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Compound flows consist of two or more parallel compressible streams in a duct and
their theoretical treatment has gained attention for the analysis and modelling of ejectors.
Recent works have shown that these flows can experience choking upstream of the
geometric throat. While it is well known that friction can push the sonic section
downstream of the throat, no mechanism has been identified yet to explain its displacement
in the opposite direction. This study extends the existing compound flow theory and
proposes a one-dimensional (1-D) model, including friction between the streams and
the duct walls. The model captures the upstream and downstream displacements of
the sonic section. Through an analytical investigation of the singularity at the sonic
section, it is demonstrated that friction between the streams is the primary driver of
upstream displacement. The 1-D formulation is validated against axisymmetric Reynolds
averaged Navier–Stokes simulations of a compound nozzle for various inlet pressures
and geometries. The effect of friction is investigated using an inviscid simulation for the
isentropic case and viscous simulations with both slip and no-slip conditions at the wall.
The proposed extension accurately captures the displacement of the sonic section, offering
a new tool for in-depth analysis and modelling of internal compound flows.

Key words: gas dynamics, shear layers

1. Introduction

Parallel compressible streams are at the heart of many applications, the most classic
example being jet engines with a high-speed core and a slower surrounding jet. Examples
of internal flows with multiple streams include ejectors or (sc)ramjets. Such heterogeneous
flows are referred to as compound flows. This study investigates the choking of internal
compound flows.
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Recently, Lamberts et al. (2018) observed that compound flows could choke upstream
of the geometrical throat, in contrast to the classic downstream displacement of the
sonic section due to friction. By numerically increasing the wall roughness, Kracik &
Dvorak (2023) showed that friction has this effect on compound flows as well. Lamberts
et al. (2018) attributed the upstream shift to non-isentropic effects, but the inherent cause
remained unknown. While both Lamberts et al. (2018) and Kracik & Dvorak (2023)
addressed this problem through axisymmetric Reynolds-averaged Navier–Stokes (RANS)
simulations, to the best of the authors’ knowledge, no theoretical analysis of the sonic
section displacement has been provided.

The first theoretical treatment of compound flows was proposed by Pearson, Holiday
& Smith (1958). These authors introduced the idea of splitting the domain into parallel
one-dimensional (1-D) streams bounded by dividing streamlines and walls. The position of
these streamlines can be identified by solving mass, momentum and energy conservation in
each stream, together with a force balance at the dividing streamlines. The authors assumed
adiabatic and isentropic conditions for the compound flow. Hence, only a pressure force
is exerted between the streams, and the force balance requires equal static pressure for the
entire cross-section. This formulation leads to a closed system of equations linking the
evolution of mass, momentum and energy in each stream to the evolution of the respective
cross-sections and streamwise pressure distribution. Pearson et al. (1958) state that the
assumption of equal pressure is reasonable if the curvature of the streamlines remains
limited.

Through some manipulations of the conservation equations, Bernstein, Heiser &
Hevenor (1967) showed that a single equation can be obtained for the uniform static
pressure. Similarly to a single 1-D stream (see e.g. Shapiro 1953), this equation is singular
with a division of zero by zero if the flow is choked. The major result of the study
by Pearson et al. (1958) lies in the fact that a compound flow can be choked with a
combination of subsonic and supersonic streams. They showed that information cannot
travel upstream in the subsonic streams due to the assumption of uniform static pressure.
The derivation by Bernstein et al. (1967) confirms the findings of Pearson et al. (1958)
identifying the compound choking from the singularity of the pressure equation. The
same compound choking condition was found by Hoge & Segars (1965) by minimising
the impulse function defined in Chapter 4 of Shapiro (1953). An alternative approach by
Agnone (1971) identifies the compound choking from the singularity of the governing
equations, written in a matrix form, while Fage (1976) defines it through the so-called
‘elasticity of the fluid boundary’ between the streams. Bernstein et al. (1967) gave the
name ‘compound flow theory’, which we also adopt. These works did not consider
exchanges between the streams; hence, the flow remained isentropic.

Later work investigated the effect of forces on the compound flow. Hoge & Segars (1965)
explored the effects of friction between the streams and the walls, assuming isentropic and
adiabatic conditions but without deriving an explicit model to account for their impact on
the flow. These authors postulated that the exchange of momentum between the streams
would have a minimal impact on the compound choking mechanism. A more explicit
approach is presented by Clark (1995), Papamoschou (1996) and Grazzini, Mazzelli &
Milazzo (2016), who used the correlation proposed by Papamoschou (1993) to compute the
shear stress between the streams. The authors used the resulting compound flow equations
with momentum exchange in a 1-D ejector model but did not investigate the choking
mechanism. Earlier work by Otis (1976) treats the mixing and choking of a compound flow
for constant-area ducts. An important conclusion of that work is that additional effects such
as forces or heat exchange do not affect the choking condition as derived in the original
compound theory. To the best of the author’s knowledge, a general treatment of compound
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choking with momentum exchange in variable area ducts has not yet been proposed in the
literature.

This work proposes such an extension and investigates the effect of friction between
the streams and the walls on the choking mechanism. It is analytically shown that the
sonic section moves upstream or downstream depending on the relative magnitude of the
interstream and wall friction. The analysis is similar to ‘generalised 1-D flow’ (Shapiro
1953, Chapter 8), which describes quasi-1-D compressible flow of a single stream with
any combination of area change, friction, heat exchange and/or mass injection. Similarly,
the isentropic compound flow theory, which only includes area change, is generalised in
this work by including momentum exchanges. Our contribution is both theoretical and
numerical: (i) we propose a simple theoretical model that captures the position of the sonic
section, and (ii) we propose a quasi-third-order approximation of the pressure gradient in
the vicinity of the sonic section to circumvent the numerical issues near the singular sonic
point.

The governing equations are derived in § 2 and converted into an explicit system of
ordinary differential equations (ODEs). Section 3 goes into more detail on the singularity
of the equation for the static pressure at the sonic section. The numerical solution of
the model is discussed in § 4. Numerical test cases are presented in § 5, to compare the
results with the 1-D predictions in § 6. Section 7 closes the paper with conclusions and
perspectives.

2. Model definition

The governing equations are derived in their general form in § 2.1. Section 2.2 introduces
the treatment of the friction forces in the equation governing the streamwise pressure
gradient. The corresponding choking mechanism is analysed in § 2.3.

2.1. Governing equations
Consider an internal flow consisting of two parallel streams (cf. figure 1) of the same
ideal gas. The theory can be extended to any number of streams, but this generalisation
is left for future work. The streams are modelled as uniform 1-D streams, i.e. in terms of
cross-stream averaged quantities. The main assumption for compound-compressible flows
is that the static pressure is uniform in all cross-sections, hence

pp(x) = ps(x) = p(x), (2.1)

where p denotes the static pressure, x is the axial coordinate and the subscripts p and s refer
to the primary and secondary stream. The distribution of the cross-sections Ai(x), with
i ∈ [p, s], is initially unknown and should be calculated. These are subject to a geometrical
constraint imposed by the cross-section of the channel A(x):∑

i∈[p,s]

Ai(x) = A(x). (2.2)

The governing equations consist of the conservation of mass, momentum and energy in
each stream. For a steady, quasi-1-D flow, these read as follows:

d
dx

(ρiAiui) = 0, (2.3)
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x
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Tt,p pbpt,p
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Figure 1. The considered axisymmetric nozzle has a contour A(x) and contains two streams, which have the
same total temperature Tt, but can have a different total pressure pt. They exchange momentum through a
friction force Fps at the dividing streamline and a wall friction force Fw. The static pressure p is assumed to be
uniform in each cross-section. The solution consists of the streamwise distribution of the flow variables p, pt,p,
pt,s, Tt,p, Tt,s and the individual cross-sections Ap and As.

d
dx

(ρiAiu2
i ) = −Ai

dpi

dx
+ Fi, (2.4)

d
dx

(ρiAiuiht,i) = 0, (2.5)

where ρ denotes the density, u denotes the axial velocity, Fi is the net force per unit length
exerted on stream i and ht denotes the total enthalpy. The force Fi accounts for the friction
between the streams and at the wall, and is defined in § 2.2. The equations imply that
the streams do not exchange mass and that the separating line between the streams is the
dividing streamline. Heat exchange is not considered.

This system of equations can be converted to an explicit system of ODEs for numerical
integration. The derivation can be found in classic textbooks; for example in Chapter 8 of
Shapiro (1953). The equations in terms of the static pressure p, the total pressure pt and
the total temperature Tt read as follows:

1
pi

dpi

dx
=
[

1 + (γ − 1) Ma2
i

1 − Ma2
i

]
Fi

Aipi
+
[

γ Ma2
i

1 − Ma2
i

]
1
Ai

dAi

dx
, (2.6)

1
pt,i

dpt,i

dx
= Fi

Aipi
, (2.7)

1
Tt,i

dTt,i

dx
= 0, (2.8)

having introduced the ratio of specific heats γ and the Mach numbers Mai,

Mai = ui/ai and ai =
√

γ RTi, (2.9a,b)

where R denotes the specific gas constant. Equations (2.6)–(2.8) do not form a closed
system of equations because the cross-sections Ai(x) are unknown (as opposed to a
single stream where Ai = A). Nonetheless, their sum should equal the known channel’s
cross-section A(x) (2.2). The derivative dA/dx can be computed from the channel’s profile,
so the unknown terms dAi/dx can be eliminated from the system by summing over the
streams i. The gradient of the cross-section Ai is first isolated from (2.6),

dAi

dx
=
[

Ai
1 − Ma2

i

γ Ma2
i

]
1
p

dp
dx

−
[

1 + (γ − 1) Ma2
i

γ Ma2
i

]
Fi

p
, (2.10)
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where the index for the pressure is omitted because of (2.1). Note that (2.10) can be
integrated to compute the cross-section of a single stream if the pressure gradient is known.
Summing over the streams i gives

∑
i∈[p,s]

dAi

dx
= dA

dx
=

∑
i∈[p,s]

[
Ai

1 − Ma2
i

γ Ma2
i

]
1
p

dp
dx

−
∑

i∈[p,s]

[
1 + (γ − 1) Ma2

i

γ Ma2
i

]
Fi

p
. (2.11)

The pressure gradient is the only remaining unknown, for which an explicit equation is
obtained from (2.11),

1
p

dp
dx

= 1
β

⎛⎝dA
dx

+
∑

i∈[p,s]

[
1 + (γ − 1) Ma2

i

γ Ma2
i

]
Fi

p

⎞⎠ , (2.12)

where β denotes the compound choking indicator,

β =
∑

i∈[p,s]

Ai
1 − Ma2

i

γ Ma2
i

. (2.13)

Bernstein et al. (1967) showed that β > 0 corresponds to a compound-subsonic flow,
β = 0 to a compound-sonic flow and β < 0 to a compound-supersonic flow. As a result,
the pressure gradient and the area gradient of a compound-subsonic flow share the same
sign in the absence of forces, leading to an expansion in a convergent channel and a
compression in a divergent channel. Recently, Metsue et al. (2021) extended the compound
choking condition to real gases and showed that the condition β = 0 corresponds to the
maximal combined mass flow rate.

A convenient variable to identify the compound flow regime is the so-called equivalent
Mach number Maeq, introduced by Hedges & Hill (1974),

Maeq =
(

γ
β

A
+ 1

)−1/2

. (2.14)

This equals one for a compound choked flow. Section 2.3 analyses choking in more
detail. It is important to note that the forces do not affect β and hence the compound
choking criterion, as pointed out by Otis (1976). Moreover, as shown by Bernstein et al.
(1967), compound waves can no longer travel upstream of a location x if β(x) � 0, which
constitutes the fundamental principle of choking as in the case of a single stream.

Equations (2.7), (2.8), (2.10) and (2.12) form a closed system for the (uniform) static
pressure p and the total pressure pt,i, the total temperature Tt,i and the cross-section Ai
in each stream. These variables fully define the state of the flow and other variables can
easily be calculated from them using classic gas dynamic relations. The explicit nature of
the equations facilitates numerical integration with a shooting method. More details on the
numerical solution are provided in § 4.

2.2. Model closure
The compound flow is assumed to be axisymmetric, with the primary stream surrounded
by the secondary stream. Planar flows are left as technical extensions for future studies.
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Hence, wall friction acts only on the secondary stream. A friction coefficient fw is defined
such that the friction force per unit length Fw equals

Fw = 1
2 fwρsu2

s lw = 1
2 fwγ pMa2

s lw, (2.15)

where lw denotes the wetted perimeter of the cross-section. In a circular duct, lw is related
to the cross-section A as follows:

lw = 2πr = 2
√

πA, (2.16)

where r denotes the radius of the total cross-section A. Similarly, the friction between the
streams is defined as (Papamoschou 1993)

Fps = 1
2

fps
ρp + ρs

2

(
up − us

) ∣∣up − us
∣∣ lps, (2.17)

where fps denotes a friction coefficient and lps denotes the perimeter of the primary stream,

lps = 2πrp = 2
√

πAp. (2.18)

The friction force between the streams opposes the stream with the highest velocity and
is defined to be positive by (2.17) if up > us. Therefore, Fps opposes the primary stream,
while the secondary stream is entrained by the interstream friction and decelerated by the
wall friction,

Fp = −Fps and Fs = Fps − Fw. (2.19a,b)

Two approaches were used in this work for both coefficients fw and fps and tested to the
RANS simulations in § 6.1.

The first approach was to leverage known correlations for similar flow configurations.
The formula of Van Driest (1951) for the local wall friction coefficient fw under a turbulent
boundary layer in a compressible flow gives

0.242√
fw

√
1 − λ2 arcsin(λ)

λ
= 0.41 + log10 ( fwRex) + log10

(
(1 − λ2)

(
1 − θλ2

1 + θ

))
,

(2.20)
where

1 − λ2 =
(

1 + γ − 1
2

Ma2
s

)−1

, Rex = ρsusx
μs

and θ = S
Ts

, (2.21a–c)

with the dynamic viscosity μ computed with the law of Sutherland (1893), a reference
viscosity μref of 1.716 × 10−5 Pa s at Tref = 273.2 K, and S = 110.4 K. For the
interstream friction coefficient fps, the formula of Papamoschou (1993) gives

fps = 0.013
(1 + us/up)(1 +√

ρs/ρp)

1 + (us/up)
√

ρs/ρp

(
0.25 + 0.75 exp(−3Ma2

c)
)

, (2.22)

with all quantities evaluated locally and the local convective Mach number Mac is defined
as follows:

Mac = up − us

ap + as
. (2.23)

The second approach was to infer these coefficients from the RANS results using an
inverse method. In this setting, both coefficients fw and fps are assumed to be constant and
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are determined by an optimiser which seeks to minimise the l2 norm of the discrepancy
between the proposed model and the results of RANS simulations. This approach is
expected to be more accurate due to the calibration, provided that the assumption of
constant coefficient is adequate. On the other hand, these coefficients are not expected
to generalise well outside the reference data, while the correlations (2.20) and (2.22) make
the model self-sufficient and closed.

2.3. Choking mechanism
Substituting the forces Fp and Fs as defined in the section above in (2.12) leads to a rational
equation for the static pressure gradient,

1
p

dp
dx

= N
β

, (2.24)

with β defined in (2.13) and the numerator,

N = dA
dx

+ Nps + Nw, (2.25)

where

Nps = fpslps

2

Ma2
p − Ma2

s

γ Ma2
pMa2

s

ρp + ρs

2

(
up − us

) ∣∣up − us
∣∣ 1

p
, (2.26)

Nw = − fwlw
2

(
1 + (γ − 1) Ma2

s

)
. (2.27)

The term Nw stems from wall friction ( fw) and is negative by definition. The term Nps

is due to friction between the streams and it is positive unless the terms Ma2
p − Ma2

s and
up − us have a different sign. In the natural case up > us, this is possible only if Tp/Ts �
u2

p/u2
s . This scenario is not encountered in Lamberts et al. (2018) and Kracik & Dvorak

(2023) and thus not discussed further. Therefore, the interstream friction has a positive
contribution to the numerator N in (2.24) in the considered conditions and the wall friction
has a negative contribution. This leads to some fundamental implications.

A compound-subsonic flow (β > 0) expands in a convergent section (dA/dx < 0)
and under the action of wall friction (as in a classic Fanno flow). Conversely, it
recovers pressure in a divergent section and under the action of interstream friction.
This force opposes the stream with the highest velocity, seeking to equalise velocities
between streams. Consequently, momentum exchange between the streams promotes flow
uniformity and results in a net increase in static pressure. The opposite is true for a
compound-supersonic flow.

Equation (2.24) is singular in the sonic section (β = 0), similarly to a single stream
where the denominator equals 1 − Ma2 (cf. Shapiro 1953; Restrepo & Simões-Moreira
2022). Nevertheless, classic nozzle flows and compound flows expand continuously
through the sonic section, meaning that their pressure gradient is finite at β = 0. This
is possible according to (2.24) only if both the numerator N and the denominator β tend to
zero, leading to an indeterminate form with a finite value. This observation is corroborated
by (2.11), which simplifies to N = 0 if β = 0. In isentropic conditions ( fps = fw = 0), a
compound flow becomes sonic at the throat (dA/dx = 0), as shown by Bernstein et al.
(1967). In non-isentropic conditions, the relative magnitudes of Nps and Nw in (2.25)
determine the position of the sonic section.
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Wall friction has a negative contribution to the numerator. Therefore, in the absence of
interstream friction ( fps = 0), one must have dA/dx > 0 to respect N = 0. This implies
that the sonic section is located in a divergent section, hence downstream of the throat.
The wall friction has the same effect on a nozzle flow with a single stream (Shapiro 1953;
Beans 1970; Restrepo & Simões-Moreira 2022). Likewise, in the absence of wall friction
( fw = 0), one must have dA/dx < 0 to respect N = 0. This implies that the interstream
friction pushes the sonic section upstream of the throat. This analysis offers a plausible
explanation for the observed displacement of the sonic section by Lamberts et al. (2018)
and Kracik & Dvorak (2023). The interplay between both forces is investigated further
in § 6.

The indeterminate pressure gradient can be computed by applying l’Hôpital’s rule on
(2.24) (cf. Bernstein et al. 1967; Restrepo & Simões-Moreira 2022),

(
1
p

dp
dx

)∗
= N∗

β∗ = 0
0

= (dN/dx)∗

(dβ/dx)∗
, (2.28)

where the superscript ∗ refers to the sonic section. The derivatives dN/dx and dβ/dx
give rise to the derivatives of Mach numbers Mai, cross-sections Ai, forces Fi and the
static pressure p (see (2.25) and (2.13)), and these can be all related to the local pressure
gradient. The relevant equations are presented in Appendix A.

For example, the gradient of β is given by

dβ

dx
=

∑
i∈[p,s]

(
dAi

dx
1 − Ma2

i

γ Ma2
i

− Ai

γ Ma4
i

dMa2
i

dx

)
. (2.29)

Writing the Mach numbers Mai as a function of the total and the static pressure,

Ma2
i = 2

γ − 1

((
pt,i

p

)(γ−1)/γ

− 1

)
, (2.30)

the derivatives dMa2
i /dx in (2.29) can be substituted by the gradients of the static and total

pressures. The resulting expression for the gradient of β thus contains first derivatives of
the static pressure, the cross-sections Ai and the total pressures pt,i. The latter two can be
substituted using (2.7) and (2.10), which contain the static pressure gradient. The resulting
expression for the gradient of β is linear with respect to the static pressure gradient, with
nonlinear coefficients depending on the Mach numbers, forces and static pressure,

dβ

dx
= cβ0(Map, Mas)

(
1
p

dp
dx

)
+ cβ1(Map, Mas, Fp, Fs, p). (2.31)

The analytical expressions of cβ0 and cβ1 are given by (A26) and (A27). The same
approach leads to a similar linear equation for the derivative of the numerator (see (A21)).
These equations are derived for constant friction coefficients, i.e. the correlations (2.20)
and (2.22) are not explicitly differentiated. This approximation is deemed acceptable since
the distribution of fw and fps are relatively flat, as later shown in § 6. The result is an
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implicit equation for the static pressure gradient in the sonic section,

(
1
p

dp
dx

)∗
=

c∗
N0

(
1
p

dp
dx

)∗
+ c∗

N1

c∗
β0

(
1
p

dp
dx

)∗
+ c∗

β1

. (2.32)

Rearranging the equation above leads to the quadratic equation (A28) for the static
pressure gradient. The two roots correspond to the subsonic and the supersonic solution
downstream of the sonic point (cf. Shapiro 1953). For an isentropic compound flow, the
derivative of the numerator corresponds to the second derivative of the cross-section
d2A/dx2 ( fps = fw = 0), leading to the tractable expression reported by Bernstein et al.
(1967). The additional terms introduced by the friction forces preclude such a concise
expression, which is why the coefficients and their analytical expressions are reported in
Appendix A. Note, however, that these equations are exact and analytical.

3. Approximations to circumvent the singularity at the sonic section

The pressure gradient can be computed in any section using (2.32) if the flow
is compound-sonic or by using (2.24) otherwise. However, (2.24) is numerically
ill-conditioned near the sonic section. Therefore, approximations of the pressure gradient
near the sonic section help stabilising the numerical integration. In this section, such
approximations are developed analytically.

L’Hôpital’s rule used in § 2.3 arises from a Taylor series expansion of the numerator and
the denominator around the sonic section x∗, which is then evaluated at the sonic section
x∗ itself. More generally, these expansions lead to the following equation in x, which is
still exact,

1
p

dp
dx

= N
β

=
N∗ + (x − x∗)

dN
dx

∗
+ 1

2
(x − x∗)2 d2N

dx2

∗
+ 1

6
(x − x∗)3 d3N

dx3

∗
+ . . .

β∗ + (x − x∗)
dβ

dx

∗
+ 1

2
(x − x∗)2 d2β

dx2

∗
+ 1

6
(x − x∗)3 d3β

dx3

∗
+ . . .

. (3.1)

Since N∗ = β∗ = 0, the equation above simplifies to the following expression:

1
p

dp
dx

= N
β

=
dN
dx

∗
+ 1

2
(x − x∗)

d2N

dx2

∗
+ 1

6
(x − x∗)2 d3N

dx3

∗
+ . . .

dβ

dx

∗
+ 1

2
(x − x∗)

d2β

dx2

∗
+ 1

6
(x − x∗)2 d3β

dx3

∗
+ . . .

. (3.2)

Truncating the Taylor series leads to approximations of arbitrary order in space. The
first-order approximation only retains the first derivatives, which are constant since they
are evaluated at the sonic section. Hence, the pressure gradient in the vicinity of the sonic
section is approximated as a constant, equal to its value in the sonic section. Note that the
resulting expression is identical to (2.28) and thus leads to the quadratic (2.32) in § 2.3.

Higher accuracy is obtained by retaining higher-order derivatives. The analytical
expressions for the second derivatives are given by (B32) and (B42). The derivation could
continue up to the third derivative, but to avoid overly cumbersome expressions, this work
proceeds with a third-order approximation by numerically differentiating the analytical
second derivatives.
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Numerically, one has to decide when to switch from the direct equation (2.24) to the
approximation (3.2). This can be achieved by imposing a tolerance on β (or Maeq),
e.g. using the approximation when −ε < β < ε, with ε an arbitrary small positive number
(cf. Restrepo & Simões-Moreira 2022). An alternative condition is based on an estimate
of the truncation error in the Taylor series, which can be estimated as the magnitude of
the first term after the truncation. The resulting truncation errors on the numerator and the
denominator, denoted by δN and δβ, can be propagated to the pressure gradient as follows:

δ

(
1
p

dp
dx

)
=
√(

1
β

)2

(δN)2 +
(

− N
β2

)2

(δβ)2. (3.3)

Equation (3.3) is analytically available for the first-order approximation using the second
derivatives for δN and δβ (cf. Appendix B). The second-order approximation requires
third derivatives to estimate its error, which can be computed with finite differences (as
in the quasi-third-order approximation). The switch from the direct equation (2.24) to the
approximation (3.2) is based on the relative error on the static pressure gradient,

1
p

dp
dx

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3.2) if

δ

(
1
p

dp
dx

)
(

1
p

dp
dx

) � 5 %,

(2.24) otherwise.

(3.4)

Examples of the distribution of the pressure gradient using the approximations of
increasing order are shown in figure 2. The higher-order approximations are more
accurate in a wider region around the sonic section. The estimated truncation error
for the quasi-third-order approximation is not shown. The compound equations have
been integrated using the blended equation (3.4) for the pressure. More details on the
numerical integration are provided in § 4. The blended function (3.4) matches the direct
equation (2.24) at the inlet and switches to the approximation (3.2) as the truncation error,
computed with (3.3), drops below 5 %. The flow then passes through the sonic section
using the approximation (3.2), effectively avoiding the indeterminate form (2.28) of the
direct equation. Downstream, the direct equation is integrated when the threshold on the
truncation error is exceeded again.

In this study, the quasi-third-order approximation is used with a backward second-order
finite difference formula, with a threshold of 5 % on the second-order approximation, since
the fourth derivatives needed for the truncation error are not available.

4. Numerical solution

The governing equations (2.7), (2.8), (2.10), (2.24), with the approximation (3.2) near the
sonic point, form a system of ODEs in function of the axial coordinate x, which can thus
be integrated in space. The fourth-order Runge–Kutta method is used in this study, which
is readily available in Python with the ‘solve_ivp’ function in SciPy (https://docs.scipy.
org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html). In this study, the mesh
consists of 100 equally distributed points, which has been found sufficient to accurately
respect the conservation equations.

The boundary conditions consist of the total pressures pt,p, pt,s, total temperatures
Tt,p, Tt,s and the cross-sections Ap, As at the inlet (x = 0) and of the static pressure pb at
the outlet (x = L), as indicated in figure 1. The distribution of the channel’s cross-section
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Figure 2. The pressure gradient computed directly with (2.24), with the approximation (3.2) (truncated after
the first, second and third derivatives) and with the blended function (3.4), the shaded region indicates the
truncation error estimated by (3.3), which is unavailable for the quasi-third-order approximation: (a) first order;
(b) first order (zoom); (c) second order; (d) second order (zoom); (e) quasi-third-order; ( f ) quasi-third-order
(zoom).

A(x) is prescribed. Integrating the system of ODEs requires an ‘initial’ condition at the
inlet or at any point from which the integration proceeds forward in x. In a single stream
computation, the sonic condition N∗ = 0 is used to identify the sonic section and split
the integration for the Mach number from the inlet to the sonic section and from the
sonic section to the outlet (as proposed by Beans (1970) and Restrepo & Simões-Moreira
(2022)).

This is not a viable option for compound flows since the sonic state is not uniquely
defined (as Ma = 1), but can consist of various combinations of cross-sections Ai and
Mach numbers Mai. The system state is available at the inlet except for the static pressure
p(0). This was found with a shooting method until the boundary condition at the outlet
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was respected. Firstly, bounds for the inlet pressure are established, considering that p(0)

cannot exceed the total pressure of any stream by definition, that is the upper bound of
p(0) is

pmax = min
(

pt,p(0), pt,s(0)
)
. (4.1)

The compound flow is assumed to be subsonic at the inlet (as in a classic nozzle flow),
so the second limiting condition is a sonic flow at the inlet (β(0) = 0). Using (2.13) and
(2.30), the sonic condition at the inlet leads to the lower bound pmin for the static pressure
at the inlet,

β(0) = 0 =
∑

i∈[p,s]

Ai

γ

⎛⎝[ 2
γ − 1

((
pt,i(0)

pmin

)(γ−1)/γ

− 1

)]−1

− 1

⎞⎠ , (4.2)

where pmin can be found iteratively. The bounds [pmin, pmax] allow us to find the correct
inlet pressure p(0) with a bisection method, which iteratively restricts the bounds of the
interval as depicted in figure 3. In each iteration, the governing equations are integrated
using the mean of the current interval, after which either its bottom or top half is used in
the next iteration. This update depends on whether the computed flow is choked.

In the subsonic case, the inlet pressure p(0) and the computed outlet pressure p(L) are
positively correlated: a lower inlet pressure leads to a lower outlet pressure. If the computed
back pressure is too low with respect to the boundary condition (p(L) < pb), the inlet
pressure should increase and the average pressure p(0) becomes the new lower bound of
the bracket in the next iteration. The opposite is true if p(L) < pb. If the pressures p(L)

and pb match, the solution has been found and the flow is compound-subsonic.
If the computed flow becomes sonic (β(x) = 0), the integration is stopped locally at

the sonic point and the numerator N is computed with (2.25). If the condition N = 0 is
not respected (see (2.28)), the inlet pressure p(0) must be updated. A negative numerator
indicates that a subsonic flow tends to expand. If this occurs in the sonic section,
the sonic point is reached too far upstream, and hence the inlet pressure should be
increased. Considering, for example, an isentropic compound flow ( fps = fw = 0), where
the numerator N is reduced to the gradient dA/dx, it is known that the flow becomes
sonic at the throat (dA/dx = 0). The case N = dA/dx < 0 at the sonic section implies
that the sonic point is reached in a convergent section; hence, the inlet pressure should be
increased to avoid having a non-physical mass flow rate exceeding the choked one. The
same argument holds for a non-isentropic flow.

If N = 0, the flow is sonic in the correct section, and the approximation (3.4) can
be computed with the desired order of accuracy. This slightly modifies the governing
equations, so the choked solution also changes. Therefore, the procedure to find the inlet
pressure p(0) is repeated, replacing (2.24) with (3.4).

The resulting choked solution is available from the inlet to the sonic section (β(x) =
0). The governing equations are then integrated up to the outlet, using the positive root
(dp/dx)∗ of (2.32) to obtain the subsonic solution. The complete solution is thus subsonic
throughout, except at the sonic point. This limiting case corresponds to the highest back
pressure which chokes the flow, which is commonly referred to as the critical back pressure
p∗

b in ejector modelling. The final step checks whether the choked solution respects the
boundary condition pb. The flow remains choked if the imposed back pressure pb is lower
than the critical value p∗

b. Otherwise, the static pressure at the inlet should increase, leading
to a subsonic solution.

The supersonic solution can be obtained with the negative root (dp/dx)∗ of (2.32).
If the back pressure pb lies between the pressures corresponding to the two continuous
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Approx = False

Initialise bracket

with (4.1) and (4.2)

[ pmin, pmax]

p(0) = (pmin + pmax)/2

pmin = p(0)  if N < 0

[ pt,p, pt,s, Tt,p, Tt,s] (0)

pmin = p(0)  if p(L) < pb
pmax = p(0)  if p(L) > pb

pmax = p(0)  if N > 0

Compute approximation (3.2)

approx = True

Choked solution, supersonic

Choked solution, subsonic

critical back pressure pb
∗
 

Integrate equations

2.7, 2.8, 2.10 and 3.4

from β(x) = 0 to x = L
using (dp/dx)∗ < 0

Integrate equations

2.7, 2.8, 2.10 and 3.4

from β(x) = 0 to x = L
using (dp/dx)∗ > 0

Integrate equations

(2.7, 2.8, 2.10 and 3.4)     if approx,

 (2.7, 2.8, 2.10 and 2.20)   otherwise,

from x = 0 to x = L or β(x) = 0

Yes

Yes

Approx?

Yes

Yes

Subsonic solutionN(x) = 0 ?

β(x) = 0 ? p(L) = pb ?

No

No

No No

Yes

Nopb < pb
∗ 

?

Figure 3. Flowchart of the numerical procedure to solve the compound nozzle flow. The static pressure p(0)

at the inlet is found with a bisection method. A subsonic solution is accepted if the computed back pressure
p(L) matches the boundary condition pb. A choked flow requires both β and the numerator N to equal zero
(see (2.28)). The approximation (3.2) is computed after convergence of the choked procedure, which is then
repeated, replacing (2.24) by (3.4).

choked solutions, a shock appears in the diffuser as in the case of a nozzle flow with a
single stream. The shock position can be found iteratively by imposing the computed back
pressure p(L) to match pb (see e.g. Restrepo & Simões-Moreira 2022). However, to the
authors’ knowledge, a compound shock model has not been presented in the literature.

5. Validation test cases with axisymmetric simulations

The predictions of the 1-D theoretical model are compared with postprocessed
axisymmetric RANS simulations of a compound nozzle in § 6. The numerical set-up
of these two-dimensional (2-D) simulations is detailed in § 5.1, and the test cases are
described in § 5.2.

1000 A85-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1041


J. Van den Berghe, M.A. Mendez and Y. Bartosiewicz

Z1

Z1

L/3 2L/3

RoRth

Ri

Rp p

s

Figure 4. The computational domain consists of an axisymmetric convergent–divergent nozzle with two
distinct inlets. The primary stream (index p) is surrounded by the secondary stream (index s). The reference
geometry is defined by L = 187.5 mm, Ri = 9.5 mm, Rth = 9.0 mm, Ro = 10 mm and Rp = 0.5Ri. The model
validation considered various throat Rth and the primary inlet Rp radii, as described in § 5.2, while keeping the
same resolution at the wall. The coarse mesh is displayed for visibility.

5.1. Numerical set-up for the RANS validation
The computational domain is shown in figure 4. It consists of an axisymmetric
convergent–divergent nozzle with two distinct inlets. The simulation was carried out with
a wedge-shaped domain of five degrees and a single cell in the tangential direction. The
contour of the upper wall was defined as a cosine between π/2 and 2π with appropriate
scaling to reach the dimensions shown in figure 4:

r(x) = Ro + Rth

2
+ Ro − Rth

2
cos

(
3π

2
x
L

+ π

2

)
. (5.1)

Hence, the radius at the inlet (x = 0) follows from the outlet radius Ro, the throat radius
Rth and the length L. The throat is located at one-third of the domain. The analysis of the
sonic section displacement was focused on a test case with nozzle lengths of 187.5 mm,
outlet radius Ro = 10 mm, inlet radius Ri = 9.5 mm, throat radios Rth = 9 mm and Rp =
0.5Ri. For the model validation, several other geometries were considered as reported in
more details in § 5.2.

The mesh was generated using Gmsh (https://gmsh.info/) coupled to Python to allow
full control of the number of elements and of the refinement near the walls. The
simulations were performed with an adapted version of the compressible transient solver
rhoCentralFoam in OpenFOAM v9 (https://openfoam.org/version/9/) with the k − ω shear
stress transport turbulence model of Menter (1993). The adapted solver does not solve for
the tangential component of the velocity, which remains equal to zero (no swirl). The law
of Sutherland (1893) is used to compute the viscosity. The simulations are wall-resolved
as shown in § 5.2.

The boundary conditions at the inlets consist of the total pressure and total temperature.
The primary inlet is chosen to be supersonic, so static pressure is also imposed. A wave
transmissive boundary condition is imposed at the exit as the flow is supersonic. The wall
is adiabatic and treated with a slip or no-slip condition, depending on the test case. The
‘wedge’ boundary condition is imposed on the sides of the wedge to inform OpenFOAM
of the axisymmetry.

The resulting 2-D flow fields are postprocessed by identifying the dividing streamline
between the streams and by averaging over the resulting cross-sections. The radial position

1000 A85-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://gmsh.info/
https://openfoam.org/version/9/
https://doi.org/10.1017/jfm.2024.1041


An extension of the compound flow theory with friction

Case pt,p (bar) pp (bar) Tt,p (K) pt,s (bar) Tt,s (K) TI (%) lt (m) Wall Comments

1 3.0 1.21 300 1.5 300 n/a n/a slip inviscid
2 3.0 1.21 300 1.5 300 1 6.65 × 10−4 slip viscous
3 3.0 1.21 300 1.5 300 1 6.65 × 10−4 no-slip viscous

Table 1. Boundary conditions of the simulations presented in § 6. The primary inlet is supersonic with Map =
1.22. They cover (i) an isentropic case, (ii) a case with friction between the streams but without wall friction
and (ii) a case with both forces, respectively.

rd of the dividing streamline is found at any point x by integrating the axial mass flux,

ṁp(x) =
∫ rd(x)

0
ρ(x, r)u(x, r)2πr dr and ṁs(x) =

∫ R

rd(x)
ρ(x, r)u(x, r)2πr dr,

(5.2a,b)
where u denotes the axial component of the velocity vector. Knowing the radius rd(0) of
the dividing streamline at the primary inlet, the primary mass flow rate is calculated. The
evolution of the dividing streamline at any position x follows from (5.2a,b). The second
step consists of averaging the relevant flow variables across the ejector’s section, i.e.

ρ̂i(x) = 1
Ai

∫
Ai

ρ dAi, (5.3)

ûi(x) = 1
ρ̂iAi

∫
Ai

ρu dAi, (5.4)

êt,i(x) = 1
ρ̂iAi

∫
Ai

ρet dAi, (5.5)

for i ∈ [p, s] and where et = cvT + u2/2 denotes the total specific internal energy and
cv is the specific heat at constant volume. The density-averaged velocity and internal
energy ensure that the 1-D mass flow rate and internal energy match their integrated 2-D
counterpart. The averaged static temperature, static pressure and Mach number follow
from (5.3)–(5.5) and the specific gas constant R:

T̂i = 1
cv

(
êt,i − 1

2
û2

i

)
, p̂i = ρ̂iRT̂i and M̂ai = ûi√

γ RT̂i

. (5.6a–c)

5.2. Selected test cases
Three simulations were carried out where the wall and interstream friction forces were
numerically (de)-activated. The boundary conditions are listed in table 1. At both
inlets, the turbulent mixing length was set equal to 7 % of the hydraulic diameter, as
recommended by Versteeg (2007). The turbulence intensity was set to 1 %, as this value
proved to best match the friction coefficients predicted by (2.22).

The first simulation is inviscid and thus serves as a reference for the original compound
flow theory without momentum exchange. The second simulation is viscous with a slip
condition at the wall: only friction forces between the streams are thus active in this case.
Finally, wall friction is included in the third case by imposing a no-slip condition along
the upper boundary. A mesh convergence study was carried out on the viscous simulation
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Figure 5. The coarse, medium and fine mesh contain 400 × 25, 800 × 52 and 1600 × 106 elements,
respectively. The medium and fine meshes lead to a wall-resolved simulation and to good agreement for the
Mach number at the centreline. The fine mesh is retained for the other simulations and the postprocessing. Here
(a) y+ of the first cell near the wall; (b) Mach number at the centreline.

with the no-slip condition. The number of cells was doubled in each direction, leading to
meshes with 400 × 25, 800 × 52 and 1600 × 106 cells. The resulting distributions of y+
near the wall and the Mach number at the centreline are shown for the three meshes in
figure 5. The medium and fine meshes show good agreement and are both wall-resolved.
The wall friction Reynolds number Reτ = ρuτ Dh/μ equals 1.9 × 104 at the inlet and
5.3 × 103 at the outlet in case 3. The results on the fine mesh are used in the next section
to profit from its higher resolution.

A parametric study was carried out to validate the model in a wider range of conditions.
The reference case is the viscous simulation with the no-slip condition at the wall (case
3 in table 1), as it is the most representative for practical applications. Three parameters
were varied independently: (i) the total pressure at the secondary inlet between pt,s = 0.5
and 3 bar; (ii) the radius of the throat between Rth/Ro = 0.6 and 0.9; and (iii) the radius of
the primary inlet between Rp/Ri = 0.3 and 0.7 (see figure 4). The correlations (2.20) and
(2.22) were used in all cases, so the model was not tuned further.

The resulting distributions of the static pressure and the Mach numbers depend on the
geometry and the inlet conditions, so the static pressure imposed at the supersonic primary
inlet changes too. However, the static pressure at the inlet corresponding to a choked flow
without a shock train is initially unknown. The 1-D model proved to be a useful tool to
compute this pressure, as it provides a cross-stream averaged description of a choked flow
with a uniform static pressure profile. The 1-D model was thus run first, to provide the
boundary conditions for the RANS simulations afterwards (see table 2). The primary
stream is supersonic in most cases, except if pt,s � 2 bar. In that case, only the total
pressure and total temperature were imposed. The other boundary conditions remained
identical to those in table 1.

6. Results

The two approaches to close the model from § 2.2 are compared in § 6.1, followed by
a validation of the model in various operating conditions and geometries in § 6.2. The
effect of the friction forces on compound choking is illustrated in § 6.3. Compound
choking is shown to be a plausibly more general flow blockage mechanism than individual
streams reaching a unitary Mach number in § 6.4. This is demonstrated through a choked
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pt,s (bar) Rth/Ro (–) Rp/Ri (–) pp (bar) Comments

1.5 0.9 0.5 1.21 reference case

0.5 0.9 0.5 0.40
1.0 0.9 0.5 0.81
2.0 0.9 0.5 n/a subsonic primary inlet
2.5 0.9 0.5 n/a subsonic primary inlet
3.0 0.9 0.5 n/a subsonic primary inlet

1.5 0.6 0.5 1.45
1.5 0.7 0.5 1.40
1.5 0.8 0.5 1.32

1.5 0.9 0.3 1.16
1.5 0.9 0.4 1.18
1.5 0.9 0.6 1.25
1.5 0.9 0.7 1.30

Table 2. Boundary conditions for the parametric study. The primary static pressure pp was computed a priori
with the 1-D model and served a posteriori as a boundary condition for the RANS simulations. The primary
stream is subsonic at the inlet for pt,s � 2 bar, so the static pressure is not imposed.

compound flow with a fully subsonic secondary stream, both with the 1-D model and with
an axisymmetric RANS simulation.

6.1. Model closure
Before proceeding with the analysis of the investigated test cases, figure 6 showcases the
impact of the friction coefficients at the wall and at the dividing streamline for the test
case 3. Figures 6(a) and 6(b) show the streamwise evolution of the friction coefficients
(i) obtained with the correlations (2.20) and (2.22), (ii) identified as constants by the
inverse method as described in § 2.2 and (iii) extracted from the viscous RANS simulations
as reference. The correlation (2.20) for the wall friction is adequate and follows the correct
trend. The calibrated constant matches the reference on average. The friction between the
streams is mostly underpredicted by correlation (2.22), as also observed by Grazzini et al.
(2016). This was found to be sensitive to the turbulent intensity at the inlets, which directly
impacts the turbulent viscosity and hence the friction between the streams. Analysing this
effect in further details is beyond the scope of the current work.

More importantly, the distribution of the static pressure is predicted accurately by the
1-D model in both cases, as shown in figures 6(c) and 6(d). The averaged static pressure
is computed from the RANS simulations with (5.2a,b)–(5.6a–c) and is displayed with
diamonds as the reference. For plotting purposes, the spacing in the markers is much larger
than the mesh resolution.

It is worth noticing that the static pressure in the two streams oscillates near the inlet
due to a weak shock train. This effect is not captured in the 1-D model because of the
assumption of uniform static pressure. The agreement between the model and the RANS
simulations shows that the correlations (2.20) and (2.22) are adequate for the purposes of
this work. Moreover, the agreement between predictions with both constant and varying
coefficients indicates a weak sensitivity to these parameters, justifying the exclusion of
their derivatives in the approximation in § 3. All the results presented for the 1-D model
in the remaining of this section were obtained with the correlations. This approach has the
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Figure 6. Comparison of the two approaches for determining the friction coefficients (see § 2.2). The
model predicts the static pressure accurately with the correlations (2.20) and (2.22), and with the calibrated
constants ( fw = 0.00377, fps = 0.0355). (a) Wall friction coefficient fw; (b) interstream friction coefficient fps;
(c) prediction of the static pressure with the correlations; (d) prediction of the static pressure with calibrated
constants.

advantage of not requiring calibration since the model is fully closed when using (2.20)
and (2.22).

6.2. Model validation
Figure 7 illustrates the distribution of the Mach numbers and the dividing streamlines for
the different secondary inlet pressures (see table 2). The primary Mach number decreases
significantly with increasing total pressure pt,s, due to an increased static pressure at the
inlet. Similarly, the secondary Mach number increases with increasing pt,s, but is less
sensitive. When the total pressures are equal (uniform flow), the Mach numbers are equal
in each stream at the inlet. Downstream, the secondary Mach number decreases relative to
the primary due to wall friction, which is not fully counteracted by the weak shear force
from the quasiuniform flow.

The model agreement with RANS simulations worsens as the inlet pressure difference
grows. Notably, in these cases, the primary Mach number and dividing streamline oscillate
near the inlet, due to the formation of a mild shock train. The resulting oblique shocks
introduce pressure losses that are not captured by the 1-D model, which assumes a uniform
static pressure across the streams. Additionally, the maximal relative error of the model
amounts to 10 %, which is comparable to the scatter of the data on which the correlation
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Figure 7. Comparison of the model predictions and the postprocessed RANS simulations with varying total
pressure pt,s at the secondary inlet and constant total pressure pt,p = 3 bar at the primary inlet. The reference
case is highlighted in bold. The geometry is identical to the reference case in § 5.1. The primary Mach number
decreases with increasing pt,s due to a higher static pressure at the inlet and eventually becomes subsonic.
The agreement degrades with a larger difference in inlet pressures. Here (a) Mach numbers; (b) dividing
streamlines.

(2.22) is based (see Papamoschou 1993). Despite this, the overall agreement is satisfactory,
especially considering that the model was not specifically calibrated for these conditions.

The throat radius Rth was varied between 60 % and 90 % of the outlet radius Ro, while
maintaining the same total pressures as in case of table 1. A narrower throat induces a
stronger expansion, resulting in lower Mach numbers upstream and higher Mach numbers
downstream of the sonic section (see figure 8). The agreement between the model and the
RANS simulations is excellent, with discrepancies below 10 %. The overpredicted Mach
numbers at the outlet are attributed to underpredicted friction coefficients by (2.20) and
(2.22) with respect to the RANS simulations, as also observed in figures 6(a) and 6(b). It
is worth noticing that the radius of the wall at the inlet changes with the throat due to the
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Figure 8. Comparison of the model predictions and the postprocessed RANS simulations with varying radius
of the throat. The reference case is highlighted in bold. The total pressures at the inlet are identical to the
reference case 3 in table 1. The Mach numbers decrease at the inlet and increase at the outlet with a narrowing
throat. The curvature becomes important for the smallest throat, inducing 2-D effects and reducing the accuracy
of a 1-D formulation. Here (a) Mach numbers; (b) dividing streamlines.

cosine-shaped profile between π/2 and 2π, as defined by (5.1). The primary inlet changes
accordingly and extends halfway to the total inlet in each configuration.

Finally, the radius of the primary inlet is varied between 30 % and 70 % of the total
radius at the inlet, while keeping the same profile of the wall and the same total pressures
as the reference case. Figure 9 shows that both Mach numbers decrease with an increasing
radius of the primary inlet. This is due to a higher average total pressure at the inlet (a
larger portion with pt,p = 3 bar instead of pt,s = 1.5 bar), which in turn leads to a higher
static pressure of the choked flow. Despite the lower Mach numbers in both streams, the
equivalent Mach number is comparable. This surprising effect is possible through the
nonlinear relation between the Mach numbers and the cross-sections in the terms of β

in (2.13). Clearly, the Mach numbers alone do not suffice to conclude on the state of the
flow and should be complemented with information on the cross-sections. The 1-D model
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Figure 9. Comparison of the model predictions and the postprocessed RANS simulations with varying radius
of the primary inlet. The reference case is highlighted in bold. The total pressures at the inlet are identical to the
reference case 3 in table 1. A larger primary cross-section at the inlet increases the average total pressure at the
inlet and hence increases the static pressure required for choking. Consequently, both Mach numbers decrease
with an increasing radius of the primary inlet. Here (a) Mach numbers; (b) dividing streamlines.

captures these trends accurately, although the Mach numbers are overpredicted near the
outlet as observed earlier in figure 8.

6.3. The effect of friction on compound choking
Figure 10 shows the Mach number fields of the three simulations in table 1, along with
the dividing streamline in white and the sonic line in black. The shear layer in the inviscid
case is only due to numerical diffusion, so the two streams remain clearly distinct across
the dividing streamline. The sonic line ends on the wall downstream of the geometrical
throat (indicated by the arrows). The primary stream is thus supersonic at the throat and
the secondary stream is still subsonic. The secondary stream is accelerated through shear
in the viscous simulations, causing the sonic line to move radially outwards. The sonic line
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Figure 10. Mach number contours of the three simulations (cf. table 1). The black line indicates the sonic line
and tends towards the wall as the compound flow becomes supersonic. The dividing streamline is indicated in
white. The arrows indicate the geometrical throat. The numerical domain depicted in figure 4 has been mirrored
for visibility.

no longer reaches the wall when a no-slip condition is imposed. The development of the
boundary layer tends to slow down the flow, leading to a lower maximal Mach number.

The averaged Mach numbers extracted from the RANS simulations are displayed with
diamonds in figure 11 as the reference. The predictions of the proposed model are shown
in full lines. It is worth noticing that the static pressure at the inlet for the 1-D model
prediction is not imposed to be equal to the one from the RANS simulations, but rather
results from the iterative procedure laid out in § 3. The only difference in the three cases is
the friction coefficients, which are used to obtain the 1-D predictions. In the inviscid case,
both naturally equal 0. The friction coefficients are computed with (2.20) and (2.22) for
the viscous simulations.

The key finding in these results is the displacement of the sonic section, which is
highlighted by the vertical dashed line and commented below. The sonic section is located
in the geometrical throat (indicated by the red triangle) in the inviscid case, as predicted by
the original compound flow theory (see e.g. Bernstein et al. 1967). The viscous simulation,
without wall friction but with shear forces between the streams, shows an upstream shift
towards the convergent section, as expected in the analysis of § 2.3. Conversely, wall
friction is dominant in the final simulation, overcoming the effects of the shear force and
ultimately pushing the sonic section in the divergent portion of the nozzle.

Note that the primary Mach number is slightly overestimated in all cases. This is
attributed to the weak shock train at the inlet (see figure 6c,d and 10), which introduces a
pressure loss in the primary stream.

The 1-D predictions allow for computing each term in the equation for the static pressure
gradient (cf. (2.24)) separately. The evolution of the components in the numerator is shown
in figure 12 for the slip and no-slip cases. The inviscid case is trivial since the gradient of
the cross-section is the only remaining term. The terms are normalised with the maximal
gradient of the cross-section, as this is a fixed quantity for the three simulations. The
evolution of the two friction terms supports the theoretical considerations in § 2.3, the first
(interstream friction) always being positive and the second (wall friction) being negative.
As a result, the zero-crossing of the numerator moves up or downstream. The gradient of
the cross-section balances the effect of the forces in either direction by moving the sonic
section in the convergent or the divergent section. Note that the interstream friction tends
to decrease from left to right as the difference in Mach number decreases, while friction
tends to increase as the flow accelerates through the nozzle.
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Figure 11. Comparison of the Mach number computed with the 1-D compound flow theory and from the
postprocessed RANS results. The sonic section (dotted line) coincides with the throat (red triangle) in the
inviscid case 1. Friction between the streams pushes the sonic section upstream (case 2), while wall friction
pushes it downstream in case 3 (see (2.25)). The used friction coefficients are given by (2.20) and (2.22). Here
(a) case 1, sonic at x/L = 0.333; (b) case 2, sonic at x/L = 0.323; (c) case 3, sonic at x/L = 0.359.

6.4. Flow blockage mechanism
As observed in figure 11, the secondary Mach number is below unity in the
compound-sonic section if the primary stream is supersonic. It reaches unity farther
downstream, where the compound flow continues to expand in the diverging section of
the nozzle. It can thus be stated that the compound flow is sonic in the first section and
that the secondary stream is sonic, separately, in a section farther downstream. Both sonic
sections are plausible explanations for the blockage of the secondary mass flow rate, e.g. in
ejectors, these choking mechanisms are referred to as ‘compound choking’ and ‘Fabri
choking’ (see Lamberts et al. 2018). There is currently no consensus on which of these
mechanisms limits the secondary mass flow rate.
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Figure 12. Components of the numerator in (2.24), normalised by the maximal area gradient. The positive
interstream friction term pushes the zero-crossing of the sum upstream, while the negative wall friction term
pushes it downstream. Here (a) slip, sonic at x/L = 0.323; (b) no slip, sonic at x/L = 0.359.

The excellent match between the postprocessed RANS simulations and the 1-D
predictions of the compound flow theory suggests that the compound choking condition
is the more general mechanism. Furthermore, the secondary Mach number reaches unity
necessarily downstream of the compound-sonic section since a combination of a sonic
and a supersonic stream is necessarily compound-supersonic (cf. (2.13)). This suggests
that cases identified as ‘Fabri choking’ also feature compound choking farther upstream
(see Hoge & Segars 1965). Moreover, Lamberts et al. (2018) and Kracik & Dvorak (2023)
showed that the static pressure required to reach compound choking is higher than the one
required to reach Mas = 1. This implies that the compound condition is less restrictive
(the flow needs to expand less to reach the compound condition), but still sufficient to
choke the flow. As a definitive proof of the generality of the compound choking condition
to explain the mass flow limitation (compared with Fabri choking), a compound choked
flow is demonstrated with a fully subsonic secondary stream.

To lower the secondary Mach number below unity, the divergent section of the nozzle
presented in § 5 is replaced by a constant cross-section having the same diameter as the
throat. The first simulation was carried out on a nozzle of the same length, while the
second is cut shorter at x/L = 0.4 (so downstream of the throat at x/L = 0.333). The
settings for the mesh, the boundary conditions and the numerical solver remain identical
to the previous simulations. The absence of a divergent section would severely impact
the viscous case with the no-slip condition at the wall since the compound sonic section
is located in the divergent section. The resulting flow field forms a Fanno flow, which
becomes nearly sonic at the outlet of the constant-area pipe. Therefore, the viscous case
with a slip condition at the wall is retained, which becomes compound-sonic upstream of
the throat regardless of the geometry downstream.

Figure 13 shows the evolution of the postprocessed Mach number of the
convergent–constant and cut (still convergent–constant) configurations. The compound
choking condition is reached at x/L = 0.323 in both cases, and the secondary mass flow
rates are identical to 0.0622 kg s−1 (since the geometry and the boundary conditions at
the inlet are also identical). The flow expands less in the constant area section compared
with the convergent–divergent case, but the secondary Mach number still reaches unity
at x/L = 0.56. However, the secondary cross-section does not reach a minimum in this
section, suggesting that the secondary stream does not choke separately. This is confirmed
by the simulation with the shorter nozzle, which coincides with the results of the complete
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Figure 13. Evolution of the Mach number for the convergent–constant and cut nozzle with friction between
the streams and a slip condition at the wall (see figure 11b). The results coincide in the convergent section as
the flow is choked in all cases. The secondary Mach number does not reach unity in the shorter nozzle. Here
(a) case 2, convergent–constant configuration; (b) case 2, cut configuration.

nozzle. Despite the low pressure imposed as a boundary condition at the outlet, the
secondary flow does not accelerate beyond Mas = 0.97 (both in the RANS simulation
and in the 1-D model). Hence, no larger secondary mass flow rate can be obtained,
and the compound flow is choked with a fully subsonic secondary stream. These results
suggest that compound choking is the more general choking condition in ejectors and,
more generally, for parallel compressible streams with different stagnation pressures.

7. Conclusion

The isentropic compound flow theory has been extended with friction forces between the
streams and at the wall. The resulting 1-D model captures the upstream and downstream
displacement of the sonic section observed by Lamberts et al. (2018) and Kracik
& Dvorak (2023). Moreover, the 1-D predictions have been validated numerically to
2-D axisymmetric RANS simulations with appropriate boundary conditions to include
or eliminate the effect of friction and a parametric study has demonstrated that the
model generalises well across different operating conditions and different geometries. An
extension of this work to the modelling of ejectors is foreseen in the future.

To the authors’ knowledge, our work is the first to propose an explanation for choking
of a compound flow upstream of the geometrical throat. The Taylor expansion of
the equation for the static pressure gradient allows for circumventing its singularity,
avoiding numerical instabilities and increasing the accuracy of the numerical predictions.
Analytical expressions have been presented for all required derivatives for a second-order
approximation, with a quasi-third-order approximation obtained with finite differences.
These expressions and the governing equations have first been derived in a general way in
terms of a force Fi, facilitating future developments such as a compound flow with more
than two streams or a planar geometry instead of the axisymmetrical one considered in
this work. Another open path includes heat exchange and different total temperatures at
the inlet, which may affect the shifting mechanism due to friction between the streams,
as discussed in § 2.3. In particular, a high primary inlet temperature may invert the effect
of interstream friction. Finally, we believe that the developed model not only provides
more insight into the choking of compound flows but also opens perspectives in the
reduced-order modelling of ejectors.
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Appendix A. First-order approximation of the static pressure gradient

The static pressure gradient in the sonic section has been calculated in § 2.3 using
l’Hôpital’s rule (see (2.28)). This operation requires the first derivatives of the numerator
N and the compound choking indicator β. This section provides analytical expressions
for these derivatives and those of the forces (dFi/dx), ultimately leading to a quadratic
equation for the static pressure gradient in the sonic section.

A.1. Friction forces
As discussed in § 2.3, the derivatives of the numerator and β give rise to derivatives of
Mach numbers Mai, cross-section Ai, forces Fi and the static pressure p. These can be
substituted by the governing equations (2.7), (2.8), (2.10), resulting in expressions that are
linear with respect to the static pressure gradient. This is also true for the friction forces.
The first derivative of the wall friction force is given by the following equation:

dFw

dx
= cFw0

(
1
p

dp
dx

)
+ cFw1, (A1)

where

cFw0 = fw
√

π
√

Ap
(

Ma2
s − 2

)
, (A2)

cFw1 =
√

π

(
fwγ AsMa2

s p
dA
dx

+ (2fwγ − 2fw) AFsMa2
s + 4fwAFs

)
2
√

AAs
. (A3)

The interstream friction force explicitly depends on densities, velocities and the primary
cross-section (see (2.17)). The vector q = [ρp, ρs, up, us, Ap, As, Ma2

p, Ma2
s ] is introduced

to ease the notation. The first derivative of the friction between the streams is given by the
following equation:

dFps

dx
= ∂Fps

∂q
· dq

dx
, (A4)

where the dot operator indicates an inner product. The equations below are derived for the
case where up > us to avoid the absolute value operator in (2.17). The derivatives in the
case up < us have the same magnitude, but only differ in the sign. It thus suffices to add a
minus sign in the equation above. The partial derivatives of Fps with respect to q are given
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An extension of the compound flow theory with friction

by

∂Fps

∂q
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fps
√

π
√

Ap
(
up − us

)2
2

fps
√

π
√

Ap
(
up − us

)2
2

fps
√

π
√

Ap
(
ρs + ρp

) (
up − us

)
−fps

√
π
√

Ap
(
ρs + ρp

) (
up − us

)
fps

√
π
(
ρs + ρp

) (
up − us

)2
4
√

Ap
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

Note that the last three quantities of q do not appear directly in the definition of Fps. These
are included in q because they appear in the second derivatives (see Appendix B). The
derivative dq/dx follows from the governing equations (see § 2.1 and Shapiro (1953)),

dq
dx

= cq0

(
1
p

dp
dx

)
+ cq1pFp + cq1sFs, (A6)

where cq0, cq1p and cq1s are vectors of the same length as q, and themselves functions of
q,

cq0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρp

γ

ρs

γ

− up

γ Ma2
p

− us

γ Ma2
s

Ap

γ

(
1

Ma2
p

− 1

)
As

γ

(
1

Ma2
s

− 1
)

− 2
γ

(
(γ − 1)

2
Ma2

p + 1
)

− 2
γ

(
(γ − 1)

2
Ma2

s + 1
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A7)
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cq1p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(γ − 1) ρp

γ App
0
up

γ ApMa2
pp

0

−
(

1
γ Ma2

p

)
− γ − 1

γ

p
0

2

(
(γ − 1) Ma2

p

2
+ 1

)
γ App

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and cq1s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
(γ − 1) ρs

γ Asp

0
us

γ AsMa2
s p

0

−
(

1
γ Ma2

s

)
− γ − 1

γ

p

0

2

(
(γ − 1) Ma2

s

2
+ 1

)
γ Asp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A8a,b)

Combining (A4)–(A8a,b) leads to the following equation:

dFps

dx
= cFps0

(
1
p

dp
dx

)
+ cFps1, (A9)

where

cFps0 = ∂Fps

∂q
· cq0, (A10)

and

cFps1 = ∂Fps

∂q
· (cq1pFp + cq1sFs

)
. (A11)

The derivatives of the forces Fi follow from (A1), (A9) and their definition (2.19a,b),

dFi

dx
= cFi0

(
1
p

dp
dx

)
+ cFi1, (A12)

where i ∈ [p, s] and

cFp0 = −cFps0, and cFs0 = cFps0 − cFw0,

cFp1 = −cFps1, and cFs1 = cFps1 − cFw1.

}
(A13)

A.2. The numerator of the equation for the static pressure
The numerator is differentiated in its general form (2.12) for any definition of the forces Fi
to facilitate potential modifications to the forces in future work,

N = dA
dx

+
∑

i∈[p,s]

[
1 + (γ − 1) Ma2

i

γ Ma2
i

]
Fi

p
. (A14)

1000 A85-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1041


An extension of the compound flow theory with friction

Introducing the concise notation for the second term,

Zi =
[

1 + (γ − 1) Ma2
i

γ Ma2
i

]
Fi

p
, (A15)

the gradient of the numerator gives rise to first derivatives of Zi:

dN
dx

= d2A

dx2 +
∑

i∈[p,s]

dZi

dx
. (A16)

These are given by

dZi

dx
= cZi0

(
dFi

dx

)
+ cZi1

(
1
p

dp
dx

)
+ cZi2, (A17)

where

cZi0 = 1
p

(
1 + (γ − 1) Ma2

i

γ Ma2
i

)
, (A18)

cZi1 =
((

γ − γ 2)Ma4
i − Ma2

i + 2
)

Fi

γ 2pMa4
i

, (A19)

cZi2 = −
2F2

i

(
(γ − 1) Ma2

i
2

+ 1

)
γ 2p2AiMa4

i
. (A20)

The combination of (A16), (A17) and (A12) yields the final expression for the first
derivative of the numerator,

dN
dx

= cN0

(
1
p

dp
dx

)
+ cN1, (A21)

where

cN0 =
∑

i∈[p,s]

(cZi0cFi0 + cZi1) , (A22)

cN1 = d2A

dx2 +
∑

i∈[p,s]

(cZi0cFi1 + cZi2) , (A23)

which require (A13), (A18), (A19) and (A20).

A.3. The compound choking indicator
The compound choking indicator can be written as a sum of components βi (cf. (2.13)):

β =
∑

i∈[p,s]

βi =
∑

i∈[p,s]

Ai
1 − Ma2

i

γ Ma2
i

. (A24)

The first derivative of β is given by the following equation:

dβ

dx
= cβ0

(
1
p

dp
dx

)
+ cβ1, (A25)

1000 A85-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1041


J. Van den Berghe, M.A. Mendez and Y. Bartosiewicz

where

cβ0 =
∑

i∈[p,s]

Ai
(
Ma4

i + (γ − 3) Ma2
i + 3

)
γ 2Ma4

i
, (A26)

cβ1 =
∑

i∈[p,s]

(γ − 1) Ma4
i + (3 − 2γ ) Ma2

i − 3

γ 2Ma4
i

(
Fi

p

)
. (A27)

A.4. Static pressure gradient
Using l’Hôpital’s rule on (2.12) leads to (2.32), which is equivalent to the following
quadratic equation:

c∗
β0

(
1
p∗

dp
dx

∗)2

+
(

c∗
β1 − c∗

N0

)( 1
p∗

dp
dx

∗)
− c∗

N1 = 0. (A28)

The stars indicate that the variables are evaluated at the sonic section. The two roots
correspond to a subsonic or supersonic solution downstream of the sonic section. The
first-order approximation in the vicinity of the sonic section consists of the same constant
gradient in the throat given by the equation above (see figure 2).

Appendix B. Second-order approximation of the static pressure gradient

The second-order approximation requires the first and the second derivatives of the
numerator N and β (see (3.2)). These give rise to second derivatives of the quantities
encountered in Appendix A. In this section, the first derivatives are not expanded since
they can be calculated directly using the expressions in Appendix A.

B.1. Mach number
Here

d2Ma2
i

dx2 = cMa2
i 0

(
d

dx

(
1
p

dp
dx

))
+ cMa2

i 1, (B1)

where

cMa2
i 0 = − 2

γ

(
(γ − 1) Ma2

i
2

+ 1

)
, (B2)

cMa2
i 1 = −(γ − 1)

γ

(
1
p

dp
dx

)(
dMa2

i
dx

)
+ (γ − 1)

γ

Fi

pAi

(
dMa2

i
dx

)

+ 2
γ pAi

(
(γ − 1) Ma2

i
2

+ 1

)(
dFi

dx

)
− 2Fi

γ pAi

(
(γ − 1) Ma2

i
2

+ 1

)(
1
p

dp
dx

)
,

(B3)

where the derivatives dMa2
i /dx are the last two components of the vector dq/dx in (A6).
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An extension of the compound flow theory with friction

B.2. Friction forces
The second derivative of the wall friction force is given by the following equation:

d2Fw

dx2 = cFw20

(
d

dx

(
1
p

dp
dx

))
+ cFw21, (B4)

where

cFw20 = fw
√

π
√

Ap
(

Ma2
s − 2

)
, (B5)

cFw21 = fwγ
√

π
√

ApcMa2
s 1 + fwγ

√
πp√

A

(
dA
dx

)(
dMa2

s

dx

)

+ 2fwγ
√

π
√

Ap
(

1
p

dp
dx

)(
dMa2

s

dx

)
+ fwγ

√
πMa2

s p

2
√

A

(
d2A

dx2

)

− fwγ
√

πMa2
s p

4A3/2

(
dA
dx

)2

+ fwγ
√

πMa2
s p√

A

(
1
p

dp
dx

)(
dA
dx

)
+ fwγ

√
π

√
AMa2

s

(
1
p

dp
dx

)2

p. (B6)

The second derivative of the interstream friction force follows from (A9) (with the same
comment regarding the sign in case up < us),

d2Fps

dx2 = cFps0

(
d

dx

(
1
p

dp
dx

))
+ dcFps0

dx

(
1
p

dp
dx

)
+ dcFps1

dx
. (B7)

The derivatives of the coefficients cFps0 and cFps1 follow from (A10) and (A11),

dcFps0

dx
=
(

∂2Fps

∂q2
dq
dx

)
· cq0 + ∂Fps

∂q
· dcq0

dx
, (B8)

dcFps1

dx
=
(

∂2Fps

∂q2
dq
dx

)
· (cq1pFp + cq1sFs

)
+ ∂Fps

∂q
·
(

dcq1p

dx
Fp + cq1p

dFp

dx
+ dcq1s

dx
Fs + cq1s

dFs

dx

)
. (B9)

The first derivatives ∂Fps/∂q, dq/dx, dFp/dx and dFs/dx are given by (A5), (A6) and
(A12). The second derivatives of the friction force Fps with respect to q are given by the
following matrix:

∂2Fps

∂q2 = fps
√

π
√

Ap
(
up − us

)
M, (B10)
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where

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 −1
up − us

4Ap
0 0 0

0 0 1 −1
up − us

4Ap
0 0 0

1 1
ρp + ρs

up − us
−ρp + ρs

up − us

ρp + ρs

2Ap
0 0 0

−1 −1 −ρp + ρs

up − us

ρp + ρs

up − us
−ρp + ρs

2Ap
0 0 0

up − us

4Ap

up − us

4Ap

ρp + ρs

2Ap
−ρp + ρs

2Ap
−
(
ρp + ρs

) (
up − us

)
8A2

p
0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B11)

The derivative of cq0 follows from (A7),

dcq0

dx
= ∂cq0

∂q
dq
dx

, (B12)

where

∂Cq0

∂q
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
γ

0 0 0 0 0 0 0

0
1
γ

0 0 0 0 0 0

0 0 − 1
γ Ma2

p
0 0 0

up

γ Ma4
p

0

0 0 0 − 1
γ Ma2

s
0 0 0

us

γ Ma4
s

0 0 0 0

1
Ma2

p
− 1

γ
0 − Ap

γ Ma4
p

0

0 0 0 0 0

1
Ma2

s
− 1

γ
0 − As

γ Ma4
s

0 0 0 0 0 0 −γ − 1
γ

0

0 0 0 0 0 0 0 −γ − 1
γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B13)
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An extension of the compound flow theory with friction

The coefficients cq1p and cq1s explicitly depend on q and the static pressure p (see (A8a,b)),
so their derivatives are given by the following equations:

dcq1p

dx
= ∂cq1p

∂q
dq
dx

+ ∂cq1p

∂p
dp
dx

, (B14)

dcq1s

dx
= ∂cq1s

∂q
dq
dx

+ ∂cq1s

∂p
dp
dx

, (B15)

where

∂Cq1p

∂q
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ − 1
γ App

0 0 0 −(γ − 1) ρp

γ A2
pp

0 0 0

0 0 0 0 0 0 0 0

0 0
1

γ ApMa2
pp

0 − up

γ A2
pMa2

pp
0 − up

γ ApMa4
pp

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0
1

γ Ma4
pp

0

0 0 0 0 0 0 0 0

0 0 0 0 −
2

(
(γ − 1) Ma2

p

2
+ 1

)
γ A2

pp
0

γ − 1
γ App

0

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B16)

∂Cq1s

∂q
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0
γ − 1
γ Asp

0 0 0 −(γ − 1) ρs

γ A2
s p

0 0

0 0 0 0 0 0 0 0

0 0 0
1

γ AsMa2
s p

0 − us

γ A2
s Ma2

s p
0 − us

γ AsMa4
s p

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
1

γ Ma4
s p

0 0 0 0 0 0 0 0

0 0 0 0 0 −
2

(
(γ − 1) Ma2

s

2
+ 1

)
γ A2

s p
0

γ − 1
γ Asp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B17)
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∂Cq1p

∂p
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(γ − 1) ρp

γ App2

0

− up

γ ApMa2
pp2

0(
1

γ Ma2
p

)
+ γ − 1

γ

p2

0

−
2

(
(γ − 1) Ma2

p

2
+ 1

)
γ App2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and
∂Cq1s

∂p
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−(γ − 1) ρs

γ Asp2

0

− us

γ AsMa2
s p2

0(
1

γ Ma2
s

)
+ γ − 1

γ

p2

0

−
2

(
(γ − 1) Ma2

s

2
+ 1

)
γ Asp2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B18a,b)
The second derivative of the interstream friction is thus given by

d2Fps

dx2 = cFps20

(
d

dx

(
1
p

dp
dx

))
+ cFps21, (B19)

where

cFps20 = cFps0 and cFps21 = dcFps0

dx

(
1
p

dp
dx

)
+ dcFps1

dx
(B20a,b)

are found with (A10), (B8), (B9) and the local pressure gradient. The second derivatives
of the forces Fi follow from (B4), (B19) and their definition (2.19a,b),

d2Fi

dx2 = cFi20

(
d

dx

(
1
p

dp
dx

))
+ cFi21, (B21)

where i ∈ [p, s] and

cFp20 = −cFps20 and cFs20 = cFps20 − cFw20,

cFp21 = −cFps21 and cFs21 = cFps21 − cFw21.

}
(B22)

B.3. The numerator of the equation for the static pressure
The second derivative of the numerator gives rise to the second derivatives of Zi:

d2N

dx2 = d3A

dx3 +
∑

i∈[p,s]

d2Zi

dx2 . (B23)

The second derivative of the force term Zi (cf. (A15)) is given by the following equation:

d2Zi

dx2 = cZi20

(
d

dx

(
1
p

dp
dx

))
+ cZi21

(
d2Fi

dx2

)
+ cZi22

(
dFi

dx

)
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+ cZi23

(
1
p

dp
dx

)2

+ cZi24

(
1
p

dp
dx

)
+ CZ25,i, (B24)

where

cZi20 = −
(
γ 2 − γ

)
FiMa4

i + FiMa2
i − 2Fi

γ 2pMa4
i

, (B25)

cZi21 = (γ − 1) Ma2
i + 1

γ pMa2
i

, (B26)

cZi22 = −
(
2γ 2 − 2γ

)
Ma4

i + 2Ma2
i − 4

γ 2pMa4
i

(
1
p

dp
dx

)
− (3γ − 3) FiMa2

i + 6Fi

γ 2p2AiMa4
i

, (B27)

cZi23 = −
(
γ 2 − γ 3)FiMa6

i − FiMa4
i + (6 − 2γ ) FiMa2

i − 8Fi

γ 3pMa6
i

, (B28)

cZi24 = −
(
1 − γ 2)F2

i Ma4
i + (5γ − 9) F2

i Ma2
i + 14F2

i

γ 3p2AiMa6
i

, (B29)

cZi25 = (3γ − 3) Fi
3Ma2

i + 6Fi
3

γ 3p3A2
i Ma6

i
. (B30)

Grouping the terms excluding the second derivatives gives

cZi22−5 = cZi22

(
dFi

dx

)
+ cZi23

(
1
p

dp
dx

)2

+ cZi24

(
1
p

dp
dx

)
+ CZi25. (B31)

The combination of (B23), (B24) and (B21) yields the final expression for the second
derivative of the numerator,

d2N

dx2 = cN20

(
d

dx

(
1
p

dp
dx

))
+ cN21, (B32)

where

cN20 =
∑

i∈[p,s]

(
cZi20 + cZi21 cFi20

)
, (B33)

cN21 = d3A

dx3 +
∑

i∈[p,s]

(
cZi21cFi21 + cZi22−5

)
, (B34)

which require (B22), (B25), (B26) and (B31).

B.4. The compound choking indicator
The second derivative of βi is given by the following equation:

d2βi

dx2 = cβi20

(
d

dx

(
1
p

dp
dx

))
+ cβi21

(
dFi

dx

)
+ cβi22

(
1
p

dp
dx

)2

+ cβi23

(
1
p

dp
dx

)
+ cβi24,

(B35)
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where

cβi20 = AiMa4
i + (γ − 3) AiMa2

i + 3Ai

γ 2Ma4
i

, (B36)

cβi21 = (γ − 1) Ma4
i + (3 − 2γ ) Ma2

i − 3

γ 2pMa4
i

, (B37)

cβi22 = −AiMa6
i + (

γ 2 − 5γ + 7
)

AiMa4
i + (9γ − 18) AiMa2

i + 15Ai

γ 3Ma6
i

, (B38)

cβi23 =
(
1 − γ 2)FiMa6

i − (
2γ 2 − 10γ + 10

)
FiMa4

i + (30 − 19γ ) FiMa2
i − 27Fi

γ 3pMa6
i

,

(B39)

cβi24 =
(
2γ 2 − 5γ + 3

)
F2

i Ma4
i + (10γ − 12) F2

i Ma2
i + 12F2

i

γ 3p2AiMa6
i

. (B40)

Grouping the terms excluding the second derivative of the pressure gives

cβi21−4 = cβi21

(
dFi

dx

)
+ cβi22

(
1
p

dp
dx

)2

+ cβi23

(
1
p

dp
dx

)
+ cβi24, (B41)

the second derivative of β becomes

d2β

dx2 = cβ20

(
d

dx

(
1
p

dp
dx

))
+ cβ21, (B42)

where

cβ20 =
∑

i∈[p,s]

cβi20, (B43)

cβ21 =
∑

i∈[p,s]

cβi21−4, (B44)

which require (B36) and (B41).

B.5. Static pressure
The second derivative of the static pressure in the sonic section is given by

d
dx

(
1
p

dp
dx

)
= d

dx

(
N
β

)
= β(dN/dx) − N(dβ/dx)

β2 . (B45)

The equation above can be evaluated using (A21) and (A25) if β /= 0. Otherwise,
l’Hôpital’s rule yields the following equation:(

d
dx

(
1
p

dp
dx

))∗
= 0

0
= (d2N/dx2)∗

2(dβ/dx)∗
− N∗

β∗
(d2β/dx2)∗

2(dβ/dx)∗
, (B46)

where N∗/β∗ equals the static pressure gradient in the sonic section (see (2.28) and (A28)).
The second derivatives d2N/dx2 and d2β/dx2 are given by (B32) and (B42), and are linear
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An extension of the compound flow theory with friction

with respect to the second derivative of the static pressure,(
d

dx

(
1
p

dp
dx

))∗
= 1

2(dβ/dx)∗

(
c∗

N20 −
(

1
p

dp
dx

)∗
c∗
β20

)(
d

dx

(
1
p

dp
dx

))∗

+ 1
2(dβ/dx)∗

(
c∗

N21 −
(

1
p

dp
dx

)∗
c∗
β21

)
. (B47)

The second derivative of the static pressure in the sonic section is finally given by

(
d

dx

(
1
p

dp
dx

))∗
=

−c∗
N21 +

(
1
p

dp
dx

)∗
c∗
β21

c∗
N20 −

(
1
p

dp
dx

)∗
c∗
β20 − 2

(
dβ

dx

)∗ , (B48)

which requires (A25), (A28), (B33), (B34), (B43) and (B44). The second-order
approximation of the static pressure gradient in the sonic section follows from the Taylor
expansion in (3.2), for which the first and second derivatives are given by (A21), (A25),
(B32) and (B42). A quasi-third order-approximation is obtained by computing the second
derivatives on multiple grid points and applying finite differences to approximate the
required third derivatives.
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