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Abstract
High density should drive greater parasite exposure. However, evidence linking density with
infection generally uses density proxies or measures of population size, rather than measures
of individuals per space within a continuous population. We used a long-term study of wild
sheep to link within-population spatiotemporal variation in host density with individual par-
asite counts. Although four parasites exhibited strong positive relationships with local density,
these relationships were mostly restricted to juveniles and faded in adults. Furthermore, one
ectoparasite showed strong negative relationships across all age classes. In contrast, popula-
tion size – a measure of global density – had limited explanatory power, and its effects did not
remove those of spatial density, but were distinct. These results indicate that local and global
density can exhibit diverse and contrasting effects on infectionwithin populations. Spatialmea-
sures of within-population local densitymay provide substantial additional insight to temporal
metrics based on population size, and investigating them more widely could be revealing.

Introduction

An animal’s infection status is driven by its exposure to pathogens, in concert with its sus-
ceptibility to infection once exposed (Sweeny and Albery, 2022). Individuals living in areas
of greater population density generally encounter each other more frequently, resulting in a
higher per capita exposure rate that drives greater prevalence of directly transmitted parasites
(McCallum et al., 2001; Lloyd-Smith et al., 2005; Wilson and Cotter, 2009; Hopkins et al.,
2020). Additionally, when density drives individuals to share the same space at higher rates,
it could likewise drive higher indirect contact rates, leading to greater prevalence of indirectly
transmitted parasites. However, density–contact relationships (and therefore density-infection
relationships) are likely to differ substantially for parasites of different transmission modes
(Hopkins et al., 2020): for example, individuals may be more likely to avoid direct contact
while nevertheless sharing space, which could drive more positive density dependence of indi-
rectly than directly transmitted pathogens (Albery et al., 2025). Alternatively, animals may
be able to more easily identify areas of environmental parasite transmission than of infected
conspecifics, which would drive the reverse. Identifying these relationships is important for
accurately modelling disease dynamics in many contexts (Hu et al., 2013; Hopkins et al., 2020),
and can influence the choice of available interventions. For example, where a disease is transmit-
ted by density-independent interactions, culling the host is unlikely to be effective in reducing
its prevalence (Morters et al., 2013).

Nevertheless, despite a great many studies that employ density dependence functions
(reviewed in Hopkins et al., 2020), there exist relatively few empirical examples of density driv-
ing greater infection in individual wild animals. Much existing evidence is phenomenologically
derived or relies on between-species comparisons (e.g. Cote and Poulin, 1995; Rifkin et al., 2012;
Patterson andRuckstuhl, 2013), which can be fraught with compensatory evolutionary changes,
e.g. in social structure (Poulin and Filion, 2021). More simply, much of this evidence uses met-
rics like population size (Coltman et al., 1999; Body et al., 2011), or social connectednessmetrics
like group size (Cote and Poulin, 1995). While social contact rates will often correlate positively
with density (Davis et al., 2015; Borremans et al., 2017; Albery et al., 2021a), social and spa-
tial behaviour can differ inherently and can break this expectation in complex ways, such that
using ‘purely social’ metrics may not detect effects of density (i.e. ‘individuals per space’) per
se. As such, it is unclear whether population density drives infection within animal systems.
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Investigating density itself (i.e., individuals per space, rather
than measures of pure sociality) is important because there are
a variety of reasons to expect that density will not show a posi-
tive relationship with infection (Albery et al., 2020; Albery, 2022).
For example, habitat selection likely causes individuals to inhabit
areas with abundant resources, which creates a positive relation-
ship between nutrition and density; if nutrition results in improved
immune resistance (Becker andHall, 2014), this could drive a nega-
tive relationship with parasite count – unless the availability of the
added resources is cancelled out by greater competition (Albery,
2022; Hasik et al., 2024). Reciprocally, competition for resources
in a given area is likely to be better approximated by global den-
sity, as measured by population size, such that fitting population
size as a metric picks up competition for resources more than (or
over and above) greater contact rates. These and related processes
(see Albery et al., 2020; Albery, 2022) could manifest differently
for different parasites or host groups within a given population,
but such variation in relationships has never been shown and
has rarely been investigated. In European badgers (Meles meles),
social contact metrics showed no relationship with any of the five
investigated parasites, but a within-population socio-spatial den-
sity metric showed a consistent negative linear relationship with
four parasites of different transmission modes and host specifici-
ties (Albery et al., 2020). This negative density dependence was
the likely result of parasite avoidance behaviours in space (Buck
et al., 2018;Weinstein et al., 2018).While other studies have shown
that density–infection relationships can depend on the timescale
at which they are examined (Stewart Merrill et al., 2022), as well as
other complex patterns of risk (Buck et al., 2017a), few studies have
investigated whether density–infection trends diverge across mul-
tiple parasites. Understandingwhy these varied trendsmight occur
is important for understanding how and why parasites regulate
spatiotemporal population distributions (Albery, 2022). If density
drives infections, which then influence behaviour and fitness, this
process could ultimately feed back to determine who dies where,
thereby shaping the distribution of the population in space and
time.

The Soay sheep (Ovis aries) of St Kilda have been studied
since 1985, with individual-based measurements of behaviour, life
history, and parasitism throughout this time (Clutton-Brock and
Pemberton, 2004). The population descend from early European
domestic sheep that were introduced to the island of Soay thou-
sands of years ago, have experiencedminimal humanmanagement
since then, and currently live unmanaged (‘wild’) on Hirta in the
St Kilda archipelago (Clutton-Brock and Pemberton, 2004). They
host a diversity of gastrointestinal parasites, all of which have some
environmental phase in between hosts and achieve reinfection
through reingestion (Wilson et al., 2004; Hayward et al., 2022).
They also host sheep keds (Melophagus ovinus): wingless ectopar-
asitic flies that achieve transmission through direct contact (Small,
2005). Of these parasites, strongyle nematodes are themost impor-
tant in that they exert strong fitness costs at all life stages (Coltman
et al., 1999; Leivesley et al., 2019). Strongyle infection dynamics
in the sheep are broadly thought to be driven by population den-
sity, where high numbers of grazing sheep produce larger numbers
of infectious larvae to be ingested, which then results in greater
exposure and therefore greater infection (Wilson et al., 2004).
This mechanism has been linked with greater parasite infection in
lambs in high-density years (Hayward et al., 2010, 2022), and is
thought to regulate the population by driving worse condition and
greater mortality in these years (Wilson et al., 2004). Nevertheless,

the remaining parasites in the population have yet to be success-
fully linked with population density (Hayward et al., 2022), and
strongyles have not been linkedwithwithin-year densitymetrics or
aligned with spatial host distributions. Rather, all density analyses
have been carried out by linking total population size with infec-
tion in a given year, with only one density value applied across the
population per year (Wilson et al., 2004). As such, it remains to be
seen how strongyles are driven by density on finer spatiotemporal
scales, and whether the density trends are ubiquitous or specific to
strongyles. Notably, a previous study found a strong positive cor-
relation between vegetation quality and strongyle count in lambs,
which could be linked to greater density in higher-quality areas
(Wiersma et al., 2023).

Here, we use 25 years of data in this wild population to exam-
ine how a spatial measure of local density drives individual-level
infection prevalence and intensity across a range of host age classes,
when accounting for global density as approximated by population
size. We expected local density to be broadly positively correlated
with infection through its association with greater direct and indi-
rect contact rates, driving greater exposure, and that these effects
would be differentiable from – and additional to – positive effects
of global density.

Materials and methods

Study population and parasitology

TheSoay sheep are an isolated and unmanaged population that has
been monitored since 1985 on the St. Kilda archipelago (57°49′N,
08°34′W, 65 km NW of the Outer Hebrides, Scotland) (Clutton-
Brock and Pemberton, 2004). Individuals in the Village Bay area
of the largest island, Hirta, are individually marked each year and
followed longitudinally, with over 95% of individuals in this area
beingmarked at any time (Clutton-Brock et al., 1992). Each spring,
lambs are caught shortly after birth in April (typically within a
week), marked with unique ear tags, and weighed. In August, as
many individuals as possible are caught in corral traps over a
2-week period, with 50–60% of the resident Village Bay sheep pop-
ulation captured each year (Clutton-Brock and Pemberton, 2004).
Each year, 30 population censuses are carried out by experienced
field workers (10 each in spring, summer, and autumn); our dataset
comprised 961 such censuses.During censuses, fieldworkers follow
established routes noting the identity, spatial location (to near-
est 100 m OS grid square), behaviour and group membership of
individual sheep.

Gastrointestinal parasites were quantified using a modified
McMaster technique (Wilson et al., 2004) to enumerate faecal
egg counts (FEC, nematodes) or faecal oocyst counts (FOC,
protozoans). FEC measures via McMaster techniques have been
shown to correlate well to parasite burden in Soay Sheep (Wilson
et al., 2004). FEC/FOC was performed on faecal samples col-
lected in August of each year rectally when animals are cap-
tured for morphological measurements and sampling, or from
observed defecation within several days of capture where rec-
tal samples could not be obtained. Samples were stored at 4°C
until processing which occurred within several weeks of sam-
ple collection. Parasite communities of Soay sheep are com-
prised primarily of gastrointestinal parasites and resemble those
of domestic sheep, with the exception of Haemonchus contortus.
Strongyle nematodes are the dominant group within the Soay
parasite fauna, of which there are six known species present
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in the population, Teladorsagia circumcincta, Trichostrongylus
axei, Tricholostrongylous virtrinus, Chabertia ovina, Bunostomum
trignonocephalum, and Strongyloides papillosus. Due to morpho-
logical similarities in gastrointestinal nematode eggs which are
very difficult or impossible to distinguish, eggs of these species
are grouped as a single ‘strongyle’ FEC count within each sam-
ple, with the exception of S. papillosus, which is morphologically
distinguishable and recorded as present or absent. Soay sheep are
also commonly infected with the apicomplexan genus Eimiera.
Oocysts present in samples from the 11 known species infecting
Soay sheep are indistinguishable by eye and grouped as one ‘coc-
cidia’ FOC. Eggs of additional GI helminths Nematodirus spp.,
Capillaria longipes, and Trichuris ovis are quantified as distinct
FECs and the cestode Moniezia expansa is scored as present or
absent. Although strongyles and coccidia are ubiquitous across age
classes and the most common parasite taxa, other taxa are often
present at very low prevalence (e.g. T. ovis and C. longipes) or only
present in specific age categories (e.g. Nematodirus spp. in lambs).
In addition to gastrointestinal parasites, Soay sheep host the wing-
less ecotoparasitic fly Melophagus ovinus (keds). At each August
capture when faecal samples were collected, ked counts were enu-
merated for each individual via a visual inspection and 1 minute
standardized search of thewool on the abdominal region of the ani-
mal. FEC/FOCand ked count data used in this studywere collected
from 1993 to 2017.

Density measures

We calculated a local density metric for each individual, using all
observations of each individual in each year. Our measure of local
density followed a method previously described in badgers and
deer (Albery et al., 2021a, 2022a), as well as a recent meta-analysis
of spatial and social behaviour across wild animal systems (Albery
et al., 2025). This approach uses a kernel density estimator with the
package ‘adehabitathr‘, taking individuals’ annual centroids and fit-
ting a two-dimensional smoother to the distribution of the data
(Calenge, 2019). Individuals are then assigned a local density value
based on their annual location on this kernel. This variable there-
fore represents, for each individual, how many other individuals
live in its proximity (i.e. individuals per space) in a way that varies
predictably across the population and between years.

Models

Our dataset included 6739 annual measures of 3231 individual
sheep, spread across 25 years (1993–2017).We conducted the anal-
ysis using R version 4.2.3 (R Core Team, 2020). Due to low preva-
lence, we investigated Nematodirus only in lambs and Capillaria
only in lambs and yearlings (i.e. not in adults). Due to some sub-
stantial overdispersion in counts, we excluded outliers that were
greater than a given value for several parasites (Strongyles – 2500,
Strongyloides – 400, Coccidia – 20,000).

Spatial heterogeneity models
First, to examine spatial patterns of infection, we fitted gen-
eralized linear mixed models (GLMMs) using the Integrated
Nested Laplace Approximation (INLA) in R (Lindgren et al., 2011;
Lindgren and Rue, 2015), which is well-suited to identifying spa-
tial autocorrelation andmapping the spatial distribution of wildlife
disease (Albery et al., 2019, 2022b). We examined each parasite as
a count-based response variable with a negative binomial distri-
bution, except the rarer Capillaria and Nematodirus, for which we

used a binomial distribution investigating binary infection status.
We fitted explanatory variables including Sex (two levels: F and M)
and Age Category (three levels: Lamb, Yearling, and Adult), with
random effects of Individual and Year. To quantify spatial auto-
correlation, we fitted a stochastic partial differentiation equation
(SPDE) effect, which models samples’ similarity that emerges from
their proximity in space. We fitted this effect and compared the
fit of the model with and without the effect using deviance infor-
mation criterion (DIC); a value of 2ΔDIC was taken to denote
competitive models – i.e. if adding the SPDE effect reduced DIC
by more than 2, it was taken to be significantly spatially autocorre-
lated. For those parasites with significant spatial heterogeneity, we
plotted the distribution of the SPDE effect in space to identify hot-
and coldspots of infection.

Density models
To identify density-related changes in parasite burden and deter-
mine their probable causes, we fitted another selection of GLMMs.
These model sets each investigated a different host group: lambs,
yearlings, adults, or the population as a whole. We fitted a fixed
effect of Sex (two levels: F andM)with random effects of Individual
and Year. For the adult models, we included Reproductive Status
(Factor with 3 levels: Non-Reproductive Female, Reproductive
Female, and Male, instead of Sex); and Age (continuous). For the
overall models, we fitted age category (three levels: Lamb, Yearling,
and Adult). Finally, we added two measures of density: individ-
ual, spatially defined local density (continuous, standardized to
have a mean of 0 and a standard deviation of 1), and population-
level measures of global density, defined as the population size
in the village bay the following year (continuous, range 211–672,
standardized to have a mean of 0 and a standard deviation of 1).
Comparing the fit and significance of these two variables would
allow us to differentiate effects of local and global density on
infection.

Results

All effect estimates and credibility intervals are given in
Supplementary Material. Our spatial INLA models found
strong spatial autocorrelation in four parasites overall (Figure 1):
strongyles (ΔDIC = 6.70); coccidia (ΔDIC = 26.16); Nematodirus
(ΔDIC = 10.39), and keds (ΔDIC = 34.17). Neither Strongyloides
nor Capillaria were spatially autocorrelated (ΔDIC < 2). Their
spatial distributions are displayed in Figure 1. Broadly, there were
relatively discordant patterns of the four parasites, but strongyles
and Nematodirus were generally concentrated in the northeast
corner of the population (Figure 1A, C), while coccidia were
more concentrated in the southeast (Figure 1B) and keds stood
out especially with a strong gradient towards the southwest
(Figure 1D).

Fitting individuals’ local density as a fixed effect (overall density
distribution displayed in Figure 2A), parasites revealed different
relationships with density across age classes (see Figure 2B for all
coefficients and P-values). The 3/6 parasites were positively associ-
ated with density in lambs (coccidia, strongyles, andNematodirus),
2/5 in yearlings (Capillaria and coccidia), and 1/4 in adults (coc-
cidia) (Figure 3). Additionally, counts of keds were negatively
correlated with density overall and across all age classes (Figure 2B;
Figure 4).

In contrast, global density (as approximated by population size
the year before sampling) only significantly affected strongyles, in
adults (Estimate 0.109; 95%CI 0.014, 0.204; P = 0.0241) and lambs
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Figure 1. Spatial distributions of four spatially autocorrelated parasites, displayed using the two-dimensional distribution of the stochastic partial differentiation equation
(SPDE) effect from the spatial models including year, sex, age, and random effects of individual and year. Darker colours represent greater parasite count (A, B, D) or prevalence
(C), in log- (A, B, D) or logistic (C) units from the mean. Points represent individual average locations based on the population censuses; points are transparent to minimise
overplotting. The black line represents the approximate border of the study area.

(0.183; 0.007, 0.359; P = 0.042) but not yearlings (0.092; −0.02,
0.205; P = 0.11). Notably, none of these effects removed the
effects of local density (see Figure 2C for model estimates); in
fact, fitting global density caused the negative effect of local den-
sity on ked infection to become significantly negative in lambs.
On the contrary, global density’s effect on strongyle infection was
additional to local density’s effect in lambs, and provided the
only positive density effect on adult infection except for coccidia.
Taken together, these results imply that global density and local
density are not interchangeable, but complementary sources of
information.

Discussion

As expected, we uncovered strong, largely positive relationships
between population density and parasite infection in wild Soay
sheep, but with density effects differing substantially across both
parasite taxon and host age class. Population density likely drives
greater helminth infection by driving greater indirect contact: that
is, if more individuals are inhabiting and shedding parasites in

higher-density areas, the parasites will achieve a higher concen-
tration on the pasture, thereby driving greater individual-level
exposure in these areas. This corroborates prior knowledge con-
cerning the role of population density in driving infection in
this population via greater environmental exposure (Wilson et al.,
2004; Hayward et al., 2022) – and offers an explanation for the
previously observed positive correlation between strongyle count
in lambs and preferred vegetation, which is likely to coincide
with areas of high host density (Wiersma et al., 2023). However,
our use of individual-level (spatial) density metrics allowed us
to pick up much finer-scale relationships between density and
infection, and thereby detected several more such relationships
than previous studies. This demonstrates the value of consider-
ing the socio-spatial structuring of a population when examining
density–infection interactions (e.g. Albery et al., 2020), rather
than focussing solely on variation in population size. Furthermore,
while 4/6 parasites showed one or more strong positive relation-
ships with density in lambs or yearlings, there was far weaker
evidence of positive density-dependent infection in adults, and
ectoparasitic biting fly (‘ked’, M. ovinus) counts showed unex-
pected negative correlations with density. Overall, these results
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Figure 2. (A) Sheep density distribution across the population in space, displayed as an average across the study period. The x and y axes are in easting and northings; 1
unit = 100 m. Darker red colours correspond to greater sheep density in relative units of individuals per space; white contours have been added for clarification. The black
line represents the approximate border of the study area, to be aligned with the INLA fields in Figure 1. (B) Tile plot depicting the effect sizes for density-infection relationships
across parasites and age categories. Tiles are coloured according to the relative positive (pink) or negative (blue) values; a missing tile means the combination was not tested
due to low prevalence. Numbers denote the effect size on the log-link scale, with 95% credibility intervals in brackets, and P-values. Opaque writing denotes significant effects
(i.e., their credibility intervals did not overlap with zero); transparent writing denotes non-significant effects. (C) Effect of global density on parasite count were generally
harder to detect than those of local density. Points represent the mean for each effect estimate; error bars denote 95% credibility intervals. All estimates are given on the link
scale. Opaque error bars denote estimates that were significant (i.e., their credibility intervals did not overlap with zero); transparent estimates overlap with zero. All effect
estimates are given in units of standard deviation.

serve to demonstrate that socio-spatial measures of population
density can influence parasite infection differently across differ-
ent host and parasite categories within the same population. More
generally applying this methodology across spatially distributed
animal populations (e.g. as previously shown in badgers (Albery
et al., 2020)), could uncover generalities and contingencies in
the factors shaping density–infection relationships (Albery, 2022),
allowing us to better understand themechanisms driving divergent
density-infection trends across parasites like these.

Our findings support the role of spatiotemporally heteroge-
neous population distributions in determining the landscape of
infection, and specifically in driving higher burdens inmore-social
individuals (Altizer et al., 2003). If parasites have fitness costs,
as they are known to in this population (Coltman et al., 1999;
Wilson et al., 2004; Leivesley et al., 2019), these parasites will
likely play an important role regulating the sheep population in
space. That is, if density drives higher parasite count and para-
sites negatively impact fitness, density ultimately drives its own
sink factor, determining who dies where. Future studies could

attempt to link density and infection with fitness directly to test
this spatially explicit population regulation – e.g. via structural
equation modelling, which has previously shown that parasites
regulate individual reproductive fitness in a similar way in this
population (Leivesley et al., 2019). They could further examine
whether density-infection relationships depend on resource avail-
ability, which should be reduced in higher-density areas and years
in this population; this combined exacerbation of exposure and
susceptibility will likely exponentially influence parasite count and
disproportionately limit the population’s size and density (Wilson
et al., 2004; Wiersma et al., 2023).

There are several possible explanations for our observation of
more positive density-infection relationships in lambs and year-
lings than in adults: first, because young individuals have naïve
immune systems they are generally highly susceptible to infection,
which likely leaves exposure as the main contributor to parasite
count (Albery, 2022). In contrast, between-individual variation in
immunity could be complicating relationships between density (i.e.
exposure) and infection in older individuals (Albery et al., 2020;
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Figure 3. Positive relationships between density and infection in soay sheep across multiple age categories and parasites. Taken from our density GLMMS, the dark black
line represents the mean of the posterior distribution for the age effect estimate; the light grey lines are 100 random draws from the posterior to represent uncertainty. The
density effect estimate, credibility intervals, and P-values are given at the top of each panel. The points represent individual samples, with transparency to help visualize
overplotting. The y-axis (A, D-F) represents counts of eggs or oocysts per gram and has been log10-transformed; 0-counts (which are not possible to display on this logged
scale) are displayed at the bottom of the graph. The y-axis (B-C) represents binary infection status (0/1).

Figure 4. Negative density effects on counts of wingless ectoparasites (keds, melophaga ovinus) in A) lambs; B) yearlings; and C) adult sheep. Taken from our density glmms,
the dark black line represents the mean of the posterior distribution for the age effect estimate; the light grey lines are 100 random draws from the posterior to represent
uncertainty. The density effect estimate, credibility intervals, and p values are given at the top of each panel. The points represent individual samples, with transparency
to help visualize overplotting. The y axis represents counts of keds, and has been log10-transformed; 0-counts (which are not possible to display on this logged scale) are
displayed at the bottom of the graph.

Albery, 2022). Alternatively, a similar pattern could arise because
young individuals are particularly vulnerable to stresses associated

with higher density-like greater resource competition, reducing
their immune resistance and therefore driving greater parasite
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count (Becker and Hall, 2014). This may be supported by the pre-
viously observed positive correlation between strongyle count in
lambs and high-quality vegetation, which is likely to coincide with
areas of high host density (Wiersma et al., 2023). Alternatively,
age-related differences in density–infection patterns could arise
through demographic processes linked to those described above: in
higher-density areas, heavily infected lambs may die more quickly
(Coltman et al., 1999), leaving behind more resistant lambs and
therefore producing a less positive relationship between density
and infection at the population level in older individuals (i.e. ‘selec-
tive disappearance’ (van de Pol andVerhulst, 2006)).These findings
suggest that density-dependent trends might manifest preferen-
tially for vulnerable (immunologically weaker) classes of hosts,
rather than appearing evenly across a population.

Only protozoan coccidia showed consistently positive relation-
ships with density across age categories. Although this could be
slightly surprising given that coccidia are generally regarded as
more important parasites of juveniles, particularly in ruminants
(Chartier and Paraud, 2012), coccidia intensities generally peak
across the population in Spring, when lamb density is greatest
(Sweeny et al., 2022), and independently of the sex and reproduc-
tive status effects evident in helminth infections (Hayward et al.,
2019). This observation suggests a combination of lifelong incom-
plete resistance to infection, such that oocyst concentration on the
pasture is a central determinant of individuals’ parasite counts,
leading to higher counts in the context of high exposure rates (i.e. in
higher-density areas). Although parasite counts are relatively con-
sistent in individuals within and across years, coccidia infections
tend to be less repeatable and chronic than nematode infections
(Clutton-Brock and Pemberton, 2004; Sweeny et al., 2022). We
therefore believe that it is more likely that incomplete resistance
and density-driven exposure persist over the lifespan and lead
to recrudescence, rather than infections becoming established in
early life and persisting. In addition, compared to other parasites,
coccidia may be more strongly linked to reduced condition in
higher-density areas across all host groups, or their transmission
could be more efficient in areas of higher density due to vegetation
composition or microclimate, for example. The fitness and condi-
tion impacts of coccidia have only rarely been examined in this
population (Craig et al., 2008), but we may be able to interrogate
these mechanisms in the future – particularly if combined with
analyses of vegetation composition and socio-spatial behaviour
(Wiersma et al., 2023). Altogether, the role of coccidia in density-
dependent regulation of this population could be stronger than
previously anticipated.

Contrasting with strongyles and coccidia, we observed consis-
tently negative density effects on counts of ectoparasitic ked flies,
which begs explanation, particularly given that direct-contact-
transmitted pathogens like keds are generally expected to correlate
positively with density (Cote and Poulin, 1995; Lloyd-Smith et al.,
2005; Albery, 2022). Because parasite transmission networks are
often spatially structured (Albery et al., 2021b), the distribution
of environmental factors could influence the way that the sheep
interact and transmit keds. For example, sheep may prefer areas
with less wind, such that greater wind exposure in lower-density
areas drives sheep to more often huddle together or shelter in
enclosed spaces.Thiswould lead to higher direct transmission rates
per capita in low-density areas, producing the observed density–
infection relationship. Additionally, at higher densities individuals
may paradoxically decrease their direct contact rates or grouping
tendencies (Albon et al., 1992); along these lines, this divergence
in direct and indirect transmission rates with increasing density

agrees with our findings elsewhere, which demonstrated stronger
indirect than direct transmission is likely tomanifest across a range
of wild animal systems (Albery et al., 2025). However, that study
showed a saturating positive effect of density on contact in this
population specifically, rather than a decrease, so our observation
of a negative density–infection trend (rather than a negative one)
invites further explanation.

In some scenarios, negative density trends can emerge through
encounter-dilution effects, where larger groups subdivide a given
burden of mobile parasites – particularly biting insects – such that
each individual has fewer parasites (Mooring andHart, 1992; Buck
et al., 2017b).This is possible in this case, but given that the keds are
notmobile (i.e. without wings) and reside on the sheep themselves,
this seems unlikely. Instead, environmental drivers in a given area
could drive both lower density and higher ked count. Keds spend
much of their lifespan on the skin of the sheep, and they regularly
fall off hosts and reside in the environment waiting to encounter
another, both of which could leave them relatively exposed to the
elements (Small, 2005); ked transmission is known to be tempera-
ture dependent, supporting this explanation (Tetley, 1958). Sheep
may even avoid living in areas that support high ked count due to
a desire to avoid infection, driving a negative correlation between
density and infection (Weinstein et al., 2018; Albery et al., 2020).
Similarly, ked numbers could be brought down in high-density
areas by keds’ natural enemies: kedsmight be eaten by birds (Evans,
1950), which may result in lower counts in high-density areas if
the birds are more likely to inhabit these areas. The keds are also
known to transmit (i.e. to host) Trypanosoma melophagium blood
parasites in this population, and keds elsewhere have been known
to transmit bluetongue virus (Luedke et al., 1965) and Bartonella
bacteria (Werszko et al., 2021). If these parasites exist at higher
prevalence in high-density areas, and have a fitness cost for the
vectors, which is fairly common (Chomel et al., 2009; Sisterson,
2009), they could present a second-degree cost of density for keds;
however, highly complex density interactions could arise from this
lower intensity of vector infection if they are driven by higher
prevalence of their vectored pathogens. Ultimately, future studies
of further (internal, rather than ectoparasitic) directly transmit-
ted pathogens, or mapping the distribution of multiple types of
between-sheep contacts and their relationships with density, could
help to differentiate between these explanations.

Overall, this study provides compelling evidence that relation-
ships between local density and infection can be strongly contrast-
ing between directly and indirectly transmitted parasites and in
hosts of different age classes, and that global and local density have
distinct effects on infection. Facilitated by more common within-
population formulations of suchdensity variables (e.g. Albery et al.,
2020, 2021a, 2022c), ecological studies should more often consider
that host and parasite biology might introduce strong variation in
density–infection relationships, investigating and untangling such
contingencies.
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