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GX is a code designed to solve the nonlinear gyrokinetic system for low-frequency
turbulence in magnetized plasmas, particularly tokamaks and stellarators. In GX, our
primary motivation and target is a fast gyrokinetic solver that can be used for fusion
reactor design and optimization along with wide-ranging physics exploration. This has
led to several code and algorithm design decisions, specifically chosen to prioritize time to
solution. First, we have used a discretization algorithm that is pseudospectral in the entire
phase space, including a Laguerre–Hermite pseudospectral formulation of velocity space,
which allows for smooth interpolation between coarse gyrofluid-like resolutions and finer
conventional gyrokinetic resolutions and efficient evaluation of a model collision operator.
Additionally, we have built GX to natively target graphics processors (GPUs), which
are among the fastest computational platforms available today. Finally, we have taken
advantage of the reactor-relevant limit of small ρ∗ by using the radially local flux-tube
approach. In this paper we present details about the gyrokinetic system and the numerical
algorithms used in GX to solve the system. We then present several numerical benchmarks
against established gyrokinetic codes in both tokamak and stellarator magnetic geometries
to verify that GX correctly simulates gyrokinetic turbulence in the small ρ∗ limit.
Moreover, we show that the convergence properties of the Laguerre–Hermite spectral
velocity formulation are quite favourable for nonlinear problems of interest. Coupled with
GPU acceleration, which we also investigate with scaling studies, this enables GX to be
able to produce useful turbulence simulations in minutes on one (or a few) GPUs and
higher fidelity results in a few hours using several GPUs. GX is open-source software that
is ready for fusion reactor design studies.
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1. Introduction

Tokamaks and stellarators are fusion reactor concepts that use magnetic fields to
reduce the rate of loss of particles, momentum and energy from the reactor’s toroidal
confinement volume. In general, the confining magnetic fields are produced both by
magnets that surround the toroidal confinement region, and by currents flowing through
the confined plasma. To a great extent, the detailed spatial patterns of magnetic fields
determine whether the operating conditions of a tokamak or stellarator permit sustained
thermonuclear fusion reactions. Consequently, a key step in the design of any tokamak
or stellarator reactor is the evaluation of reactor performance as a function of magnetic
geometry.

Turbulent transport is one major factor that limits reactor performance. Turbulence in the
fuel column is driven by the steep gradients of density, velocity and temperature that exist
between the hot, sometimes rapidly flowing, dense fuel core and the relatively cold, diffuse
environment. Under optimal conditions, the turbulent fluctuations are small-amplitude
perturbations of the steady-state plasma density, temperature, etc. but these fluctuations
nonetheless enhance losses, reduce insulation (by rapidly mixing cold plasma from the
outer region with hot plasma in the reactor core) and generally limit reactor performance
(Abel et al. 2008). Decades of meticulous experiments and direct observations of plasma
fluctuations in many tokamaks and stellarators have established a good understanding of
when and where the turbulence arises, how intense it is, its dominant wavelengths and
frequencies, and so on. The evaluation of the expected performance of any proposed
tokamak or stellarator reactor design therefore essentially requires some way to estimate
properties of the plasma turbulence that will arise as a result of the details of the proposed
magnetic field geometry.

More than two decades of extensive validation campaigns have established that
gyrokinetic theory quantitatively describes this turbulence. Many gyrokinetic simulation
codes (Parker, Lee & Santoro 1993; Kotschenreuther, Rewoldt & Tang 1995; Dorland
et al. 2000; Jenko 2000; Lin et al. 2000; Jost et al. 2001; Candy & Waltz 2003; Idomura,
Tokuda & Kishimoto 2003; Watanabe & Sugama 2005; Wang et al. 2006; Jolliet et al.
2007; Idomura et al. 2008; Peeters et al. 2009; Candy, Belli & Bravenec 2016; Barnes,
Parra & Landreman 2019; Lanti et al. 2020) have been used to study, test and ultimately
validate our understanding of how plasma turbulence depends on the magnetic geometry
(see e.g. Belli, Hammett & Dorland (2008), Marinoni et al. (2009), Mynick, Xanthopoulos
& Boozer (2009) and White (2019)). Because there are many algorithmic trade-offs to
consider when setting up a turbulence simulation code, no single gyrokinetic code is
‘best’ for these purposes. In this paper we present GX, a fast gyrokinetic solver where our
primary motivations and targets are fusion reactor design, optimization and wide-ranging
physics exploration at reactor scales.

What does this mean in practice? It means primarily that we have prioritized time
to solution (together with quantitative uncertainty estimates) over comprehensiveness
and full realism, and that we aim to provide simple runtime control parameters to shift
smoothly from very fast but relatively less accurate calculations such as are of most
value in ‘outer loops’ of a design activity, to more comprehensive, ‘standard’ results
that are (much) more expensive to evaluate. Moreover, instead of retrofitting an existing
CPU-based code, we started from scratch, with every algorithmic design decision made to
target graphics processors (GPUs), which are among the fastest computational platforms
available today, with NVIDIA or AMD GPUs providing most of the computer power for
seven of the top 10 fastest supercomputers in the world (Strohmaier et al. 2022). Finally,
since we are interested in reactors specifically, we focused on the reactor limit of small
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ρ∗ ≡ ρi/R, where ρi is the typical radius of gyration of an ion in the plasma, and R is
the major radius of the device. In the small ρ∗ limit, there are major simplifications to
be had, corresponding physically to the opening of a wide ‘gap’ between typical radial
correlation lengths λcorr ∼ ρi of the turbulence and the radial gradient scale lengths L ∼ R.
In contrast, present-day devices are not in the small ρ∗ limit, so turbulent eddies can
be large enough to sample variations in the driving gradients and other relevant plasma
properties. Additionally, because stellarators are non-axisymmetric, they have irreducible
geometric variation within a given flux surface that makes the small ρ∗ limit more
challenging. The turbulent correlation length λcorr must also be small compared with the
distance that geometric differences within the flux surface change significantly. This limit
exists for small enough ρ∗, but it is roughly more challenging by a factor of the aspect ratio
R/a, where a is the minor radius of the torus. To account for the ‘mesoscale’ phenomena
that may result and to complete the many quantitative validation studies that have been
undertaken, many teams chose algorithms that handle radially non-local physics (often
called ‘global’ codes). Codes that take advantage of the simpler, radially local, small ρ∗
limit are known as ‘flux-tube’ codes, and our new code GX is in this category. Several
flux-tube turbulence calculations can then be coupled together with a transport solver
to obtain transport time scale profile evolution on the device scale (Barnes et al. 2009)
or steady-state profiles (Candy et al. 2009). This multiscale approach is asymptotically
valid in the limit of vanishing ρ∗ (Abel et al. 2013). Recent work has also shown a
novel approach to include radially global effects within the flux-tube formulation (Parra &
Barnes 2015; St-Onge, Barnes & Parra 2022).

To verify that GX correctly simulates gyrokinetic turbulence in the small ρ∗ limit, we
present several tokamak and stellarator benchmarks of GX with established flux-tube
gyrokinetic simulation codes. Note that while numerical verification (benchmarking) is
code-specific, the extensive history of experimental validation of the gyrokinetic model is
inherited by any verified gyrokinetic code and need not be repeated. GX is open-source
scientific software1 that is therefore ready for immediate design studies. Below, we show
that GX can produce useful turbulence simulations in minutes using one (or a few) GPUs
and higher fidelity results in a few hours using several GPUs.

Our algorithmic approach to solving the gyrokinetic system is based in pseudospectral
methods. There is a long history of the use of Fourier pseudospectral methods in
turbulence simulations to discretize the configuration space, especially in flux-tube
gyrokinetic codes like GS2 (Kotschenreuther et al. 1995; Dorland et al. 2000),
(non-global) GENE (Jenko & Dorland 2001), CGYRO (Candy et al. 2016) and stella
(Barnes et al. 2019). These methods have the advantage of spectrally accurate evaluation
of derivatives. Building on this, we have developed a pseudospectral formulation for
discretizing the velocity space in the gyrokinetic system using a Laguerre–Hermite
spectral basis (Mandell, Dorland & Landreman 2018). Projecting the (perturbed)
gyrokinetic distribution function onto this basis produces spectral modes that correspond
to (gyro)fluid moment quantities (like density, parallel momentum, etc.), so that
projection of the gyrokinetic equation corresponds to a gyrofluid system with arbitrarily
many moments. In the lowest-resolution limit the model retains critical conservation
laws (density, momentum, energy and free energy) and corresponds precisely to the
well-established gyrofluid models of Dorland & Hammett (1993), Beer & Hammett (1996)
and Snyder & Hammett (2001) when their Landau-fluid closures are employed (Hammett
& Perkins 1990; Beer & Hammett 1996). At moderate velocity-space resolution, one can

1The source code is available at https://bitbucket.org/gyrokinetics/gx. Documentation is available at https://gx.
readthedocs.io/en/latest.
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extend the Landau-fluid closure approach to accommodate more moments (Smith 1997) or
use ‘hypercollisions’ to close the moment hierarchy. At high velocity-space resolution, the
model can retain a similar number of degrees of freedom as typically used in conventional
gyrokinetic Eulerian models. A key advantage of our approach is therefore the flexibility to
interpolate between these limits, depending on the desired balance of accuracy and speed
for a particular calculation. Additionally, our Fourier–Laguerre–Hermite pseudospectral
algorithm is a good fit for modern GPU computing: the algorithm relies heavily on
fast transform methods that are well-optimized on GPUs, and the memory requirements
of spectral algorithms are low enough to fit a problem onto one or a few GPUs.
Several gyrokinetic codes have been ported to GPUs in recent years to target modern
heterogeneous computing platforms (Madduri et al. 2011; D’Azevedo et al. 2018; Sfiligoi,
Candy & Kostuk 2018; Germaschewski et al. 2021; Ohana et al. 2021; Belli et al. 2022).

Similar works on Laguerre–Hermite spectral methods for drift kinetics (Jorge, Ricci &
Loureiro 2017) and gyrokinetics (Jorge, Frei & Ricci 2019; Frei, Jorge & Ricci 2020; Frei
et al. 2021; Frei, Ernst & Ricci 2022a; Frei, Hoffmann & Ricci 2022b; Hoffmann, Frei
& Ricci 2023a,b) have shown promising results and can be viewed as complementary
to our work. In particular, extensive linear benchmarks and convergence studies have
been performed (Frei et al. 2022b, 2023), showing that the Laguerre–Hermite approach
can be used successfully to model ion temperature gradient (ITG), trapped electron,
kinetic ballooning and microtearing modes. Jorge et al. (2019), Frei et al. (2021, 2022a,b)
develop, implement and study advanced gyrokinetic collision operators by leveraging
the Laguerre–Hermite spectral approach. Nonlinear studies in Z-pinch (Hoffmann et al.
2023b) and full toroidal (Hoffmann et al. 2023a) geometry have also now been performed,
showing that accurate nonlinear results, including the Dimits shift (Dimits et al. 2000), can
be obtained with fewer basis functions than typically necessary for convergence of linear
instabilities. Additionally, Frei et al. (2020) developed a Laguerre–Hermite projection of
the full-f gyrokinetic system to target the periphery of tokamaks, and Frei, Mencke &
Ricci (2024) implemented the full-f system in slab geometry for modelling linear devices.

The remainder of this paper is organized as follows. In § 2 we describe the gyrokinetic
model. We describe the Fourier–Laguerre–Hermite pseudospectral formulation of the
gyrokinetic system in § 4. Section 3 describes the magnetic geometry and coordinates used
for tokamaks and stellarators. The time discretization scheme is described in § 5. In § 6,
several benchmarks are presented comparing GX with established flux-tube gyrokinetic
codes (GS2, GENE and stella) for linear and nonlinear cases in tokamak and stellarator
geometries. Section 7 details the convergence properties of the Laguerre–Hermite basis for
nonlinear calculations, along with details about GPU performance and multi-GPU scaling.
Finally, we present the conclusions and future work in § 8.

2. Gyrokinetic model equations

In GX we solve the δf gyrokinetic system. The literature of gyrokinetic theory is vast;
our notation and philosophy follow four particular references: Antonsen & Lane (1980),
Frieman & Chen (1982), Barnes et al. (2010) and Abel et al. (2013). The velocity space
in gyrokinetic theory is two-dimensional because the particles gyrate very rapidly around
their guiding centre position, averaging over any field variations that are encountered in
one gyration period so that we can ignore the instantaneous position of the particle around
its gyro-orbit. We choose to write the gyrokinetic equation in (v‖, μ) coordinates, where v‖
is the speed in the direction of the magnetic field and μ ≡ v2

⊥/2B is the magnetic moment,
where v⊥ is the speed perpendicular to the magnetic field and B is the local magnetic
field strength. Using μ as a coordinate takes advantage of the fact that μ is a gyrokinetic
adiabatic invariant. These coordinates are not optimal for resolving the boundary layers
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in velocity that occur in linear gyrokinetic theory where particle orbits are ‘trapped’ in
magnetic wells on one side of the boundary layer and ‘passing’ (untrapped) on the other.
To resolve the sharp boundary layers it is better to use energy and pitch angle as one’s
velocity space coordinates (as is done in the GS2 code, for example, which optimizes its
velocity space grid to enhance resolution near the trapped–passing boundary), but this
leads to a considerably more complicated code implementation, particularly for stellarator
applications, because of the need to carefully handle turning points in each magnetic well.
However, in a sufficiently turbulent plasma, these boundary layers will be broadened,
reducing the need for coordinates optimized for a sharp boundary. Thus, we have selected
the coordinates that lead to simpler, more efficient code because we are particularly
interested in calculating nonlinear turbulence properties (as opposed to linear stability
conditions). These coordinates are also used in GENE and stella.

Following (144) of Abel et al. (2013), but expressing the equations in (v‖, μ)
velocity coordinates, neglecting strong equilibrium flows and normalizing all quantities
to non-dimensional form (see appendix A), we have

∂hs

∂t
+
[
vtsv‖b̂ + 〈vχ 〉R + τs

Zs
vd

]
· ∇hs − vtsμ(b̂ · ∇B)

∂hs

∂v‖

= Zs

τs
FMs

∂〈χ〉R

∂t
− 〈vχ 〉R · ∇|EFMs + C(hs). (2.1)

Here, we have split the total distribution function as Fs = F0s + δfs = FMs(1 − ZsΦ/τs)+
hs, with (Zs/τs)FMsΦ(r, t) and hs(R, v‖, μ, t) the Boltzmann and non-Boltzmann parts of
the δfs perturbation, respectively. The equilibrium distribution function is a Maxwellian in
energy E (which we take to have no flows),

F0s = FMs = ns

(2πv2
ts)

3/2
e−E = ns

(2πv2
ts)

3/2
e−v2

‖/2−μB, (2.2)

and the fluctuating gyroaveraged distribution function satisfies hs 	 FMs. Note that in
(2.1), the gradient of FM at constant energy is denoted ∇|EFM. We also have the following
dimensionless species parameters: equilibrium density ns; equilibrium temperature τs;
mass ms, charge Zs; thermal velocity vts = √

τs/ms.
The distribution function describes the probability of finding a particle of species

s with gyrocentre position R, velocity parallel to the magnetic field v‖ and magnetic
moment μ = v2

⊥/2B, where v⊥ is the speed in the plane perpendicular to the magnetic
field. The equilibrium magnetic field B has magnitude B = B(r) and direction b̂ = B/B,
and magnetic fluctuations are given by δB = δB⊥ + δB‖b̂, where the perpendicular and
parallel components can be expressed in terms of the vector potential A = A⊥ + A‖b̂
via δB⊥ = [∇ × A]⊥ �∇A‖ × b̂ and δB‖ = b̂ · (∇ × A⊥), respectively. The gyrokinetic
potential χ(r, t) is composed of the electrostatic potential Φ(r, t) and the vector potential
A(r, t),

χ(r, v, t) = Φ(r, t)− vtsv · A(r, t), (2.3)

and is a function of particle position r, where r = R + ρ so that ρ is the gyroradius vector
that rotates at the gyrofrequency Ω and points from the gyrocentre (at R) to the particle
(at r). In (2.1) gyroangle dependence is eliminated by gyroaveraging the potentials at fixed
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gyrocentre position R, denoted by

〈χ〉R = 〈Φ〉R − vtsv‖〈A‖〉R − vts〈v⊥ · A⊥〉R, (2.4)

along with the corresponding gyroaveraged fluctuating velocity 〈vχ 〉R = b̂ × ∇〈χ〉R. For
most applications, the plasma β is low and the magnetic drift velocity is vd = b̂ × (v2

‖ b̂ ·
∇b̂ + μ∇B)/B. GX normally uses this low-β approximation, but the full expression for
the magnetic drifts can be selected at runtime.

The collision operator is denoted by C(h). Here we will follow Mandell et al. (2018)
and take the Dougherty model collision operator (Dougherty 1964). Expressed in Fourier
space, the like-species Dougherty collision operator is given by

Css(hs) = νss

{[
∂

∂v‖

(
∂

∂v‖
+ v‖

)
+ 2

∂

∂μ

(
μ

B
∂

∂μ
+ μ

)
+ k2

⊥ρ
2
s

]
hs

+ (T̄s[(v2
‖ − 1)+ 2(μB − 1)]J0s + [ū‖sv‖J0s + ū⊥sv⊥J1s])FMs

}
, (2.5)

with the field-particle terms given by

ū‖s ≡
∫

d3vJ0sv‖hs, (2.6)

ū⊥s ≡
∫

d3vJ1sv⊥hs, (2.7)

T̄s = 1
3
(T̄‖s + 2T̄⊥s) ≡ 1

3

∫
d3v[(v2

‖ − 1)+ 2(μB − 1)]J0shs. (2.8)

Here we have the Bessel functions J0s = J0(αs) and J1s = J1(αs) that result from the
Fourier transform of gyroaverage operators, with αs = √

2μBbs, bs = k2
⊥ρ

2
s and ρs =

msvts/(ZsB) is the normalized gyroradius for species s.
The Dougherty collision operator is a good physical model of like-particle collisions,

which are important to gyrokinetic dynamics. It captures the physics of the collision
operator presented in Abel et al. (2008), except that our collision frequency does not have
velocity dependence, and there is no difference between the rates of pitch-angle scattering
and slowing down. It is also attractive because its Laguerre–Hermite transform is sparse.
More realistic collision operators could be included in our model in the future, such as
those in Frei et al. (2021, 2022a), which employs a similar Laguerre–Hermite spectral
velocity approach as ours. The Dougherty model operator can also be extended to multiple
species (Francisquez et al. 2022).

The electromagnetic potentials are determined by the gyrokinetic equivalent of
Maxwell’s equations. The electrostatic potential is determined by the quasineutrality
equation, ∑

s

Z2
s ns

τs
Φ =

∑
s

Zsns

∫
d3v 〈hs〉r, (2.9)

where note that here the gyroaverage on the right-hand side is taken at constant particle
position r. The parallel magnetic vector potential is determined by the parallel component
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of Ampère’s law,

−∇2
⊥A‖=βref

2

∑
s

Zsnsvts

∫
d3v v‖〈hs〉r, (2.10)

with βref = 8πnrefTref/B2
N the plasma beta of the reference species. The perpendicular

component of Ampère’s law determines the perpendicular component of the vector
potential, but is more conveniently expressed in terms of the parallel magnetic fluctuation,
δB‖,

∇2
⊥δB‖=−βref

2B
∇⊥∇⊥ :

∑
s

nsτs

∫
d3v 〈v⊥v⊥hs〉r, (2.11)

where the double dot product is defined as A : B = ∑
ij AijBij.

Finally, note that we can define an auxiliary distribution function

gs = hs − Zs

τs
〈χ〉RFMs, (2.12)

which eliminates the time derivative on the right-hand side of (2.1), resulting in

∂gs

∂t
+
[
vtsv‖b̂ + 〈vχ 〉R + τs

Zs
vd

]
· ∇hs − vtsμ(b̂ · ∇B)

∂hs

∂v‖
= −〈vχ 〉R · ∇|EFMs + C(hs).

(2.13)
This is the form of the gyrokinetic equation that we will solve numerically.

3. Magnetic geometry and choice of coordinates

The geometric structure of a tokamak’s magnetic field is axisymmetric, meaning there
are no geometric variations that distinguish points at different toroidal angles. Most (but
not all) gyrokinetic studies have focused on the axisymmetric limit. Stellarator magnetic
fields are not axisymmetric. We have selected coordinates that are convenient for either
case. Our spatial coordinates are aligned with the local background magnetic field so
that we are able to efficiently resolve perturbations whose parallel wavelengths λ‖ are
O(ρ−1

∗ ) longer than the wavelengths λ⊥, perpendicular to the local magnetic field; these
field-line-following coordinates reduce the number of grid points required to resolve the
turbulence by a factor of ρ∗. In the case of stellarators, the lack of axisymmetry implies that
even when one can describe the turbulence successfully as radially local, it might happen
that the geometric variations in the binormal direction (within the magnetic surface)
are not numerically well-separated from λ⊥, even for reactor-relevant values of ρ∗. We
have chosen not to address this possibility; we assume that ρ∗ is small enough that the
turbulence within each flux tube in a given flux surface is not affected by turbulence
occurring in a different flux tube within the same surface.

In this section, we will start with the general form of a divergence-free magnetic field,
define key important quantities, various coordinate systems and briefly explain how they
are used to obtain the geometry-dependent coefficients in the gyrokinetic model. Please
refer to appendix E for specific mathematical details.

3.1. Axisymmetric configurations (tokamaks)
We start from the Clebsch form (D’haeseleer et al. 1991) for the equilibrium magnetic
field:

B = ∇α × ∇ψ. (3.1)
We restrict our attention to solutions whose magnetic field lines lie on closed nested
toroidal surfaces, known as flux surfaces. Here, flux surfaces are labelled by ψ , a

https://doi.org/10.1017/S0022377824000631 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000631


8 N.R. Mandell and others

radial-like coordinate. On each surface, the binormal coordinate α is a field-line label
such that a line of constant α gives the path of a magnetic field line.

For tokamaks, we choose to define the coordinate ψ to be the enclosed poloidal flux
divided by 2π,

ψ = Ψpol

2π
= 1
(2π)2

∫
V

dτB · ∇θ, (3.2)

and the binormal coordinate α is chosen to be

α = φ − q(ψ)θ, (3.3)

where φ and θ are ‘straight-field-line’ toroidal and poloidal angles, respectively, and

q(ψ) = 1
(2π)2

∫ 2π

0
dφ
∫ 2π

0
dθ

B · ∇φ
B · ∇θ , (3.4)

is the safety factor.

3.2. Non-axisymmetric configurations (stellarators)
For stellarators, we find it more convenient to write the magnetic field in Clebsch form as

B = ∇ψ × ∇α, (3.5)

with the toroidal flux chosen as the radial-like coordinate,

ψ = Ψtor

2π
= 1
(2π)2

∫
V

dτB · ∇φ, (3.6)

and the binormal coordinate chosen to be

α = θ − ι(ψ)φ. (3.7)

Here, ι(ψ) = 1/q(ψ) is the rotational transform, and once again φ and θ are
‘straight-field-line’ toroidal and poloidal angles, respectively.

3.3. Field-aligned coordinate system
Since GX is a local flux-tube code, it is advantageous to use a field-aligned coordinate
system. Therefore, we introduce the field-aligned, flux-tube coordinates (x, y, z) used by
Beer, Cowley & Hammett (1995). Here, x = x(ψ) is a radial coordinate, y = y(α) is a
binormal coordinate, and z = z(θ) is a field-line-following coordinate that parametrizes
distance along the equilibrium magnetic field using the poloidal angle θ . The coordinates
x and y are normalized forms of ψ and α such that

x = dx
dψ
(ψ − ψ0), (3.8)

y = dy
dα
(α − α0), (3.9)

where ψ0 and α0 are the values of equilibrium ψ and α at the centre of the flux tube.
The coordinates (x, y, z) have units of length. In the local flux-tube, x and y vary on the
length scale of the gyroradius whereas z varies on the length scale of the machine size.
We require an equispaced coordinate z along the field line, which is needed to utilize the
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Fourier spectral treatment of the parallel derivative terms in the gyrokinetic equation. The
procedure for obtaining an equispaced, equal-arc z coordinate is provided in appendix E.

Upon defining the field-aligned coordinate system, we can calculate the geometric
coefficients required to compute the various terms in the gyrokinetic equation, as
described briefly in appendix E. For a three-dimensional equilibrium, GX can read
the output data generated by the VMEC code (Hirshman & Whitson 1983). For a
two-dimensional axisymmetric equilibrium, GX can use a local equilibrium defined using
a Miller parametrization (Miller et al. 1998). The user also has the option to work with
simpler geometries like a slab or a cylindrical Z-pinch. Besides these native geometry
options, GX can also read geometry data generated by the geometry module in the GS2
code; for example, this enables the capability to use experimentally relevant geometry
derived from an EFIT equilibrium reconstruction.

4. Fourier–Laguerre–Hermite pseudospectral formulation

Here we present the Fourier–Laguerre–Hermite formulation of the electromagnetic
δf gyrokinetic system. Following Mandell et al. (2018), and extending to include
electromagnetic fluctuations, we solve the gyrokinetic equation by taking a Fourier
transform in the perpendicular directions (which we will call x and y; the parallel direction
will be z), a Laguerre transform in μB, and a Hermite transform in v‖. Note that there are
no major disadvantages to the choice of μB versus μ as a coordinate, and our choice to
use μB is natural because the Laguerre weight function becomes exp(−μB) just like in
the Maxwellian distribution.

We define the Fourier–Laguerre–Hermite transform of the distribution function hs for
species s as

L�HmFk⊥hs = 2π

∫ ∞

0
dμBψ�(μB)

∫ ∞

−∞
dv‖φm(v‖)

∫
dx dy e−ik⊥·Rhs(x, y, z, v‖, μ)

≡ Hs
�,m(k⊥, z), (4.1)

Hs
�,m(k⊥, z) = 2π

∫ ∞

0
dμBψ�(μB)

∫ ∞

−∞
dv‖φm(v‖)

∫
dx dy e−ik⊥·Rhs(x, y, z, v‖, μ),

(4.2)
where k⊥ = kx∇x + ky∇y is the perpendicular wavenumber vector, ψ�(μB) =
(−1)�L�(μB) with

L�(x) = ex

�!
d�

dx�
x� e−x, (4.3)

the Laguerre polynomials, and φm(v‖) = Hem(v‖)/
√

m! with

Hem(x) = (−1)m ex2/2 dm

dxm
e−x2/2, (4.4)

the probabilists’ Hermite polynomials. In Fourier space, gyroaveraging operations
(whether at constant R or constant r) simply become multiplications by Bessel functions,
so that the Fourier transform of the gyroaveraged potential is

Fk⊥〈χ〉R = J0sΦ(k⊥, z)− vtsv‖J0sA‖(k⊥, z)+ τs

Zs
2μB

J1s

αs

δB‖(k⊥, z)
B

. (4.5)
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Weighting the gyroaveraged potential by a Maxwellian and Laguerre–Hermite
transforming results in

L�HmFk⊥〈χ〉RFMs = J s
� Φδm0 − vtsJ s

� A‖δm1 + τs

Zs
(J s

� + J s
�−1)

δB‖
B
δm0, (4.6)

with

J s
� ≡

∫ ∞

0
dμBψ�J0s(

√
2μBbs) e−μB = 1

�!

(
−bs

2

)�
e−bs/2 (� ≥ 0), (4.7)

and J s
� ≡ 0 when � < 0 or when � ≥ N�, with N� the number of evolved Laguerre

moments. The Fourier–Laguerre–Hermite transform of the auxiliary distribution function
g is then

L�HmFk⊥gs ≡ Gs
�,m(k⊥, z) = Hs

�,m − Zs

τs
J s
� Φδm0 + Zsvts

τs
J s
� A‖δm1 − (J s

� + J s
�−1)

δB‖
B
δm0.

(4.8)
The Fourier–Laguerre–Hermite transform of (2.13) then gives

∂Gs
�,m

∂t
+ N s

�,m + vts∇‖(
√

m + 1Hs
�,m+1 + √

mHs
�,m−1)

+ vts[−(�+ 1)
√

m + 1Hs
�,m+1 − �

√
m + 1Hs

�−1,m+1

+ �
√

mHs
�,m−1 + (�+ 1)

√
mHs

�+1,m−1]∇‖ ln B

+ i
τs

Zs
ωκd [

√
(m + 1)(m + 2)Hs

�,m+2 + (2m + 1)Hs
�,m +

√
m(m − 1)Hs

�,m−2]

+ i
τs

Zs
ω∇B

d [(�+ 1)Hs
�+1,m + (2�+ 1)Hs

�,m + �Hs
�−1,m]

= Ds
�,m + Css

�,m. (4.9)

Parallel convection, including bounce motion induced by magnetic trapping in the
equilibrium magnetic field, is described by the terms proportional to ∇‖ ≡ b̂ · ∇ =
(b̂ · ∇z)∂/∂z. The ∇‖Hs

�,m terms are evaluated spectrally by Fourier transforming in z,

∇‖Hs
�,m ≡ (b̂ · ∇z)F−1

kz
[ikzFkz H

s
�,m], (4.10)

with

Fkz H
s
�,m =

∫
dz e−ikzzHs

�,m(z). (4.11)

Note that a spectral evaluation of this term requires an equispaced grid in z, and we also
require the z coordinate to be an equal-arclength coordinate so that (b̂ · ∇z) is a constant
(see § E.1) to avoid a convolution in (4.10). Additional details about this operation related
to boundary conditions are given in § 4.2. Toroidicity gives rise to the terms proportional
to the curvature drift operator iωκd = (1/B)b̂ × (b̂ · ∇b̂) · ik⊥ and the ∇B drift operator
iω∇B

d = (1/B2)b̂ × ∇B · ik⊥ is the ∇B. Drive terms from equilibrium gradients, denoted
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by D�,m, are given by

Ds
�,m=0 = iω∗

[
1

Lns
J s
� + 1

LTs
[�J s

�−1 + 2�J s
� + (�+ 1)J s

�+1]
]
Φ

+ τs

Zs
iω∗

[
1

Lns
[J s

� + J s
�−1] + 1

LTs
[�J s

�−2+3�J s
�−1 + (3�+ 1)J s

� +(�+ 1)J s
�+1]

]
δB‖
B
,

Ds
�,m=1 = −vtsiω∗

[
1

Lns
J s
� + 1

LTs
[�J s

�−1 + (2�+ 1)J s
� + (�+ 1)J s

�+1]
]

A‖,

Ds
�,m=2 = 1√

2
iω∗

1
LTs

J s
� Φ + τs

Zs

1√
2

iω∗
1

LTs
[J s

� + J s
�−1]

δB‖
B
,

Ds
�,m=3 = −vts

√
3
2

iω∗
1

LTs
J s
� A‖,

Ds
�,m>3 = 0, (4.12)

where iω∗ ≡ −∇x · b̂ × ik⊥ = iky, and Lns and LTs are the normalized density and
temperature gradient scale lengths, respectively.

The like-species collision terms are given by

Css
�,0 = −νss(bs + 2�+ 0)Hs

�,0

+ νss(
√

bs (J s
� + J s

�−1)ū⊥s + 2[�J s
�−1 + 2�J s

� + (�+ 1)J s
�+1]T̄s),

Css
�,1 = −νss(bs + 2�+ 1)Hs

�,1 + νssJ s
� ū‖s,

Css
�,2 = −νss(b + 2�+ 2)Hs

�,2 + νss

√
2J s

� T̄s,

Css
�,m = −νss(bs + 2�+ m)Hs

�,m, (m > 2), (4.13)

with the field-particle terms given by

ū‖s =
∫

d3vJ0sv‖hs =
N�∑
�=0

J s
� Hs

�,1, (4.14)

ū⊥s =
∫

d3vJ1sv⊥hs =
√

bs

N�∑
�=0

(J s
� + J s

�−1)H
s
�,0, (4.15)

T̄‖s =
∫

d3vJ0s(v
2
‖ − 1)hs =

√
2

N�∑
�=0

J s
� Hs

�,2, (4.16)

T̄⊥s =
∫

d3vJ0s(μB − 1)hs =
N�∑
�=0

[�J s
�−1 + 2�J s

� + (�+ 1)J s
�+1]Hs

�,0, (4.17)

T̄s = 1
3
(T̄‖+2T̄⊥). (4.18)

The nonlinear terms are evaluated pseudospectrally in (x, y, z, μB,m) space to avoid
convolutions in both Fourier and Laguerre coefficients as (Mandell et al. 2018)

N s
�,m = L�HmFk⊥[〈vχ 〉R · ∇hs], (4.19)

where the complete pseudospectral expression for this term is given in appendix D.
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Taking the Fourier–Laguerre–Hermite transform of the field equations, the
quasineutrality equation, (2.9), becomes

∑
s

Z2
s ns

τs
Φ =

∑
s

Zsns

∫
d3vJ0shs =

∑
s

Zsns

N�∑
�=0

J s
� Hs

�,0, (4.20)

the parallel component of Ampère’s law, (2.10), becomes

k2
⊥A‖=βref

2

∑
s

Zsnsvts

∫
d3vv‖J0shs = βref

2

∑
s

Zsnsvts

N�∑
�=0

J s
� Hs

�,1 (4.21)

and the perpendicular component of Ampère’s law, (2.11), becomes

δB‖
B

= − βref

2B2

∑
s

nsτs

∫
d3v2μB

J1s

αs
hs = − βref

2B2

∑
s

nsτs

N�∑
�=0

(J s
� + J s

�−1)H
s
�,0. (4.22)

To solve these field equations numerically, it is more convenient to express them in terms
of G rather than H, which results in

∑
s

Z2
s ns

τs

(
1 −

N�∑
�=0

(J s
� )

2

)
Φ −

∑
s

Zsns

N�∑
�=0

J s
� (J s

� + J s
�−1)

δB‖
B

=
∑

s

Zsns

N�∑
�=0

J s
� Gs

�,0,

(4.23)(
k2

⊥ + βref

2

∑
s

Z2
s ns

ms

N�∑
�=0

(J s
� )

2

)
A‖=βref

2

∑
s

Zsnsvts

N�∑
�=0

J s
� Gs

�,1, (4.24)

βref

2B2

∑
s

Zsns

N�∑
�=0

J s
� (J s

� + J s
�−1)Φ +

(
1 + βref

2B2

∑
s

nsτs

N�∑
�=0

(J s
� + J s

�−1)
2

)
δB‖
B

= − βref

2B2

∑
s

nsτs

N�∑
�=0

(J s
� + J s

�−1)G
s
�,0. (4.25)

Note that while the sum
∑
(J s

� )
2 could be computed analytically in the N� → ∞ limit as

Γ0(b) = I0(b) e−b, with I0 the modified Bessel function of the first kind, doing so breaks
the energetic consistency of the equations (Mandell et al. 2018); thus these terms should
be evaluated as truncated sums.

4.1. Hyperdissipation and closure
Grid-scale dissipation terms are used to ensure numerical stability and robustness. For
dissipation in configuration space, we employ a hyperviscosity term of the standard form(

∂G�,m

∂t

)
hyperviscosity

= −D
(

k2
⊥

k2
⊥,max

)n

G�,m, (4.26)

where k⊥,max is the largest dealiased perpendicular wavenumber in the simulation, and
typical values of the variable parameters for nonlinear simulations are D = 0.05 and
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n = 2. This provides a sink at the shortest wavelengths in the domain, which can
be useful in nonlinear simulations to avoid spectral pileup. Unlike in other Eulerian
gyrokinetic codes which include dissipation along the parallel direction via upwinding,
(Kotschenreuther et al. 1995; Jenko & Dorland 2001; Candy et al. 2016; Barnes et al.
2019), the spectral discretization scheme used for the parallel direction in GX does
not itself introduce dissipation in the parallel direction. The hypercollision operator and
the parallel boundary conditions discussed below introduce some parallel dissipation. A
standard parallel hyperdissipation operator of the form k2n

‖ could also be included, but we
find that this is not necessary for the linear and nonlinear cases that we consider.

Fine-scale structure in velocity space must also be regulated. The Dougherty collision
operator fulfils this purpose by acting increasingly strongly on higher Laguerre and
Hermite moments, limiting their amplitude. Thus, for a given collisionality, there is a
physical cutoff at some �cut and mcut beyond which fine scales in velocity space are
completely wiped out by collisions. At this point, closure of the Laguerre–Hermite
moment series by simple truncation (setting G�,m = 0 for � ≥ �cut or m ≥ mcut) is justified.
This is the simplest high-resolution closure, but not the only option. One can also obtain
an asymptotically correct collisional closure by assuming the collision term becomes
dominant in the unresolved moment equations (Zocco, Helander & Connor 2015; Loureiro
et al. 2016; Jorge et al. 2017; Frei et al. 2022b).

In the limit of low collisionality or lower Laguerre–Hermite resolution, however,
the closure situation is more complicated. Unresolved moments are not expected to be
negligible at collisionalities of interest, so closure by truncation will generally give poor
results. One possible approach is to follow the collisionless closure approach pioneered
by Hammett & Perkins (1990), which was used and extended in the gyrofluid models
of Dorland & Hammett (1993), Beer & Hammett (1996), Snyder & Hammett (2001)
and Smith (1997) to model parallel, toroidal and nonlinear finite-Larmor-radius (FLR)
phase mixing. However, the development of generalized closures in toroidal geometry
for a system with an arbitrary number of moments is complicated and beyond the scope
of the current work. Instead, we have found that employing a hypercollision operator
that provides a sink at large m allows well-behaved results even with simple closure by
truncation at relatively low resolution. The operator takes the generic form(

∂G�,m

∂t

)
hyp-coll

= −νhypmpG�,m (m > 2). (4.27)

We ensure that the operator conserves density, momentum and energy by only operating
on moments with m > 2. Similar hypercollision operators (in Hermite space only) have
been used in other contexts (Parker 2015; Parker & Dellar 2015; Loureiro et al. 2016), and
Parker (2015) also develops theory of a ‘hypercollisional plateau’ where the behaviour of
the operator is insensitive to the choice of the variable parameters. In our operator, the
coefficient νhyp is chosen to approximately remove the same amount of fluctuation energy
from the largest ms as would be removed by parallel phase mixing. The details are provided
in § B, and the result is

νhyp = 2.5fhyp
p + 1/2

mp+1/2
max

|k‖|vts, (4.28)

where fhyp is an adjustable coefficient that is typically set to unity. The |k‖| operator
is evaluated spectrally by Fourier transforming in z. The exponent p is chosen to be
p = Nm/2, which ensures that only the highest several Hermite modes are strongly
damped, roughly independent of Nm. While one could consider a similar hyperdissipation
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mechanism for large �, we find that Laguerre hypercollisions are unnecessary even when
using relatively low Laguerre resolution (N� ∼ 4) for problems of interest because phase
mixing in v‖ dominates.

4.2. Boundary conditions
In the flux tube approach we assume statistical periodicity in the perpendicular (x, y) plane.
In the parallel direction, we use the ‘twist-and-shift’ boundary condition (Beer et al. 1995),
which in the spectral representation can be accomplished by linking modes with different
kx values into an extended z domain, such that

H�,m(kx, ky, z) = H�,m(kx + δk, ky, z + 2π), (4.29)

with δk = 2πkyŝ. We can then perform a Fourier transform on each extended z domain to
evaluate the parallel streaming terms as given by (4.10).

A Fourier representation naturally enforces a periodic boundary condition on h at the
ends of each extended domain, but this is not the physically correct boundary condition for
non-zonal modes, which should have a zero incoming boundary condition in the infinite
ballooning limit. Following Kotschenreuther et al. (1995), we would like to approximate
this by enforcing a zero incoming boundary condition on h at the ends of the extended
domain, but this boundary condition cannot be enforced directly in Hermite space. Instead,
we use a wave-absorbing layer (see e.g. Durran (2010), and references within) near
the ends of each extended z domain for the non-zonal components of h to damp out
perturbations leaving and re-entering the domain due to the natural periodicity of the
Fourier representation. Following Beer (1995), we use a damping filter that is zero in
most of the domain and ramps up smoothly near the ends of the extended domain as
d(ẑ) = A[1 − 2ẑ2/(1 + ẑ4)], where ẑ = (z − zend)/zwidth is a normalized distance from the
ends zend. The width zwidth and the scaling factor A are adjustable parameters; in appendix C
we have performed a convergence study and found zwidth = Lz/8 and A = 0.1/�t to work
well, where Lz the total length of the extended domain. The wave-absorbing damping
operation can then be expressed as(

∂G�,m

∂t

)
ends

= −d(ẑ)H�,m (|ẑ| < 1, ky �= 0). (4.30)

The zonal modes (ky = 0) are not filtered because these modes should be physically
periodic, so the natural periodic boundary condition from the Fourier representation is
the correct one. We have found this wave-absorbing layer to be particularly necessary for
simulations with kinetic electrons.

The standard twist-and-shift boundary condition can be ill-suited for low magnetic shear
regions, particularly in stellarators. Martin et al. (2018) have developed a generalization
of the twist-and-shift boundary condition that alleviates some of these issues by using
the integrated local shear (rather than global shear) in the ‘twist’. This generalized
twist-and-shift boundary condition can be used in GX for stellarator geometries with
stellarator symmetry. Investigation of a non-twisting flux-tube boundary condition (Ball
& Brunner 2021) using GX is also in progress.

Martin et al. (2018) prescribe methods to choose the parallel domain length to enforce
exact periodicity or continuous magnetic drifts at the ends of the flux tube. In addition to
these options, we adopt an additional criterion for choosing the parallel domain length:
to enforce a desired aspect ratio for the perpendicular computational domain. When using
the standard twist-and-shift boundary condition, the aspect ratio is quantized as Lx/Ly =
J/(2π|ŝ|), with J a non-zero integer. This results in Lx ∝ Ly/ŝ, which makes resolution

https://doi.org/10.1017/S0022377824000631 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000631


GX: a GPU-native gyrokinetic turbulence code 15

requirements challenging for ŝ 	 1. In the generalized twist-and-shift boundary condition
of Martin et al. (2018), the perpendicular aspect ratio of the flux tube is given by

Lx

Ly
= J

[ |∇x|2
2|∇x · ∇y|

]
zend

, (4.31)

where zend is the end of the flux tube and J is again a non-zero integer. In a stellarator, this
quantity varies as a function of the parallel domain length (see figure 7 of Martin et al.
(2018)). The generalized twist-and-shift boundary condition thus provides the freedom to
choose zend to obtain the desired aspect ratio (for some integer J). Using this prescription
to enforce an aspect ratio of order unity can then alleviate the resolution requirements for
geometries with small magnetic shear.

5. Timestepping schemes

GX uses explicit time integration methods to advance the system. Along with several
standard Runge–Kutta (RK) and strong stability-preserving RK (SSP RK) schemes
(Gottlieb, Shu & Tadmor 2001), we also provide an option for the SSP 10-stage
fourth-order method of Ketcheson (2008) (a low-storage method ideal for the memory
constraints of GPU computing). Additionally, the sparse banded structure of the linear
system of (4.9) and the fact that the field equations only involve the lowest-order moments
(instead of requiring integration over all velocity space) could allow the development of
efficient implicit–explicit (IMEX) schemes for electron dynamics that avoid the timestep
restriction of the fast electron motion; this will be a topic for future work. We have used
the standard RK3 (third-order) scheme for all of the benchmark calculations presented
in § 6.

In all of our timestepping schemes the timestep size �t is constrained by the stability
region of the scheme. While in principle the linear eigenvalues of the system could
be computed exactly and used to constrain the timestep to ensure that all eigenvalues
lie within the stability region, we instead estimate the maximum (linear and nonlinear)
frequencies on the grid in each of the (x, y, z) directions via

ωx,max ≈ max
(

kx,max

(
τs

Zs
vd · ∇x

)
max
, kx,max(vE · ∇x)max

)
, (5.1)

ωy,max ≈ max
(

ky,max

(
τs

Zs
vd · ∇y

)
max
, ky,max(vE · ∇y)max

)
, (5.2)

ωz,max ≈ max((b̂ · ∇z)kz,maxv‖,maxvt,max, ωA,max), (5.3)

with

ωA,max = (b̂ · ∇z)kz,maxvte√
βrefneτe

2
mi

me
+ k2

⊥,minρ
2
s

, (5.4)

the maximum shear Alfvén frequency on the grid. In the electrostatic limit (βref = 0) this
reduces to the high-frequency ωH mode (Lee 1987). Here, kz,max is the largest parallel
wavenumber in the simulation and k⊥,min is the smallest perpendicular wavenumber.
To evaluate v‖,max and (μB)max we use the maximum value of the Gauss–Hermite and
Gauss–Laguerre collocation grids, respectively, which depend on the number of spectral
modes used in the calculation, Nm and N�.
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The constraint on the maximum stable timestep is then approximately given by

(ωx,max + ωy,max + ωz,max)�t � Cs, (5.5)

where s is dependent on the stability region for the particular timestepping scheme (for
example, s = 1.73 for RK3, and s = 2.82 for RK4), and 0 < C ≤ 1 is a user-defined
scaling factor. Formally, the stability constraint with C = 1 is only valid for linear
modes that do not grow or decay; thus we typically use C ∼ 0.5–0.9 to ensure
stability in the full nonlinear system with a spectrum of growing and damped
modes.

6. Numerical benchmarks

In this section we show a variety of linear and nonlinear benchmarks of GX by
comparing results with widely benchmarked gyrokinetic codes (GS2, stella, GENE) in
both tokamak and stellarator geometry. In all cases, both linear and nonlinear, an initial
value problem is solved. The numerical resolution and associated parameters used in each
case are given in appendix G.

6.1. Tokamak benchmarks: Cyclone base case
For benchmarks in tokamak geometry, we choose a configuration based on the
‘Cyclone base case’ (CBC), a widely used benchmark case with concentric
circular flux surfaces (Dimits et al. 2000). For this we use a Miller local
equilibrium (Miller et al. 1998) with R0/a = 2.78, r/a = 0.5, q = 1.4, ŝ = 0.8,
κ = 1.0, δ = 0.0. Unless otherwise noted, the normalized gradient scale lengths
are taken to be a/Lni = a/Lne = 0.8, a/LTi = a/LTe = 2.49, and we also take
Ti = Te. In cases with kinetic electrons we take mi/me = 3670 (deuterium ions). This
series of benchmarks is inspired by the set of tokamak benchmarks chosen for stella by
Barnes et al. (2019).

6.1.1. Linear results
We first make a linear comparison taking a Boltzmann (adiabatic) electron response, so

that the quasineutrality equation (2.9) reduces to

∫
d3v 〈hs〉r =

N�∑
�=0

J�H�,0 = Te

Ti
[Φ − 〈〈Φ〉〉] +Φ, (6.1)

where 〈〈Φ〉〉 denotes the flux-surface average ofΦ. In figure 1 we show normalized growth
rates (figure 1a) and real frequencies (figure 1b) as a function of the normalized binormal
wavenumber kyρi. GX results are shown with open blue circles connected by dashed
lines, while results from GS2 are shown with yellow squares. The agreement between
the two codes is very good across the range of unstable ky values. Here we included
a small number of collisions in both codes to provide velocity-space regularization,
taking the normalized ion collision frequency to be νii = 10−2vti/a. Hypercollisions are
not used in GX in this case. We next make linear comparisons using kinetic electrons
between GX, GS2 and stella. Figure 2(a) shows normalized growth rates and real
frequencies as a function of kyρi at ion scales in the electrostatic limit, with βref = 10−5

(we retain electromagnetic fluctuations even at low β to alleviate the timestep restriction
from the electrostatic ωH mode (Lee 1987)). In this case we take νee = 10−2vti/a and
νii = 1.65 × 10−4vti/a; for best comparison with GX, we use the stella’s Dougherty
collision model option, even though stella also includes a more accurate Fokker–Planck
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(a)

(b)

FIGURE 1. Normalized growth rates (a) and real frequencies (b) as a function of the normalized
binormal wavenumber kyρi from GX (blue circles and dotted lines) and GS2 (yellow squares) for
‘Cyclone base case’ (CBC) parameters using a Boltzmann electron response.

collision operator (which produces results that agree even more closely with GS2 in
this case). Hypercollisions were again not used in GX. We observe excellent agreement
between GX and stella for the ITG branch (ω > 0), but the agreement is not as good
for the trapped electron mode (TEM) branch (ω < 0). If there is a weakness in our
scheme it is accurately capturing linear TEM instability, which requires resolving sharp
trapped–passing boundaries in velocity space (which is not optimal in v‖, μ coordinates)
and is sensitive to the details of the collision operator (our Dougherty model collision
operator is not as accurate as the collision operators in other standard gyrokinetic codes
like GS2). Indeed, even getting this level of agreement required 128 Hermite modes
in GX (for more resolution details, see appendix G). A more detailed study of TEM
modes is left to future work, where we will explore more accurate collision operators and
methods to enhance convergence. Note that Frei et al. (2021, 2022a) have demonstrated
the success of the Laguerre–Hermite method in resolving TEM modes with a more
accurate collision operator. We also show growth rates and frequencies as a function
of kyρi at electron scales in figure 2(b), again in the electrostatic limit. There is once
again strong agreement between GX and GS2 for these electron-temperature-gradient
(ETG) modes.

We finally perform an electromagnetic linear benchmark of the transition from
ITG instability to kinetic ballooning mode (KBM) instability. In this benchmark
we include perpendicular magnetic fluctuations via finite A‖ but we neglect parallel
magnetic fluctuations (δB‖ = 0). Taking kyρi = 0.3, figure 3 shows normalized growth
rates and real frequencies as a function of βref, the reference beta. As βref
increases, both GX and GS2 agree well and show moderate stabilization of the ITG
mode until the transition to KBM around βref = 1.3 %. Additional work studying
reactor-relevant electromagnetic instabilities (e.g. microtearing and toroidal Alfvén
eigenmodes) with GX will be reported in future publications; successful modelling
of collisionless microtearing with a Laguerre–Hermite formulation has been shown by
Frei et al. (2023).
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(a)

(b)

(i)

(ii)

(i)

(ii)

FIGURE 2. Normalized growth rates (i) and real frequencies (ii) as a function of the normalized
binormal wavenumber kyρi from GX (blue circles and dotted lines), GS2 (yellow squares)
and stella (green inverted triangles) for CBC parameters using a kinetic electron response in
the electrostatic limit (βref = 10−5). Ion scales (ITG and TEM) are shown in (a) and electron
scales (ETG) are shown in (b).

6.1.2. Nonlinear results
We first perform nonlinear CBC calculations using a Boltzmann electron response.

Figure 4(a) shows time traces of the ion heat flux in gyro-Bohm units (computed using
the expressions in appendix F), showing very good agreement in the time-averaged heat
flux amongst GX and GS2. For GX, we show a case with moderate velocity resolution,
(N�,Nm) = (8, 16), along with a coarse resolution case with (N�,Nm) = (4, 8). Additional
details about velocity-space convergence for this case are given in § 7. We also show in
figure 4(b) a scan of the ITG parameter, a/LTi, which again shows excellent agreement
between GX and GS2 for all cases at both resolutions. The agreement at a/LT = 1.5 is
particularly notable because this is in the Dimits shift regime, where the system is linearly
unstable to ITG but turbulence is suppressed by zonal flow dynamics. This regime was
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(a)

(b)

FIGURE 3. Normalized growth rates (a) and real frequencies (b) as a function of the reference
beta βref from GX (blue circles and dotted lines) and GS2 (yellow squares) for CBC parameters
using a kinetic electron response, taking kyρi = 0.3. Both codes show the transition from ITG
instability at low βref to kinetic ballooning mode (KBM) instability at high βref.

especially troublesome for the Beer gyrofluid model (Beer & Hammett 1996; Dimits et al.
2000), but we see that by extending that model to more moments (and neglecting the
collisionless closure schemes) via our Laguerre–Hermite approach we can recover the
Dimits shift with (N�,Nm) = (4, 8). Hoffmann et al. (2023a) have studied the convergence
of the Laguerre–Hermite basis for this case and also found that (N�,Nm) ≥ (4, 8) is
required to accurately capture the Dimits shift. Further from marginality, Hoffmann et al.
(2023a) have found that even lower velocity resolution can be used with reasonable
accuracy, which is consistent with the convergence study in § 7. Here, both GX and GS2
included a small number of collisions, taking the normalized ion collision frequency to be
νii = 10−2 vti/a. Hypercollisions were included in the GX calculations, with details given
in § G.3.

Nonlinear calculations with kinetic electrons are presented in figure 5, which shows
excellent agreement amongst GX and GS2 for the time average of the heat flux in
both the ion and electron channels. For GX, we show a case with moderate velocity
resolution, (N�,Nm) = (4, 16), along with a higher resolution case with (N�,Nm) =
(16, 32). Additional details about velocity-space convergence for this case are given in
§ 7. Here we took βref = 10−3 along with νee = 10−2vti/a and νii = 1.65 × 10−4vti/a for
collisions in all codes, and hypercollisions were again used in GX (see § G.4).

6.2. Stellarator benchmarks: W7-X
For benchmarks in stellarator geometry, we choose a magnetic configuration from W7-X
that has recently been used by González-Jerez et al. (2022) to benchmark stella and GENE.
The numerical equilibrium is obtained from VMEC (Hirshman & Whitson 1983), and we
choose the so-called bean flux tube with α0 = 0. To study ITG-driven instabilities and
turbulence we take a/LTi = 3 and a/Ln = 1. The generalized twist-and-shift boundary
condition of Martin et al. (2018) is used.
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(a)

(b)

FIGURE 4. (a) Time traces of ion heat flux Qi, normalized to gyro-Bohm units, QGB =
niTivtiρ

2
i /a

2, for the CBC with a Boltzmann electron response from GX with moderate
(blue) and coarse (green) velocity resolution, and GS2 (yellow). (b) Time-averaged
gyro-Bohm-normalized ion heat flux, Qi/QGB, as a function of the normalized inverse ITG scale
length, a/LTi.

6.2.1. Linear results
We first make a linear comparison between GX and stella, taking a Boltzmann electron

response. Figure 6 shows the normalized growth rates (figure 6a) and real frequencies
(figure 6b) for a range of ky modes, with strong agreement between the two codes.
Both codes use Dougherty model collisions with νii = 0.01 vti/a. This test corresponds
to figure 5 of González-Jerez et al. (2022). As observed in González-Jerez et al. (2022),
the discontinuity in the frequency is due to a change in mode structure for two branches
of ITG. Both branches have very similar growth rates at kyρi = 1.0, resulting in a
small but likely inconsequential disagreement between the codes in the frequency of the
fastest-growing mode.
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FIGURE 5. Time traces of ion (solid) and electron (dashed) heat flux, normalized to ion
gyro-Bohm units, for the CBC with kinetic electrons from GX with high velocity resolution
(blue) and moderate velocity resolution (green) and GS2 (yellow).

(a)

(b)

FIGURE 6. Normalized growth rates (a) and real frequencies (b) as a function of the normalized
binormal wavenumber ky from GX (blue circles and dotted lines) and stella (yellow squares) for
W7-X bean flux-tube geometry and ITG parameters using a Boltzmann electron response.

6.2.2. Nonlinear results
Moving on to the nonlinear version of this test case, figure 7 shows time traces

of ion heat flux from GX along with the time traces from stella and GENE, which
were taken directly from the supplementary data made available by González-Jerez
et al. (2022) (and corresponding to figure 12 in that work; however, note the factor of√

2 difference in the definition of vti, and hence a factor of 2
√

2 difference in QGB,
in GX relative to the definitions used in stella and GENE). Both stella and GENE
used rather high velocity resolution for this case, with Nv‖ = 60, Nμ = 24. For GX we
show a case with moderate velocity-space resolution, (N�,Nm) = (8, 16), and a coarse
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FIGURE 7. Time traces of ion heat flux Qi, normalized to gyro-Bohm units, QGB =
niTivtiρ

2
i /a

2, for the W7-X bean flux-tube geometry with a Boltzmann electron response. Results
are shown from GX with moderate (blue) and coarse (red) velocity resolution, stella (yellow) and
GENE (green).

resolution case with (N�,Nm) = (4, 8). Both of these agree well with the higher-resolution
cases from both stella and GENE, which indicates that the promising Laguerre–Hermite
convergence observed in the tokamak benchmarks carries over to stellarators. Additionally,
the wallclock time for the GX cases was 90 min (on four GPUs) in the moderate resolution
case and 28 min (on one GPU) in the coarse case.

7. Velocity-space convergence and GPU performance

Part of the motivation for the Laguerre–Hermite pseudospectral approach is the ability
to successfully run at low velocity-space resolution without uncontrolled approximations,
since in the lowest-resolution limit the system corresponds to established gyrofluid models
like the one of Beer & Hammett (1996), albeit without Beer & Hammett’s collisionless
closure schemes. Another motivation for the pseudospectral approach is its fit for GPU
computing, since the spectral algorithm relies heavily on fast transform methods that are
well-optimized on GPUs, and the memory requirements of the algorithm are low enough
to fit a problem onto one or a few GPUs. We also make exclusive use of single-precision
arithmetic, which is often sufficient for turbulence calculations (Maurer et al. 2020); there
are no matrix inversions in our algorithm that would require higher precision, and we do
not presently target simulations spanning both ion and electron scales that may stress the
limits of single precision. The success of the benchmarks presented in the previous section
is an additional indication that single-precision arithmetic is sufficient for a wide range of
linear and nonlinear calculations.

In this section we examine the velocity-space convergence for the nonlinear CBC
calculations with GX along with the performance of the calculations on one or several
GPUs. Convergence and performance are complementary factors towards enabling
first-principles transport calculations that are fast enough to be used for fusion reactor
design along with wide-ranging parameter scans for physics discovery. In this section
we will present results detailing convergence and performance for the nonlinear CBC
benchmark cases from § 6.1.2.
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N� Nm Qi/QGB wallclock (min) time/step (s) 〈�t〉 Ngpu

16 32 7.8 ± 0.8 58 0.033 0.009 8
� 8 16 7.3 ± 0.9 15 0.017 0.019 4
6 12 7.7 ± 0.8 11 0.017 0.026 2
� 4 8 7.2 ± 0.8 5.5 0.014 0.041 1
4 6 7.0 ± 0.9 3.5 0.011 0.053 1
4 4 5.9 ± 0.7 2.1 0.0089 0.071 1
3 8 9.1 ± 0.8 4.3 0.011 0.042 1

TABLE 1. Velocity-space convergence and performance for the nonlinear CBC with Boltzmann
electrons. Here Nm is the number of Hermite modes and N� is the number of Laguerre
modes. Other resolution parameters were Nx = 192, Ny = 64, Nz = 24. Accurate ion heat flux
calculations can be obtained with resolution as coarse as (N�,Nm) ≥ (4, 6) (above the double
bar). Each simulation was run to t = 1000a/vti, and we report the total wallclock time in minutes,
the time per timestep in seconds, and the average timestep size 〈�t〉 (normalized to a/vti), which
changes with N� and Nm due to linear stability constraints. The number of NVIDIA A100 GPUs
used for each calculation is listed in the final column. The resolutions shown in figure 4 are
marked with a �.

Starting with the case with Boltzmann electrons, table 1 shows the results of several
GX calculations, with coarsening velocity resolution as we progress down the table. For
this problem the convergence of the Laguerre–Hermite basis is quite remarkable, allowing
accurate results with resolution as coarse as (N�,Nm) = (4, 6). This is still a factor of four
more moments than used in the Beer & Hammett (1996) six-moment gyrofluid model,
but it is quite coarse relative to typical gyrokinetic calculations with O(10–100) velocity
grid points. Thus, the flexibility of the Laguerre–Hermite representation to smoothly
interpolate between gyrofluid and gyrokinetic resolution enables the full nonlinear CBC
calculation to be run accurately in less than 4 min on a single GPU, a remarkable result.

When we look at the Laguerre and Hermite spectra for these cases shown in figure 8,
where Wg,s(�,m) = ∫ |Gs

�,m|2 dx dy dz is the free energy in each moment, and Wg,s(�) =∑
m Wg,s(�,m) and Wg,s(m) = ∑

� Wg,s(�,m), we can see why the convergence is very
good: even for the coarsest resolution, the spectra at the scales that contribute dominantly
to the heat flux (small � and m) are nearly identical. Note that hypercollisions are
being used in these calculations, and this is helping to enhance convergence. Without
hypercollisions (not shown), the results are only accurate with (N�,Nm) ≥ (6, 12). This
means that hypercollisions enable a five-fold reduction in simulation (wallclock) time for
this case.

We perform a similar convergence study for the CBC with kinetic electrons, as shown
in table 2. As above, N� = 4 is sufficient for accurate heat flux predictions in both ion and
electron channels. However, Hermite convergence is not as strong here, with reasonable
accuracy (within 15 % of the highest resolution case) requiring Nm � 16. Examining the
Laguerre and Hermite free energy spectra for these cases in figure 9, we see more structure
in the Hermite spectra, especially for the electrons. The oscillatory nature of the electron
spectrum, with higher amplitudes in even Hermite modes than odd, could be an indication
that the toroidal drifts (which couple every other Hermite mode) are playing a strong role
in the dynamics. This is consistent with the results of analytical and numerical convergence
studies of the Laguerre–Hermite basis associated with toroidal drifts by Frei et al. (2022a,
2023). Despite this structure, reasonably accurate results can be achieved in 159 min on
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(a) (b)

FIGURE 8. Laguerre (a) and Hermite (b) free energy spectra, Wg, for the nonlinear CBC with
a Boltzmann electron response with varying velocity-space resolution. All the spectra are nearly
identical at the scales that contribute dominantly to the heat flux (small � and m), which is
consistent with the excellent convergence observed in table 1.

N� Nm Qi/QGB Qe/QGB wallclock (min) time/step (s) 〈�t〉 NGPU

� 16 32 27.8 ± 4.0 8.4 ± 1.2 900 0.068 0.00076 8
8 32 29.4 ± 3.3 8.8 ± 1.0 448 0.034 0.00076 8
4 32 24.8 ± 3.3 7.8 ± 1.0 255 0.020 0.00077 8
8 16 25.1 ± 3.0 7.6 ± 0.9 277 0.032 0.0012 4
� 4 16 23.6 ± 3.2 7.3 ± 0.9 159 0.019 0.0012 4
8 8 18.6 ± 2.1 6.4 ± 0.7 159 0.03 0.0019 2
4 8 16.2 ± 2.2 5.7 ± 0.7 84 0.016 0.0019 2

TABLE 2. Velocity-space convergence and performance for the nonlinear CBC with kinetic
electrons. Here Nm is the number of Hermite modes and N� is the number of Laguerre modes.
Other resolution parameters were Nx = 192, Ny = 64, Nz = 24. Reasonably accurate heat flux
calculations (within 15 % of the highest resolution case) can be obtained with resolution as coarse
as(N�,Nm) ≥ (4, 16) (above the double bar). Each simulation was run to t = 600a/vti, and we
report the total wallclock time in minutes, the time per timestep in seconds, and the average
timestep size 〈�t〉 (normalized to a/vti). The number of NVIDIA A100 GPUs used for each
calculation is also shown. The resolutions used for the GX calculations shown in figure 5 are
marked with a �.

four GPUs using (N�,Nm) = (4, 16). This is quite good for a nonlinear, electromagnetic
gyrokinetic ITG simulation with real-mass-ratio kinetic electrons. Additional details about
multi-GPU scaling are presented in § 7.1.

Note that using more Hermite modes not only adds to the size of the problem, but also
makes the Courant–Friedrichs–Levy (CFL) constraint on the timestep more restrictive
because the maximum parallel velocity v‖max on the Hermite collocation grid increases
with the number of Hermite modes. In future work we will try to alleviate this issue by
constraining the maximum velocity on the collocation grid. However, a commonly used
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(a)

(b)

(i) (ii)

(i) (ii)

FIGURE 9. Laguerre (i) and Hermite (ii) spectra for ions (a) and electrons (b) for the nonlinear
CBC with kinetic electrons with varying velocity-space resolution.

method of scaling the argument of the Hermite polynomials to reduce the extents of the
collocation grid is ill-suited to our problem, since the resulting projection of a Maxwellian
onto the scaled basis often diverges (Fok, Guo & Tang 2001). Instead, an approach similar
to that used by Candy et al. (2016) to bound the energy grid in CGYRO could be used
here.

7.1. GPU scaling studies
For single-GPU calculations, the GPU threading architecture effectively enables dynamic
parallelism over the entire phase space. In figure 10, we show that for a nonlinear CBC
calculation with Boltzmann electrons, the algorithm scales roughly linearly with the
number of radial grid points, Nx. This is better than the O(N log N) cost that would be
expected when the fast Fourier transform (FFT) in the pseudospectral algorithm dominates
the cost. This is also better scaling than other gyrokinetic algorithms that require O(N2)
operations due to matrix inversion.
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FIGURE 10. Scaling of time per timestep (in seconds) versus the number of radial grid points,
Nx, for nonlinear CBC with Boltzmann electrons on a single GPU. Ideal linear scaling is shown
with the dashed line, while the dot–dashed line shows Nx log Nx scaling (the expected scaling
when FFTs dominate the algorithm).

When considering multi-GPU parallelization, the cost of inter-GPU memory transfers
can be quite large compared with floating point operations. Thus, it is important to
design the scheme to minimize memory transfers and take advantage of the capability of
modern GPUs to overlap communication with computation. Thus, in GX we have chosen
a targeted multi-GPU parallelization scheme that currently parallelizes only species and
Hermite modes across GPUs. In this scheme, communication is required to compute
the total charge density and currents in the field equations, which takes the form of an
all-reduce operation on a configuration-space-sized (Nkx × Nky × Nz) object. Additionally,
since the equation for the Hermite mode m couples to modes m − 2, m − 1, m + 1 and
m + 2, we use ‘halo’ (or ‘ghost’) modes on each GPU, similar to standard parallelization
schemes for finite differencing. Halo exchange is thus the other dominant form of
communication, requiring inter-GPU transfers of objects of size Nkx × Nky × Nz × N� × 2.
We overlap the halo exchange with computation of most of the nonlinear terms (halo
modes are only required for the nonlinear terms involving A‖, and even for these the
terms on the interior modes can be computed before the halo transfers have been
completed).

In figure 11 we show a strong scaling study for nonlinear CBC cases with two kinetic
species. In each case we fix resolution (shown in the legend) and plot the time per
timestep (figure 11a) and scaling efficiency (figure 11b) as we increase the number of
GPUs used for the calculation. These calculations have been performed on Perlmutter
at NERSC, where each node contains four A100 GPUs. The three cases have the same
configuration space resolution and number of kinetic species as the cases in table 2. For
reference, the (16,64) case running on a single GPU consumes approximately 90 % of
the available GPU memory on a 40GB A100 GPU. In each case, the scaling efficiency is
above 75 % parallelizing across four GPUs. The efficiency also improves as the problem
size increases, which is expected because there is more computing time relative to
communication time.

We also show in figure 12 weak scaling studies for the nonlinear CBC with two kinetic
species and the same configuration space resolution as the cases in table 2. Here, we
increase the number of Hermite modes proportionally to the number of GPUs used, so
that Nm = 8Ngpu in each case. After parallelizing first over the two kinetic species, this
results in 16 Hermite modes per GPU in all the calculations shown. We show the weak
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(a) (b)

FIGURE 11. Strong scaling study for the nonlinear CBC with kinetic electrons showing the time
per timestep (a) and the scaling efficiency (b) as a function of number of GPUs used, with fixed
resolution for each curve. In each case the ideal scaling is shown with a dashed black line.
The Laguerre–Hermite resolution parameters are listed in the legend as (N�,Nm). The other
resolution parameters are Nx = 192, Ny = 64,Nz = 24, Nspecies = 2.

(a) (b)

FIGURE 12. Weak scaling study for the nonlinear CBC with kinetic electrons showing the time
per timestep (a) and the scaling efficiency (b) as a function of number of GPUs used, with the
number of Hermite modes Nm scaling with the number of GPUs as Nm = 8Ngpu. We show results
for both N� = 4 (blue) and N� = 8 (yellow). The ideal scaling is shown with dashed lines. The
other resolution parameters are Nx = 192, Ny = 64, Nz = 24,Nspecies = 2.

scaling for both N� = 4 (blue) and N� = 8 (yellow). The weak scaling efficiency, shown
in (figure 12b), is ideal in both cases up to 32 GPUs (Nm = 256), despite the fact that
using more than four GPUs requires multiple nodes on Perlmutter, and communication
between nodes can be slower than communication within a node due to the details of the
interconnect hardware.

8. Conclusion and future opportunities

In this work we have presented GX, a GPU-native gyrokinetic code focused on
tokamak and stellarator design at reactor scales. We have described the numerical
algorithms that we use to solve the electromagnetic δf gyrokinetic system, in particular
the discretization scheme that is pseudospectral in the entire five-dimensional phase
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space, leveraging the Laguerre–Hermite velocity-space formulation developed by Mandell
et al. (2018). We have shown several linear and nonlinear benchmarks against established
flux-tube gyrokinetic codes in both tokamak and stellarator geometry, verifying that
GX correctly simulates gyrokinetic turbulence in the small ρ∗ limit. The combination
of GPU acceleration and favourable convergence properties of the Laguerre–Hermite
velocity-space basis for nonlinear problems enables useful turbulence simulations in
minutes.

Additional work will also focus on improving the efficiency of simulations that include
kinetic electrons. At present, the need to resolve the fast parallel electron motion results
in an increase in simulation cost by a factor of roughly 2

√
mi/me ≈ 120 compared with

simulations with Boltzmann electrons (the factor of 2 is from the additional kinetic
species, and the square root of the mass ratio comes from vte/vti). We have also shown
that kinetic electron cases may require more Hermite resolution, especially if resolving the
trapped–passing boundary is essential. Exploration of different choices of velocity-space
coordinates for the electrons or improvements to the basis functions used (for example,
a method to bound the Hermite collocation points to constrain v‖max, as in Candy et al.
(2016), which could alleviate the CFL timestep restriction) could increase efficiency. In
addition, the reduced electron models of Beer & Hammett (1996), Snyder & Hammett
(2001) and Abel & Cowley (2013) provide insight into how to eliminate the fast time
scales associated with parallel electron motion. A combination of these approaches with
implicit timestepping schemes could enable kinetic electron simulations with nearly the
same efficiency as the Boltzmann electron simulations we have presented. Additionally,
we are investigating machine-learning methods for subgrid models and closures (Barbour
et al. 2021, 2022), as well as methods for dynamically adapting the number of modes in
the system.

An essential target for GX is transport time scale macroscale profile evolution via
coupling to a transport solver like Trinity (Barnes et al. 2009; Qian et al. 2022) or
a steady-state profile prediction solver like TGYRO (Candy et al. 2009) or PORTALS
(Rodriguez-Fernandez, Howard & Candy 2022). This will be described in a forthcoming
paper. In this case, several GX flux-tube calculations are run in parallel at various
radii, and the resulting turbulent fluxes are used to advance the transport equations for
the equilibrium profiles on transport time scales. The efficiency of GX makes these
simulations quite tractable in comparison with previous efforts. Further, since transport
in a fusion reactor is usually quite stiff, small changes in profile gradients result in large
changes in transport fluxes; conversely, this means that errors of order 10 % are quite
tolerable since they will result in relatively negligible differences in the final equilibrium
profiles. Thus, we can also leverage the flexibility of GX to run at quite low velocity
resolution with only 10 %–20 % errors in the turbulent fluxes, as shown in the convergence
studies.

Finally, since GX is specialized for reactor design, using GX as a turbulence model
in the inner loop of optimization frameworks is of great interest. Kim et al. (2024)
have leveraged the DESC (Dudt et al. 2022) optimization framework to demonstrate
that stellarators can be optimized for turbulence using nonlinear GX calculations in the
optimization loop. Additionally, coupling of GX to the SIMSOPT stellarator optimization
framework (Landreman et al. 2021) is in progress. Following the work of Highcock et al.
(2018), optimization of core equilibrium profiles (and hence fusion power) is also tractable
with a fast multiscale transport model composed of GX coupled to a transport solver.
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length (m) magnetic field (T) temperature (K) mass (kg) number density (m−3) charge (C)

aN BN Tref Mref n0 qref

TABLE 3. Fundamental normalizing quantities.

kx, ky, x, y ∇, z v‖ μ ω, t ψ

ρref aN vth,s v2
th,s/BN vth,ref/aN a2

NBN

TABLE 4. Normalizing the quantities for the independent variables.
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Appendix A. Normalization

We choose a set of normalizations, described in table 3, for the fundamental quantities.
Note that the specific definition of the normalizing quantities is arbitrary; for example,

the normalizing length could be chosen to be the minor radius (aN = a), the major radius
(aN = R) or some other length. Using the fundamental normalizations, we can define the
reference thermal speed vth, ref = √

Tref/Mref, the reference cyclotron frequency Ωref =
qrefBN/Mref and the reference gyroradius ρref ≡ vth,ref/Ωref. The ratio of the reference
gyroradius ρref and the normalizing length aN is defined as

ρ∗ ≡ ρref

aN
, (A1)
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h Φ A‖ δB‖

ρ∗n0/v
3
th,ref ρ∗Tref/qref ρ∗(ρrefBN) ρ∗BN

TABLE 5. Normalizing quantities for dependent variables.

which is the fundamental small parameter in the gyrokinetic model. Using table 3, we
can also normalize all the independent variables and operators as shown in table 4 and all
the dependent variables as shown in table 5. Using the normalizations given in tables 4
and 5, we can normalize the gyrokinetic model. Note that the term ρ∗ cancels out of
all the equations once they are normalized. We also define the following non-dimensional
species-specific parameters that appear throughout the normalized equations: τs = Ts/Tref,
ms = Ms/Mref, vts = vth,s/vth,ref, Zs = qs/qref and ρs = (vth,s/Ωs)/ρref.

Appendix B. Derivation of hypercollision operator

Consider the simplified system where the distribution function g evolves due to only
parallel free streaming. Fourier transforming in the parallel direction, a mode with parallel
wavenumber k evolves via

∂g
∂t

+ ikvtv‖g = 0. (B1)

The solution is
g(k, v, t) ∝ e−ikvtv‖t. (B2)

Free streaming thus causes energy transfer to smaller scales in velocity space; this is the
parallel phase mixing behaviour that produces Landau damping, as is well known. In the
Hermite representation results this results in transfer of energy to higher m, which can be
seen by taking Hermite moments of the solution, giving

gm(k, t) ∝ tm e−k2v2
t t2/2. (B3)

Thus, a pulse propagating in m reaches m(t) = k2v2
t t2 at time t. By differentiating in time

we can obtain the advection ‘velocity’ in m-space,

dm
dt

= 2k2v2
t t = 2kvt

√
m. (B4)

Now consider the advection equation for the mode energy, E(m) = |gm|2/2,

∂E
∂t

+ ∂

∂m

[
dm
dt

E
]

= S + D. (B5)

The source S only acts at low m. For dissipation, we will assume a hypercollision operator
of the form (

∂gm

∂t

)
hyp

= −νhypmpgm, (B6)

which results in
D = −2νhypmpE. (B7)
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In steady state (∂/∂t → 0) at large enough m to neglect the source, we have

∂

∂m

[
dm
dt

E
]

= −2νhypmpE. (B8)

Inserting the advection velocity from (B4), we obtain

∂

∂m
[2kvt

√
mE] = −2νhypmpE. (B9)

The solution of this differential equation is of the form

E(m) = C√
m

exp
(

− νhypmp+1/2

( p + 1/2)kvt

)
. (B10)

Note that in the limit of no dissipation (νhyp → 0), we should have a constant m−flux Γ ,
which restricts the constant of integration to C = Γ/(2kvt) and makes the full solution

E(m) = Γ

2kvt
√

m
exp

(
− νhypmp+1/2

( p + 1/2)kvt

)
. (B11)

Now we would like to choose νhyp so that the energy is damped to some fraction f by the
time the energy reaches the grid scale at m = mmax. From this we obtain

νhyp = ln( f −1)
p + 1/2

mp+1/2
max

|k|vt. (B12)

Taking f = 0.1 results in the operator presented in § 4.1. Note that undamped energy will
be reflected and damped again as it travels from high m to low m, resulting in only f 2 =
0.01 of the initial energy returning to low m.

Appendix C. Convergence study for parallel boundary damping filter

In § 4.2 we defined the parallel boundary damping filter using two adjustable
parameters: the width of the damping region zwidth, and the scaling factor A. Here we
perform convergence studies to verify that we have chosen reasonable values of these
parameters. We will use the kinetic electron CBC for these studies.

We first perform a scan of the scaling factor A. Figure 13 shows the ion and electron
heat flux as a function of A�t, with �t the timestep size. For this scan we have used
zwidth = Lz/8. We can see that the heat fluxes are converged when A�t � 0.05. We next
perform a scan of the damping region width zwidth, as shown in figure 14. For this scan
we use A�t = 0.1. By varying zwidth/Lz for several values of Nz, we find that zwidth = Lz/8
produces accurate results for each choice of Nz.

Appendix D. Pseudospectral evaluation of nonlinear terms

The nonlinear terms are evaluated pseudospectrally in (x, y, z, μB,m) space to avoid
convolutions in both Fourier and Laguerre coefficients as (Mandell et al. 2018)

N s
�,m = L�HmFk⊥[〈vχ 〉R · ∇hs] = L�HmFk⊥[〈vχ 〉R · ∇gs]

= L�Fk⊥

(
F−1

k⊥ [ikyJ0sΦ]F−1
k⊥

[
ikx

∑
�′
ψ�′Gs

�′,m

]
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FIGURE 13. Time-averaged gyro-Bohm-normalized ion (solid blue circles) and electron
(dashed yellow squares) heat fluxes as a function of A�t, with A the scaling factor for the
damping filter and �t the timestep size.

FIGURE 14. Time-averaged gyro-Bohm-normalized ion (solid) and electron (dashed) heat
fluxes as a function of zwidth/Lz, with zwidth the width of the damping region and Lz the parallel
length of the flux tube. Colours indicate different values of parallel resolution Nz.

−F−1
k⊥ [ikxJ0sΦ]F−1

k⊥

[
iky

∑
�′
ψ�′Gs

�′,m

])

− vts

√
m + 1L�Fk⊥

(
F−1

k⊥ [ikyJ0sA‖]F−1
k⊥

[
ikx

∑
�′
ψ�′Gs

�′,m+1

]

− F−1
k⊥ [ikxJ0sA‖]F−1

k⊥

[
iky

∑
�′
ψ�′Gs

�′,m+1

])

− vts
√

mL�Fk⊥

(
F−1

k⊥ [ikyJ0sA‖]F−1
k⊥

[
ikx

∑
�′
ψ�′Gs

�′,m−1

]
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− F−1
k⊥ [ikxJ0sA‖]F−1

k⊥

[
iky

∑
�′
ψ�′Gs

�′,m−1

])

+ τs

Zs
L�Fk⊥

(
F−1

k⊥

[
iky2μB

J1s

αs
δB‖

]
F−1

k⊥

[
ikx

∑
�′
ψ�′Gs

�′,m

]

− F−1
k⊥

[
ikx2μB

J1s

αs
δB‖

]
F−1

k⊥

[
iky

∑
�′
ψ�′Gs

�′,m

])
. (D1)

This requires zero-padding of the arrays in the perpendicular and Laguerre dimensions to
avoid aliasing, as described in Appendix D of Mandell et al. (2018). Fourier transforms
are evaluated using the cuFFT library. The Laguerre transforms are expressed as matrix
multiplications and implemented using the cuBLAS library.

Appendix E. Geometry details

In this appendix, we will describe how the geometry-related coefficients are calculated
in the GX code. First, we define the different coordinate systems and relevant identities
and briefly outline the process of calculating the geometry-related coefficients. Next, we
list all the geometric quantities used by GX in the field-line following coordinate system.
Finally, we describe the process of obtaining an equal-arc, equispaced coordinate from a
general coordinate z.

Consider a magnetic coordinate system (ψ, φ, θ), where ψ is a flux surface label,
φ is the cylindrical toroidal angle and θ is a generalized poloidal angle. A general
three-dimensional equilibrium is a union of nested flux surfaces labelled with the flux
surface label ψ , which is usually produced by an equilibrium code in the cylindrical
coordinate (R, φ,Z). The first step is to calculate the Jacobian from the cylindrical to
the curvilinear coordinates (ψ, φ, θ),

J = 1
(∇ψ × ∇φ) · ∇θ =

(
∂R
∂ψ

× ∂R
∂φ

)
· ∂R
∂θ
, (E1)

where the last equality in (E1) is a consequence of the duality relation (D’haeseleer et al.
1991); and

∇Xi · ∂R
∂Xj

= δij, (E2)

where Xi and Xj are coordinates. Using the Jacobian and the duality relation we calculate
the gradients ∇ψ,∇φ,∇θ from the gradients ∇R,∇φ,∇Z. For example, we calculate
∇ψ using the following relation:

∇ψ =

(
∂R
∂θ

× ∂R
∂φ

)
(
∂R
∂ψ

× ∂R
∂φ

)
· ∂R
∂θ

, (E3)

where the vector R = (R, φ,Z) is output from a typical equilibrium solver. Upon
calculating the gradients of the coordinates (ψ, θ, φ), we can easily obtain the gradients
of the field-line-following coordinate (x, y, z). In addition to that, an equilibrium code also
outputs scalar-valued physical quantities like the plasma pressure p(ψ), and the safety
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factor q(ψ) and vector-valued physical quantities like B, B · ∇θ , B · ∇φ. These quantities
are then used to compute all the geometric coefficients defined below,

bmag = B
BN
, (E4)

gradpar = b · ∇z, (E5)

gds21 = ŝ(∇x · ∇y), ŝ ≡ x
q

dq
dx
, (E6)

gds22 = ŝ2|∇x|2, (E7)

gds2 = |∇y|2, (E8)

gbdrift = 2
bmag2 (b × ∇B) · ∇y, (E9)

cvdrift = 8π

bmag2 (b × ∇y) · ∇p + gbdrift, (E10)

cvdrift0 = gbdrift0 = 2ŝ
bmag2 (b × ∇B) · ∇x. (E11)

In the local flux-tube limit we evaluate all of these quantities at x = x0, with x0 denoting
the flux surface of interest. In non-axisymmetric configurations the coefficients also in
general depend on the field line label y, so we also evaluate the coefficients at y = y0
to select a particular field line of interest. This ensures that the geometric coefficients
are only functions of the parallel coordinate z. These quantities form a complete set of
geometry-related coefficients needed for a GX simulation. These quantities also coincide
with the geometry definitions in GS2.

E.1. Calculating an equispaced, equal-arc z
Generally speaking, gradpar is a function of z. However, it is often convenient to transform
to a z-grid where gradpar is a constant. This is strictly necessary in GX to allow Fourier
spectral treatment of the parallel streaming term in the gyrokinetic equation. To do this,
we seek a grid ẑ such that

b · ∇ẑ = C, (E12)

where C is a constant. A differential element in the field-line following coordinates (x, y, z)
can be written as

d� = ∂R
∂x

dx + ∂R
∂y

dy + ∂R
∂z

dz. (E13)

On a given field line, dx = dy = 0. Using the duality relation (E2), we can write

d� = ∇x × ∇y
(∇x × ∇y) · ∇z

dz. (E14)

For a differential line element along the field line, we dot (E14) with the unit vector b to
get

d� = dz
b · ∇z

. (E15)
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Repeating the same process for the coordinate system (x, y, ẑ) and using (E15)

dz
b · ∇z

= dẑ
b · ∇ẑ

. (E16)

Integrating (E16) first for one period in z (or ẑ) and using the fact that

b · ∇z|z=0,L= b · ∇ẑ|ẑ=0,L, (E17)

we get

C = b · ∇ẑ = L
(∫ L

0

dz
b · ∇z

)−1

. (E18)

Using C, we can now obtain ẑ for each value of z by integrating (E16)

ẑ = C
∫ L

0

dz
b · ∇z

. (E19)

The resulting ẑ coordinate is an equal-arc coordinate. Upon obtaining the equal-arc
ẑ, we interpolate all geometric coefficients onto an equispaced grid z̃. This makes
z̃ an equispaced, equal-arc coordinate. Note that this procedure can be used for any
field-line-following coordinate.

Appendix F. Turbulent fluxes

Here we document expressions for turbulent fluxes in the Fourier–Laguerre–Hermite
basis.

F.1. Heat flux
The normalized radial heat flux for species s is defined as

Qs

nsτs
=
∫

dx dy dz
∇x × ∇y · ∇z

∫
d3v〈vχ 〉R · ∇x

(
1
2
v2

‖ + μB
)

hs

=
∫

dz
∇x × ∇y · ∇z

∑
k⊥

{ikyΦ(k⊥, z)}∗
∫

d3v

(
1
2
v2

‖ + μB
)

J0shs

− vts

∫
dz

∇x × ∇y · ∇z

∑
k⊥

{ikyA‖(k⊥, z)}∗
∫

d3v

(
1
2
v2

‖ + μB
)

J0sv‖hs

+ τs

Zs

∫
dz

∇x × ∇y · ∇z

∑
k⊥

{
iky
δB‖(k⊥, z)

B

}∗ ∫
d3v

(
1
2
v2

‖ + μB
)

2μB
J1s

αs
hs

=
∫

dz
∇x × ∇y · ∇z

∑
k⊥

{ikyΦ(k⊥, z)}∗ 3
2

p̄s − vts

∫
dz

∇x × ∇y · ∇z

∑
k⊥

{ikyA‖(k⊥, z)}∗ q̄‖s

+ τs

Zs

∫
dz

∇x × ∇y · ∇z

∑
k⊥

{
iky
δB‖(k⊥, z)

B

}∗
q̄⊥s, (F1)
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where {· · · }∗ denotes a complex conjugate, and

3
2

p̄s =
N�∑
�=0

{[
�J s

�−1 +
(

2�+ 3
2

)
J s
� + (�+ 1)J s

�+1

]
Hs
�,0 + 1√

2
J s
� Hs

�,2

}
, (F2)

q̄‖s =
N�∑
�=0

{[
�J s

�−1 +
(

2�+ 5
2

)
J s
� + (�+ 1)J s

�+1

]
Hs
�,1 +

√
3
2
J s
� Hs

�,3

}
, (F3)

q̄⊥ =
N�∑
�=0

{[
�J s

�−2 +
(

3�+ 3
2

)
J s
�−1 +

(
3�+ 5

2

)
J s
� + (�+ 1)J s

�+1

]
Hs
�,0

+ 1√
2
(J s

� + J s
�−1)H

s
�,2

}
. (F4)

Note that since vχ · ∇χ = 0, the convection of the integral of h at fixed r is equal to the
convection of the integral of g at fixed r. In physical units, the heat flux for species s is
Qphys,s = (n0vthT)refρ

2
∗Qs ≡ QGB,refQs.

F.2. Particle flux
Similarly, the normalized radial particle flux for species s is defined as

Γs

ns
=
∫

dx dy dz
∇x × ∇y · ∇z

∫
d3v〈vχ 〉R · ∇xh

=
∫

dz
∇x × ∇y · ∇z

∑
k⊥

{ikyΦ(k⊥, z)}∗
∫

d3vJ0shs

− vts

∫
dz

∇x × ∇y · ∇z

∑
k⊥

{ikyA‖(k⊥, z)}∗
∫

d3vJ0sv‖hs

+ τs

Zs

∫
dz

∇x × ∇y · ∇z

∑
k⊥

{
iky
δB‖(k⊥, z)

B

}∗ ∫
d3v 2μB

J1s

αs
hs

=
∫

dz
∇x × ∇y · ∇z

∑
k⊥

{ikyΦ(k⊥, z)}∗n̄s

− vts

∫
dz

∇x × ∇y · ∇z

∑
k⊥

{ikyA‖(k⊥, z)}∗ ū‖s

+ τs

Zs

∫
dz

∇x × ∇y · ∇z

∑
k⊥

{
iky
δB‖(k⊥, z)

B

}∗ ū⊥s√
bs
, (F5)

with

n̄s =
N�∑
�=0

J s
� Hs

�,0, (F6)
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ū‖s =
N�∑
�=0

J s
� Hs

�,1, (F7)

ū⊥s√
bs

=
N�∑
�=0

(J s
� + J s

�−1)H
s
�,0, (F8)

as defined in § 4. In physical units, the particle flux for species s is Γphys,s =
(n0vth)refρ

2
∗Γs ≡ ΓGB,refΓs.

Appendix G. Numerical resolution for benchmark cases

Here we provide the numerical resolution and associated parameters used in each
benchmark case from § 6. In all cases, normalizing quantities below follow the GX
conventions above (as opposed to the normalization conventions of the various other
codes).

G.1. Linear CBC, Boltzmann electrons (figure 1)
GX calculations used: three 2π segments in an extended ballooning domain each with
Nz = 24 parallel grid points; Nm = 48 Hermite modes; N� = 16 Laguerre modes.

GS2 calculations used: three 2π segments in an extended ballooning domain each with
Nz = 25 parallel grid points; 32 energy grid points; 33 pitch angles (20 in the untrapped
region of velocity space and 13 in the trapped region).

G.2. Linear CBC, kinetic electrons (figures 2 and 3)
GX calculations used: three 2π segments in an extended ballooning domain each with
Nz = 24 parallel grid points; Nm = 128 Hermite modes; N� = 16 Laguerre modes.

GS2 calculations used: three 2π segments in an extended ballooning domain each with
Nz = 25 parallel grid points; 32 energy grid points; 33 pitch angles (20 in the untrapped
region of velocity space and 13 in the trapped region).

The stella calculations used: three 2π segments in an extended ballooning domain each
with Nz = 25 parallel grid points; 48 v‖ (evenly spaced) grid points with v‖,max = 3

√
2vti;

16 μ grid points with v⊥,max = 3
√

2vti.

G.3. Nonlinear CBC, Boltzmann electrons (figure 4 and table 1)
GX calculations used: one 2π ballooning domain segment with Nz = 24 parallel
grid points; Nx = 192 radial grid points (which corresponds to Nkx = 127 dealiased
Fourier modes); Ny = 64 binormal grid points (which corresponds to Nky = 22 dealiased
ky ≥ 0 Fourier modes, with the ky < 0 modes determined by the reality condition).
The velocity-space resolution varied by case and is provided in the main text. The
perpendicular box dimensions were approximately 190ρi × 190ρi. The hyperdissipation
parameters used were: hyperviscosity with D = 0.05 and n = 4; hypercollisions with
fhyp = 1; p = Nm/2.

GS2 calculations used: one 2π ballooning domain segment with Nz = 24 parallel grid
points, Nx = 192 radial grid points (Nkx = 127); Ny = 64 binormal grid points (Nky = 22);
16 energy grid points; 33 pitch angles (20 in the untrapped region of velocity space and
13 in the trapped region). The perpendicular box dimensions were approximately 190ρi ×
190ρi.
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G.4. Nonlinear CBC, kinetic electrons (figure 5 and table 2)
GX calculations used: one 2π ballooning domain segment with Nz = 24 parallel grid
points; Nx = 192 radial grid points (which corresponds to Nkx = 127 dealiased Fourier
modes); Ny = 64 binormal grid points (which corresponds to Nky = 22 dealiased Fourier
modes). The velocity-space resolution varied by case and is provided in the main text. The
perpendicular box dimensions were approximately 190ρi × 190ρi. The hyperdissipation
parameters used were: hyperviscosity with D = 0.05 and n = 4; hypercollisions with
fhyp = 1; p = Nm/2.

GS2 calculations used: one 2π ballooning domain segment with Nz = 32 parallel grid
points, Nx = 192 radial grid points (Nkx = 127); Ny = 64 binormal grid points (Nky = 22);
16 energy grid points; 36 pitch angles (19 in the untrapped region of velocity space and
17 in the trapped region). The perpendicular box dimensions were approximately 190ρi ×
190ρi.

G.5. Linear W7-X case (figure 6)
GX calculations used: six 2π ballooning domain segments (corresponding to six poloidal
turns) with Nz = 256 parallel grid points; Nm = 16 Hermite modes; N� = 8 Laguerre
modes.

The stella calculations used: 33 field periods with Nz = 256 parallel grid points; Nv‖ =
32; Nμ = 8.

G.6. Nonlinear W7-X case (figure 7)
GX calculations used: one 2π ballooning domain segment (corresponding to a single
poloidal turn) with Nz = 128 parallel grid points, Nx = 64 radial grid points (which
corresponds to Nkx = 43 dealiased Fourier modes); Ny = 192 binormal grid points (which
corresponds to Nky = 64 dealiased Fourier modes). The velocity-space resolution varied
by case and is provided in the main text. The perpendicular box dimensions were
approximately 132ρi × 89ρi. The hyperdissipation parameters used were: hyperviscosity
with D = 0.05 and n = 4; hypercollisions with fhyp = 1 and p = Nm/2.

For stella and GENE calculation details, refer to Tables 2 and 3 (test 5) of
González-Jerez et al. (2022).
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