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Abstract. This paper analyzes the space Homp(=, 1), where = is an irreducible, tame supercus-
pidal representation of GL(#n) over a p-adic field and H is a unitary group in n variables con-
tained in GL(n). It is shown that this space of linear forms has dimension at most one. The
representations 7 which admit nonzero H-invariant linear forms are characterized in several
ways, for example, as the irreducible, tame supercuspidal representations which are quadratic
base change lifts.
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1. Introduction

The theory of quadratic base change for automorphic representations of GL(#) has
been studied extensively (for example, [2, 4, 17, 22, 28, 30]) and has had numerous
applications to number theory, including Wiles’ celebrated proof of Fermat’s Last
Theorem. The theory relies on establishing the existence of local base change maps
and, at present, this is achieved via global techniques involving adelic trace formulas.
As efficient as the global techniques are, they tell us relatively little about the fine
structure of the local representations in the image of the local base change maps.
The point of the present paper is to provide a detailed study of the tame supercus-
pidal representations which arise in this manner.

The representations in question are traditionally characterized in terms of a
character relation or an invariance property under a Galois action. The global theory
suggests that they may also be described in terms of harmonic analysis on the
analogues of symmetric spaces over non-Archimedean local fields. In particular, if
F/F' is a quadratic extension of non-Archimedean local fields of characteristic zero
and odd residual characteristic, we show in Theorem 4.4 that a tame supercuspidal
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representation («, V) of G = GL(n, F) is a base change lift from GL(n, F’) precisely
when it is distinguished by a unitary group in n variables H C G in the sense that
Hompy(m, 1) # 0. The latter space consists of those linear forms A on ¥V, such that
A(n(h)v) = A(v), for all h € H and v € V. The result described above was conjec-
tured by Jacquet and Ye [19, 20] for quasisplit unitary groups. In the case in which
F/F’ is unramified and the unitary group is quasisplit, a proof has also just been
obtained by D. Prasad [27], with no assumption of tameness, using entirely different
methods than ours.

The original motivation for our paper lies in a more difficult conjecture of Jac-
quet, which asserts that if 7 is any irreducible, supercuspidal representation of
G = GL(n, F) and H is a unitary subgroup in n variables then the dimension of
Homp(n, 1) is at most one. In Theorem 3.3, we prove that this conjecture holds
for tame supercuspidal representations. In particular, if the residue field of F has
characteristic p > n then the conjecture holds for all irreducible, supercuspidal
representations. The importance of such ‘multiplicity one’ results in harmonic ana-
lysis over both local and global fields is made evident, for example, by the promi-
nent role played by Whittaker models in the theory of automorphic
representations. In our setting, the multiplicity one property says that the represen-
tation space of an H-distinguished representation m has a canonical model as a
space of functions on H\G. Indeed, Frobenius reciprocity correlates the existence
of a nonzero linear form in Homg(x, 1) with a model for the representation space
of  as a space of functions on H\G and, therefore, the H-distinguished represen-
tations of G may be viewed those representations which contribute to the harmonic
analysis on H\G.

Another major objective of this paper is to describe the H-distinguished tame
supercuspidal representations 7 of G in terms of the inducing data in Howe’s con-
struction. Suppose, for example, that 7 is associated to an admissible quasicharacter
0 of E*, where E/F is a tamely ramified extension of degree n. We show that there
must exist an automorphism ¢ of E which restricts to the nontrivial element of
Gal(F/F’) and is such that 0 = 0’ o Ngp, for some quasicharacter 0’ of the multipli-
cative group of the fixed field E’ of . Moreover, we prove in Proposition 6.1 that ¢’
must be admissible over F’ and the quasicharacters which arise in a Howe factoriza-
tion of & lift by quadratic base change to give a Howe factorization of 0.

Let us now briefly outline the contents of the paper. According to Howe’s con-
struction, a tame supercuspidal representation 7 is realized as an induced repre-
sentation from a certain subgroup R of G which depends on the admissible
quasi-character 6 which parametrizes n. The subgroup R is a product of various
factors. The main point of Section 2 is to show that these factors may be chosen
in a way which is compatible with the involution which defines the unitary group
H. In Section 3, we state the multiplicity one result discussed above, Theorem 3.3,
for H-distinguished tame supercuspidal representations and we discuss correspond-
ing properties involving unitary similitude groups. Various equivalent characteriza-
tions of H-distinguished tame supercuspidal representations are given in Theorem
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4.4. Finite field analogues are also discussed in Section 4. A global argument is
described in Section 5 which proves that if n is H-distinguished then it must be
Galois invariant or, equivalently, a base change lift from GL(#n, F’). The details of
this argument appear in a separate paper [10]. The basic notions associated with
admissible quasicharacters and their Howe factorizations are recalled in Section 6.
As mentioned above, we show how quadratic base change lifting preserves Howe
factorizations. In Section 7, we present the facts needed for Howe’s construction
which involve Heisenberg and Weil representations over the field IF,, where p is
the characteristic of the various residue fields. Lemma 7.1 gives a simple description
of when a Heisenberg group over I, is distinguished with respect to an arbitrary sub-
group. Proposition 7.2 says that if the subgroup is a maximal isotropic subspace then
the Heisenberg representation is always distinguished and the space of invariant lin-
ear forms has dimension one.

In Section 8, we review Howe’s construction of tame supercuspidal representations
as induced representations ©w = Indg(rc) from compact-mod-center subgroups R.
Here, we use the content of Sections 2, 6 and 7. A key technical device which is used
in our constructions of Heisenberg and Weil representations is that the &1 eigenspaces
of the involution defining the Lie algebra of H give rise to canonical polarizations
of the relevant symplectic spaces. This choice of polarization, which is discussed in
Section 8, does not necessarily agree with the standard canonical polarizations which
occur in the literature of tame supercuspidal representations. Therefore, it is neces-
sary to discuss the effect of varying the polarization and this is done in Section 9.

After having laid out some of the groundwork for the proofs of Theorems 3.3 and
4.4 in Sections 2-9, the heart of the proofs is developed in Sections 10-14. In Section
11, the basic problems are reduced to problems regarding compact groups.
Lemma 11.2 involves an application of Mackey Theory to decompose Hompg(z, 1)
into pieces of the form Hompgngp,-1(k, 1), as g ranges over the double coset space
R\G/H. Proposition 12.1 states that all of these pieces vanish, except for
Hompgzny(k, 1). For a given =, the inducing representation x is a tensor product
K1 ® -+ ® K, of representations r; attached to the factors in the Howe factorization
of the admissible quasicharacter which parametrizes 7. We show in Proposition
13.1 that the elements of the spaces Homgny(xc, 1) have factorizations, where the fac-
tors lie in certain spaces Homgny(x;, ). The latter spaces are computed mainly in Sec-
tion 10, with one exceptional case deferred until Section 12. (See Proposition 10.1 and
Proposition 12.3.) In the final section of the paper, we apply some techniques due to
Jeff Adler to prove the existence of distinguished tame supercuspidal representations.

The work in this paper follows up initial investigations carried out by the first
author together with Zhengyu Mao [8, 9]. There, preliminary examples of H-distin-
guished representations are obtained from distinguished representations associated
to various subgroups of GL(n) over a finite field. Other types of distinguished tame
supercuspidal representations of GL(n) arise in applications involving the reducibi-
lity of certain induced representations studied in papers by the second author
and Joe Repka [25, 26]. Conditions on the inducing data of the distinguished

https://doi.org/10.1023/A:1019667617221 Published online by Cambridge University Press


https://doi.org/10.1023/A:1019667617221

202 JEFFREY HAKIM AND FIONA MURNAGHAN

representations which appear in the latter two papers are very similar to conditions
obtained in the present paper. The methods developed in this paper to detect distin-
guishedness of tame supercuspidal representations by unitary groups of rank »n can
be applied more generally. In particular, if H is replaced by GL(n, F') or by
GL(n/2, F) x GL(n/2, F), if n is even, these methods have been used to determine
which tame supercuspidal representations are H-distinguished [12]. Preliminary
investigations [11] indicate that a similar approach applies when H is an orthogonal
group of rank n.

2. Embeddings

Let F be a finite extension of Q,, for some odd prime p, and assume E is a tamely
ramified extension of F of degree n. In Section 8, we will recall Howe’s method of
associating to each admissible quasicharacter of E* an irreducible, supercuspidal
representation of G = GL(n, F), customizing the construction where necessary to
make it compatible with the involution defining our unitary group. It is these repre-
sentations which we refer to as ‘tame supercuspidal representations’ throughout the
paper.

The first step in Howe’s construction is to fix embeddings of the relevant fields in
the Lie algebra g = gl(n, F). Assume o and t are automorphisms of order two of E
and F, respectively, such that ¢ restricts to 7. The fixed fields of the automorphisms o
and 7 are denoted by E’ and F’, respectively. In general, if L is a p-adic field, we use
the notation £, for the ring of integers of L and we let 5; denote the maximal ideal
of O;. Let G = GL(n, F) and g = gl(n, F). If x € g then x* denotes the matrix given
by applying 7 to the entries of 'x. If x* = x we say that x is Hermitian. The group G
acts on the set of Hermitian matrices in G by g - x = g xg*. According to a classical
result of Jacobson, this action has two orbits and the orbit of a Hermitian matrix
x € G is determined by its discriminant, that is, the class of detx in F'*/Ng/p/(F*).
(A very different classification holds over Archimedean fields in terms of the signa-
ture of a Hermitian matrix.) When two Hermitian matrices lie in the same G-orbit,
we say that they are similar.

PROPOSITION 2.1. There exists an embedding of E in § such that if E is identified
with its image in g then o(x) = x*, for all x € E. Consequently, the elements of E’
correspond to Hermitian matrices.

The proof of Proposition 2.1 will require the following lemma:

LEMMA 2.2. Ngp(E™) L Ng/p(FX).

Proof. A similar result appears in [26]. It is useful to recall the proof here, since it
makes evident several distinct cases which lie beneath the surface throughout this
paper. Following [26], to obtain an element o € E’* such that Ng/p(2) = Ng/jp () ¢
Npgp(F*), we can take o to be any nonsquare root of unity in £’ if E/E’ is ramified,
and we can take o to be any prime element in E’ otherwise.
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Case 1: E/E’ and F/F’ both unramified. In this case, by uniqueness of unramified
extensions, the residual degree f{(E/F) must be odd. If @, is a prime element for E’
then Ng/p(wg ) has odd valuation, and therefore cannot be a norm from F, as F/F" is
unramified.

Case 2: E/E' ramified. In this case, by Lemma 5.4 of [25], F/F’ is ramified and the
ramification degrees e(E/F) = e(E’/F’) are odd. Let El;n be the maximal unramified
extension of F’ contained in E’. Then, as E'/E,  is totally ramified, there is no loss
of generality in taking o to be a nonsquare root of unity in E, . Hence,
Ngyg (2) = E/F) is a nonsquare, since e(E'/F') is odd. Now if Ny (aF'/F)
were a square in O, it would force N £ F'(QEH’“) to consist of squares, which, by the
surjectivity of the norm map over finite fields, is not the case. Thus N/ p/(a) is a
nonsquare in O, and, as F/F’ is ramified, a nonsquare in O, cannot be a norm
from F.

Case 3: E/E'" unramified and F/F’ ramified. Let ¢ be a nonsquare root of unity in
E,,. Pick a prime element @ € F’ such that F = F'(/w). The compositum FE,_ is
just E, (Vo). As E'/E, is totally ramified, ¢ is a nonsquare in E’ and hence
E = E'(e) and a(c) = —/e. So /e € E' and E, (J/ew) is a quadratic ramified
extension of E,,. Now N, se. (@) is a prime element in E,,, and by transitivity of
norm, is a norm from E,(ve@). That is, Ny, (wg) € —b*ew + 23%;", for some
beDp . Note that —w =N p (Vo). Hence, we have Np p (wp)e
eNpg g (FE). This implies

Neyr(@E) € NE"“]/F'((‘;)NFE[’]“/F/(FEL/S) - NEl’m/F/(S)NF/F’(FX)-

It follows that Ng/jp/(wg') € Np/p(F*)if and only if NErn/F,(s) € Npyp(F). Recalling
that both FE, /E. and F/F’ are ramified and ¢ is a nonsquare root of unity in E, ,
we see that if we replace E’ by El;n and E by FE _, we are in the situation of Case 2

un’

and, hence, NE/H/F/(s) & Npyp(FX). O

Proof of Proposition 2.1. Fix an F’'-basis {&;, ..., &,} of E’. View the elements of
F" as column vectors and define an F-linear isomorphism v : £ = F" by v(}_, x;&;) =
"(xX1,...,x,). When xeE, we let i(x)eg be the matrix which satisfies

i(x)v(y) = v(xy), for all y € E. In other words, i: E < is just the regular repre-
sentation of E associated to the given basis. Define a nondegenerate Hermitian form
(with respect to F/F’) on E by (x,y) = trg;r(x 6(»)). The matrix of this Hermitian
form with respect to v is the symmetric matrix ¢ whose ijth entry is {; = trg/;p/(&; &)).
If x, y, z € E then (a(x)y, z) = (y, xz) and this implies that i(c(x))* & = & i(x).
Suppose that & = g* g, for some g € G. The embedding of E in g given by identi-
fying x € E with gi(x)g™" satisfies the desired relation o(x) = x*, for all x € E. It
remains to consider the case in which ¢ = g* g cannot be solved or, equivalently,
¢ is not similar to the identity matrix. Assuming we are in this case, then,
according to Lemma 2.2, we may choose o € £ such that Ng,p ()& Np/p(F).
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Note that ¢ i(x) is Hermitian. The determinant of i(x) does not lie in Ng/p(F*),
since deti(x) = Ng/p(«) = Ngyyp(). Therefore, there must exist ge G such
that ¢ i(o) = g* g. Again, x — gi(x)g~! is an embedding of F in g with the desired
property. ]

In [15], Howe associates to each quasicharacter 6 of E which is admissible over F a
tower of intermediate fields of E/F:

F=ECE C---CE =E

The relation between 6 and the associated tower will be recalled later, but this is ir-
relevant for our immediate purposes. For the quasicharacters we consider, it will
turn out that all of the subfields E; are stable under ¢ and if E’; is the fixed field
of o|E; then E; is a quadratic extension of E’; and, in addition, E; = E’;F. Thus,
the fields E’; form a tower

F'=E'CE'C---CE,=E

For each index i, let
n=[E:E]=[E':E')] and n,=[E;:F|=[E';: F].
Let g; denote the Lie algebra gl(n;, E;).

We will now construct an embedding of E in g that has the property that o(x) = x*
for all x € E. Let us stress at the outset, however, that we will not be applying
Proposition 2.1 directly to the extension E/F. Rather, we apply it the extensions
E;/E;_; and move up the tower of subfields of E one step at a time.

The first step is to apply Proposition 2.1 to E;/F to obtain an embedding of q; in
g, using the fact that g, =gl(E: E\], E1) and ¢ = gl(E: Ei], gl([E : F], F)).
Moving up the tower of subfields, we similarly obtain embeddings g; < g,_; which
we regard as inclusions. Thus, we have

E=¢,%¢.1% &3 =4

Note that g; is a space of n; x n; block matrices in g;_;, where the blocks of x € g;
lie in E; C gl([E; : E;_1], E;_1). We also observe that g; is the centralizer of E; in g.
Similarly, there is a chain of groups

EXIGrgG,,,lg-“gGo:G,

where G; = GL(n;, E;) is the centralizer of E; in G.

Suppose ey, ..., e, is an F-basis of E. This gives an identification of E with F”,
viewed as a space of column vectors. If x € E then multiplication by x determines
an F-linear transformation of £ and hence a matrix in g. Thus we have an embedding
of E in g associated to the given basis and we refer to this as the regular representa-
tion of F in g associated to ey, .. ., ¢,. It is easy to verify that given any embedding of
E in g there exists a basis ¢, ..., ¢, such that the associated regular representation is
identical to the given embedding. (In fact, the basis is unique if we assume, in addi-
tion, that e; = 1.)
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Let us assume that we have chosen ey, ..., ¢, so that the regular representation is
just the embedding of E we have fixed above. Using the associated identification of E
with F”, we identify the fractional ideals 513’,} in E with lattices in F". This lattice flag
in F" gives rise to the filtration of g by the parahoric g-algebras

bj={xeq: xiB’fE c Wi, for all integers k}.

Let b = by. The corresponding parahoric subgroups are defined by B = By = b™ and
B; =1+, for j > 0. When 0 < i < r, we take b;; = b; N g; and when, additionally,
Jj is nonnegative, we let B;; = B; N G;.

The next result is a refinement of Proposition 2.1 in the case in which E’/F’ is
unramified.

LEMMA 2.3. Assume E'/F' is unramified. There exists an O p-basis of g such that
if E is embedded in g via the regular representation associated to this basis then
a(x) = x*, for all x € E.

Proof. Our proof is obtained by refining the proof of Proposition 2.1 as follows.
Assume the basis &, ..., &, in the proof of Proposition 2.1 is an O p/-basis of O .
Let D be the discriminant ideal in Op associated to g, that is, the ideal generated
by the determinant of £. Let ® be the different of Op/ with respect to Op or, in
other words, the ideal of Of whose inverse as a fractional ideal is the largest
fractional ideal 7 such that trg/ s (I) C Op. The discriminant and the different are
related by D = Ng/p(D) and, since E'/F’ is unramified, we have © = Op.. (See
Proposition 6, §3 and Corollary 1 of Theorem 1, §5 in Chapter III of [29].) It follows
that the symmetric matrix ¢ in the proof of Proposition 2.1 lies in GL(n, Of).

Let K = GL(n, Of). The K-orbits of Hermitian matrices in G, where K acts by
k - x = kxk*, were originally described by Jacobowitz in [16]. (See also [9].) One
can restrict Jacobowitz’ result to obtain a description of the K-orbits of hermitian
matrices in K. When F/F’ is unramified, then there is a single orbit. When F/F’ is
ramified, there are two orbits, one is represented by the identity matrix and the other
is represented by any diagonal matrix with diagonal (1, ..., 1,d), where € O, is a
nonsquare in the residue field of F’.

Assume first that ¢ = k* k, for some k € K. Then x + ki(x) k~! is an embedding
of E in g of the desired type. Now suppose £ = k* k has no solutions k € K. Then
F/F' must be ramified. Since E’/F’ is unramified, £/F must also be unramified. It
follows that E/E’ must be ramified. We therefore are in case (ii) in the proof of
Lemma 2.2. In this case, the element « is chosen to be a root of unity. The matrix
& i(x) is hermitian and lies in K, but it cannot lie in the K-orbit of & since it does
not lie in the G-orbit of &. Therefore, & i(x) = k* k must have a solution k € K.
For such a solution k, a suitable embedding is again given by x — ki(x) k' O

The following invariance properties will be used implicitly throughout the paper:

LEMMA 2.4. Ifiandj are integers and 0 < i < r then g7 = @, and b}k =b;. Ifne E'*
and o, is defined on § by 6,(x) =nx*n~! then ¢,(q;) = g; and ,(b;) = b;.
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Proof. It is well known that g; is the centralizer of E; in g and b is the intersection
of all maximal orders in g which contain Q. All of the assertions follows readily
from these characterizations of g; and b. O

3. Unitary Groups and Similitude Groups

Fix a Hermitian matrix # € G. Associated to » is a unitary group H, ={ge G:
gng* = n}, a unitary similitude group H, = {g € G : gng*n~! € F*}, and a homomor-
phism g, : H; — F defined by gng* = p,(g)n, for g € H;?. (Note that it is common
in the literature to define ‘the unitary group associated to n’ by the condition
g'ng =n, rather than gng*=#. This convention produces the group
H, = n~Hyn.)

In this paper, we are mainly interested in unitary groups, but we will make some
elementary remarks which might be helpful in applying our results for unitary
groups to similitude groups. Before doing this, let us state some simple facts about
unitary groups. We observe, first of all, that if g € G then gH,g~' = Hgy,-. Conse-
quently, the conjugacy class of the unitary group H, is determined by the G-orbit
of the Hermitian matrix 7, relative to the action g -n = gn g*. As mentioned in the
previous section, there are two G-orbits of Hermitian matrices in G. However, when
n is odd it turns out that the two associated conjugacy classes of unitary groups are
identical. Indeed, if n is odd then we may take n; =1 and 1, € F"™* — Np/p/(F*) as
representatives of the two orbits of hermitian matrices. But then the associated uni-
tary groups H, and H,, are identical, since #; and #, both lie in the center of G. On
the other hand, when # is even the two conjugacy classes of unitary groups will be
distinct.

In general, if n is even or odd, if one takes # to be an antidiagonal Hermitian
matrix then H, is a quasisplit unitary group with a Borel subgroup consisting
of upper triangular matrices. If n is odd then all unitary groups must therefore
be quasisplit. If »n is even then H, is quasisplit exactly when (—=1)"*dety €
Ngyp(F*).

Our interest is in studying the irreducible tame supercuspidal representations
(m, V) of G which are H,-distinguished in the sense that the space Homy, (m, 1) is
nonzero. Here, Homy, (r, 1) designates the space of all linear forms A on V7 such
that A(n(h)v) = A(v), for all h € H, and all v € V7.

LEMMA 3.1. If m is a complex representation of G then for each g€ G the
map A+ Ag, where Ag(v):A(n(g)_lv) defines an isomorphism Homp, (m, 1) =
Hom,p o-i(m, 1).

Since our objective in this paper is to analyze the spaces Homy, (r, 1) associated to
a given irreducible, tame supercuspidal representation n, Lemma 3.1 implies that
only the conjugacy class of H, is relevant. Therefore, we are justified in making
the following simplifying assumption in the rest of the paper:
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ASSUMPTION. If n is odd, we assume n = 1. If n is even, we assume that either
n =1 or y is some fixed element o € £ such that Neyp(a) ¢ Neyp(F*). Further-
more, if n # 1 and E/E’ is unramified, we assume # is a prime element in E’. If  # 1
and E/E’ is ramified, we assume 7 is a nonsquare root of unity in E’.

The existence of o is guaranteed by Lemma 2.2. The fact that, when 5 # 1,
the specific choices of 5 are consistent with the condition which defines o is
apparent from the constructions in Case 1 and 3 in the proof of Lemma 2.2. It is also
apparent from examining this proof that the prime element in £’ or nonsquare
root of unity may be chosen arbitrarily. This will be relevant at times when we
wish to place compatibility restrictions on the choices of prime elements. The fact
that # is hermitian results from our choice of embedding of E in g in the previous
section.

Having fixed #, we let H = H,. Then H may regarded as the group of elements
h € G such that ¢,(h) = h~!, where g, is the anti-involution of g (and, by restriction,
G) given by 6, (x) = nx*n~!. The restriction of 7 to the center Z of G is a one-dimen-
sional representation w: Z — C* which, if n is H,-distinguished, must be trivial on
the kernel of Npjpi: F* — F'. Therefore, we will fix, once and for all, such an w
and only consider those @ which restrict to this w. Equivalently, we have fixed a
homomorphism wq: Np/p(F*) — C* and then let w = wg o Ngp-.

Let us now turn our attention towards the similitude groups. Most of the above
remarks regarding unitary groups apply equally well to unitary similitude groups,
though we will not repeat them. The homomorphism p,, referred to as the ‘similitude
ratio’, gives rise to an exact sequence

| — Hy — H, — w,(H) — 1.

We observe that ZH, consists of those g € H) such that 1, (g) lies in the image of the
norm map Ngjp: F* — F'*. In other words, we have another exact sequence

1 — ZI‘I,7 — H; — l-lﬂ(Hil)/NF/F’(FX) — 1.

It follows that H,/ZH), is a finite abelian group isomorphic to u,(H,)/Nrr (F).

Fix a homomorphism y: H, — C” which restricts to  on Z and is trivial on H,.
This is equivalent to selecting a homomorphism y,: p,(H,) — C* which restricts to
o on Np/p/(F*) and then taking y = ¥, o w,. The number of such homomorphisms is
the same as the order of u,(H,)/Np/p/(F*). Let Homp (7, z) denote the space of all
linear forms A on ¥V, such that A(n(g)v) = x(g)A(v), for all g € H;7 and v € V. We
say 7 is (H,, y)-distinguished if HomH;l(n, %) # 0. Fourier inversion on the finite
group H, /ZH, yields the following:

LEMMA 3.2. If m is a complex representation of G which restricts to w on Z then
there is a canonical isomorphism Homg, (r, 1) = @XHomH;l(n, 1), where y ranges over
the homomorphisms H, — C* which restrict to » on Z and are trivial on H,. In
particular, A € Hompy, (n, 1) is mapped to (A;), where
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A= Y A 1)

geH, /ZH,
The inverse mapping is given by

A) = |, (H) /Ny (F)IT Y A ().
Xz

Lemma 3.2 exhibits the precise relation between distinguishedness relative to uni-
tary groups and distinguishedness relative to unitary similitude groups. Before ana-
lyzing this relation, we now state one of our main results:

THEOREM 3.3. If = is an irreducible tame supercuspidal representation of G then the
dimension of Hompy(n, 1) is at most one.

The proof of Theorem 3.3 occupies the bulk of this paper. It is summarized in Sec-
tion 14. For the remainder of this section, we assume Theorem 3.3 is true. Suppose n
is odd. Then H, = ZH, and p,(H,) = Np/p/(F*). If 7 is H-distinguished then its cen-
tral character o will be a base change lift of two characters w; and w, of F’*. Both
1 and o, restrict to the same quasicharacter y of Ng/p(F*). Lemma 3.2 reduces to
the identity Homy, (%, 1) = Homy, (=, 7). In fact, when 7 is odd then all notions of
distinguishedness are equivalent. In other words, if 7 is H,-distinguished for any 7
then it is H,-distinguished for all . Moreover, n is H,-distinguished if and only if
it is (H,, )-distinguished.

Now suppose 7 is even. Then H, /ZH, has order two and y,(H,) = F"*. Lemma
3.2 says

HomHﬂ(n, 1) = HomH;](n, w] o /‘n) &) Homy/n(n, wy 0 '“}1)'

Theorem 3.3 implies that we have the following dichotomy:

PROPOSITION 3.4. If n is an Hy-distinguished irreducible tame supercuspidal
representation of G then it is either (H,, w\ o p)-distinguished or (H,, w; o p)-dis-
tinguished, but not both.

4. Cuspidal Representations Invariant Under an Automorphism

There are corresponding theories over global fields and over finite fields of cuspidal
representations of GL(#n) which are distinguished by a unitary group. It is known, for
example, that the analogue of Theorem 3.3 is true for such ficlds. We now recall two
results for finite fields and then discuss their analogues for p-adic fields. The first
result is based on analogous facts appearing in [25, 26].

LEMMA 4.1. Let E be a degree n extension of a finite field F which is embedded, via
an F-embedding, in the ring M of n-by-n matrices with entries in F. Assume 1 is a ring
automorphism of M and let G = M* = GL(n, F) and T = E*. Suppose 0 is a regular
character of T and let x be the irreducible, cuspidal representation of G associated to 0
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by the Deligne—Lusztig construction. Then k ~ Kk o1 precisely when there exists an
automorphism o of E which agrees with 1 on F and satisfies 0 = 0 o 6. Moreover, if 1|F
has order k, then ¢ must also have order k.

Proof. The Deligne—Lusztig construction has an inherent symmetry under auto-
morphisms which yields the identity:

R{p (0017 ") 01 = RY(0).
It follows that x ~ Kk o 1 precisely when
R{7(0 017" = R§(0).

But the latter condition is equivalent to the existence of an F-isomorphism
o: 1(F) — E which satisfies 0 o 17! = 0 o o. The existence of « is in turn equivalent
to the existence of an automorphism ¢ (= « o 1) of E which agrees with 1 on F and
satisfies 0 = 0o 0.

Now let k denote the order of 1|F = ¢|F. Let E’ denote the fixed field of ¢*. Since
0 = 0 o ¢, Hilbert’s Theorem 90 implies that 0 factors through the norm map from
Eto E’. Since E’ D F, regularity of 0 implies that £/ = E. Thus ¢ has order k. [

Assume now that the restriction of 1 to F has order 2 and thus ¢ must have order 2.
Let E’ be the fixed field of ¢ and put F’ = E’ N F. If F’ has ¢ elements, then

IFl=¢*, |E'|=¢" and |E|=q¢™.

There are two notable consequences of this. First, we observe a(¢) = t¢". Thus,
Kk ~xo1 if and only if 0(r) = 0(z¢"), for all t € T. Equivalently, 0 is trivial on
U(1, E/E’). Next, we note that F is a subfield of E’ exactly when 7 is even. In this
case, the condition 6 = 0 o ¢ contradicts the regularity of 6 and thus no such 0
can exist. (One can also arrive at a contradiction by arguing that £’ cannot contain
Fsince o|F = 1|F is nontrivial.) We also remark that the field £’ is independent of g,
since it is the unique subfield of E of order ¢".

PROPOSITION 4.2. Let E be a degree n extension of a finite field F which is
embedded, via an F-embedding, in the ring M of n-by-n matrices with entries in F.
Assume that F is a quadratic extension of some field F' and 1 is the automorphism of M
given by applying the nontrivial Galois automorphism of F/F’ to the entries of each
matrix in M. Let G = M = GL(n, F) and T = E*. Suppose 0 is a regular character of
T and let k be the irreducible, cuspidal representation of G associated to 0 by
the Deligne—Lusztig construction. Then the following conditions are equivalent:

(1) The space of k has nonzero vectors fixed by U(n, F/F’).
(i) Kk ~Kol.
(iii) There exists an automorphism o of E which agrees with 1 on F and satisfies
0=0oo0.
(iv) 0 is trivial U(1, E/E’).

When n is even, these conditions are never satisfied.
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Proof. The equivalence of conditions (i) and (ii) is a result of Gow [7]. The
equivalence of conditions (ii), (iii) and (iv) follows from the above discussion. []

The fact that conditions in Proposition 4.2 cannot be satisfied when 7 is even will
allow us to strengthen the results of [9] in Proposition 12.2 below. There is an
analogue of Lemma 4.1 for supercuspidal representations:

LEMMA 4.3. Let p be an odd prime and F a finite extension of Q,. Let E be a tamely
ramified degree n extension of F which is embedded, via an F-embedding, in the ring M
of n-by-n matrices with entries in F. Assume 1 is a ring automorphism of M and let
G = M* =GL(n, F) and T = E*. Suppose 0 is an admissible character of T and let
be the irreducible, supercuspidal representation of G associated to 0 by Howe’s con-
struction. Then © ~ 1o 1 precisely when there exists an automorphism o of E which
agrees with 1 on F and satisfies 0 = 0 o . Moreover, if 1|F has order k, then ¢ must also
have order k.

Proof. The proof of Lemma 4.3 is entirely analogous to the proof of Lemma 4.1
since Howe’s construction has the same type of symmetry under automorphisms as
the Deligne—Lusztig construction. O

We now would like to consider the analogue of Proposition 4.2 for supercuspidal
representations.

THEOREM 4.4. Let p be an odd prime and F a finite extension of Q,. Let E be a
tamely ramified degree n extension of F which is embedded, via an F-embedding, in the
ring M of n-by-n matrices with entries in F. Assume that F is a quadratic extension of
some field F' and 1 is the automorphism of M given by applying the nontrivial Galois
automorphism of F/F' to the entries of each matrix in M. Let G = M* = GL(n, F) and
T = E*. Suppose 0 is an admissible character of T and let n be the irreducible,
supercuspidal representation of G associated to 0 by Howe’s construction. Let H be a
unitary group in G associated to some Hermitian matrix n € G. Then the following
conditions are equivalent:

(i) The space Hompy(n, 1) is nonzero.
(i) t~mor1.
(iii) 7 is a base change lift from GL(n, F').
(iv) There exists an automorphism o of E which agrees with 1 on F and satisfies
0=0oo0.
(v) Oistrivial U(1, E/E"), where E’ is the fixed field of an automorphism of E of order
two which agrees with 1 on F.

The equivalence of (ii), (iv) and (v) follows from Lemma 4.3.

DEFINITION. Under the hypotheses of Theorem 4.4, a representation = which
satisfies condition (ii) will be referred to as a Galois invariant representation.
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The equivalence of (ii) and (iii) is part of the theory of quadratic base change. We
recall that, by definition, if 7 is a base change lift of #’ then this means that there is
a specific relation between the twisted character of 7= and the character of 7’. For more
details on base change, we refer the reader to [2], in particular, Theorem 6.2. The fact
that (i) implies (ii) is addressed in the next section. The proof that (ii) implies (i) uses
the theory developed in the bulk of this paper. A summary of the proofiis in Section 14.

It should be noted that, due to Theorem 3.3, condition (i) in the statement of
Theorem 4.4 is equivalent to the condition dim Homg(w, 1) = 1. We also remark that
in condition (v) E' cannot contain F since ¢|F = 1|F is nontrivial. Since the five con-
ditions in Theorem 4.4 do not depend on the choice of the Hermitian matrix 7, we
have the following corollary:

COROLLARY 4.5. Let p be an odd prime and F/F’ a quadratic extension, where F’
is a finite extension of Q,. Let m be an irreducible tame supercuspidal representation of
G = GL(n, F). Suppose H and H' are unitary groups in G associated to two matrices in
G which are Hermitian with respect to F/F’'. Then  is H-distinguished if and only if it
is H'-distinguished.

Let us now mention another issue regarding quadratic base change for supercus-
pidal representations which is not resolved in the present paper. Suppose E/F is a
tamely ramified degree n extension and 0 is a quasicharacter of E* which is admis-
sible over F. Let my denote the irreducible, supercuspidal representation of G given
by Howe’s construction [15] and suppose my is a quadratic base change lift from
G’ = GL(n, F’). Then, in fact, « is the base change lift of two irreducible, supercus-
pidal representations 7’ and n” of G’ = GL(n, F’). According to Theorem 4.4, there
must exist an automorphism ¢ of order two of E which restricts to the nontrivial
Galois automorphism of F/F’ and which satisfies 0 = 0 o . Thus 0 is a base change
lift of two quasicharacters 0" and 0" of the multiplicative group of the fixed field E’
of . We can order the latter quasicharacters so that 6’ restricts to the central char-
acter of 7'. It is tempting to conjecture that 7’ = ny and n” = ny. However, as we
will see in this paper, there is more than one ‘natural’ correspondence between qua-
sicharacters and tame supercuspidal representations. For any one of these corre-
spondences, one might expect that these identities are true up to twisting by a
quasicharacter which, hopefully, can be explicitly computed.

5. Galois Invariance of Distinguished Supercuspidal Representations
The purpose of this section is to state the following result (which is proven in [10])

and to briefly indicate the (global) techniques involved in its proof.

PROPOSITION 5.1. Assume F/F’ is a quadratic extension of non-Archimedean local
fields of characteristic zero with residue fields of odd characteristic. Assume
n € GL(n, F) is Hermitian with respect to F/F'. If © is an irreducible, supercuspidal
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representation of GL(n, F) which is distinguished with respect to the unitary group H,
then @ must be Galois invariant.

For the rest of this section, we will switch to global notations. Let F/F’ be a quad-
ratic extension of number fields. Our attention will be focused on a particular finite
place vy of F’ which is inert in F. Let wy be the place of F which lies above vy.
The quadratic extension which occurs in Proposition 5.1 should be viewed as the
quadratic extension F,,/F, . We consider the F’-group G which is obtained
from the F-group GL, by restriction of scalars. Let G = G(F’') = GL(n, F),
Gy = G(F',) = GL(n, F») and, when v is place of F’, let G, = G(F",). We use similar
notations for the other F’-groups we consider. Fix an automorphism o of G of order
two which is defined over F’ and let H be the F’-subgroup of G consisting of the
fixed points of «. Let Z be the center of G and let Zy = Z N H.

Suppose w = ®,m, is a character of Z, which is trivial on Zy 4 Z and let © be an
irreducible, automorphic, cuspidal H-distinguished representation of G, with central
character w. We say that = is H-distinguished if there exists ¢ in the space of 7 such
that

H@=/ o(h) dh 0.
Zpy AaH\Hx
The following is proven in [10]:

THEOREM 5.2. If p is an H, -distinguished, irreducible, supercuspidal representation
of Gy, = GL(n, F,,) then there exists an H-distinguished, irreducible, automorphic,
cuspidal representation 1 = @,mn, of Ga = GL(n, Fa) such that m, >~ p.

For our purposes, the automorphism « is given by a(g) = ‘g~ ' n~!, where 5 is a
fixed Hermitian matrix in GL(n, F). and let U(y) be the associated unitary subgroup
of GL(n, F). The statement of Proposition 5.1 involves the choice of a Hermitian
matrix in GL(n, F,,). For simplicity, we assume that this matrix lies in GL(n, F)
and corresponds to our matrix #. (It is explained in [10] how one easily reduces to this
case.) Let p be the representation which occurs in the hypothesis of Proposition 5.1.
Applying Theorem 5.2, we obtain an automorphic cuspidal representation 7 with p as
the component at vy. Now an elementary argument given in [13], and also appearing
in [5, 10] and [19], proves that = is Galois invariant in the sense that n(g) is equivalent
to the representation g — 7n(g), where g — g is the nontrivial Galois automorphism
of F/F'. Therefore p must also be Galois invariant and Proposition 5.1 follows.

6. Admissible Quasicharacters

We will now recall some basic facts about admissible quasicharacters from [15] and
refine various details so as to make them compatible with the relevant Galois auto-
morphisms which arise in our applications.
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First, we need some notations. Let E be a tamely ramified extension of F of degree
n or, in other words, if p is the characteristic of the residue field of E and if e(E/F) is
the ramified degree of E/F then p does not divide e(E/F). Whenever L is a subfield of
E, we let O denote the ring of integers of L and %3, is the maximal ideal of ;. The
residue field is k;, = O, /%, and its order is denoted ¢; . Choose a prime element @,
for each L so that if FC L; € L, C E then wz(ZLZ/L‘)lel is a root of unity in L,
whose order is relatively prime to p. Then if C; is the group generated by @, and
the roots of unity in L with order relatively prime to p then Ny, (Cr,) C Cy,.

Howe’s construction depends on the choice of a quasicharacter 6 of E* which is
admissible over F in the following sense.

DEFINITION. A quasicharacter 0 of E* is admissible over F if:

(1) 0+# 0 oNgy for every quasicharacter 0 of every intermediate field L of E/F
(other than E), and

(2) if0 =0 oNgyonl+ B for some quasicharacter 0 of some intermediate field
L of E/F (other than E), then E/L must be unramified.

We will also say that 0 is a base change lift from L if 0 = 0’ o N, for some qua-
sicharacter 0’ of L. In this case, we will abbreviate 6 o Ng,;, as 0%, The admissible
quasicharacters of interest to us are those which are quadratic base change lifts. In
other words, we will assume that F is a quadratic extension of a field £’ and
0 =067 for some quasicharacter 0" of E’*. We will let ¢ denote the nontrivial auto-
morphism of E/E’. Our assumption that 0 is admissible over F implies that F can-
not be contained in E’. Thus F must be a quadratic extension of the field
F'=FNE'.

The most basic examples of admissible quasicharacters are those quasicharacters
0 of E* which are generic over F. To recall the notion of genericity, we set some
more notations. Fix a character y, of F’ of conductor .. For each intermediate
field L of E/F’, let y, be the character of L of conductor %3; defined by
Y =yrpotrg. The conductoral exponent of 0 is denoted f(0). If f(0) > 1 then
there exists a unique element y, € Cr such that 0(1 4+ x) =y z(yex), for all
X € 313’;(0)_]. We refer to vy, as the standard representative for 0. The standard repre-
sentatives are invariant under base change in the sense that y, = 7y, when 0 is a base
change lift of 0.

DEFINITION. A quasicharacter 0 of E* is generic over F if f(0) > 1 and E = F[y],
or if f{6) = 1 and 0 is admissible over F.

Note that if f{f) > 1, then invariance of standard representatives under base
change implies that 6 must be admissible over F if it is generic over F and
f(0) > 1. We also emphasize that if f{#) = 1, then y, is not defined.

In Section 2, we discussed towers of intermediate fields of E/F. The towers of
interest to us arise from the following factorization:
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THE HOWE FACTORIZATION OF 6. Given a quasicharacter 8 of E* which
is admissible over F, there is a unique tower F=FyC E; C---C E, = F and
unique positive integers f; > --- > f, such that there exists a (nonunique) sequence
0o, ..., 0, of quasicharacters of Ej, ..., EX, respectively, such that 6 = []._, Hf and,
when i > 0, the conductoral exponent of H,E is f; and, in addition, 6; is generic over E;_;.

We are specifically interested in those 6 which are base change lifts from E’. For
these quasicharacters, we have:

PROPOSITION 6.1. Assume 0 is a quasicharacter of E* which is admissible over F
and suppose 0' is a quasicharacter of E* such that 0 = 0. Then 0/ is admissible over
F'. Assume 0 =T[_,0F is a Howe factorization of 0' and F' =E'yC E’; C
-« C E', = E' is the corresponding tower of fields. Let E; = FE';, for 0 <i<r, and
let 0; be the quasicharacter of E} defined by HLE’ . Then 0 =TT, Gf is a Howe fac-
torization of 0.

Proof. Suppose that 0 is not admissible over F’. There are two ways this could
happen. In the first case, there exists a proper subextension L’ of E’/F’ such that
0' = 0F" for some quasicharacter 0, of L'*. But then if L = FL' and 0, = 0%, we
would have 0 = 0% contradicting the admissibility of 0. In the second case, there
exists a proper subextension L’ of E’/F’ such that E’/L’ is ramified and 0’ = 9/5/ on
1 + %z for some quasicharacter 0, of L'*. Note that Ng/g/(1 +*B5) = 1 + B and
therefore if L = FL' and 0, = 0/ then 0 = 6% on 1+, If E/L is ramified this
contradicts the admissibility of 6. On the other hand, if E/L is unramified then L/L’
must be ramified and E/E’ must be unramified and hence generated by a square root
of a root of unity e¢. Replacing L by L'[¢] causes L/L’ to become unramified and E/L
to become ramified. Again, we contradict the admissibility of 6 and deduce that ¢’
must indeed be admissible over F’.

Assume i > 0 and f; > 1. By invariance of standard representatives under base
change, we have 7y = yy. Thus

Eilyg] = FE/i—l[VO}] =FE',=E

and, consequently, 0; is generic over E;_;. Now suppose i > 0 and f; = 1. Then since
Negp(1+%BE) =1+ Vg, we see that 0, has conductor 1 + 3. Therefore, i = r and
E';JE'i_y = E'/E’,_, is unramified and 0. is not a base change lift from a proper
intermediate field of E'/E’,_;. The fact thatE’/E’,_; is unramified is equivalent to
the fact that this extension must be generated by roots of unity of prime to p order.
Since E/E,_; inherits the latter property, it must also be unramified. Therefore,
showing that 0, is generic over E,_; amounts to showing it is not a base change lift
from a proper intermediate field L of E/E,_;. However, if 6, were a base change lift
from L then 6 would also be a base change lift from L, which would contradict the
admissibility of 6. The proof is now complete. O

We now record some elementary properties of the conductoral exponents of HiE
and 0F.
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LEMMA 6.2. Let f; and f; be the conductoral exponents of Qf and H;E/, respectively,
when 1 <i<r. Then:

() fi—1=eE/E(—=1), for all i.
(i) fi=1ifand only if f = 1.
(i) If E/E’ is unramified then f; = 7, for all i.
(iv) If E/E’ is ramified then f; is odd, for all i.
<) If f, =1 then E/E’ is unramified if and only if E,_/E’,_\ is unramified.
i) If f, =1 and E/E’ is unramified then n,_y = [E : E,_{|=[E' : E',_1] is odd.

Proof. In general, if L/K is an extension of subfields of E with ramified degree
e(L/K) and yx is a quasicharacter of K* then the relation between the conductoral
exponents of y and y is given by

SF) = 1=e(L/K) (fin) = ).
Applying this to the conductoral exponents /7 and f; gives (i). Assertions (ii), (iii) and
(iv) are immediate consequences of (i). Assertion (v) holds, since f, =f =1 and
admissibility imply that E/E, | and E'/E’,_; are unramified and thus e(E/E’) =
e(E/E’,_1) = e(E,_1/E’,_1). To prove (vi), let us suppose that f, = 1, E/E’ is unra-
mified and n,_; is even. Then E’/E’,_; must contain a quadratic unramified exten-
sion of E’,_;. However, such a quadratic extension cannot exist since E,_; is the
unique quadratic unramified extension of E’,_; which is contained in E and E,_;
is not contained in E’. [

7. Heisenberg and Weil Representations over I,

Fix an odd prime p and a nontrivial additive character { of I,. Let W be a finite-
dimensional nondegenerate symplectic space over I, with symplectic form ((, )).
Assume that W+ and W~ form a polarization of W, that is, W* and W~ are totally
isotropic subspaces of W and W* + W~ = W. Let Z = I, and define a Heisenberg
group structure on the Cartesian product H = W x Z by the multiplication rule

(w1, 21) (W2, 22) = (W1 + wa, 21 4 22 + 5 (Wi, w2))).

We identify Z, W* and W~ with the subgroups 0 x Z, Wt x 0 and W~ x 0,
respectively.

Let {t be the character of W*Z = W' x Z defined by (*(wz) = {(z), where
we Wt and z € Z. Let (p, V) be the induced representation Ind?wz(f’). This is a
Heisenberg representation of H corresponding to the central character {. The prop-
erties of such Heisenberg representations, as well as the associated Weil representa-
tions, are studied in detail in [6]. In this section, we recall some basic facts from [6]
and develop the theory of invariant linear forms and distinguishedness for the
Heisenberg representations. This theory is then applied in Section 8 to the construc-
tion of tame supercuspidal representations.
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If K is a subgroup of H then let
VX ={ve V:p(k)p = ¢ for all k € K}.

If x € H, we let VX denote the space of functions in V* with support contained in
Wt ZxK. Define an ‘H-invariant inner product on V by

Pr-pr= Y () Pr(w).
weW=
There is an isomorphism VX =~ Homg(p, 1) given by associating to ¢, € V'* the lin-
ear form A(¢) = ¢ - @,.

The following elementary result gives an exhaustive description of when the Hei-
senberg representation p is IC-distinguished with respect to any subgroup K of H.
Though we only need to use this result in one of its simplest cases, we include the
general statement because it highlights the exceptional simplicity of Heisenberg
representations over I,

LEMMA 7.1. Suppose K is a subgroup of H and X is a set of representatives for the
double coset space W+ Z\H/K. Then VF = @.cy V’\C and each space V’f has dimension
one if WH(xKx~")N Z = {1} and dimension zero otherwise.

Proof. If f € VX and x € X then define f, € V* by taking f, = f on W*ZxK and
fv =0 outside of W*ZxK. We have /=) _,f.. Therefore, we have a direct sum
decomposition VX = @,cxV*. So in order to compute V' it suffices to compute the
spaces VX

Fix x € X. If VX is nonzero then there is a unique element &, € V% such that
¢.(x) =1 and it is defined on WtZxK by &.(wzxk) = {(z), where we W', z€ Z
and k € K. In this case, V’* must be the one-dimensional space spanned by ¢,.

The space V’f will be nonzero precisely when the above formula for £, gives a well-
defined function. In order for &, to be well-defined, we must have {(z;) = {(z) when-
ever wiz1xk) = wazoxky, with wi, w, € W*, z1,z0 € Z and ki, k, € K. Note that
since { is a nontrivial character of a cyclic group of finite order, the kernel of { is tri-
vial. Thus the condition {(z) = {(z;) is equivalent to the condition z; = z;. Letting

w= W1_1W2, z= zl_]zz and k= koki!,

we see that VX £ 0 precisely when the following condition is satisfied: whenever
we W, ze Z, ke K and wzxk = x, it must be the case that z = 1. Equivalently,

the latter condition says that W+ (xKx~")n Z = {1}. O
A matrix representation for H is obtained as follows. Choose a basis ey, ..., ey, of
W such that ey, ..., e, is a basis of W' and e,y,..., ey is a basis of W~. Use

this basis to identify W with Flzf, viewed as a space of column vectors. Let j be
the matrix of the symplectic form in the sense {{(wi, w2)) = ‘wijw,. We will assume

our basis is chosen so that j takes the block matrix form (_(1) (1)), where the blocks have
dimensions £ x £.
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Identify (w, z) € H with the block matrix

1 1wj oz
0 1 w | e GLQ2¢ +2,T)),
0 0 1

where the diagonal blocks are square matrices of rank 1, 2¢ and 1, respectively. The
group S = Sp(W) acts on H by its action on the first factor of W x Z. In the matrix
representation, s € S acts according to

1 00
Ad 0 s O
0 0 1

The group S also has a more traditional matrix representation as the group block
matrices s = (‘C’ Z), with £ x £ blocks, such that ‘sjs = j. In the latter representation,
S acts on W by matrix multiplication (“%)(""). We will sometimes use the notation
s-w for the action of § on W, in order to avoid potential conflicts of notation
between the two different matrix representations of S. We will use a similar notation
s - h for the action of S on H.

We are also interested in the semidirect product Sx H with multiplication given by

(s1, )(s2, ) = (5182, (55" - o).

In the GL(2¢ + 2, ;) matrix representation, Sx ‘H corresponds to SH = {sh: s € S,
h € H}, with multiplication given by matrix multiplication.

The Heisenberg representation (p, V) of H has a unique extension (p, V) to Sx H
which we refer to as the “Weil representation of Sx H’ (relative to the choice of cen-
tral character and polarization). The equivalence class of p only depends on the cen-
tral character. The Weil representation may be described explicitly as follows. The
Siegel parabolic subgroup of S is the group P={se S:s- Wt c Wt}. In the
GL(2¢, IF,) representation, P consists of the elements in S of the form (g Z) To be
even more explicit, each element of P has the form

=506 1)

where ‘x = x. The unipotent radical N of P consists of those elements of the form
p(x,y) with y = 1. Since S is generated by P and the element j = (_9}), the Weil
representation on S is completely described by the action of P and j. The action
of P on V is given by

H(p(x, y) o(h) = (det P~ o p(x, ) ).

The action of j is nearly a Fourier transform. More specifically, if ¢ € V' and
w~ € W~ then

PUY W) = ep™ % D o(w) L(((iw, w))),

weW=
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where ¢ is the root of unity defined by

—t

€= (_1)5(}171)/2 pfl/Z Z C(tz/Z)

1T,

(See [6] for more details.) Since p(j)¢ is determined by its restriction to W™, the equa-
tion above fully determines the action of p(j) on V.

PROPOSITION 7.2. Suppose W, is maximal totally isotropic subspace of W
embedded as a subgroup in 'H via the map w+— (w,0) from W to W x Z. Then
Homy,(p, 1) has dimension one. In particular, Homp-(p, 1) is the one-dimensional
space spanned by the linear form (@) = ¢(1).

Proof. We begin by treating the case of Wy = W~ by applying Lemma 7.1 with
K= W~. Since H = Wt ZW~, we may take the set X in the statement of Lemma 7.1
to be {1}. Then Homy~(p, 1) = V" = VI and, moreover, V'}"" has dimension one,
since WrW~ N Z = {1}. But the linear form defined by A(p) = ¢(1) is clearly a
nonzero element of Homp~(p, 1) and, hence, we must have Homy-(p, 1) = CA. This
proves our claims when W, = W~. Now suppose W) is an arbitrary maximal totally
isotropic subspace of W. Then there exists s € S such that s- Wy = W~. It follows
that W, and W~ are conjugate as subgroups of SxH. Consequently,
Homy,(p, 1) =2 Homy~(p, 1). But

Homy,(p, 1) = Homy,(p,1) and Homp~(p, 1) = Hompy~-(p, 1) = CAL.

Therefore, Homy,(p, 1) has dimension one. OJ

8. The Construction of «;

The purpose of this section is to construct some auxiliary representations which arise
in Howe’s construction of tame supercuspidal representations of G. Our tame super-
cuspidal representations will have the form n = Ind(,’;(;c), where the inducing repre-
sentation is a tensor product Kk = k) ® - - - ® k, of the character ko = 0y o det with
certain representations k;: R — Aut(V;), where 1 < i < r. Each «; corresponds to a
factor 60; in the Howe factorization of the admissible quasicharacter 6. The problem
of computing H-invariant linear forms on the space of 7 will ultimately reduce via a
factorization theory to the problem of computing the spaces Hom zny(k;, 3;) for cer-
tain quadratic characters 9.

We adopt the notations used in the statement of Proposition 6.1. In particular,
there are quasicharacters 0 and ¢ such that 0 = 0F and associated Howe factoriza-
tions and towers of fields. Associated to the tower {£;} are the Lie algebras {g;} and
the groups {G;} defined in Section 2, as well as the parahoric algebras and groups D,
b;, b;;, B, B; and B, ;. As in the statement of the Howe factorization, f; denotes the
conductoral exponent f(@f). When 0 <i<r, let
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_ |/ il
Ei_\jJ and m,_L 5 J

In general, we will let O; and ) denote the rings of integers of E; and E’;, respec-
tively, and fix prime elements w; and @} in these rings according to the conventions
in Section 6. Let B, = w;0; and p; = @}O’. Thus Rz = R, and R, = p,. The cor-
responding residue fields are denoted k; and k.

The representations k; we define will be representations of the group

R =E*B(0) = E*B(0,) - - - B(01),

with B(6;) = By, ;-1 and B(68) = B(6,)- - - B(6).

Fix, for the remainder of this section, an index i € {1, ..., r}. The first case we dis-
cuss is the case in which f; = | and thus i = r. Then the fact that 6, is generic over
E,_; implies E/E._; must be unramified. We observe that 0, restricts to a character
of the multiplicative group of the residue field k, of E. The constructions of Green
and Deligne and Lusztig [3] associate to the latter character a cuspidal representation
(p,, V) of GL(n,—1, k,—1). We regard p, as a representation of RN B, using the fact
that (RN B)/(RN By) = GL(n,_1, k,_1). The group R is generated by the elements of
R N B together with a prime element w,_; of E,_;. Define the representation x, of R
on V, by the formula K,‘(w{_lk) = 0(w,_1)p,(k), for all j € 7 and k € RN B.

For the rest of this section, we assume f; > 1. Under this assumption, x; is pro-
duced using a Heisenberg/Weil representation construction which depends on the
choice of a ‘special isomorphism’ (in the sense of [31], as described below). There
is a particularly desirable choice of special isomorphism which is compatible with
the anti-involution ¢,. This special isomorphism comes from an especially conve-
nient choice of polarization of the relevant symplectic space. Since this special iso-
morphism and the associated correspondence between admissible quasicharacters
and tame supercuspidal representations may not agree with the traditional conven-
tions in the literature, it will be necessary in the next section to discuss some aspects
of how varying the special isomorphism affects Howe’s construction.

The construction of r; begins with an explanation of how to transport the discus-
sion in the previous section to the setting which is relevant to tame supercuspidal
representations. Let det; and tr; denote the determinant and trace maps on g; =
al(n;, E;). Define a multiplicative inner product on g by (x, y) = ¥ (tro(xy)). The
orthogonal complement of a subset S of g is defined by:

St={xeg:(x,y)=1, forall y e S).

If S is a closed subgroup of g then (S*)* = S and if S;, S, are closed subgroups then
(S1 NSy =Si +S5. When g € G and S is a subset of g then we have (gSg~')"
—oStg !,

We now state a lemma which describes the orthogonal complements of most
importance in the rest of the paper. In order to do this, however, a few more nota-
tions are needed. Let o, be the anti-involution of g defined by a,(x) = nx*n~!. Then
the Lie algebra of the unitary group H is
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h={xeg:o,(x)=—x}.
Now fix an element ¢; € E’; such that (1 4+ x) = Y (cix), for all x € pf‘/’, where
= |(f(0;) + 1)/2] and f(0;) is the conductoral exponent of 0. Such an element ¢;
ex1sts and, though it is not unique, the coset ¢; + p " is well deﬁned We note that
¢; must lie in pl ) pz % and one may easily check that if u;, = [(f(0;) + 1)/2],
then 01 + x) = (¢;, x), for all x € p*.

LEMMA 8&.1.

() b" ={xeq:0,(x)=x)
(i) E'=ENpH*.
(iii) b,f = by_g, for all integers k.
(iv) cie (O +0) " NE, forallie{l,...,r}such that f; > 1.
) Iff, =1 then c; € (b +gbg™ Y NE._y, forallie{l,....,r—1} and g € G,_,.

Proof. We first observe that §* consists of those x € g such that (x, y — o) =1,
for all y € g. This condition can be rewritten as (x, y) = (x, g,(»)) = (g,(x), y) or as
(x —ay(x), y) = 1. In the latter form, assertion (i) becomes obvious. Assertion (ii)
follows from (i) and the fact that ¢,(x) = a(x), for all x € E. Assertion (ii) is stan-
dard. (See [15] or [24], for example.) To prove (1V) we note that from (ii) we have
¢i € E' = ENH*. On the other hand, ¢; € p =0 513[_/(0) *‘}Ef’ C bi_. Hence,
we have ¢c; € b, NEN Ht = = (by, + )" N E. The proof of (v) is similar to the proof
of (iv), once we observe that ¢; € E,_| N gf)Lg*I. The latter fact holds since g com-
mutes with all elements of E,_; and, in particular, with c;. O

Define the groups

Ji =1+ (bg -1 N g + b,
J:':l_i_(bm,z lﬂql)+b2£z

Note that when f; is even, the groups J; and J; are identical since ¢; = m;. Define a
character w; of E*By,J; by w; = 0;0det; on EXBj; and w;(x) = (¢;,x — 1) on J.
Let J! = ker(w,l]’)

Let Hi=Ji/J!, 2 =J;/J] and W; = J;/J; and define a (multiplicative) symplectic
form on W; by

(6, )i = 0ieyx™ 'y = (e [x = 1,y = 1]).
(Via the map 1 + x — x, we obtain an isomorphism of W; with the additive I¥,-vec-
tor space (by, i1 N @)/ (Op,.i—1 N gH). It is frequently more convenient to deal with
this additive model for W;.)

The group H; turns out to be isomorphic to a Heisenberg group over I, associated
to the symplectic space, however, when defining the Weil representation it is impor-
tant to be specific about this isomorphism. This is done as follows. If y, is the group
of complex pth roots of unity then the restriction {; of w; to J; gives rise to an exact
sequence
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1= J = J = —1

and an identification of Z; with p,. Define H; to be the standard multiplicative Hei-
senberg group associated to the symplectic space W, that is, H; = Wix u, with mul-
tiplication defined by

(v, a)(w, b) = (vw, ab (v, w)P™V?),

Note that 7 — 17/2 should be regarded as the analogue in p, of the map ¢ — /2 in
F,.

DEFINITION. Given i, a special isomorphism is a homomorphism v: H; — H; such
that the following diagram commutes:

1 - 2 > Hi - W, —> 1
A \: \: \: \:

1—>,up—>H;-’—>W,-—>l,

where all of the maps other that v are the obvious ones.

This notion is discussed in detail in [31]. We will recall below how, once one specifies
a special isomorphism, one obtains a correspondence between admissible quasi-
characters and tame supercuspidal representations. In particular, there is a canonical
special isomorphism (described in great generality in Proposition 11.4 of [31]) which
gives rise to Howe’s correspondence, as described in [15] and [24]. Even though the
main results of this paper are independent of the choice of special isomorphism, it
is necessary to make a specific choice in order to carry out our calculations.

We now define a particularly convenient special isomorphism. This will depend on
first defining a polarization of W; which is compatible with with the anti-involution
o,. Define the subgroups of J; by

JE =14 (0o N g N O + bag, i1,
J7 =1+ (bgim1 NG N ) + by, iy
and let H;" and H;, respectively, be the images of J;” and J; in H;. These subgroups

L
of H; satisfy H N Z;={1}=H; N Z;. Therefore, the natural map H; - W;
restricts to give isomorphisms H} = W} and H; = W, where W} and W; are

the images of J and J;, respectively, in W;.

LEMMA 8.2. The subspaces W} and W; form a polarization of W;.

Proof. We need to show that WS and W; are totally isotropic and
W;= W} @ W;. The fact that W is totally isotropic results from the following
observation. If a,b € b then, since ¢; € E'=ENH' and [a,b] €, we have
(ci, [a, b]) = 1. Similarly, one sees that W; is totally isotropic. Next, we note that
every x € g has a canonical decomposition x = x* 4+ x~, where x* = (x + 0, (x))/2
ebhtand x =(x— 0y(x))/2 € . If x lies in by, ;—; then so do its components x* and
x~. It follows that W; = Wi & W;. O
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Suppose 4t € H} and i~ € H; . Let w and w™ be the images of A" and 4~ in W+
and W, respectively. If z € Z;, we take

vf(h+h*z) =wrw™, () (bt h)) D2y,

This defines the special isomorphism which we refer to as the natural special
isomorphism.

Fix an arbitrary special isomorphism v. We now are ready to construct the repre-
sentation k; =«x! of the group R = E*B(f). Note that R = R;J;R,, where
Ri=RNG;=E*B0,)...B(0i+1) and R, = B(0;_1)...B(0;). The symplectic group
S; = Sp(W;) acts on H; by s- (v, a) = (s - v, a). The main significance of choosing a
special isomorphism is that it is used to transfer the action of S; on H; to an action
of S; on H,. Specifically, S; acts on H; by s-h=v"(s-v(h)). Let (p;, Vi) be the
induced representation IndZ’:+ Zl_(Cf), where (" is the character of H} Z; defined by
{F(h*z) = {(z) when h* € H and z e Z,. This is a Heisenberg representation.
According to Proposition 7.2, Homy (p;, 1) has dimension one and is generated
by the linear form Z;(p) = ¢(1). As discussed above, the representation p; extends
uniquely to a Weil representation (p;, V;) of S; x H;. We stress that the definition
of S;x H; and the definition of the Weil representation on S; both depend on the
choice of special isomorphism. It should also be emphasized that the discussion
above becomes trivial in the case that f; is even, since then W; = 0.

Let Sp(H;) be the group of all automorphisms of H; which (modulo Z;) define
elements of S; and define the group Sp(H;) similarly. Then the natural maps
Sp(H;) — S; and Sp(H;) — S; are isomorphisms. The action of the group E£* By ;
by conjugation on H; defines a homomorphism &;: EX By ; — Sp(H;) with the prop-
erty that, for all g € EXBy;, the composite map vo &(g)ov™! is an element of
Sp(H;).

The homomorphism ¢; extends to a homomorphism E* By ; x H; — S; x H; which
we use to pull back the Weil representation p; to a representation «? of EXBy; x H;
on the space V;. We also have another representation of E*B; x H; obtained by
inflating w; up from E* By ;. This representation will be denoted inf(w;). Note that
whenever x € By, ; = EX By; N J; the representation x? @ inf(w;) is trivial on the ele-
ment (x,x" ') e E*By;x H;. Therefore, x? ® inf(w;) factors through E*ByJ; =
E*By;B(0;). The restriction of the resulting representation of E*By;B(0;)
to RNG;,_1 = EXB(6,)...B(0;) defines our desired representation x; on RN G;_;.
If i=1 this defines x; on R. Otherwise, if i>1, we take x;(1+x)=
(ciyx) on B(6;_1)...B(0;) to complete the definition of x; on R in the case for
which f; > 1.

Since the construction of k; when f; > | is somewhat complicated, let us now sum-
marize its main features. First of all, the representation space of «; is the same as the
representation space V; of the Heisenberg representation p,. Secondly, if f; is even
then k; is simply the one-dimensional representation of R defined on
E*B(0,)--- B(0;) by restricting w; and on B(0;_;)...B(0;) by k(1 + x) = (c;, x).
Finally, if f; is odd and greater than 1, then
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Ki(xyz) = Oi(deti(x)) pCi(x)) pi(y) {ein 2 — 1),
where x € R;, y € J; and z € R]. Since the construction of «; depends on the choice of
the special isomorphism v, it is more appropriate to use notations such x!, p! and
S; x H;, rather than x;, p; and S; x H;, to reflect this dependence. We will use these
more complete notations when it is necessary to signify the choice of special iso-

morphism. When using the natural special isomorphism, we use notations such as
KE, /A)E and S,‘D( uH,’.

9. Varying the Special Isomorphism

The notations in this section are the same as in the previous section. Recall that we
have defined an anti-involution of g and, by restriction, of G by the formula
o,(x) = nx*n~!, where the Hermitian matrix 7 is always chosen to lie in E*. Let
1, be the involution of G given by 1,(g) = o-n(g)*l.

Let 7j € k. be the image in k, of @'* 5, where k is the integer for which w’* 5 € O *.
When E'/E’,_; is unramified, we will assume that @, = @,_,. Let

k> if fp > 1,

ro

G=(RNB)/(RN B) = { GL(t 1 k), i f =1,
where n; = [E : E}]. Let
B=(RNH)/(RNHN By).

Note that RN H = RN HN B and, therefore, 5 may be viewed as a subgroup of G.

We have
U(l, k,/k)), if f, > 1 and E/E’ is unramified,
B {£1}, if f, > 1 and E/E’ is ramified,
|\ U@, k-1 /k._y), iff, =1and E/E’is unramified,
o, k,—1), if f, =1 and E/E’ is ramified.

Here, if L/K is quadratic extension with respect to which x is an invertible hermitian
matrix of rank s, then U(x, L/K) denotes the unitary group in GL(s, L) defined by
gxg* = x. The notation O(x, L) for orthogonal groups is similar.

LEMMA 9.1. Suppose k; = k!, for some special isomorphism v: H; — H;. Then the
contragredient representation k; is equivalent to i; o 1.

Proof. Throughout the proof, we assume we have fixed the special isomorphism v
and we suppress it from the notation. The central character {; of the Heisenberg
representation p; is given by restricting the character w; to J.. A straightforward
computation shows that {;og, ={; or, equivalently, {;o01, = C,_]. Up to iso-
morphism, the contragredient representation p; is the Heisenberg representation
of H; with central character (i_l. Therefore, p; is equivalent to p;o1,. One of
the basic properties of the Weil representation p; (see [6]) is that its contragredient is
the Weil representation which is the unique extension of p; to S;x H;. Hence,
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the contragredient of p; must be equivalent to p;o1,. Therefore, &7 ® inf(w;) is
equivalent to (k7 ® inf(w;)) o 6, and our assertion follows. O

LEMMA 9.2. Given any two special isomorphisms vi and v,, there exists a character y
of R such that k> = k' ® y and y o1, = y~'. Furthermore:

G) If f, =1, E/E’ is ramified and n,_, is even then y>| RN H = 1.
(1) In all other cases, y| RN H = 1.

Proof. By definition, «;' and k;* coincide on RN B;. Therefore, there exists a

character y of R which is trivial on RN B and satisfies x;> = k;' ® . By Lemma 9.1,

— -1
Xoly=x .

Suppose f, > 1. Then R/(RN By) = E/(1 +%B5). For each « € E*, we have
1(o(2)) = ){(1,1(05))_1 = y(a). Therefore, since E* N H is the unitary group U(1, E/E’),
Hilbert’s Theorem 90 implies y|E* N H = 1.

Now suppose that f, = 1. There exists a character y of ©,° | which is trivial on
1+%,_, and is such that y is the inflation of y odet,_; from By, ; to
RN B=By,_1(RN By). The condition yo1, =" implies 7 oo = y. Note that
det,_(x) = o(det,_ (x))"", for all x e By,—1NH. If E/E’ is unramified, we apply
Hilbert’s Theorem 90 to k,_i/k,_, to deduce that y|By,_1 N H = 1. Now suppose
E/E’ is ramified. Then y'(det,_;(x)) = y/(det,_;(x))~", for all x € By,—1 N H, since )/
is trivial on 1 + %,_; and ¢ induces the identity map on k,_,. In other words, we have

X'2|Bo,,_1 N H = 1. Since we may choose @, so that o(w,) = —w,, it follows that
7(=1) = 1. Thus '((=1)"") = 1. If n,_y is odd this implies y'(—1) = 1, which com-
pletes the proof. O

Recall that P; is the stabilizer of W/ in S;. The subgroup M; of elements of P;
which also stabilize W; forms a Levi component of P;. Suppose x € RN H.
Then, since xe€ E*By,NH=DBy;NH, the operator Ad(x) stabilizes
b i1 NagtNh* and by, Ngt NG and, hence, &(x) € M;. We may choose an
Fp-basis of W} which gives rise to an identification W} = ). where p**! is
the order of H;. We also obtain an identification M; = GL(¢, I,). There is a
unique character yu; of M; of order two. It corresponds to the character
g > (detg)?™"? of GL(¢, F,) under any isomorphism of M, with GL(¢, ).
The following result involves the Weil representation constructed using the natural
special isomorphism:

LEMMA 93. Iffi>1, o€ V;,, xe RiNH and h € H;, then

P o) = p(E(0) @(E(0) ™ - ),

where the action of S; on H; in the expression E(x)~" - h is defined relative to the nat-
ural special isomorphism. Furthermore, p(¢;(x)) =1, unless f, = 1, E/E’ is ramified
and n._y is even.
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Proof. Choose ¢, x and & as in the hypothesis of the lemma. We will assume f;
is odd, since otherwise our claim is trivial. The stated formula for ,bl”-(éi(x)) o(h)
follows directly from the discussion in § 2 of [6]. (We should warn the reader that
in [6] the space V; is replaced by the space of all functions on W} . The identification
of V; with the latter space is simply given by restricting functions on H; to functions
on W;.)

It remains to compute p;(&;(x)). We first observe that &;|B); =1 and thus the
restriction of &; to R; N H factors through the quotient group

B=(RNH)/(RNHNBy) = (RN H)/(R;\ HN By).

Moreover, if x € R;N H then, viewing &;(x) as an element of S;, we note that
()W) c Wi and E(x)(W;) C Wi . Therefore, ¢ gives rise to a homomorphism
& B — M,;. We must show that the quadratic character y; o &; of B is trivial except
in the case in which f, = 1, E/E’ is ramified and n,_; is even.

If f; is even or if E/E’ is ramified and f, > 1 then our assertion follows from
the fact that & itself is trivial. Another case which may be easily excluded is the
case in which E/E’ is ramified and n,_; is odd. In this situation, we first observe
that p; 0 & is a quadratic character of an orthogonal group and, moreover, every
quadratic character of the orthogonal group is trivial on the special orthogonal
group. Furthermore, w;(&'(—1)) =1, since ¢'(=1) =1, and our claim follows.

It remains to treat the case in which E£/E’ is unramified. We assume @, = @, and,
in addition, if f, = 1, we assume @, = w,_| = w. = w._,. Let ' = @, “iy. Since 1’
lies in E'*, it is an invertible Hermitian matrix and there is an associated unitary
group H, with Lie algebra 0,. If o, is the anti-involution of g given by
oy (x) =n'x*5"~! then the elements of H, satisfy o,,(h) = h~' and the clements of 0,
satisfy o,/(x) = —x. There is a finite Lie group L with Lie algebra [ defined by

L = (Bo,i—1 N Hy)/(Byi-1 N Hy),
[ = (bo,ic1 N h,)/(brim1 N D).

The structure of L is partially described as follows. Note first that By ;—; /B ;- is iso-
morphic to a product of e(E/E;_;) copies of GL(f(E/E;_1), ki_1). There is an auto-
morphism of order two defined on this group by 1,(g) = aﬂ(g)*1 whose group of
fixed points is L. A given factor in the product decomposition of By,_1/B; -1 is
either paired with another factor by 1, or it is preserved by 1,. The group of 1,-fixed
points for each set of paired factors is isomorphic to GL(AE/E;_), ki—1), while
the group of 1i,-fixed points for each stable factor is isomorphic to
U(f(E/Ei-1), ki—1/k_,). Therefore, L is isomorphic to a product of general linear
groups and unitary groups. What is most relevant for us is that L is the [ -rational
points of a connected reductive group defined over I, and [ is its Lie algebra over I,
It is known that in such a situation if g € L then the determinant of Ad(g): [ — [is
always 1.
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Now define
L'=By,.1NH, iff,=1,
and
L'=E*NH=UQ,E/E'), iff,>1.

Then L’ contains a set of coset representatives for B and L' C By;—1 N H,. (To see
that L' C By,—1 N Hy when f, =1, use the fact that g, =0, on g, ;, since
@' € E',_1.) It follows that B may be regarded as a subgroup of L.

Next, we observe that, in fact, §), = @4 from which it follows that x > @lix
gives an isomorphism of [ with [ = (b,,;_1 N §)/(b,,,,..—1 N §). Note that [ decomposes
as [ =1, ® [, with

ly = (bo,i-1 N g N h,)/(by -1 NgND,).
[2 = (bo,i N f);]’)/(bl,i N E),,/),

and there is an analogous decomposition [' = [{ @ [5. The summand [} is just the
image of W; under 1+ x~ x. Let L, = (By; N Hy)/(B1;N Hy). Note that L' C
By ;N H, and therefore the elements of L’ project to elements of L, as well as L.

Returning to the task at hand, we need to compute p,(¢;(x)) when x € L. This
amounts to determining whether or not the determinant of Ad(x) on W} is a square.
If x; € GL(W) and x_ € GL(W;) are the linear transformations determined by the
adjoint action of x, then it is easy to see that det x, = det x~'. (See [6].) Therefore, it
suffices to compute det Ad(x)|(;. We have

, detAdW)|l' det Ad(x)|f
det AdIl =5 Ad)|f ~ detAd)IG

Here, the second equality follows from the fact that if ¢ is the map from [’ to [ given
by y > wly then @(Ad(x)y) = Ad(x)¢(y), since x € L. By the argument given
above, we know that det Ad(x)|{ = 1. A similar argument also applies to [, and
allows us to deduce our result. O

10. Invariant Linear Forms on the Space of x; when f; > 1
The purpose of this section is to prove the following proposition:
PROPOSITION 10.1. Assume f; > 1 and x; =« for some special isomorphism
v:H; — H;. Then there exists a quadratic character 3; of RN H such that
Hom gnp(x;, 8;) = Hompgnu(xi, 1)
is the one-dimensional space spanned by the linear form (@) = @(1). Moreover, 3; is

trivial unless f, = 1, E/E’ is ramified and n._, is even.

Recall that a character y is said to be ‘quadratic’ if > = 1. The proof of Proposi-
tion 10.1 uses two lemmas:
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LEMMA 10.2. Let G be a group and H the subgroup of fixed points of an auto-
morphism o of order two. Assume that A and B are o-stable subgroups of G such that
Hl({l, a}, AN B) =1, that is, the sets

Z'={(xednB:a(x)=x""} and B' ={za(z)"':zeANB}

are identical. Then ABN H = (AN H)(BN H).

Proof. Under the stated assumptions, suppose that a € A, b € Band ab € H. Then
ab = a(a)a(b) implies a~'a(a) = ba(b)~' € Z'. Therefore, there exists z € 4 N B such
that a'a(a) = zo(z)"'. We now have ab = (az)(z"'b), where az€ ANH and
z"'be BNH. O

Suppose ¢; : by, ;-1 — B(0;) is the Cayley transform defined by

6(x) = +x/2)(1 —x/2)7".

This map is bijective with inverse ¢ !'(y) = —4¢(—2y). We also observe that
¢(x) = 1+ x modulo by, ;1. The Cayley transform commutes with the involution
oy(x) =nx*n~! of g.

LEMMA 10.3. The Cayley transform ¢; restricts to a bijection by, ;1 N § = B(6;) N H.
Proof. Suppose x € by, ;-1 N 0. Then o, (€:(x)) = €i(o,(x)) = €(—x) = ¢(x)"". Thus
¢i(x) € B(0;) N H. Similarly, one shows that if y € B(0;) then ¢;'(y) € by,;.1 NG, [

Proof of Proposition 10.1. Consider first the action of KE on V;. As before, we write
R = R;J; R; and note that each factor is stable under the automorphism 1,(g) =
0,1(g)_1. Applying Lemma 10.2, we see there is a corresponding decomposition of
RN H. Define a character of RNH by y(xyz) = u,(¢(x)), where x e R;NH,
yeJinH and z € R;N H. Since, up to scalar multiples, 4; is the unique nonzero
(J; N H)-invariant linear form on V, it suffices to show that 4; is invariant under
RN H and transforms by y on R; N H in order to prove our assertions for ;.

To prove invariance under R; N H, it suffices to show invariance under B(0;) N H
for each j < i, according to Lemma 10.2. So let us suppose that z € B(0;,) N H. It
suffices to show that (c¢;,z—1) =1. There must exist x € by ;1 NH such that
z=¢(x). Since z—1=xmodulo by, ; 1, we conclude that z—1 lies in
(be, i1 N ) + bag i1 C § + by Applying Lemma 8.1(iv), it now follows that A; must
be invariant under R; N H.

Next, we consider how 4; transforms under R; N H. According to Lemma 9.3, we
have

2i(13(X) @) = A@i(x) Pi(E(X)) @) = 0(x) (Ei(x) (1),

for all x € R; N H. Therefore, it suffices to show that w; or, equivalently, 0; o det; is
trivial on R; N H. Recall that € E* and thus € G;. Observe also that R; N H is
contained in the group H; = G; N H. The image of H; under det; is contained in
U(l, E;/E’;). Since 0; is trivial on the latter group, our claims regarding KE follow.
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To deduce what is asserted about !, for arbitrary v, one can now simply apply
Lemma 9.2. O]

11. Three Reductions of the Main Problem

The objective of this paper is to study the spaces Homy(n, 1) associated to the tame
supercuspidal representation 7 = Indg(rc). Towards this end, we discuss in this sec-
tion three reductions of the main problem. The first says that we are justified in
assuming that 6y = 1. The second reduces our problem to the problem of looking
at the various spaces Hom gngpe-1 (i, 1), as g varies over a set of representatives for
the double coset space R\G/H. The final reduction says that it suffices to look at
the double coset RH. We complete the third reduction step in the next section, where
we consider the case in which £, = 1.

Recall that k = k) ® - - - ® K, where K is the character of R given by 0 o det. Let
KO =k @ - ® K.

LEMMA 11.1. Hompy(Ind$(x), 1) 2 Hom(Ind$(x®), 1). i

Proof. We have an isomorphism of Ind$ (k) ® 0, with Ind$(x) given by [+ f,
where f(g) = 6y(det g) f(g). Since 6y o det is trivial on H, the identity map gives an
isomorphism between Hom(Ind§(x®) ® 0y, 1) and Homz(Ind$(x©), 1). Our claim
follows. O

In light of Lemma 11.1, we will assume 0y = 1 for the rest of the paper. We now
state the second reduction step.

LEMMA 11.2. Hompg(r, 1) = @gep\o/rHOmM grgpe-1 (ic, 1).

Proof. Let F be the G-module consisting of all functions f: G — V' such that
flhg) = k(h)f(g), for all h € R and g € G, with the G-action given by g - f(g') = f(¢'g).
Let F, be the submodule of those f whose support has compact image in R\G. In
other words, F. is the representation space of n. Let F, . be the submodule of f € F.
with support in RgH. There is a canonical isomorphism F. & @ser\G/5F g, Which
maps f € F, to the collection of functions (fy), where f, is obtained by restricting f to
RgH and then setting f, = 0 outside of RgH. From this, we obtain an associated
canonical isomorphism

Homy(n, 1) = Homy(F., 1) = @) Hompu(Fee, 1)
geR\G/H

sending A to the collection of linear forms Ag(f) = A(fy). Next, we observe that
there is an isomorphism Homp(Fy ., 1) = Hompgney,-1(x, 1) such that if A e
Homp(Fg., 1) corresponds to the linear form A € Homgngp,-1(x, 1) which satisfies

AN= D Mfighy.

he(g~' RgNH)\H

We refer the reader to the proof of Lemma 7 in [8] for further details. O
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For the third reduction, we require the following notations. Given i€ {1,...,
r—1}, let 09 = 0F,---0F and let x” =K1 ® --- ® K, denote the representation
of Rj=E*B(0") on VO =V, ®---® V, associated to §?. Let H; = HN G; and
let B(0) = B(0,)--- B(01), where B(0;) = By 1.

LEMMA 11.3. Assume g € G and Hompgagpe-1(x, 1) #0. If f, > 1 then g € RH. If
r>1andf. =1 then g € RG,_1H.

Lemma 11.3 will be strengthened in the next section by removing the technical
conditions which apply to the case of f, = 1.

In spirit, the proof of Lemma 11.3 is similar to an induction on the length r of the
Howe factorization of 0, where one verifies the cases of r = 1 and r = 2 separately to
begin the process. Briefly stated, the argument goes as follows. Assume r > 2. Sup-
pose g € G and 4 is a nonzero element of Homgngpe-1(x, 1). To show that g € RH,
we successively show that g lies in RGH, RG,H, ..., RG,_ H by repeatedly applying
the following lemma to x, k), ... k=2,

LEMMA 11.4. If fi > 0, g € G and Hompgnepe-1 (., 1) # 0, then g € RG H.

Lemma 11.4 will be proven at the end of this section. The following proof of
Lemma 11.3 relies on the validity of Lemma 11.4.

Proof of Lemma 11.3. Assume g € G is chosen so that Homgngpe-1(x, 1) is non-
zero. Since the space Hom grgp,-1 (i, 1) only depends on the double coset RgH which
g represents, we are free to replace g with another double coset representative when it
is convenient to do so. The assumption that Hom grgp,-1 (i, 1) is nonzero implies that
Hom g g)ngre-1 (%, 1) is also nonzero. We are assuming that f; > 1 and thus we may
apply Lemma 11.4 to deduce that g € RGH. If r = 1 then RG|H = RH and we have
the desired result in this case.

Now assume r > 1. Since g € RG|H, we may assume g € G;. If f, =1, we are
done, so we will assume f> > 1. Suppose 4 is a nonzero element of Hom g g)ngpe-
(1, 1). Fix an elementary tensor v ® - - - ® v° which is not in the kernel of 4. Define a
nonzero linear form 2 € Hom(x(", 1) on elementary tensors by

Ny ®@ - @) =417 @0, ®--- @ v,).

We assert that A1 is (B'(0") N gH g~ !)-invariant. Indeed, this will follow once
we show that x|(B;; NgH g ") =1, since B(W) c B 1. Note that inf (w;) =
w; =0y odet; =1 on EXBy; NgHg~', where the last equality follows from Hil-
bert’s Theorem 90. Therefore, x| = k5 = p; o & on E*By; NgH g~'. Since By is
contained in the kernel of &, we conclude that the restriction of k; to
B NgH,g~" is a multiple of the trivial representation, as claimed.

At this point, we have shown that Homg .y 1 (K", 1) is nonzero. Since
/> > 1, we may apply Lemma 11.4 to xV to see that g € RG,H. Thus we may assume
that g € G,. If r = 2, we are done since then G, = E* C RH. Otherwise, we continue
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to apply Lemma 11.4 repeatedly to x®,x®, ... until we conclude g € RH or, if
fl’ = 19 g € RGV*IH- D

The rest of this section is devoted to the proof of Lemma 11.4. If f; > 1, then the
representation x; has the property that, on B'(0;) - - - B'(01), it is a multiple of the char-
acter defined by

1+X|—> <C,’,)C), XEbmi,i71+"'+bm1,0-

If f, = 1, then the restriction of «, to B'(0) is a multiple of the trivial representation.
Define ¢V € E by

Gt iffi=1,
‘=1 if r =1,
4+ ifr=2andf, > 1.

If f1 > 1 then, since m; = m; for 2 < i < r, it follows that the restriction of k to By, is
a multiple of the character

l+y(a+cdVp),  yeb,,.

Therefore, if f; > 1 then HOmBmlﬂgHg—l(K, 1) is nonzero precisely when the latter
character is trivial on B, NgHg~!. The next lemma translates this statement into
a geometric condition on the Lie algebra.

LEMMA 115, Iffi > Land Homp, rgpe-1(1c, 1) # 0, then ¢ + ¢V € by, + ghtgt

Proof. Since bi_,, +ghtg™! = (b, Nghg™ "), it suffices to show that (c;+
e, z) =1, forall z € b,,, Nghg™". In view of the remarks above, we know that (c¢;+
¢, y) =1 whenever 1+ y € B, NgHg™'. To make the transition from the algebra
b,,, to the group B,,,, we again use the Cayley transform ¢(z) = (1 + z/2)(1 — z/2)7!
as a substitute for the exponential map. Let a(z) = (gng*)z*(gng*)~". Then o(z) = —z
is the defining condition for ghg™! and a(y) = y~' is the defining condition for
gHg™".

Suppose z € b, +ghg~!. Then

Ae(z) = e(u(2) = e(—2) = e(2) .

Therefore, €(z) € By, NgHg™" and thus (¢; 4 ¢, ¢(z) — 1) = 1. Since ¢; + ¢!V €
R b;] c by, and since €(z) =14z modulo by, , we have (¢; + ¢V, z) =

2my

(1 + D ¢(z) = 1) = 1. Our claim follows. ]

LEMMA 11.6. If fi > 1, then Ad By, (c1 + D+ biiom)=c+ D 4 by_pm,.
Proof. By Lemma 6 of [15], we have

Ad Bﬁl(yl + bl,lfml) =N + blfmp

Our assertion is now a consequence of the fact that ¢; + ¢V € y, + ?]32_-/1. O
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LEMMA 11.7. If g € G and go,(g) € G; then g € G;H.

Proof. Let Z' = {g € G;: g = 0,(9)} and B' = {go,(g) : g € G;}. From the theory
of Hermitian matrices over local fields, we know that an element of Z! lies in B!
precisely when its discriminant is a norm. Now suppose g € G and g g,(g) € G;. Then
ga,(g) is an element of Z! whose discriminant is a norm. Thus g a,(g) = g1 9,(g1), for
some g € G;. Now gilg= oy(g7'g) implies g € giH C G;H, which proves our
assertion. O

LEMMA 11.8. If fi > 1 and ¢; + ¢V € by_p, 1 + gbtg! then g € G| H.
Proof. Let ze€bi_,,, and x e b be such that ¢; + ¢ +z=gxg'. From
ay(c1 + V) = ¢ + ¢ and 6,(x) = x, we see that

ci + eV 4z =ga,(9) (c1 + W+ 0,(2) (g, (2) "

Note that ¢; + ¢V +z €y, + by_p 1. Similarly for ¢; + ¢V + 6,(z). We can apply
Lemma 8 of [15] to conclude that y; = go,(g) (1) (g a,,(g))_l. As y, generates E|/F,
this condition is equivalent to g a,(g) € Gy, that is, gi(¢g™") € G;. Now applying
Lemma 11.7, we deduce g € G| H. O

Proof of Lemma 11.4. Assume f; > 1 and Hompgngpe1(x, 1) #0. Then by
Lemma 11.5 and Lemma 11.6, there exists b € By, such that ¢; +c € by, +
bgh*(hg)~'. By Lemma 11.8, hg € G| H. Hence, g € B;,GIH C RGH. O

12. The Case of f,. =1

According to the strategy outlined in Section 11, the computation of the space
Homy(n, 1) of H-invariant linear forms associated to the supercuspidal representa-
tion 7 = Indg(lc) reduces to a matter of computing the spaces Hom grgpo-1(ic, 1) as g
ranges over a set of representatives for R\G/H. This section is devoted to demon-
strating that all double cosets other than RH are extraneous. We prove:

PROPOSITION 12.1. If g € G and Hom g1 (x, 1) # 0 then g € RH.

The proof appears at the end of the section after a substantial amount of prepara-
tion. When f, > 1 then assertion in Proposition 12.1 has been shown in Section 11 in
Lemma 11.3. Therefore, throughout this section we assume f, = 1. There are
two cases which are considered separately: the case of r = 1 and the case of r > 2.
In light of Lemma 11.3, when r > 2, it suffices to show that if g € G,_; and
Hom gngpg-1(k, 1) # 0 then g must lie in RH. The cases r = 1 and r > 2 will subdivide
further depending on the image of R N gHg ™' over the residue field. For most g, the
corresponding group over the residue field will be ‘superunipotent’ in the sense that it
contains the unipotent radical of a parabolic subgroup. If it is not superunipotent
and if g¢ RH then it turns out that we obtain a symplectic group over the residue
field. The parallel roles played by unipotent radicals and symplectic groups is remi-
niscent of a similar phenomenon which links the theories of symplectic models
and Whittaker/Gelfand/Graev models. This phenomenon was first observed by
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Klyachko [21], in the context of finite fields, then studied by Heumos and Rallis [14]
over local fields and Jacquet and Rallis [18] over global fields.

Once Proposition 12.1 is established, it will remain to study the spaces
Hompgnp(k, 1). In Section 13, we show that these spaces factor into spaces
Homgng(k;i, 0;). When f; > 1, Homgng(x;, d;) has already been described in Proposi-
tion 10.1. A secondary focus of this section is to provide the analogue of Proposition
10.1 when f; = 1.

Having described our objectives, let us now attend to the case of /i = 1. The main
results are taken from [9] with one enhancement which allows us to prove that the
dimension of Homy(n, 1) is one. The work in [9] draws on [8] as well as results of
Gow [7], Klyachko [21] and Lusztig [23] involving the representation theory of finite
groups of Lie type.

Recall that gy and ¢ are the orders of the residue fields k¢ and k{ of F and F’,
respectively. If F/F’ is unramified, that is, if g9 = q’ﬁ, then GL(n, ko) contains the
standard unitary group U(n, ¢g). When F/F’ is ramified, we will consider the stan-
dard orthogonal group O(n,qy) and, when n is even, the orthogonal group
O’(n, qo) associated to the diagonal matrix diag (1,...,1,6), where J is some fixed
nonsquare element of &';. When F/F’ is ramified and » is even, we also consider
the symplectic group Sp(n, go). We will say that a subgroup of GL(n, k) is superuni-
potent if it contains the unipotent radical of a proper parabolic subgroup of
GL(n, ko). The significance of this notion is that when S is superunipotent and p
is an irreducible cuspidal representation of GL(n, ko), then the space of = cannot con-
tain any nonzero vectors which are fixed by S.

When fi = 1, E/F must be unramified, 0 = 0; and 0|y, is the inflation of a char-
acter y of the multiplicative group of the residue field k| of E. In addition,
0 =0 o Ng/gp for some quasicharacter 0 of E'* or, equivalently, 0 is trivial on
U(l, E/E’). The group R = E*B is generated by a prime element @, of F and the
elements of B. Deligne—Lusztig’s construction associates to y a cuspidal representa-
tion (p;, V) of GL(n, ko) which we sometimes view as a representation of B via the
isomorphism B/B; = GL(n, ko). The representation k¥ of R on V is defined by
k(') = O(z) p,(b), for all j € Z and b € B. Suppose we are given g € G. The deter-
minant of any element of gHg~! has modulus one and thus RNgHg ! = BNgHg™ .
If U, is the image of BN gHg™' in GL(n,¢g) under the isomorphism
B/ B = GL(n, ko), then Hom gngpe-1 (%, 1) = Homy,(p;, 1) and

Homy(n, 1)~ [] Homy,(p;, D).
geR\G/H

PROPOSITION 12.2. Assume f; = 1.

(1) dimHompg(zw, 1) =1.

(2) Suppose F/F' is unramified. Then n must be odd. If g € RH, then U, is conjugate
to U(n, qo) and dimHomy,(p;, 1) = 1. Otherwise, if g € G — RH, then U, is
superunipotent and Homy,(p;, 1) = 0.
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(3) Suppose F/F’ is ramified. If g € RH then Uy is conjugate to O(n, qy) unless n is
even and detn € F* — Npp/(F*), in which case U, is conjugate to O'(n, qo). In
either of these cases, dimHomy, (p, 1) =1. If g € G — RH, then Uy is either
superunipotent or conjugate to Sp(n,qo), if n is even. In these cases,
Homy,(p;, 1) = 0.

Proof. It follows from Lemma 6.2 that if F/F’ is unramified » must be odd.
Combining this observation with Theorem 1 of [9] proves that dim Homg(x, 1) < 1.
Now suppose F/F’ is unramified. To deduce (1) in this case as well as (2), one applies
Lemmas 4 and 5 of [9] together with Theorem 2.4 of [7]. In applying Gow’s Theorem
2.4, one first observes that the character of p, is Galois invariant and thus, according
to Gow’s result, p; embeds uniquely in the representation of GL(n, k¢) induced from
the trivial representation of U;. Then Frobenius reciprocity implies that the
dimension of Homy;, (p,, 1) is one. The remaining assertions regarding the case in
which F/F’ is ramified follow from Theorems 1 and 2 of [8]. O

For the remainder of the section, assume r > 1 and f, = 1. We need the following
analogue of Proposition 10.1:

PROPOSITION 12.3. Assume r > 1 and f, = 1 and let 3, = H;;ll 9;, with 9; chosen as
in Proposition 10.1. Then the spaces Hompgnp(x,, 3,) and Homp, ,u(x,, 1) are
identical and have dimension one.

Proof. When 3, = 1, the proof of our assertions is identical to the proof of (2) and
(3) of Proposition 12.2. Therefore, we may as well assume that 3, # 1. Hence, E/E’
is ramified and n,_; is even. Recall from Section 9, that B = (RN H)/(RN HN By) is
isomorphic to a certain orthogonal group O(i, k,—;) in G = (RN B)/(RN B)) =
GL(n,_1, k,_1). The character 3, may be regarded as a character of 5. In fact, it must
be the character which is 1 on the special orthogonal group and —1 on its comple-
ment, since this is the unique nontrivial quadratic character of 5. We have

Hompgng(k,, 3,) = Homg(p,, 3,) = Homp(p, ® 3, 1)

and, since n,_; is even, 3,(—1) = 1. Now, the representation p, ® 9, is an irreducible
cuspidal representation whose central character is trivial at —1. Therefore, Theorem
2 of [8] implies dim Homp(p, ® 9,, 1) = 1. O

Our next task is to recall from [9] the Jacobowitz/O’Meara description of the dou-
ble coset space By ,—1\G,—1/H,—1. Actually, the double coset space R,_1\G,_1/H,_ is
more directly relevant to the problems we are studying, however, we save some effort
by being consistent with [16] and [9] and working with By ,_1\G,_1/H,_, instead. As
f, =1, both E/E._; and E'/E’,_; must be unramified according to Lemma 6.2 (ii)
and, therefore, we can apply Lemma 2.3 to arrange that the embedding of E
in g,_; is associated to an integral basis of E/E,_;. It follows that By,_ =
GL(n,—1, ©,_1). This will allow us to describe the double coset space By,_1\G,_1/
H,_| exactly as in [9].
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Let A be the set of sequences o = (a1, ..., o) With o; = (a;, b;, ¢;) satisfying the
following properties:

(i) a; > --- > a, is a decreasing sequence of integers.
(i) by +---+ by, = n,_; is a partition of n,_; by positive integers.
(iti) If E/E’ is unramified then ¢; = 1.
(iv) If E/E’ is ramified and «; is odd then b; must be even and ¢; = 1.
(v) If E/E’ is ramified and «; is even then ¢; € {1, 8}, where J is some fixed unit in
E’,_1 whose image in the residue field of E’,_; is a nonsquare.

Assume w,_; € E’,_;, if E/E’ is unramified, and wf_l € E',_y, if E/E’ is ramified.
Given o = (a1, ..., a,) € A, let £(e) = m, and for each index i define a Hermitian
matrix @w* € GL(b;, E,_) as follows:

(a) If E/E’ is unramified then @* = @ |1,

(b) If E/E’ is ramified and a; is odd then @* = o | ((°, )@@ (1))
(c) If E/E’is ramified and «; is even then o* =@ |(1®--- @ 1 D¢).

Here, if X and Y are square matrices, X @ Y denotes the square matrix which, in

block form, is written as (())( 2) Given o € A, define a Hermitian matrix by

w-“ :w-fll @_H@wﬂm
and let
H,=({geG,_ :gmn'g" =o"}.

The following result is due to Jacobowitz [16]. It describes the orbits of the action of
By,—1 on the space X ={x¢€ G,_;:x*=x}, where the action is given by
b - x = bxb*.

LEMMA 12.4. Assume f, = 1. The set {w* : o € A} is a set of representatives for the
By ,—1-orbits in X.

Consider now the action of G,_; on X by g - x = gxg*. For this action, there are
two orbits. The orbit of a given x € X’ is determined by the class of det,_;(x) in
E'"/Ng_ e, (EX,). Let X, be the G,_j-orbit of 5 and let A, ={xe A:
@* e X,}. For each o € A4,, assume we have fixed g, € G._; such that g,ng; = @*.

COROLLARY 12.5. The set {g, : o € Ay} is a set of representatives for the double
coset space By ,_1\Gr—1/H,_;.

Proof. The map g +— gng* gives a bijection between G,_;/H,_; and &X,. This map
is By ,—i-equivariant, where By ,_; acts by left translations on G,_;/H,_; and by
b-x = bxb* on X,. Therefore, we obtain a bijection between By ,_1\G,—1/H,—1 and
the set of By,_i-orbits in X,. We see that the set {g, :a € A,} is a set of repre-
sentatives for the double coset space By,—i1\G,—1/H,—;. Applying Lemma 12.4 now
finishes the proof. O
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We return now to the proof of Proposition 12.1. We are reduced to considering the
case in which r > 2 and f, = 1. Moreover, we only need to show that if g € G,_|—
R,_1H,_; then Hompg ,nepe1(x, 1) = 0. Corollary 12.5 allows us to assume that
g = g, for some a € A,.

LEMMA 12.6. Ifa € A, g« € G—1 — R_1H,_1 and £(«) = 1, then E/E" is ramified,
ne_1 is even and w* = w’_, ((31 (1)) ©---® (91 (]))) for some odd integer a.

Proof. Assume £¢(o) = 1. Suppose E/E’ is unramified. Then, according to the
Assumption in Section 3, either =1 or # = @w,_,. On the other hand, @* = w?_|,
for some integer a. Using the R,_j-equivariant bijection g gng* between
G,—1/H,_1 and X,, we see that g, € R,_;H,_; precisely when @ = g,ng} is in the
R,_1-orbit of . But we have w’_n(w:_|)* = @*, where s is the least integer greater
than or equal to a/2. Therefore, if E/E’ is unramified and #(x) =1 then
erlgocHrfl = R,ﬁle,;l.

Now suppose E/E’ is ramified. Let say that @” is of symplectic type if it has the
form

7 (8 o)ee (o))

for some odd integer a. According to the Assumption in Section 3, either = 1 or
is a nonsquare root of unity. It follows from the odd parity of a in the definition of
symplectic type that # cannot lie in the R,_;-orbit of a matrix of symplectic type.
Now assume we have fixed @* with €(x) = 1 which is not of symplectic type. We
must show that g, € R,_1H,_; or, equivalently, @* lies in the R,_j-orbit of #.
According to Lemma 12.4, the By ,_j-orbits of # and »* must contain either 1 or
1®---®1@0. Since det,_; y = det,_; @”*, either both y and &@* lie in the By,_;-
orbit of 1 or they both lie in the orbit of 1 & --- @ 1 @ J. In either case, our assertion
follows. O

Assume o € A, and £(«) > 1. We will associate to o a group N, which is the uni-
potent radical of a maximal parabolic subgroup of G and then we expose an intimate
relationship between N, and H,. This is used to correlate H,-invariant linear forms
with N,-invariant linear forms. Arguing that the existence of nonzero N,-invariant
linear forms contradicts the supercuspidality of k, we are able to rule out the exis-
tence of nonzero H,-invariant linear forms when £(x) > 1.

The exact definition of N, is as follows. Let

vi = by, [Erfl : F] and vy = (nrfl - bm) [Erfl : F]

Then N, consists of the matrices in G with block matrix form (1; ?.), where u is a

v X v, matrix with entries in F. Let n, be the Lie algebra of N,, that is,
N, =1+ n,. Note that n, C E- .
Weassociate toeach y = (U() € n, anelement § = y — @”)*(w*)" in the Lic algebra
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ba = gabg;l ={zeq: ZD'MZ*(G)'O()_l = —z}

of H,. The map y € n, — J € [), has a number of interesting properties which are
summarized in the following lemma:

LEMMA 12.7. Assume f. =1, « € A, and £(x) > 1.
(1) Ifyen, then
y—j =o' (@) = (8 w“/“*((;v“"’)_1 ) en’,

where o/ = (a1, ..., Up_1)-

2) Ifyen,Nb;thenyetlh,Nbjandy—peninby,.

(3) Ifyemn,Ng* then § b, Ngr.

4 If1<i<r—landl+yeN,NJithenl+peH,NJyand(1+y)(1+p) '€
J7.

Proof. The verifications of all of the above assertions are straightforward, except
for (2) which follows from the identity y — = @'~ “y,y*y,, where

r—1
wr_—ai]H w_m’ 0
Y1 = >
0 1y,

1y 0
V2 = < " > € ng,ﬁ_1 = GL(I’!,A_1, @,‘_]). D

0 o (™)~

LEMMA 12.8. RN N, = (Bo,—1 N Ny)(Jr—1 N Ny) -+ (J1 N Ny).
Proof. If i € {1, ..., r} then the identity

a1 = gl(m, gU[E; : Ei1], Einy))

allows us to view the elements of g, ; as block matrices. It is then evident that we
have the decomposition g;_; = g; @ (g,_; N g;"). Applying this repeatedly, we obtain

G=ar @@ N D Dq_. ()

We can express each x € @ as x = xg + - - - + x,_; according to this decomposition.
Since 11, is defined in a way which respects the various block matrix decompositions,
we know that if x € n, then all of the components x, ..., x,_; will also lie in 11,.

Next, we observe that by, ; = by, i1 @ (bg,, i N giﬁl), whenever i =0,...,r— 1,
and RNB C by,—1 +b¢,_, -2+ -+ by 0. Combining these two facts, yields

RNBC 0o, 4+ g ,anNg- )+ + e 0N ar). (%)

Now suppose y =1+ x € N,N R= N, N RN B. Using Equation (*x), we obtain

an expression y =y +---+y,_i, where y,_; € by,_; and, otherwise, y; € by,,, ;
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ﬂgijl. The clement x has a similar decomposition x = xy+ ---+ x,_;, with
Xo =yo — 1 € by,—1 and, otherwise, x; = y; € by, ;N Q,'L+1~ This decomposition of x
must be identical to the decomposition in Equation (*), according to the uniqueness
of the latter decomposition. Therefore, x,_; € n, N by ,_; and, for i # r — 1, we have
x; € N, N by, ;N a7 ,. This implies:

i+1,1
l+x=14x0+ - +x_1=0+x0) - (1 +x_1)
e (NoNJ1)--- (NN J—1)(Ny N By 1)

and our claim follows. (Note that if 1+u,14+0ve N, then we have (14 u)
(1 +v) =14 u+ v, using block matrix multiplication or the fact that N, is the uni-
potent radical of a maximal parabolic subgroup of G.) O

LEMMA 12.9. Ifiandj are distinct integers with | <i<r—1and 1 <j < r then the
restricted representations x;j|H, N J; and kj|N, N J; are multiples of the trivial repre-
sentations of H, NJ; and N, N J;.

Proof. If j =r we have k,|J; =1, since J; C B;. So let us assume j # r. Suppose
j>i. Then ;|J; is a multiple of the character of J; defined by x — (c;, x). Since
¢ € E',_y and n, C E- |, we have k;|N, NJ; = 1. On the other hand, from Lemma
8.1 (v) we have ¢; € (b, + b_,z_/:)L N E and, since H,NJ; C€(h, Nby,i—1) C 14+ (h,N
byic1) + Doy i1 € O, + Dy, it follows that x;|H, NJ; = 1. Suppose now that j < i.
Then «x;|J; is a multiple of 0; o det;. Since det;(N, NJ;) =1, we have x;|N, NJ; =1
and, since det,(H, NJ;) C U(1, E;/E’j), we have k;|H, N J; = 1.

LEMMA 12.10. If £(2) > 1 then Hompy,ngr(x, 1) C Hompy,nr(x, 1).

Proof. Suppose A € Homy,g(x, 1). We need to show that A € Homy, ngr(x, 1).
According to Lemma 12.8, it suffices to show that /1 is invariant under N, N By ,—i
and N, NJ;, for 1 <i<r—1. Fix x € NyN By,_;. Proposition 2 of [9] implies that:

Ny N By ,—1 C(HyN Boy—1)B1 1.

Thus we may choose x" € H, N By,_; so that x € xX'B; ,_;. Since k,|Bj,—1 =1, we
have x,(x) =x,(x). On the other hand, if j#r then x;(x)=p,(¢(x) =
pA&H(x")) = K;(x), where p; is the Weil representation defined in Section 8. Therefore,
K(x) = k(x’), from which it follows that if 1 is invariant under H, N By ,—; it must
also be invariant under N, N By,—;. Now suppose 1<i<r—1 and fix
x € H,NJ;. According to Lemma 12.7, we may choose x' € H,NJ; such that
x e x'J!. We have k;(x) =x;(x') and, furthermore, Lemma 12.9 implies «;(x) =
ki(x’) = 1, when j # i. Again, we have x(x) = x(x’). Thus 4 must be invariant under
N, N J;. ]

LEMMA 12.11. If £(x) > 1 then Homp,nr(x, 1) = 0.

Proof. Suppose Homp,nr(x, 1) # 0. According to Lemma 12.10, this implies that
Hompy,r(%, 1) # 0. Choose a nonzero linear form A € Homy,nr(x, 1). Define a
linear form on the space of 7 = Indg(;c) by

https://doi.org/10.1023/A:1019667617221 Published online by Cambridge University Press


https://doi.org/10.1023/A:1019667617221

238 JEFFREY HAKIM AND FIONA MURNAGHAN

A= > M)
Xe(N,NR\N,
Then since A € Homy, (w, 1) it must factor through the Jacquet module of = associ-
ated to NV,. Supercuspidality implies that the Jacquet module is zero and thus A = 0.
On the other hand, we can show also that A is nonzero as follows. Choose v € 7 such
that A(v) # 0. Define f by f(g) = k(g)v, when g € R, and f(g) =0 when g € G — R.
Then A(f) = A(v) # 0. Our assertion follows from this contradiction. O

The following is a modification of Proposition 10.1:

LEMMA 12.12. Assume f, = 1, E/E’ is ramified and n,_; is even. Suppose o € A, is

such that
v a 0 1 0 1
e (8 Do ot o
(with n._y/2 summands) for some odd integer a. If i € {1,...,r — 1} and k; = «} for

some special isomorphism v then Hom g, (xc;, 1) = Homynm, (p;, 1) has dimension one.
Proof. Under the stated hypotheses, let W and W be defined by analogy

za(

with W} and W7, replacing §) by 0, = g,hg;'. It follows from Lemma 8.1(v)
that ¢; € E'’ = E._; N},. Using this fact and imitating the proof of Lemma 8.2,
we deduce that W and W, form a polarization of W;. By definition,
Homjnp, (i, 1) = Homynm,(p;, 1). Using a Cayley transform, as in Lemma 10.3,
we see that Homyng, (p;, 1) = HomWi;(p,, 1). Our claim now is a consequence of

Proposition 7.2. OJ

LEMMA 12.13. Under the hypotheses of Lemma 12.12, Hompnp,(x, 1) = 0, regard-
less of which special isomorphisms are chosen to define ki, ..., Kx,_1.

Proof. According to Lemma 12.12, we may fix for each i € {1,...,r — 1} a non-
zero linear form p; € Hom;np, (x;, 1) and, up to scalar multiples, these choices are
unique. Now define a representation p,) of the group Ji;) = J; ---J,—1 on the space
Viy=V1®---® V,_1 by restricting k1 ® --- ® k,—1 to J). We claim that every
(Jiy N H)-invariant linear form on V{, is a multiple of the linear form given on
elementary tensors by

ty(@1 ® - @ vp—1) = py(v1) -+ - 1 (Up—1).

For r = 2, this is obvious. For r > 2, we use induction on r and argue as follows. Let
W be a nonzero (J) N Hy)-invariant linear form on V. For each v; € Vi, define a
linear form '“21 on V(l)) =VQ®---QV,_ by

(r
:u/m(UZ R & Ur—l) = .u/(vl R & Ur—l)'

Let JE,I) =J,---J,_; and define a representation p(l) of ) on Vf,)) by restricting

)
K ® - ®K, 1 to Jm Note that v is (JE,) N H,)- ﬁxed since J N H, C B, and

(r
01 o det; is trivial on Jgr)) N H,. It follows that w; € Homﬂ)nH (P@y» 1. By induction,

there must exist a constant ¢(v;) such that
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f, (02 ® -+ @ V1) = (V1) r(V2) * - fy—y (V1)

In fact, as v varies ¢(v;) defines a linear form on V7.

Note that pg)) is a multiple of the character 1+ x — (cgll,)),x) on Ji, where
cx)) =c¢+ -+ ¢—1. Lemma 8.1(v) implies CS)) € E'._y =E,_N}Y,. Using a Cayley
transform, as in Lemma 10.3, one deduces that pgll)) |J1 N H, = 1. Therefore, if

x e J; N H,, then
c(p1 (o) (v2) -+ - o () = (P (X)) @12 ® -+ - @ 1)
= (K1 (X)) ® -+ ® (K1 (X)v,-1))
=UdW ® Q1)

c(vr) po(v2) -+ - pp—y (V1)

It follows that ¢ € Homy,ng,(p,, 1) and thus is a multiple of x;. We have now shown,
as we claimed above, that every (J,) N H,)-invariant linear form on V) is a multiple
of w).

Now suppose u € Hompgng, (x, 1) is nonzero. For each v, € V., let u, be the linear
form on V) given by p, (11 ® --- @ v,—1) = u(v1 @ - - - ® v;). Since (Jy N H,) C By,
the element v, is fixed by Ji,) N H,. Therefore, p, is (Ji) N H,)-invariant and there-
fore is a multiple of . Say w, = p,(vr) ), for some constant w,(v,). Then p, is a
linear form on V,. Since u is nonzero, we may choose v; € Vi, ..., v, € V, such that
u;(v;) # 0, for all indices i. Suppose x € By,—; N H,. We have

(1) - (0) = p(o1 ® -+ @ vy)
= u((1(x)v1) @ - -+ @ (kr(x)vy))
= py (k1 (1) - - - (6, (X)vy).
Note that we must have u;(x;(x)v;) # 0, for all i and thus we may define

§0) = —— A B ) )
’ (1 (X)v1) - - -y (K1 (X)Vr—1) wu.(vy)

As the notation suggests, y(x) depends on x, but does not depend on vy, ..., v,. The
relation p,(x,(x)v,) = y(x) u,(v,) implies that y is a character of By ,—; N H,. In fact,
since x,|B; -1 N H, is a multiple of the trivial representation, y may be viewed as a
character of the finite symplectic group B, = (By,—1 N Hy)/(B1.,-1 N H,). Therefore,
y is trivial and so u, must be a nonzero element of Homg,, s, (i, 1). The latter
space is identical to Homp (p,, 1), where p, is the cuspidal representation of
G = By,-1/B1,-1 = GL(n,_1, k,—1) associated to x,. Since p, is cuspidal, it must have
a Gelfand—Graev model, that is, an embedding in Ind/gv(lp), where N is the unipotent
radical of a Borel subgroup of G and  is a nondegenerate character. Theorem A of
[21] now implies that p, cannot have an embedding in Indlggy(l). But Frobenius reci-
procity implies

Homyg(p,, Indg (1)) = Homg, (p,, 1).
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Therefore, we deduce that Homgpg (p,, 1) =0, which contradicts the fact that
u,. € Homp (p,, 1) is nonzero. O

Proof of Proposition 12.1. As observed in the remarks at the beginning of this
section, we are reduced to showing that if g € G,—; and Hom gngpe-1(%, 1) # 0 then g
must lie in RH. According to Lemma 12.4, we may assume g = g, for some « € A,,.
But Lemma 12.6 says that if « € A, and g,¢ R._1H,_; then either ¢(x) > 1 or
l(o) =1, E/E" is ramified, n,_; is even and @* = o!_, (91 (])) DD (91 é)) for some
odd integer a. In the former case, we apply Lemma 12.11 and in the latter case we
apply Lemma 12.13. O

13. Factorization of Linear Forms

At this point, the proof of Theorem 3.3 has been reduced to the task of proving that
Hompgny(k, 1) has dimension one. In view of Propositions 10.1 and 12.2, we may
assume » > 1. Our argument involves an induction on the length of the Howe factor-
ization of 0. In particular, we use the fact that 0" = 0¥ ... 0% | is a quasicharacter of
E* which is admissible over E; and has a shorter Howe factorization than that of 0.
Most of the main ideas used in this section are already evident in the proof of
Lemma 12.13. It should be understood in this section that we have fixed, once
and for all, our choices of special isomorphisms. None of the arguments will depend
on these choices. Note that the choice of special isomorphism used to define a given
x; does not affect the definition of the representation space V;, viewed as a set and
not as an R-module. However, it may affect the character 9; occurring in Proposition
10.1. Nonetheless, it turns out that for all « € A, the space Homgng, (i, 1) does not
depend on the choices of special isomorphisms. When g, ¢ RH, this results from
Lemma 12.11 and Lemma 12.13 which establish that Homgng, (x, 1) vanishes. When
g, € RH, we may as well assume g, = 1 and thus H, = H. The main result of this
section, Proposition 13.1, gives a description of Homgny(x, 1) which is independent
of the choices of special isomorphisms.
Let us make the following definitions:

W=® - ®x, RV=EBOV), "W=1 .0V,

For each i with f; > 1, we have defined a linear form A; on V; by 4;(¢) = ¢(1) and
we have shown that /; generates the one-dimensional spaces Hompgnp(x;, 3) =
Hompg,nu(k;, 1). (See Proposition 7.2, Section 8 and Proposition 10.1.) When f; is
even then V; = C and 4; is just the identity map on C. When f; = 1, and thus
i = r, fix a nonzero element

Jr € Hompnp(ic,, §,) = Homp,,_ nu(k,, 1),

where 3, = Hz;ll 9;, where 9; is chosen as in Proposition 10.1. According to Propo-
sition 12.3, such a linear form /, exists and is unique up to scalar multiples. Note
that, for general i € {1 ..., r}, if 3; is nontrivial then the identity Homgny(x;, 3;) =
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Hompg)nu(xi, 1) implies that Hompgp(x;, 1) =0, as Hompgny(x;, 1) C
Hompg,nu (i, 1) and Hompe)na(x;, 1) has dimension one.

PROPOSITION 13.1. The spaces Homgnpy(x, 1) and Hompg)nu(x, 1) are identical
and have dimension 1. Given /. € Hompg)nu(k, 1), there exists a constant ¢ such that

/I(Ul Q- ® Ur) = CAI(“I) T ;L‘)‘(UI')a

forallvy e Vy,...,v, €V,

Proof. Fix A € Hompyg)nu(ic, 1). It suffices to show that 4 has the desired
factorization, since it will then follow that A is (RN H)-invariant. (Note that
Ai € Hompgnp(k;, 3;) implies that 4 € Homgng(k, 1), since H;le 9; = 1.) We will prove
this by induction on r. The case of r =1 is established in Proposition 10.1 and
Proposition 12.2. Therefore, we assume r > 1. Assume, in addition, that 4 is nonzero.

Let us consider first the case in which f, > 1. Note that the characters 9; in Propo-
sition 10.11 are all trivial in this case. Given v; € V;, define a linear form ig) on V)
by the condition /l(vi)(vz ® - Quv,)=Av ®:--®v,) on elementary tensors. Since
B(0W) c By and 0, o det, is trivial on B; N H, it must be that v, is (B(0'") N H)-fixed.
Consequently, the linear form A\ must lie in Hom gy, (", 1). From the induc-
tive assumption, there exists a constant ¢(v;) such that

202 @ - @ v) = (1) Aa(v2) -+ 2y (vy).

Clearly, c is a linear form on Vy. If x € By, N H, then xV(x) acts trivially on V1,
since ¢ = ¢y + -+ ¢, € h and k¥ is a multiple of the character 1 + x — (¢;, x)
on By,. Hence,

c(k1(X)v1) A2(v2) -+ Ae(0r) = A(K1(X)01) ® 2 @ -+ - ® ;)
= A(k1(x)v1) ® - - - @ (re,(x)vy))
=M ® - ®v)
= c(v1) A2(v2) - - - 2 (0r).

Therefore, ¢ € HomgﬁmH(Kl, 1) and thus ¢ is a multiple of ;. Our claim now follows
in the case f, > 1.

Now assume f, =1 Let K, =K1 ® --®K_ be the representation of
By = B(0)---B(0,_1) on the space V() =V ®- - ® V,_1. According to an argu-
ment similar to the one just given above, every (B, N H)-invariant linear form on
V(» must be a multiple of the linear form A, defined by the condition

201 ® -+ @ v,—1) = A1(v1) - - - 1 (Vr_1).

Suppose v, € V.. Since v, is (RN By)-fixed and By C RN By, it follows that v, must
be B,-fixed. We therefore obtain a (B N H)-invariant linear form 4,, on V) by the
condition: 4,(v; ® --- ® v,—1) = A(v; ® - - - ® v,). There must be a constant ¢(v,) such
that A, = c(v,) A¢». In fact, ¢ is a linear form on V.. Now fix vy, ..., v, so that
A1(v1), ..., Ar—1(vs—1) are mnonzero. Then since 1€ Hompypnp(x,1) and
Ai € Homgap(ki, 3;), when 1 <i<r—1, and
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A ® - @)
j-l(vl) e /1,_1(1),,1) '
we deduce that ¢ € Homg,,  ~g(x,, 9). Therefore, according to Proposition 12.3, ¢ is
a multiple of 4, and our claim follows.

C(Ur) =

14. Final Remarks on the Proofs of Theorems 3.3 and 4.4

Suppose 7 is an irreducible, tame supercuspidal representation of G and suppose H is
a unitary group in G. To prove Theorem 4.4, according to the discussion after its
statement, it suffices to show that if 7 is Galois invariant then 7 is H-distinguished.
The representation 7 is induced from some representation k = ky ® - - - ® k, of a sub-
group R, where x and R are defined in Section 8. From Lemma 11.1, we see that we
may assume ko = 1. Then, according to Lemma 11.2 and Proposition 12.1, we have
Homy(n, 1) =2 Homgnp(k, 1). Next, Proposition 13.1 shows that Homgny(x, 1)
has dimension one. Thus, we have shown that if = is Galois invariant then
Homy(n, 1) has dimension one, which completes the proof of Theorem 4.4. More-
over, we have shown that if Homyg(n, 1) is nonzero then it has dimension one. There-
fore, we have also demonstrated Theorem 3.3.

15. Existence of Distinguished Representations

As usual, we assume E/F is a tamely ramified extension of p-adic fields with p # 2.
The purpose of this section is to prove:

PROPOSITION 15.1 There exists a quasicharacter 0 of E* which is admissible over F
and is trivial on U(1, E/E’).

This result will be an immediate consequence of two lemmas proved below and
our approach is a rather straightforward generalization of the techniques used by
Jeff Adler in another setting (see [1]). By the results presented in previous sections
of this paper, the characters in Proposition 15.1 correspond to supercuspidal repre-
sentations 7 such that = ~ o1 and they are therefore distinguished.

Let Ly,...,L, be the maximal proper intermediate fields of E/F (thus
F C L; ¢ E). Define closed subgroups Cy, ..., C, of E by taking C; to be the kernel
of the norm map from E* to L, unless E/L; is ramified in which case C; is the kernel
of the norm map from 1+ %5 to 1 + %, . Then a quasicharacter 6 of E* is admis-
sible precisely when it is nontrivial on all of these subgroups.

Now suppose we are given 1 as in the statement of Lemma 4.3 above. Assume we
are also given an automorphism ¢ of E of order two which agrees with 1 on F. Let E’
be the fixed field of ¢. (Then E’ cannot contain F.)

LEMMA 15.2 ([1], Lemma 6.2). Let A be a topological Abelian group with closed

subgroups Cy, ..., C, and N, such that N does not contain any C;. Then there exists a
character 0 of A which is trivial on N and nontrivial on every C;.
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We will use this when 4 = E*, C; is defined as above and N = U(1, E/E’). This
requires the following lemma.

LEMMA 15.3. U(1, E/E’) does not contain any of the subgroups C;.
Proof. Suppose that U(l, E/E’) D C;, for some i. Let Lo = L;N E’. We define
integers a, b, ¢ = 2 by

a=I[E: L], b=[E :Ly] and c¢=][L;: Lo

Then 26 = ac. As manifolds over Ly, the dimensions of U(1, E/E’) and C; are b and
(a — 1)c. Thus we have a/2 = b/c = a — 1. It follows that a =2 and b = ¢. Choose
ue P —%B,, and let x = (1 +u)/(1 + i) € C;, where i is the image of u under
the nontrivial Galois automorphism of E/L;. Since C; C U(1, E/E’), we must have
1 = Ng/p(x) = x%, and thus x = £1. If x=1 then u =i € L;N E’ = Ly, which is
false. On the other hand, if x = —1 then it follows from the identity 1+ u =
—1 — u that |2| < 1. Hence, our claim follows. O
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