9]. Under the net profit condition, the q-scale
function has an integral representation in the form of the expected value of the compound geo-
metric distribution. Section 3 covers statistical inference. Assuming X to be a surplus model,
we construct auxiliary statistics for each unknown parameter under a reasonable discrete obser-
vation scheme. Finally, in Section 3.2, we construct an estimator for the Laguerre expansion
of the q-scale function based on these auxiliary statistics. The proposed estimators are shown
to be consistent and asymptotically normal. Supplementary lemmas are summarized in the
Appendix.
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4 H. IRIE AND Y. SHIMIZU

Notation. Throughout the paper, we use the following notation.

• N= {1, 2, 3, . . .}; N0 := N∪ {0}; R+ := [0,∞).

• For a d × d matrix A = (aij)1≤i,j≤d, let |A| := (∑d
i,j=1 a2

ij

)1/2.

• For a = (a1, . . . , ad)
 and b = (b1, . . . , bd)
, the inner product is defined by a · b =∑d
k=1 akbk.

• Let 0d denote the zero vector of dimension d, and let Id be the d × d identity matrix.
Moreover, Nd(a, 
) denotes the d-dim Gaussian distribution with mean vector a and
covariance matrix 
. In particular, N := N1.

• The indicator function on a set A ⊂R is given by 1A(x) = 1 if x ∈ A; 0 otherwise.

• For functions f , g on R, let f (x) � g(x) if there exists a constant C> 0 such that f (x) ≤
Cg(x) for any x ∈R.

• For a function f (x1, x2, . . . , xd), let

∂xi f := ∂f

∂xi
and ∂(x1,...,xd)f = (∂x1 f , . . . , ∂xd f )
.

• For s ≥ 1 and α > 0, let

Ls
α(R+) =

{
f : R+ →R :

∫ ∞

0
f s(x) e−αx dx<∞

}
.

In particular, we let Ls(R+) := Ls
0(R+), and for f , g ∈ L2(R+),

〈f , g〉 :=
∫ ∞

0
f (x)g(x) dx, ‖f ‖ := √〈f , f 〉.

• For functions f , g on R+ of finite variation, the convolution is defined as

f ∗ g(x) :=
∫

[0,x]
f (x − y)g(y) dy, x ≥ 0.

Moreover, the kth convolution is defined by f ∗0 = δ0 (Dirac’s delta function concentrated
on 0) and f ∗k = f ∗ f ∗(k−1) for k ∈N.

• For a measure ν on R+ and a function f = (f1, . . . , fd)
 : R+ →R
d, we let

ν(f ) :=
∫
R+

f (x) ν(dx) =
(∫

R+
f1(x) ν(dx), . . . ,

∫
R+

fd(x) ν(dx)

)

.

2. Series representation of q-scale functions

2.1. A compound geometric representation of q-scale functions

A closed-form expression for the q-scale function of the process X was derived by Feng
and Shimizu [9] as an expectation with respect to a compound geometric distribution under the

https://doi.org/10.1017/jpr.2025.23 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.23


Approximation and estimation of scale functions 5

following net profit condition:

NPC c>
∫ ∞

0
z ν(dz).

To state the representation of W(q), we prepare some notation. We will fix a number q ≥ 0
for W(q), and let

D := σ 2

2
, γ := �(q), β =

⎧⎨⎩cD−1 + γ, D> 0,

γ, D = 0,

f̃q(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D−1

∫ x

0
dy
∫ ∞

y
e−β(x−y)e−γ (z−y) ν(dz), D> 0,

c−1
∫ ∞

x
e−γ (z−x) ν(dz), D = 0.

We define a distribution Fq with a probability density obtained from the function f̃q:

Fq(x) :=
∫ x

0
fq(z) dz, fq(z) = p−1̃fq(z), p :=

∫ ∞

0
f̃q(z) dz.

In fact, p ∈ (0, 1) under the NPC condition and the probability density fq is well-defined; see
Lemma C.1. Then the following representation is the immediate consequence from Feng and
Shimizu [9, Proposition 4.1].

Lemma 2.1. Suppose the NPC condition for the process X. Then the q-scale function W(q) of
X has the following integral form:

W(q)(x)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
eγ x − e−βx

D(1 − p)(β + γ )
− 1

D(1 − p)(β + γ )

∫
[0,x)

[
γ eγ (x−z) + βe−β(x−z)]Gq(z) dz, D> 0,

eγ x

c(1 − p)
− 1

c(1 − p)

∫
[0,x)

eγ (x−z)Gq(z) dz, D = 0,

where p ∈ (0, 1) and Gq is a compound geometric distribution function

Gq(x) =
∞∑

k=0

(1 − p)pk
∫ x

0
f ∗k
q (z) dz, x ≥ 0, (2.1)

and Gq(x) ≡ 0 for x< 0.

Proof. See Section C.4.

2.2. Laguerre series expansion

Let Lk(x) be the Laguerre polynomial of order k,

Lk(x) = 1

n!ex dn

dxn
(e−xxn) =

k∑
j=0

(
k

j

)
(−x)j

j! , x ∈R+ := [0,∞),

https://doi.org/10.1017/jpr.2025.23 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.23


6 H. IRIE AND Y. SHIMIZU

by which we define the Laguerre function for each α > 0 as follows:

ϕα,k(x) := √
2αLk(2αx) e−αx, x ∈R+.

Note that the system {ϕα,k}k∈N0 consists of an orthogonal basis of L2(R+) satisfying

sup
k∈N0,x∈R+

|ϕα,k(x)| ≤ √
2α, (2.2)

and that for any k ∈N0, there exists some δ > 0 such that

ϕα,k(x) = O
(
e−(α−δ)x), x → ∞,

since Lk is a polynomial of order k. Therefore we can control the decay order of the function
ϕk,α by choosing α > 0; see Remark 2.1.

Let Wr
α(R+) be the Sobolev–Laguerre space (Bongioanni and Torrea [6]) for α, r> 0:

Wr
α(R+) :=

{
f ∈ L2(R+) :

∞∑
k=0

kr|〈f , ϕα,k〉|2 <∞
}

.

There are many useful connections between Laguerre systems and the Sobolev–Laguerre
space, as discussed in Comte and Genon-Catalot [7]. In particular, Proposition 7.1 and its
remark provide an equivalent condition for a function to belong to Wr

α(R+), as follows.

Lemma 2.2. (Comte and Genon-Catalot [7].) Let r ∈N and α > 0. Then f ∈Wr
α(R+) if and

only if f admits the derivatives of order r and that

xm/2∂m
x f (x) ∈ L2

α(R+), 0 ≤ m ≤ r. (2.3)

The following uniform convergence of the Laguerre series expansion is obtained by Shimizu
and Zhang [24, Proposition 3].

Lemma 2.3. For any K ∈N, the partial sum of the Laguerre series expansion of f ∈Wr
α(R+),

fK(x) :=
K∑

k=0

〈f , ϕα,k〉ϕα,k(x), x ≥ 0,

satisfies

sup
x∈R+

|fK(x) − f (x)| = O(K−(r−1)/2), K → ∞.

2.3. Laguerre expansion of Gq

According to Willmot and Lin [26], for example, we see that the tail function Gq := 1 − Gq

should satisfy the following defective renewal equation (DRE):

Gq(x) = pFq + pfq(x) ∗ Gq(x), x ≥ 0. (2.4)

We have the Laguerre expansion of pfq, pFq, and Gq since these belong to L2(R+) as shown in
Section C.1: for x ≥ 0,

pfq(x) =
∞∑

k=0

af
α,kϕα,k(x), pFq(x) =

∞∑
k=0

aF
α,kϕα,k(x), Gq(x) =

∞∑
k=0

aG
α,kϕα,k(x),

where af
α,k := 〈pfq, ϕα,k〉, aF

α,k := 〈pFq, ϕα,k〉, and aG
α,k := 〈Gq, ϕα,k〉.
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For arbitrary K ∈N0, letting

af
α,K := (

af
α,0, af

α,1, . . . , af
α,K

)

,

aF
α,K := (

aF
α,0, aF

α,1, . . . , aF
α,K

)

,

aG
α,K := (

aG
α,0, aG

α,1, . . . , aG
α,K

)

,

we have the following relation among these coefficients; see Zhang and Su [28, Section 2] or
Shimizu and Zhang [24, Proposition 2].

Lemma 2.4. Define a (K + 1) × (K + 1)-matrix Af
K = (akl)1≤k,l≤K+1, whose components are

given as follows:

akl :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 − 1√

2α
af
α,0, k = l,

− 1√
2α

(
af
α,k−l − af

α,k−l−1

)
, k> l,

0, k< l.

Then the matrix Af
K is invertible, and it holds that

aG
α,K = (Af

K

)−1aF
α,K .

Using this system, we can construct a Laguerre expansion of Gq(x): for a vector ϕα,K =
(ϕα,0, ϕα,1, . . . , ϕα,K)
,

Gq,K(x) :=
K∑

k=0

aG
α,kϕα,k(x) = aG

α,K · ϕα,K, x ∈R+. (2.5)

Lemma 2.5. Suppose the tail function of the Lévy measure ν, say ν(x) := ∫∞
x ν(dz), admits

derivatives up to order r> 1 and that the distribution Gq given in (2.1) has moments of any
polynomial order. Moreover, suppose there exists a constant κ > 0 such that

∂m
x ν(x) = O(1 + xκ ), x → ∞, (2.6)

for any 0 ≤ m ≤ r − 2. Then we have Gq ∈Wr
α(R+), and therefore

sup
x∈R+

∣∣Gq,K(x) − Gq(x)
∣∣= O(K−(r−1)/2) → 0, K → ∞. (2.7)

Furthermore, if the condition (2.6) is much milder, such as

∂m
x ν(x) = O(eκx), x → ∞, (2.8)

then the consequence (2.7) also holds if we choose α > 2κ .

Proof. See Section C.5.

Remark 2.1. Lemma 2.5 explains the significance of the tuning parameter α > 0 in the
Laguerre function. When considering a model in which the Lévy measure satisfies (2.8), we
can choose α such that a> 2κ . However, in most standard cases where (2.6) holds, we can
choose any α > 0; in particular, setting α= 1 is both simple and sufficient.
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8 H. IRIE AND Y. SHIMIZU

2.4. Laguerre-type expansion for q-scale functions

We can obtain a series expansion of the q-scale function by replacing Gq(z) in the expression
of W(q) in Lemma 2.1 with the corresponding Laguerre expansion (2.5).

Definition 2.1. For any K ∈N and α > 0, the Kth-Laguerre-type expansion of W(q), say W(q)
K ,

is given by

W(q)
K (x) := P(x; p, γ,D) − Qα,K(x; p, γ,D) · aG

α,K, (2.9)

where Qα,K := (Qα,0,Qα,1, . . . ,Qα,K)
 with

P(x; p, γ,D) :=

⎧⎪⎪⎨⎪⎪⎩
eγ x − e−βx

D(1 − p)(β + γ )
, D> 0,

eγ x

c(1 − p)
, D = 0,

Qα,k(x; p, γ,D) :=

⎧⎪⎪⎨⎪⎪⎩
γ�α,k(x; γ ) + β�α,k(x; − β)

D(1 − p)(β + γ )
, D> 0,

ϕα,k(x) + γ�α,k(x; γ )

c(1 − p)
, D = 0,

and

�α,k(x; b) :=
∫ x

0
eb(x−z)ϕα,k(z) dz, b ∈R. (2.10)

Remark 2.2. There is an alternative version of the q-scale function Z(q) : R→ [1,∞), defined
as

Z(q)(x) = 1 + q
∫ x

0
W(q)(z) dz, x ∈R,

where we regard that
∫ x

0 = 0 if x< 0. Note that W(q)(x) = q−1∂xZ(q)(x) as q �= 0. The Laguerre-
type expansion of Z(q) is also defined as

Z(q)
K (x) = 1 + q

∫ x

0
W(q)

K (z) dz

= 1 + q
[
P∗(x; p, γ,D) − Q∗

α,K(x; p, γ,D) · aG
α,K

]
, (2.11)

where Q∗
α,K := (

Q∗
α,0,Q∗

α,1, . . . ,Q∗
α,K

)
 with

P∗(z; p, γ,D) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ−1(1 − eγ x) − β−1(1 − e−βx)

D(1 − p)(β + γ )
, D> 0,

1 − eγ x

γ c(1 − p)
, D = 0,

Q∗
α,k(x; p, γ,D) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�α,k(x; γ ) −�α,k(x; − β)

D(1 − p)(β + γ )
, D> 0,

�α,k(x; γ )

c(1 − p)
, D = 0.
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Approximation and estimation of scale functions 9

According to Lemma 2.3, if Gq ∈Wr
α(R+) (e.g. f := Gq satisfies (2.3)), then

sup
x∈R+

|W(q)
K (x) − W(q)(x)| → 0, K → ∞;

see (2.7). Therefore it follows for any compact sets V ⊂R+ that

sup
x∈V

|Z(q)
K (x) − Z(q)(x)| → 0, K → ∞.

Remark 2.3. The approximation formulas obtained in equations (2.9) and (2.11) are fun-
damentally different from those in Xie et al. [27], while being more elementary. Their
approximation focuses on the relationship between the probability density of the ‘killed pro-
cess’ Xet (where et is an exponential random variable with mean 1) and its scale function,
cleverly expanding the probability density into a Laguerre series. In our approximation, we
utilize a Laguerre series expansion for the compound geometric distribution Gq, which is
essentially similar to the approach of Shimizu and Zhang [24]. The utility of this approach
becomes apparent in the subsequent discussion.

3. Statistical inference: main theorems

We will proceed with the statistical estimation of scale functions. When considering the
practical application of q-scale functions, we typically focus on actuarial science, where
X = (Xt)t≥0 represents the dynamics of an insurance surplus model. In this context, the coef-
ficient of the linear term, c, corresponds to the premium rate. Therefore, in this paper, we
specifically treat the value of c as known.

3.1. Sampling scheme

Let n ∈N. We assume that the process X = (Xt)t≥0 is observed at discrete time points
tni := i�n (i = 0, 1, . . . , n) for some number �n > 0:

Xn := {Xtni
| i = 0, 1, . . . , n}, Tn := n�n.

In particular, the initial value Xtn0
= x is assumed to be known. Moreover, we assume that ‘large’

jumps of X are observed. That is, for some number εn > 0, we can identify the jumps whose
sizes are larger than εn, which are finitely many on [0, Tn]:

Jn := {�Xt := Xt − Xt− | t ∈ [0, Tn], |�Xt|> εn}.
Assume that we have data Xn ∪ Jn, and consider the following asymptotics:

�n → 0, Tn → ∞, εn → 0, (3.1)

as n → ∞. We shall always use the limit n → ∞ when considering the asymptotic symbols,
and assume (3.1) for the sampling scheme (�n, Tn, εn) without further comment.

Remark 3.1. The data Xn are assumed to represent the data on the remaining reserves that
insurance companies record on a regular basis. On the other hand, Jn are assumed to be ‘large’
claims. It may seem unnatural to consider such a model with infinitely many jumps when
modeling insurance surplus, but this is a standard surplus approximation in risk theory. Arguing
under asymptotics such as (3.1) with data like Jn is a common way of theoretically justifying
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10 H. IRIE AND Y. SHIMIZU

that the more detailed claims data you collect, the better the estimation. In practice, it is not
necessary to observe infinitely many ‘small’ jumps.

We shall make some assumptions on the scheme (�n, Tn, εn):

S1 n�2
n → 0,

S2
∫ εn

0
z ν(dz) +

∫ εn

0
z2 ν(dz) = o

(
T−1/2

n

)
.

In addition, to ensure some integrability with respect to ν, we will prepare the following
moment conditions on ν:

M[k] For some given k> 0, there exists some ε ∈ (0, 1) such that ν(|z| ∨ |z|k+ε)<∞.

3.2. Main theorems

For the statistical argument, we let p0,D0, and γ0 denote the true values of parameters p, D,
and γ , respectively. We will provide estimators for approximations W(q)

K and Z(q)
K , in which the

parameters p, D, and γ are replaced by their true value.
According to the expressions (2.9) and (2.11), we construct estimators of W(q)

K and Z(q)
K as

follows:

Ŵ(q)
K (x) := P(x; p̂n, γ̂n, D̂n) − Qα,K(x; p̂n, γ̂n, D̂n) · âG

α,K,

Ẑ(q)
K (x) := q

[
P∗(x; p̂n, γ̂n, D̂n) − Q∗

α,K(x; p̂n, γ̂n, D̂n) · âG
α,K

]
.

The consistency and asymptotic normality for Ŵ(q)
K are obtained for each K ∈N as follows.

Theorem 3.1. Suppose the assumptions NPC, S1, S2, and M[2] hold. Then, for any q> 0,
K ∈N, and x ∈R+, we have

Ŵ(q)
K (x)

p→ W(q)
K (x).

In particular, when q = 0, we have uniform consistency:

sup
x∈R+

∣∣Ŵ(0)
K (x) − W(0)

K (x)
∣∣ p→ 0.

In addition, suppose M[4] holds. Then we have√
Tn
(
Ŵ(q)

K (x) − W(q)
K (x)

) d→ N(0, σK(x)),

where σK(x) := [CK(x)�K]
K[CK(x)�K]
 with 
K and �K given in (B.1) and (B.2), respec-
tively, and CK is the (2K + 4)-dim vector given by

CK(x) :=(
Qα,K(x; p0, γ0,D0)


(
Af

K

)−1
BK, ∂(p,γ )

[
P(x; γ0, p0,D0) − Qα,K(x; p0, γ0,D0) · aG

α,K

])

,

with the matrix BK given in Corollary B.1.

Proof. See Section C.6.
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Theorem 3.2. Suppose the assumptions NPC, S1, S2, and M[2] hold. Then, for any q> 0,
K ∈N, and x ∈R+, we have

Ẑ(q)
K (x)

p→ Z(q)
K (x).

In particular, when q = 0, we have uniform consistency: for any compact set V ⊂R+,

sup
x∈V

∣∣̂Z(0)
K (x) − Z(0)

K (x)
∣∣ p→ 0.

In addition, suppose M[4] holds. Then we have√
Tn
(̂
Z(q)

K (x) − Z(q)
K (x)

) d→ N
(
0, σ ∗

K(x)
)
,

where σ ∗
K(x) := q2[C∗

K(x)�K]
K[C∗
K(x)�K]
 with 
K and �K given in (B.1) and (B.2),

respectively, and C∗
K is the (2K + 4)-dim vector given by

C∗
K(x) :=(
Q∗
α,K(x; p0, γ0,D0)


(
Af

K

)−1
BK, ∂(p,γ )

[
P∗(x; γ0, p0,D0) − Q∗

α,K(x; p0, γ0,D0) · aG
α,K

])

,

with the matrix BK given in Corollary B.1.

Proof. See Section C.7.

Corollary 3.1. Suppose the assumptions NPC, S1, S2, and M[2] hold. Then, for any q> 0,
K ∈N, and x ∈R+, we have

√
Tn

(
Ŵ(q)

K (x) − W(q)
K (x)

Ẑ(q)
K (x) − Z(q)

K (x)

)
d→ N2

(
02, 
̃K(x)

)
,

where


̃K(x) :=
[( CK(x)

qC∗
K(x)

)
�K

]

K

[( CK(x)

qC∗
K(x)

)
�K

]

.

Proof. See Section C.8. �

Remark 3.2. Our asymptotic results for Ŵ(q)
K and Ẑ(q)

K are all for a fixed K ∈N, and but one
may also be concerned with the case where K = Kn → ∞ as well as n → ∞. It is not a straight-
forward extension, even for consistency. For example, if we could show that for each x ∈R+,

sup
K∈N

∣∣Ŵ(q)
K (x) − W(q)

K (x)
∣∣ p→ 0, n → ∞,

then we can exchange the order of the limits n → ∞ and K → ∞, which concludes that

Ŵ(q)∞ (x)
p→ W(q)∞ (x) for each x ∈R+. On this point, we need further study. As for the extension

of asymptotic normality, a more complicated discussion is needed to extend the results to the
case where K depends on n with K = Kn → ∞. This will lead to a high-dimensional setting,
and we will need a high-dimensional central limit theorem (CLT) for triangular arrays, even
without a martingale property. A sophisticated CLT would still need to be proved.
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12 H. IRIE AND Y. SHIMIZU

Appendix A. Some auxiliary statistics

A.1. Estimator of D0

For D = σ 2/2, we consider the following estimator proposed by Jacod [12] and Shimizu
[22, 23]: for each fixed T > 0,

D̂T
n := 1

2T

(�T�−1
n �∑

i=1

|Xi�n − X(i−1)�n |2 −
∑
s≤T

|�Ls|21{�Ls>εn}

)
.

Lemma A.1. (Shimizu [22], Remark 3.2.) Under the assumptions S1 and S2, the estimator D̂T
n

is consistent with D0 with the rate of convergence being faster than
√

Tn such that for any
t> 0, √

Tn
(
D̂T

n − D0
) p→ 0.

Remark A.1. Since the constant T > 0 in the estimator D̂T
n can be arbitrary, we will fix it to be

T = 1 without loss of generality, and set

D̂n := D̂1
n.

In practice, the value of T should be chosen appropriately based on the amount of data and the
size of �n.

A.2. Estimator of ν-functionals

First, we would like to estimate the integral-type functional ν(Hθ ), where Hθ : R+ →R
d is

a ν-integrable function with an unknown parameter θ ∈�:

ν(Hθ ) :=
(∫ ∞

0
H(1)
θ (z) ν(dz), . . . ,

∫ ∞

0
H(d)
θ (z) ν(dz)

)
,

where � is an open and bounded subset of Rl for some l ∈N. Note that the parameter θ can
be a variety of parameters depending on the context. For instance, we will see later that the
parameter p := ∫∞

0 f̃q(z) dz, the coefficients of Laguerre expansion, e.g. af
α,k and aF

α,k, can all
be expressed in terms of the integral functional of ν.

In short, we need to estimate the parameters (D0, γ0, ν(Hθ0 )), where θ0 is the true value
of θ . Hereafter, we assume that there exists an open and bounded set �1 and �2 of R+ such
that

(D0, γ0, θ0) ∈�1 ×�2.

Moreover, we make the following assumptions on an integrands Hθ , which are applied to a
variety of Hθ , locally in this section.

H1[δ] For each θ ∈�, there exists a δ ≥ 0 such that ν(|Hθ | ∨ |Hθ |2+δ)<∞.

H2 sup
θ∈�

ν(|Hθ | ∨ |Hθ |2)<∞.

H3 There exists a ν-integrable function h1 : R+ →R such that

sup
θ∈�

|Hθ (z)| ≤ h1(z).
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H4 There exists a function h2 : R+ →R with ν
(
h2 ∨ h2

2

)
<∞ such that for any κ ∈R

l,

sup
θ∈�

|Hθ+κ (z) − Hθ (z)| ≤ h2(z)|κ|.

H5 For each i = 1, . . . , d, ∫ εn

0
H(i)
θ (z) ν(dz) = o

(
T−1/2

n

)
.

As for functionals ν(Hθ ), we can use the following threshold-type estimator:

ν̂n(Hθ ) := 1

Tn

∑
t∈(0,Tn]

Hθ (�Lt)1{�Lt>εn}.

Lemma A.2. (Shimizu [22], Propositions 3.1 and 3.2.)

(1) Under the assumption H1[0], we have

ν̂n(Hθ )
p→ ν(Hθ ), θ ∈�.

In addition, assuming further H2 and H4, we have uniform consistency:

sup
θ∈�

|̂νn(Hθ ) − ν(Hθ )| → 0.

(2) Under H1[δ] for some δ > 0 and H5, we have√
Tn (̂νn(Hθ ) − ν(Hθ ))

d→ Nd(0d, 
θ ), θ ∈�,
where 
θ = (ν(H(i)

θ H(j)
θ

))
1≤i,j≤d.

It will be easy to see that the following version of the continuous mapping-type theorem
holds for the estimator ν̂n(Hθ ).

Corollary A.1. Under the assumptions H1[0], H2–H4, it follows that

ν̂n
(
HHθ̂n

) p→ ν(Hθ0 ),

for any random sequence such that θ̂n
p→ θ0 ∈�.

Proof. Note that there exists a sub-subsequence {θ̂n′ } for any subsequence of {θ̂n} such
that θ̂n′ → θ0 a.s. Then, under the assumption H3, we can apply the Lebesgue-dominated
convergence theorem to obtain ν

(
Hθ̂n′

)→ ν(Hθ0 ) a.s. That is, the sequence
{
ν
(
Hθ̂n

)}
has a

sub-subsequence that converges to ν(Hθ0 ) almost surely, which implies that ν
(
Hθ̂n

) p→ ν(Hθ0 ).
Moreover, since P(θ̂n /∈�) → 0, it follows from Lemma A.2 that for any ε > 0,

P
(|̂νn
(
Hθ̂n

)− ν(Hθ0 )|> ε)≤ P

(
sup
θ∈�

|̂νn(Hθ ) − ν(Hθ )|> ε/2, θ̂n ∈�
)

+ P
(|ν(Hθ̂n

)− ν(Hθ0 )|> ε/2, θ̂n ∈�)
+ P(θ̂n /∈�) → 0.

This completes the proof. �
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14 H. IRIE AND Y. SHIMIZU

A.3. Estimator of γ0

An estimator of the Lundberg exponent γ0 =�(q) is found in Shimizu [22] as an
M-estimator given by

γ̂n = 1{q>0} · arg inf
r∈�2

|cr + D̂nr2 − ν̂n(kr) − q|2,

where kr(z) = e−rz − 1. This estimator is quite natural because the contrast function is a
direct estimator of the Lundberg equation ‘ψX(r) − q = 0’, and it is useful because it satisfies
consistency and asymptotic normality, as follows.

Lemma A.3 (Shimizu [22], Lemma 3.3.) Suppose the conditions NPC, S1, S2, and M[2] hold.
Then we have √

Tn(γ̂n − γ0)
d→ N1

(
0, v2

0

)
,

where

v2
0 = ν

(
k2
γ0

)
(c + 2D0γ0 + ν(∂rkγ0 ))2

.

In particular, we have the representation (in the proof of Lemma 3.3 of [22]) that√
Tn(γ̂n − γ0) =√Tn (̂νn(H̃γ0 ) − ν(H̃γ0 )) + op(1), (A.1)

where H̃r(z) := kr(z)/∂zψX(z) and kr(z) = e−rz − 1.

Appendix B. Estimators of p0, af
α,K , aF

α,K , and aG
α,K

First, we prepare some notation to give representations of p0, af
α,K , and aF

α,K in terms of
ν-functionals.

Hereafter we set θ := (D, γ ) ∈� := �1 ×�2, and let the true values be

θ0 := (D0, γ0) ∈� := �1 ×�2,

where �1 and �2 are open and bounded subsets of R+.
We define the following notation. As D> 0, for α > 0 and k ∈N0,

Hp(z; θ ) := D−1
∫ z

0
dy
∫ ∞

y
e−β(x−y)e−γ (z−x) dx,

Hf
α,k(z; θ ) := D−1

∫ z

0
dy
∫ ∞

y
e−β(x−y)e−γ (z−x)ϕα,k(x) dx,

HF
α,k(z; θ ) := D−1

∫ z

0
dy
∫ ∞

y
e−β(x−y)e−γ (z−x)�α,k(x; 0) dx.
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Recall that �α,k(x; b) is given by (2.10) in Definition 2.1. In particular, when D = 0,

Hp(z; θ ) := c−1
∫ z

0
e−γ (z−x) dx,

Hf
α,k(z; θ ) := c−1

∫ z

0
e−γ (z−x)ϕα,k(x) dx,

HF
α,k(z; θ ) := c−1

∫ z

0
e−γ (z−x)�α,k(x; 0) dx.

In this paper we use the convention

Hf
α,K = (Hf

α,0, . . . ,Hf
α,K

)
.

Then it is straightforward to obtain the following expression by direct computation.

Lemma B.1. It holds that

p0 = ν(Hp( · ; θ0)), af
α,k = ν

(
Hf
α,k( · ; θ0)

)
, aF

α,k = ν
(
HF
α,k( · ; θ0)

)
.

Proof. Use Fubini’s theorem. We shall compute only HF
α,k(z; θ ):

aF
α,k := 〈pFq, ϕα,k〉

=
∫ ∞

0
pFq(x)ϕα,k(x) dx

=
∫ ∞

0
pfq(x)

(∫ x

0
ϕα,k(u)du

)
dx (by integration by parts)

=
∫ ∞

0

(
D−1

∫ x

0
dy
∫ ∞

y
e−β(x−y)e−γ (z−y)ν(dz)

)
�α,k(x; 0) dx

=
∫ ∞

0

(
D−1

∫ z

0
dy
∫ ∞

y
e−β(x−y)e−γ (z−y)�α,k(x; 0) dx

)
ν(dz)

= ν
(
HF
α,k( · ; θ )

)
.

The others are similar and omitted. �

Thanks to this lemma, we have estimators of p0, af
α,k, and aF

α,k as follows:

p̂n = ν̂n(Hp( · ; θ̂n)), âf
α,k = ν̂n

(
Hf
α,k( · ; θ̂n)

)
, âF

α,k = ν̂n
(
HF
α,k( · ; θ̂n)

)
,

where

θ̂n = (D̂n, γ̂n)
.

Theorem B.1. Suppose the assumptions NPC, S1, S2, and M[2] hold. Then the estimators p̂n,
âf
α,k, and âF

α,k are consistent with their true values. In particular, it follows for each α > 0 and
K ∈N that (̂

af
α,K, âF

α,K, p̂n
)
 p→ (

af
α,K, aF

α,K, p0
)

,

where p0 is the true value of p = ∫∞
0 f̃q(z) dz.
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Proof. According to Lemma B.1, p̂n, âf
α,k, and âF

α,k are all represented by ν-functionals, for

which we can apply Corollary A.1 since θ̂n = (D̂n, γ̂n)
p→ θ0 = (D0, γ0) under our assumptions

by Lemmas A.1 and A.3. Therefore we can check H1[0], H2–H4-type conditions for each
Hθ := Hp, Hα,k, and HF

α,k, but it is straightforward under M[2] since H2 and H3 are true by
Lemma C.3, and H4 is also true by Lemma C.4. �

To state the asymptotic normality result, we define the following notation:

Hα,K(z; θ ) := (
Hf
α,K(z; θ ),HF

α,K(z; θ ),Hp(z; θ )
)
 ∈R

2K+3;

H̃α,K(z; θ ) := (Hα,K(z; θ ), H̃γ (z))
 ∈R
2K+4,

where H̃γ is given in (A.1).

Theorem B.2. Suppose the same assumptions as in Theorem B.1 and M[4] hold. Then we have
asymptotic normality: for each α > 0 and K ∈N,

√
Tn

⎛⎜⎜⎜⎜⎜⎝
âf
α,K − af

α,K

âF
α,K − aF

α,K

p̂n − p0

γ̂n − γ0

⎞⎟⎟⎟⎟⎟⎠
d→ N2K+4

(
02K+4, �K
K�



K

)
,

where 
K := (σij)1≤i,j≤2K+4 with

σij :=
∫ ∞

0
H̃(i)
α,K(z; θ0)H̃(j)

α,K(z; θ0)ν(dz), (B.1)

and �K is the (2K + 4) × (2K + 4)-matrix denoted by

�K :=
(

I2K+3ν(∂γHα,K( · ; θ0))

0

2K+3 1

)
. (B.2)

Proof. We only show the case where D> 0 because the proof for D = 0 is similar.
Firstly, thanks to Taylor’s formula, it follows that√
Tn
(̂
νn(Hα,K( · ; θ̂n)) − ν(Hα,K( · ; θ0))

)
=√Tn

(̂
νn(Hα,K( · ; θ̂n)) − ν̂n(Hα,K( · ; θ0))

)+√Tn (̂νn(Hα,K( · ; θ0)) − ν(Hα,K( · ; θ0)))

= ν̂n

(∫ 1

0
∂γHα,K( · ; θn

u ) du

)√
Tn(γ̂n − γ0) + ν̂n

(∫ 1

0
∂DHα,K( · ; θn

u ) du

)√
Tn(D̂n − D0)

+√Tn (̂νn(Hα,K( · ; θ0)) − ν(Hα,K( · ; θ0)))

=
(

I2K+3ν̂n
(∫ 1

0 ∂γHα,K( · ; θn
u ) du

))√
Tn

(̂
νn(Hα,K( · ; θ0)) − ν(Hα,K( · ; θ0))

γ̂n − γ0

)

+
[(̂
νn

(∫ 1

0
∂DHα,K( · ; θn

u ) du

)
1{θ̂n∈�}

)
+ ν̂n

(∫ 1

0
∂DHα,K( · ; θn

u ) du

)
1{θ̂n /∈�}

]
×√Tn(D̂n − D0) =: S1 + S2,

where θn
u := θ0 + u(θ̂n − θ0), (u ∈ (0, 1)).
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As for S2, it follows from Lemma C.3 that for any k ∈N0,∣∣∣∣∫ 1

0
∂DHα,k(z; θn

u ) du1{θ̂n∈�}
∣∣∣∣≤ sup

θ∈�
|∂DHα,k(z; θ )|� z.

Therefore the condition M[4] ensures that

ν

(∣∣∣∣∫ 1

0
∂DHα,k( · ; θn

u ) du1{θ̂n∈�}
∣∣∣∣2)<∞.

Moreover, it follows for any ε > 0 that{̂
νn

(∫ 1

0
∂DHα,K( · ; θn

u ) du

)
1{θ̂n /∈�} > ε

}
⊂ {1{θ̂n /∈�} = 1

}= {θ̂n /∈�}.

Since θ̂n
p→ θ0 ∈� by S1, S2, and M[2], it follows from Lemmas A.1 and A.2 that

S2 = (Op(1) + op(1))
√

Tn(D̂n − D0)
p→ 0.

Secondly, we show the following convergence:

ν̂n

(∫ 1

0
∂γHα,K( · ; θn

u ) du

)
p→ ν(∂γHα,K( · ; θ0)). (B.3)

Thanks to Fubini’s theorem, we have∣∣∣∣̂νn

(∫ 1

0
∂γHα,K( · ; θn

u ) du

)
− ν(∂γHα,K( · ; θ0))

∣∣∣∣
≤
∣∣∣∣̂νn

(∫ 1

0
∂γHα,K( · ; θn

u ) du

)
− ν

(∫ 1

0
∂γHα,K( · ; θn

u ) du

)∣∣∣∣1{θ̂n∈�}

+
∣∣∣∣̂νn

(∫ 1

0
∂γHα,K( · ; θn

u ) du

)
− ν

(∫ 1

0
∂γHα,K( · ; θn

u ) du

)∣∣∣∣1{θ̂n /∈�}

+
∣∣∣∣ν(∫ 1

0
∂γHα,K( · ; θn

u ) du

)
− ν(∂γHα,K( · ; θ0))

∣∣∣∣
≤
∫ 1

0
|̂νn(∂γHα,K( · ; θn

u )) − ν(∂γHα,K( · ; θn
u ))| du1{θ̂n∈�}

+
∣∣∣∣̂νn

(∫ 1

0
∂γHα,K( · ; θn

u ) du

)
− ν

(∫ 1

0
∂γHα,K( · ; θn

u ) du

)∣∣∣∣1{θ̂n /∈�}

+
∫ 1

0
|ν(∂γHα,K( · ; θn

u )) − ν(∂γHα,K( · ; θ0))| du

=: S′
1 + S′

2 + S′
3.
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As for S′
1, since

S′
1 ≤ sup

θ∈�
|̂νn(∂γHα,K( · ; θ )) − ν(∂γHα,K( · ; θ ))|,

we see from Lemmas A.2 and C.4 that S′
1

p→ 0.
As for S′

2, since

{|S′
2|> ε′} ⊂ {1{θ̂n /∈�} = 1

}= {θ̂n /∈�},

we have S′
2

p→ 0 by the consistency of θ̂n.
As for S′

3, note that

S′
3 ≤
∫ 1

0
|ν(∂γHα,k( · ; θn

u )) − ν(∂γHα,k( · ; θ0))|1{|θn
u −θ0|<δ′} du

+
∫ 1

0
|ν(∂γHα,k( · ; θn

u )) − ν(∂γHα,k( · ; θ0))|1{|θn
u −θ0|≥δ′} du.

The first term on the right-hand side goes to zero in probability due to the continuity of the
mapping θ �→ ν(∂γHα,K( · ; θ )), which is a consequence by the Lebesgue convergence theorem
with Lemma C.3 and the condition M[2]. The second term on the right-hand side also goes to

zero in probability by the consistency of θn
u to θ0. Hence we see that S′

3
p→ 0, which concludes

the convergence (B.3).
Finally, we can show that√

Tn
(̂
νn(H̃α,K( · ; θ0)) − ν(H̃α,K( · ; θ0))

)
is asymptotically normal by checking the conditions in Lemma A.2 with Hθ := H̃α,K( · ; θ ).
In fact, it follows from Lemma C.3 and M[4] that ν(|Hθ |4)<∞ for each θ ∈�, and that H5
also holds true since, by Lemma C.3 and (S2),∫ εn

0

(
Hf
α,k(z; θ ) + HF

α,k(z; θ ) + Hp(z; θ ) + Hγ0 (z)
)
ν(dz)

�
∫ εn

0
zν(dz)

= o
(
T−1/2

n

)
, n → ∞.

As a consequence, we see from Lemma A.2 that√
Tn (̂νn(H̃α,K( · ; θ0)) − ν(H̃α,K( · ; θ0)))

d→ N2K+4(02K+4, 
K),

where 
K is given in (B.2). Now, putting

�̂K :=
(

I2K+3 ν̂n
(∫ 1

0 ∂γHα,K( · : θ0) du
)

02K+3 1

)
,
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we have the expression

√
Tn

⎛⎜⎜⎜⎜⎜⎝
âf
α,K − af

α,K

âF
α,K − aF

α,K

p̂n − p0

γ̂n − γ0

⎞⎟⎟⎟⎟⎟⎠=√Tn

(̂
νn(Hα,K( · ;θ̂n)) − ν(Hα,K( · ; θ0))

γ̂n − γ0

)

= �̂K ·√Tn
(̂
νn(H̃α,K( · ; θ0)) − ν(H̃α,K( · ; θ0))

)+ op(1).

Since �̂K
p→ �K by (B.3), Slutsky’s lemma yields the result, and the proof is completed. �

According to Shimizu and Zhang [24], Theorems 1 and 2 and their proofs, we find the
following results.

Corollary B.1. Under the same assumptions as in Theorem B.1, it holds that

âG
α,K

p→ aG
α,K .

In addition, suppose M[2] holds. Then âG
α,K is asymptotically normal since

√
Tn
(̂
aG
α,K − aG

α,K

)= −(Af
K

)−1
B̂K

√
Tn

(̂
af
α,K − af

α,K

âF
α,K − aF

α,K

)
, (B.4)

where B̂K is a consistent estimator of the the (K + 1) × (2K + 2) matrix BK given as follows:
BK := (B∗

K,−IK+1), where B∗
K := (bkl)1≤k,l≤K+1, whose elements are given by

bkl :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1√
2α

aG
α,0, k = l,

− 1√
2α

(
aG
α,k−l − aG

α,k−l−1

)
, k> l,

0, k< l.

For example, an estimator B̂K is obtained by replacing aG
α,k, each element of BK, by its

consistent estimator âG
α,k.

Appendix C. Auxiliary lemmas and some proofs

C.1. On functions f q, Fq, and Gq

Lemma C.1 Under the NPC condition, the probability density fq is well-defined and uniformly
bounded.

Proof. We prove only the case where D> 0, and the one for D = 0 is similarly proved. First,
we see from Lemma 3.2 in Feng and Shimizu [9] that

p :=
∫ ∞

0
f̃q(z) dz ∈ (0, 1),

under the net profit condition NPC. Therefore fq := p−1̃fq is well-defined.
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20 H. IRIE AND Y. SHIMIZU

Moreover, since e−γ (z−y) < 1 for y< z<∞ and e−β(x−y) ≤ 1 for 0< x ≤ y, it follows that
fq is uniformly bounded as follows: for any x ∈R,

f̃q(x) = D−1
∫ x

0
dy
∫ ∞

y
e−β(x−y)e−γ (z−y)ν(dz)

≤ D−1
∫ x

0
dy
∫ ∞

y
ν(dz)

≤ D−1
∫ ∞

0
zν(dz)

<∞. �

Lemma C.2. For Fq and Gq, their tail functions satisfy that Fq,Gq ∈ Ls(R+) for any s ≥ 1.

Proof. Since 0 ≤ Fq(x),Gq(x) ≤ 1 for any x ∈R, it suffices to show that Fq,Gq ∈ L1(R+).
The Fubini theorem yields that∫ ∞

0
Fq(x) dx =

∫ ∞

0

(∫ ∞

u
fq(x)dx

)
du

=
∫ ∞

0
xfq(x) dx

=
∫ ∞

0

(∫ z

0
dy
∫ ∞

y
xe−β(x−y)e−γ (z−y) dx

)
ν(dz)

= 1

βγ

(
1

β
− 1

γ

) ∫ ∞

0
(1 − e−γ z) ν(dz) + 1

βγ

∫ ∞

0
z ν(dz)

≤ β−2
∫ ∞

0
z ν(dz)

<∞.

Moreover, taking the Laplace transform of the DRE (2.4) for Gq, we have∫ ∞

0
e−sxGq(x) dx = p

∫∞
0 e−sxfq(x) dx

1 − p
∫∞

0 e−sxFq(x) dx
.

Substituting with s = 0, we have Gq ∈ L1(R+) since fq, Fq ∈ L1(R+). �

C.2. On functions Hp, Hf
α,k, and HF

α,k

Lemma C.3. For each z ∈R+ and m = 0, 1, the following inequalities hold true:

sup
θ∈�

|∂m
D Hp(z; θ )|� z, sup

θ∈�
|∂m

D Hf
α,k(z; θ )|� z, sup

θ∈�
|∂m

D HF
α,k(z; θ )|� z.

Moreover, it follows that

sup
θ∈�

|∂γHp(z; θ )|� z, sup
θ∈�

|∂γHf
α,k(z; θ )|� z, sup

θ∈�
|∂γHF

α,k(z; θ )|� z + z2.

https://doi.org/10.1017/jpr.2025.23 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.23


Approximation and estimation of scale functions 21

Proof. We shall show the case where D> 0. The case where D = 0 is similarly proved.
Since �=�1 ×�2, each �i is open and bounded, we can assume that

�= (η1, η
−1
1

)× (η2, η
−1
2

)
,

for η1, η2 > 0 small enough without loss of generality. Then we have

|Hp(z; θ )| = D−1
∫ z

0
dy
∫ ∞

y
e−β(x−y)e−γ (z−y) dx

= 1

βDγ
(1 − e−γ z)

≤ 1

(c + η1η2)η1

(
1 − e−η−1

1 z)
� z,

uniformly in θ ∈�. Then, due to (2.2), we see that |Hf
α,k(z; θ )| ≤ √

2α|Hp(z; θ )|, which yields

supθ∈� |Hf
α,k(z; θ )|� z. Moreover, since it also holds that supk∈N0

|�α,k(x; 0)| ≤ √
2αx, we

have ∣∣HF
α,k(z; θ )

∣∣≤ √
2αD−1

∫ z

0
dy
∫ ∞

y
xe−β(x−y)e−γ (z−y) dx

=
√

2α

βDγ

(
z −
(

1

γ
− 1

β

)
(1 − e−γ z)

)

≤
√

2α

(c + η1η2)η1
z

� z.

Other proofs can be done similarly, so we omit them and end here. �

Lemma C.4. For each z ∈R+, m = 0, 1, and κ > 0, the following inequalities hold true:

sup
θ∈�

∣∣∂m
γ Hp(z; θ + κ) − ∂m

γ Hp(z; θ )
∣∣� |κ|z,

sup
θ∈�

∣∣∂m
γ Hf

α,k(z; θ + κ) − ∂m
γ Hf

α,k(z; θ )
∣∣� |κ|z,

sup
θ∈�

∣∣HF
α,k(z; θ + κ) − HF

α,k(z; θ )
∣∣� |κ|z,

sup
θ∈�

∣∣∂γHF
α,k(z; θ + κ) − ∂γHF

α,k(z; θ )
∣∣� |κ|(z2 + z).

Proof. We shall show the case where D> 0. The case where D = 0 is similarly proved. As
in the previous proof, we assume that �= (η1, η

−1
1

)× (η2, η
−1
2

)
for η1, η2 > 0 small enough

without loss of generality, and put κ := (κ1, κ2)
.
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Let

hθ (x, y, z) := e−γ (x−y) exp

(
− c

D
(x − y)

)
e−γ (z−y).

Note that it follows for y< x<∞, 0< y ≤ z that∣∣∣∣exp

(
− c

D + κ2
(x − y)

)
− exp

(
−c

D
(x − y)

)∣∣∣∣ e−γ (z−y) ≥ |hθ+κ (x, y, z) − hθ (x, y, z)|. (C.1)

Using this inequality, we have

|Hp(z; θ + κ) − Hp(z; θ )|

=
∣∣∣∣∫ z

0
dy
∫ ∞

y

(
1

D + κ2
hθ+κ (x, y, z) − 1

D
hθ (x, y, z)

)
dx

∣∣∣∣
≤
∣∣∣∣∫ z

0
dy
∫ ∞

y

(
1

D + κ2
− 1

D

)
hθ+κ (x, y, z) dx

∣∣∣∣
+
∣∣∣∣∫ z

0
dy
∫ ∞

y

1

D
(hθ+κ (x, y, z) − hθ (x, y, z)) dx

∣∣∣∣
≤
∫ z

0
dy
∫ ∞

y

(
1

D
− 1

D + κ2

)
exp

(
− c

D + κ2
(x − y)

)
e−γ (z−y) dx

+
∫ z

0
dy
∫ ∞

y

1

D

(
exp

(
− c

D + κ2
(x − y)

)
− exp

(
−c

D
(x − y)

))
e−γ (z−y) dx

= 2

cγD
(1 − e−γ z)κ2

≤ 2

cη1η2

(
1 − e−η−1

1 z)|κ|� |κ|z,

uniformly in θ ∈�.
As for Hf

α,k, since

∣∣Hf
α,k(z; θ + κ) − Hf

α,k(z; θ )
∣∣≤ √

2α|Hp(z; θ + κ) − Hp(z; θ )|

by (2.2), we obtain that

sup
θ∈�

∣∣Hf
α,k(z; θ + κ) − Hf

α,k(z; θ )
∣∣� z.
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Similarly, from (2.2) and (C.1), we have∣∣HF
α,k(z; θ + κ) − HF

α,k(z; θ )
∣∣

≤ √
2α

∣∣∣∣∫ z

0
dy
∫ ∞

y
x

(
1

D + κ2
hθ+κ (x, y, z) − 1

D
hθ (x, y, z)

)
dx

∣∣∣∣
≤ √

2α

∣∣∣∣∫ z

0
dy
∫ ∞

y

(
1

D + κ2
− 1

D

)
xhθ+κ (x, y, z) dx

∣∣∣∣
+ √

2α

∣∣∣∣∫ z

0
dy
∫ ∞

y

1

D
(xhθ+κ (x, y, z) − xhθ (x, y, z)) dx

∣∣∣∣
≤ √

2α
∫ z

0
dy
∫ ∞

y

(
1

D
− 1

D + κ2

)
x exp

(
− c

D + κ2
(x − y)

)
e−γ (z−y) dx

+
√

2α

c

∫ z

0
dy
∫ ∞

y

1

D

(
x exp

(
− c

D + κ2
(x − y)

)
− x exp

(
−c

D
(x − y)

))
e−γ (z−y) dx

=
√

2α

cγD

(
2z +

(
3D + 2κ2

c
− 2

γ

)
(1 − e−γ z)

)
κ2

≤
√

2α

cη2

(
2

η1
z +
(

5

cη2
− 2η1

)
1

η1

(
1 − e−η−1

1 z))|κ|

� |κ|z,

uniformly in θ ∈�.
Other proofs can be done similarly, so we omit them and end here. �

C.3. On functions P, Qα,k, P∗, and Q∗
α,k

Lemma C.5. The following statements are true.

(a) For each x ∈R, the mappings

(p, γ,D) �→ P(x; p, γ,D) and (p, γ,D) �→ P∗(x; p, γ,D)

are of C1((0, 1) ×�).

(b) For each x ∈R, the mappings

(p, γ,D) �→ Qα,K(x; p, γ,D) and (p, γ,D) �→ Q∗
α,K(x; p, γ,D)

are of C1((0, 1) ×�).

Proof. Since the statement (a) is clear from the concrete form of P and P∗. For the proof of
(b), it suffices to show that the function b �→�α,k(x; b) is of C1(R). For M> 0 large enough, it
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follows for z< x that

sup
|b|<M

∣∣∂b
(
beb(x−z)ϕα,k(z)

)∣∣= sup
|b|<M

∣∣eb(x−z)ϕα,k(z) + b(x − z) eb(x−z)ϕα,k(z)
∣∣

≤ √
2α sup

|b|<M
(1 + |b|(x − z)) eb(x−z)

<
√

2α(1 + Mx) eMx,

which is integrable on (0, x] with respect to dz. Hence the Lebesgue convergence theorem
yields that b �→�α,k(x; b) is of C1(R). �

Lemma C.6. Under the assumptions S1, S2, and M[2], the following hold true:

(a) sup
x∈R+

|P(x; p̂n, 0, D̂n) − P(x; p0, 0,D0)| p→ 0,

(b) sup
x∈R+

|Qα,k(x; p̂n, 0, D̂n) − Qα,k(x; p0, 0,D0)| p→ 0,

(c) sup
x∈R+

|P∗(x; p̂n, 0, D̂n) − P∗(x; p0, 0,D0)| p→ 0,

(d) sup
x∈R+

|Q∗
α,k(x; p̂n, 0, D̂n) − Q∗

α,k(x; p0, 0,D0)| p→ 0.

Proof. As for (a) with D> 0, it follows from the mean value theorem that

sup
x∈R+

|P(x; p̂n, 0, D̂n) − P(x; p0, 0,D0)|

≤
∣∣∣∣ 1

c(1 − p̂n)
− 1

c(1 − p0)

∣∣∣∣+ 1

c(1 − p0)
sup

x∈R+

∣∣e−cD̂−1
n x − e−cD−1

0 x
∣∣

�
∣∣∣∣ 1

c(1 − p̂n)
− 1

c(1 − p0)

∣∣∣∣+ 1

c(1 − p0)
|D̂n − D0| p→ 0.

The proofs for (b)–(d) are similar by using the fact (2.2). The case of D = 0 is also similar. �

C.4. Proof of Lemma 2.1

Note the explicit expression in Feng and Shimizu [9, Proposition 4.1]:

W(q)(x) =

⎧⎪⎨⎪⎩
1

D(1 − p)(β + γ )

∫
[0,x) [eγ (x−z) − e−β(x−z)] Gq(dz), D> 0,

1

c(1 − p)

∫
[0,x) eγ (x−z) Gq(dz), D = 0.

By the integration by parts of this expression by noticing the jump at the origin, we have the
result.

C.5. Proof of Lemma 2.5

We will show only the case where D> 0. The same calculation applies for D = 0. According
to Lemmas 2.2 and 2.3, we should show that f := Gq satisfies (2.3).
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Let ε,M > 0 be any constants with ε <M. We firstly show that the infinite sum

Gq(x) =
∞∑

k=0

(1 − p)pk
∫ ∞

x
f ∗k
q (z) dz

can be differentiable under the summation sign on (ε,M).
We shall put the partial sum

gN(x) :=
N∑

k=0

(1 − p)pk
∫ ∞

x
f ∗k
q (z) dz

for an integer N ∈N, and note that gN(x) → Gq(x) (N → ∞) for all x> 0. Next, note the
differential formula for the convolution: for functions f , g ∈ C1(R+),

d

dx
(f ∗ g)(x) = (f ∗ ∂xg)(x) + f (x)g(0).

In particular, if f (0) = 0, then it follows for k ∈N that

∂xf ∗k = f ∗ ∂xf ∗(k−1) = · · · = f ∗(k−1) ∗ ∂xf ,

by induction. Using this formula, we have for m = 1, 2, . . . that

∂m
x gN(x) = p(1 − pm−2)∂m−1

x fq(x) − pm−1
N−m+1∑

k=0

(1 − p)pkf ∗k
q ∗ ∂m−1

x fq(x),

where we regard ∂0
x fq ≡ 0 as a convention. Now, fq(x) is bounded by Lemma C.1, so f ∗k

q (k =
1, 2, . . . ) is also bounded. Moreover, it also follows that ∂m

x fq is bounded on (ε,M). Indeed,

∂xfq(x) = 1

pD

[
−βfq(x) + ν(x) +

∫ ∞

x
ν(z) dz

]
,

and we see by induction that for any m ≥ 2,

|∂m−1
x fq(x)|� 1 +

m−1∑
k=1

|∂k−1
x ν(x)| +

∣∣∣∣∫ ∞

x
ν(z) dz

∣∣∣∣.
Then it follows for any ε > 0 that

sup
x∈(ε,M)

|∂m−1
x fq(x)|� 1 +

m−1∑
k=1

sup
x∈(ε,M)

|∂k−1
x ν(x)| +

∫ ∞

M
ν(z) dz � 1 + MC, (C.2)

by the assumption (2.6). Therefore we can confirm the sequence {∂m
x gN(x)}N∈N is a uniform

Cauchy sequence on (ε,∞):

lim
N,N′→∞

sup
x∈(ε,M)

|∂m
x gN(x) − ∂m

x gN′ (x)| = 0.

https://doi.org/10.1017/jpr.2025.23 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.23


26 H. IRIE AND Y. SHIMIZU

Hence the term ‘differential theorem’ says that for any ε,M > 0,

lim
N→∞ ∂m

x gN(x) = ∂m
x Gq(x), x ∈ (ε,M).

Therefore it follows for any x> 0 that

∂m
x Gq(x) = p(1 − pm−2)∂m−1

x fq(x) − pm−1

( ∞∑
k=0

(1 − p)pkf ∗k
q

)
∗ ∂m−1

x fq

= p(1 − pm−2)∂m−1
x fq(x) − pm−1

E
[
∂m−1

x fq(x − Z)
]
, (C.3)

where Z is a random variable with the distribution Gq whose probability density is given by∑∞
k=0 (1 − p)pkf ∗k

q (x).
Now, as for the second term in the last right-hand side of (C.3), we see that

E
[
∂m−1

x fq(x − Z)
]= O(1 + xκ ), x → ∞.

Indeed, it follows from (C.2) that

sup
x>ε

|∂m−1
x fq(x − Z)|

1 + xC
� sup

x>ε

1 + xC + ZC

1 + xC
≤ 1 + |Z|C,

and the last term is integrable by the assumption. Then the Lebesgue convergence theorem and
the equality (C.3) yield

∂m
x Gq(x) = O(1 + xκ ), x → ∞,

which implies that xm/2∂m
x Gq(x) ∈ L2

α(R+) for any α > 0 and m ≥ 2. Similarly, as in (2.8), we
have

|xm/2∂m
x Gq(x)|2e−αx = O(xme−(α−2k)x), x → ∞,

and therefore xm/2∂m
x Gq(x) ∈ L2

α(R+) for any α > 2κ . This completes the proof.

C.6. Proof of Theorem 3.1

As for the consistency, thanks to Corollary B.1 and Lemma C.5, the continuous mapping
theorem yields that

Ŵ(q)
K (x)

p→ W(q)
K (x),

for each x ∈R+ and q ≥ 0. In particular, as q = 0, noticing that γ̂n = γ0 = 0, we see from
Lemma C.6 that

sup
x∈R+

|Ŵ(0)
K (x) − W(0)

K (x)| ≤ sup
x∈R+

|P(x; p̂n, 0, D̂n) − P(x; p0, 0,D0)|

+
K∑

k=0

âG
α,K sup

x∈R+
|Qα,k(x; p̂n, 0, D̂n) − Qα,k(x; p0, 0,D0)|

+
K∑

k=0

∣∣̂aG
α,k − aG

α,k

∣∣ sup
x∈R+

|Qα,k(x; p0, 0,D0)| p→ 0.
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As for the asymptotic normality, we only show the case where D> 0 since the proof for
D = 0 is done similarly.

Note that√
Tn
(
Ŵ(q)

K (x) − W(q)
K (x)

)=√Tn(P(x; p̂n, γ̂n, D̂n) − P(x; p0, γ0,D0))

−
K∑

k=0

âG
α,k

√
Tn(Qα,k(x; p̂n, γ̂n, D̂n) − Qα,k(x; p0, γ0,D0))

−
K∑

k=0

Qα,k(x; p0, γ0,D0)
√

Tn
(̂
aG
α,k − aG

α,K

)
=: U1 + U2 + U3.

On U1, applying the mean value theorem, there exists some p∗
n, γ ∗

n , D∗
n such that

U1 =
K∑

k=0

∂(p,γ )P(x; p∗
n, γ

∗
n ,D∗

n)
√

Tn

(̂
pn − p0

γ̂n − γ0

)

+
K∑

k=0

∂DP(x; p∗
n, γ

∗
n ,D∗

n)
√

Tn(D̂n − D0)

=
K∑

k=0

∂(p,γ )P(x; p0, γ0,D0)
√

Tn

(̂
pn − p0

γ̂n − γ0

)
+ op(1),

by Lemma A.1 and the continuous mapping theorem. By an argument similar to that above,
we have

U2 = −
K∑

k=0

âG
α,k∂(p,γ )Qα,k(x; p0, γ0,D0)

√
Tn

(̂
pn − p0

γ̂n − γ0

)
+ op(1).

Moreover, on U3, we obtain by (B.4) in Corollary B.1 that

U3 = Qα,K(x; p0, γ0,D0)
A−1
K B̂K

√
Tn

(̂
af
α,K − af

α,K

âF
α,K − aF

α,K

)
.

As a consequence, we have

U1 + U2 + U3 = CK(x)
√

Tn

⎛⎜⎜⎜⎜⎜⎝
âf
α,K − af

α,K

âF
α,K − aF

α,K

p̂n − p0

γ̂n − γ0

⎞⎟⎟⎟⎟⎟⎠+ op(1), (C.4)

and Theorem B.2 yields the result.
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C.7. Proof of Theorem 3.2

By the same argument as in the proof of Theorem 3.1 in Section C.6, we have

√
Tn
(̂
Z(q)

K (x) − Z(q)
K (x)

)= qC∗
K(x)

√
Tn

⎛⎜⎜⎜⎜⎜⎝
âf
α,K − af

α,K

âF
α,K − aF

α,K

p̂n − p0

γ̂n − γ0

⎞⎟⎟⎟⎟⎟⎠+ op(1), (C.5)

and Theorem B.2 yields the result.

C.8. Proof of Theorem 3.1

Noticing the expressions (C.4) and (C.5), we have

√
Tn

(
Ŵ(q)

K (x) − W(q)
K (x)

Ẑ(q)
K (x) − Z(q)

K (x)

)
=√Tn

(
CK(x)

qC∗
K(x)

)⎛⎜⎜⎜⎜⎜⎝
âf
α,K − af

α,K

âF
α,K − aF

α,K

p̂n − p0

γ̂n − γ0

⎞⎟⎟⎟⎟⎟⎠+ op(1).

Then Theorem B.2 yields the result.
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