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Abstract

In this paper, we deduce new conditions for the existence of ground state solutions for the p-Laplacian
equation −div(|∇u|p−2∇u) + V(x)|u|p−2u = f (x, u), x ∈ RN ,

u ∈ W1,p(RN ),
which weaken the Ambrosetti–Rabinowitz type condition and the monotonicity condition for the function
t 7→ f (x, t)/|t|p−1. In particular, both t f (x, t) and t f (x, t) − pF(x, t) are allowed to be sign-changing in our
assumptions.
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1. Introduction

Consider the following p-Laplacian equation:{
−div(|∇u|p−2∇u) + V(x)|u|p−2u = f (x, u), x ∈ RN ,
u ∈ W1,p(RN), (1.1)

where p > 1, V : RN → R and f : RN ×R→ R. For p = 2, (1.1) turns into the following
semilinear Schrödinger equation:{

−4u + V(x)u = f (x, u), x ∈ RN ,
u ∈ H1(RN). (1.2)

The Schrödinger equation has found a great deal of interest in recent years because
not only is it important in applications but also it provides a good model for developing
mathematical methods. Many authors have studied the existence of entire solutions of
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Schrödinger equations under various stipulations (cf. for example, [2, 3, 5, 6, 8–10,
13, 21, 23, 25, 28, 29] and the references quoted in them).

For the p-Laplacian equation (1.1), we assume that the potential V(x) and the
nonlinearity f (x, u) satisfy the following conditions:

(V1) V ∈ C(RN ,R) is 1-periodic in each of x1, x2, . . . , xN and 0 < infRN V ≤ supRN

V < +∞;
(S1) f ∈ C(RN+1,R) is 1-periodic in each of x1, x2, . . . , xN and

lim
|u|→∞

| f (x, u)|
|u|p∗−1 = 0, uniformly in x ∈ RN , (1.3)

where p∗ = pN/(N − p) if N > p and p∗ ∈ (p,+∞) if N ≤ p;
(S2) f (x, t) = o(|t|p−1), as |t| → 0, uniformly in x ∈ RN .

Let F(x, u) =
∫ u

0 f (x, s) ds. By (S1) and (S2), we deduce that there exists a constant
C > 0 such that

|F(x, u)| ≤ C(|u|p + |u|p
∗

), ∀(x, u) ∈ RN × R.

Consequently, the energy functional Φ : W1,p(RN)→ R,

Φ(u) =
1
p

∫
RN

(|∇u|p + V(x)|u|p) dx −
∫
RN

F(x, u) dx, (1.4)

is of class C1. Moreover, the critical points of Φ are weak solutions of (1.1).
In the present paper, we are concerned with the existence of ground state solutions,

that is, solutions corresponding to the least positive critical value of Φ.
In many studies of p-superlinear elliptic equations, the (AR) condition due to

Ambrosetti–Rabinowitz (see [1, 4, 7]) or the Nehari condition (Ne) is commonly
assumed (see [11, 16, 18, 21, 27]).

(AR) There exists µ > p such that

0 < µF(x, t) ≤ t f (x, t), ∀(x, t) ∈ RN × (R \ 0);

(Ne) f (x, t)/|t|p−1 is strictly increasing in t on R \ {0}, for every x ∈ RN .

In a recent paper [19], instead of (AR), Liu used the following two conditions:

(S3) lim|t|→∞ (F(x, t)/|t|p) =∞, uniformly in x ∈ RN ;

(S4) there exists θ ≥ 1 such that

θF (x, t) ≥ F (x, st), ∀(x, t) ∈ RN × R, s ∈ [0, 1],

where F (x, t) = (1/p) f (x, t)t − F(x, t).

Specifically, the author established the following theorem in [19].
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Theorem 1.1 [19]. Assume that V and f satisfy (V1), (S1), (S2), (S3) and (S4). Then
(1.1) has a nontrivial solution u ∈ E such that Φ(u) = infMΦ ≥ 0, where

E =

{
u ∈ W1,p(RN) :

∫
RN

(|∇u|p + V(x)|u|p) dx < +∞

}
(1.5)

and
M = {u ∈ E : Φ′(u) = 0, u , 0}.

Note that for the semilinear case p = 2, (1.3) and (S3) were first introduced by Liu
and Wang [21] and then were used in [16]. The condition (S4) is due to Jeanjean [12],
which is weaker than (Ne), see [20]. To overcome the difficulty that the Palais–Smale
(PS) sequences of Φ may be unbounded, he established a variant of the mountain
pass lemma, which asserts that a sequence of perturbed functionals possesses bounded
(PS) sequences. In [14], this condition is also used with a Cerami-type argument
in singularly perturbed elliptic problems in RN with autonomous nonlinearity. For
quasilinear elliptic problems on a bounded domain, (S4) is also used in [22] to obtain
infinitely many solutions and in [15] to compute the critical groups of Φ at infinity and
obtain nontrivial solutions via Morse theory.

The role of (AR) is to ensure the boundedness of the PS sequences of the functional
Φ. This is crucial in applying the critical point theory. There are many functions, for
example the p-superlinear function

f (x, t) = |t|p−2t ln(1 + |t|), (1.6)

which satisfy (S3) and (S4), but do not satisfy (AR) for any µ > p. However, (AR)
does not imply (S4). For example, let

f (x, t) = 3|t|t
∫ t

0
|s|1+sin ss ds + |t|4+sin tt;

then

F(x, t) = |t|3
∫ t

0
|s|1+sin ss ds.

It is easy to see that f (x, t) satisfies (AR) for p = 2 and µ = 3, but it does not satisfy
(S4), see [26]. Therefore, (S3) and (S4) are complement conditions with (AR).

In the present paper, we will deduce some new conditions which weaken both the
weaker version (WAR) of the (AR) condition and the weaker version (WN) of the
Nehari condition (Ne).

(WAR) There exists µ > p such that

0 ≤ µF(x, t) ≤ t f (x, t), ∀(x, t) ∈ RN × R;

(WN) f (x, t)/|t|p−1 is increasing in t on R \ {0} for every x ∈ RN .

Before presenting our theorems, we introduce the following assumptions, where,
and in the sequel, γs = supu∈E, ‖u‖=1 ‖u‖s, for p ≤ s ≤ p∗.
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(S2′) lim|t|→0 | f (x, t)|/|t|p−1 < γ
−p
p , uniformly in x ∈ RN , and t f (x, t) − pF(x, t) = o(|t|p),

as |t| → 0, uniformly in x ∈ RN ;

(S3′) lim|t|→∞ |F(x, t)|/|t|p =∞, for almost every x ∈ RN , and there exists r0 ≥ 0 such
that F(x, t) ≥ 0, for |t| ≥ r0;

(S5) there exist θ0 ∈ (0, 1) and K ≥ 1 such that

1 − θp

p
t f (x, t) ≥ F(x, t) − KF(x, θt), ∀(x, t) ∈ RN × R, θ ∈ [0, θ0];

(S6) there exists a θ0 ∈ (0, 1) such that

1 − θp

p
t f (x, t) ≥

∫ t

θt
f (x, s) ds, ∀(x, t) ∈ RN × R, θ ∈ [0, θ0];

(S7) there exists a µ > p such that

µF(x, t) ≤ t f (x, t), ∀(x, t) ∈ RN × R.

Now we are in a position to state the main results of this paper.

Theorem 1.2. Assume that V and f satisfy (V1), (S1), (S2), (S3′) and (S5). Then (1.1)
has a nontrivial solution u ∈ E such that Φ(u) = infMΦ ≥ 0.

Theorem 1.3. Assume that V and f satisfy (V1), (S1), (S2′), (S3′) and (S6). Then (1.1)
has a nontrivial solution u ∈ E such that Φ(u) = infMΦ ≥ 0.

Theorem 1.4. Assume that V and f satisfy (V1), (S1), (S2′), (S3′) and (S7). Then (1.1)
has a nontrivial solution u ∈ E such that Φ(u) = infMΦ ≥ 0.

Remark 1.5. If the (WAR) condition is satisfied, then we let θ0 = [(µ − p)/µ]1/p.
Hence,

1 − θp

p
t f (x, t) ≥

1
µ

t f (x, t) ≥ F(x, t) ≥ F(x, t) − F(x, θt), ∀θ ∈ [0, θ0].

This shows that (S6) holds. In addition, it is easy to verify that f (x, u) defined by (1.6)
satisfies (S6). Therefore, (S3′) and (S6) weaken (WAR) considerably. Furthermore, it
is easy to check that (WN) implies (S6).

Example 1.6. It is easy to check that the following function:

f (x, t) = a|t|p−2t ln( 1
2 + |t|)

satisfies (S2′), (S3′) and (S6) with p > 2 and 0 < a < 1/(γp
p ln 2), while

F(x, t) = b1|t|p+2 − b2|t|p+1

satisfies (S2′), (S3′) and (S7) with b1, b2 > 0 and µ = p + 1. However, these functions
do not satisfy (WAR) and (S4).
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Remark 1.7. When p = 2, the (AR) condition has also been weakened by Ding and
Lee [8] (see (N3) and (N4) in [8]) under an additional assumption that | f (x, u)| ≤
C0(1 + |u|q−1), ∀(x, u) ∈ RN × R for some C0 > 0 and q ∈ (2, 2∗). However, it is
assumed, in (N4), that F(x, t) > 0 and t f (x, t) − pF(x, t) > 0 for all x ∈ RN and t , 0. In
contrast, the functions F(x, t) and t f (x, t) − pF(x, t) are allowed to be sign-changing
in our assumptions.

2. Proofs of the main results

Let E be the space defined by (1.5) equipped with the norm

‖u‖ =

{∫
RN

(|∇u|p + V(x)|u|p) dx
}1/p

, u ∈ E.

Then E is a Banach space. Under (V1), (S1) and (S2′), the functional Φ defined by
(1.4) is of class C1(E,R). Moreover,

Φ(u) =
1
p
‖u‖p −

∫
RN

F(x, u) dx, ∀u ∈ E (2.1)

and, for all u, v ∈ E,

〈Φ′(u), v〉 =

∫
RN

(|∇u|p−2∇u∇v + V(x)|u|p−2uv) dx −
∫
RN

f (x, u)v dx. (2.2)

Lemma 2.1. Let X be a Banach space. Let M0 be a closed subspace of the metric space
M and Γ0 ⊂ C(M0, X). Define

Γ = {γ ∈ C(M, X) : γ|M0 ∈ Γ0}.

If Ψ ∈ C1(X,R) satisfies

∞ > c := inf
γ∈Γ

sup
t∈M

Ψ(γ(t)) > a := sup
γ0∈Γ0

sup
t∈M0

Ψ(γ0(t)), (2.3)

then there exists a sequence {un} ⊂ X satisfying

Ψ(un)→ c, ‖Ψ′(un)‖(1 + ‖un‖)→ 0.

Proof. For any γ ∈ Γ, define the set Kγ = {γ(t) : t ∈ M} in X and the collection
K = {Kγ : γ ∈ Γ}. Let A = {γ0(t) : γ0 ∈ Γ0, t ∈ M0},

Λ = {ϕ ∈ C(X, X) : ϕ−1 ∈ C(X, X), both ϕ and ϕ−1 are bounded on bounded sets}

and
Λ(A) = {ϕ ∈ Λ : ϕ(u) = u, u ∈ A}.

For any γ ∈ Γ and ϕ ∈ Λ(A), let γ0 = γ|M0 and γ̃(t) = ϕ(γ(t)), t ∈ M. Then γ0 ∈ Γ0 and
γ̃ ∈ C(M, X). Hence,

γ̃(t) = ϕ(γ0(t)) = γ0(t), ∀t ∈ M0,
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that is, γ̃|M0 = γ0 ∈ Γ0. Therefore,

ϕ(K) ∈ K , ∀ϕ ∈ Λ(A), K ∈ K .

These show that the collection K is a minimax system for A. Since (2.3) implies

∞ > c := inf
K∈K

sup
K

Ψ > a := sup
A

Ψ,

it follows from [24, Theorem 2.4] that the result is true. �

Lemma 2.2. Under (V1), (S1), (S2′) and (S5),

Φ(u) ≥ Φ(tu) − (K − 1)
∫
RN

F(x, tu) dx +
1 − tp

p
〈Φ′(u),u〉, ∀u ∈ E, t ∈ [0, θ0]. (2.4)

Proof. Note that

〈Φ′(u), u〉 = ‖u‖p −
∫
RN

f (x, u)u dx, ∀u ∈ E. (2.5)

Thus, by (2.1), (2.5) and (S5),

Φ(u) − Φ(tu) =
1 − tp

p
‖u‖p +

∫
RN

[F(x, tu) − F(x, u)] dx

=
1 − tp

p
〈Φ′(u), u〉 +

∫
RN

[1 − tp

p
f (x, u)u + F(x, tu) − F(x, u)

]
dx

=
1 − tp

p
〈Φ′(u), u〉 +

∫
RN

[1 − tp

p
f (x, u)u + KF(x, tu) − F(x, u)

]
dx

− (K − 1)
∫
RN

F(x, tu) dx

≥ −(K − 1)
∫
RN

F(x, tu) dx +
1 − tp

p
〈Φ′(u), u〉, t ∈ [0, θ0].

This shows that (2.4) holds. �

Since (S6) implies (S5) with K = 1, we have the following corollary immediately.

Corollary 2.3. Under (V1), (S1), (S2′) and (S6),

Φ(u) ≥ Φ(tu) +
1 − tp

p
〈Φ′(u), u〉, ∀u ∈ E, t ∈ [0, θ0].

Now, we define

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, Φ(γ(1)) < 0}

and
c := inf

γ∈Γ
sup

t∈[0,1]
Φ(γ(t)).
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Lemma 2.4. Under (V1), (S1) and (S2′), c > 0 and there exists a sequence {un} ⊂ E
satisfying

Φ(un)→ c, ‖Φ′(un)‖(1 + ‖un‖)→ 0. (2.6)

Proof. In order to prove Lemma 2.4, we apply Lemma 2.1 with M = [0,1], M0 = {0,1}
and

Γ0 = {γ0 : {0, 1} → E : γ0(0) = 0,Φ(γ0(1)) < 0}.

By (S2′), there exist ε0 > 0 and r1 > 0 such that

| f (x, t)| ≤
1

γ
p
p + ε0

|t|p−1, |t| ≤ r1. (2.7)

Combining (2.7) with (S1),

| f (x, t)| ≤
1

γ
p
p + ε0

|t|p−1 + Cε0 |t|
p∗−1, ∀(x, t) ∈ RN × R.

Then

|F(x, t)| ≤
1

p(γp
p + ε0)

|t|p +
Cε0

p∗
|t|p

∗

, ∀(x, t) ∈ RN × R. (2.8)

Hence, it follows from (1.4) and (2.8) that

Φ(u) =
1
p
‖u‖p −

∫
RN

F(x, u) dx

≥
1
p
‖u‖p −

1
p(γp

p + ε0)
‖u‖pp −

Cε0

p∗
‖u‖p

∗

p∗

≥
ε0

p(γp
p + ε0)

‖u‖p −
γ

p∗

p∗Cε0

p∗
‖u‖p

∗

,

which implies that there exists r > 0 such that

min
‖u‖≤r

Φ(u) = 0, inf
‖u‖=r

Φ(u) > 0.

Hence, we obtain
c ≥ inf

‖u‖=r
Φ(u) > 0 = sup

γ0∈Γ0

sup
t∈M0

Φ(γ0(t)).

These show that all assumptions of Lemma 2.1 are satisfied. Therefore, there exists a
sequence (un) ⊂ E satisfying (2.6). �

Lemma 2.5. Under (V1), (S1), (S2), (S3′) and (S5), any sequence {un} ⊂ E satisfying

Φ(un)→ c, 〈Φ′(un), un〉 → 0 (2.9)

is bounded in E.
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Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that
‖un‖ →∞. Let vn = un/‖un‖. Then ‖vn‖ = 1. Passing to a subsequence, we may assume
that vn ⇀ v in E, vn → v in Ls

loc(RN), p ≤ s < p∗ and vn → v almost everywhere on RN .
If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)
|vn|

p dx = 0,

then by Lions’ concentration compactness principle [17] or [27, Lemma 1.21], vn → 0
in Ls(RN) for p < s < p∗. Fix q ∈ (p, p∗) and R > [2p(c + 1)]1/p. By (S1) and (S2), for
ε = 1/[2pK(γp

p + γ
p∗

p∗R
p∗−p)] > 0 there exists Cε > 0 such that

| f (x, t)| ≤ ε(|t|p−1 + |t|p
∗−1) + Cε|t|q−1, ∀(x, t) ∈ RN × R.

Then
|F(x, t)| ≤ ε(|t|p + |t|p

∗

) + Cε|t|q, ∀(x, t) ∈ RN × R.

It follows that

lim sup
n→∞

∫
RN

F(x,Rvn) dx ≤ ε[(Rγp)p + (Rγp∗)p∗] + RqCε lim
n→∞
‖vn‖

q
q =

Rp

2K p
. (2.10)

Since ‖un‖ → ∞, R/‖un‖ ∈ [0, θ0] for large n ∈ N. Hence, by using (2.9), (2.10) and
Lemma 2.2,

c + o(1) = Φ(un)

≥ Φ(Rvn) − (K − 1)
∫
RN

F(x,Rvn) dx +

( 1
p
−

Rp

p‖un‖
p

)
〈Φ′(un), un〉

=
Rp

p
− K

∫
RN

F(x,Rvn) dx +

( 1
p
−

Rp

p‖un‖
p

)
〈Φ′(un), un〉

≥
Rp

2p
+ o(1) > 1 + c + o(1),

which is a contradiction. Thus, δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ Z

N such
that

∫
B1+

√
N (kn) |vn|

p dx > (δ/2). Let wn(x) = vn(x + kn); then∫
B1+

√
N (0)
|wn|

p dx >
δ

2
. (2.11)

Now we define ũn(x) = un(x + kn); then ‖ũn‖ = ‖un‖ and ũn/‖un‖ = wn. Passing to a
subsequence, we have wn ⇀ w in E, wn → w in Ls

loc(RN), p ≤ s < p∗ and wn → w
almost everywhere on RN . Thus, (2.11) implies that w , 0.

By (S1) and (S2), there exists C3 > 0 such that

| f (x, t)| ≤
1
γ

p
p
|t|p−1 + C3|t|p

∗−1, ∀(x, t) ∈ RN × R,
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which implies that

|F(x, t)| ≤
1

pγp
p
|t|p + C3|t|p

∗

, ∀(x, t) ∈ RN × R. (2.12)

For 0 ≤ a < b, let
Ωn(a, b) = {x ∈ RN : a ≤ |ũn(x)| < b}.

Set A := {x ∈ RN : w(x) , 0}; then meas(A) > 0. For almost every x ∈ A, we have
limn→∞ |ũn(x)| =∞. Hence, A ⊂ Ωn(r0,∞) for large n ∈ N; it follows from (2.1), (2.9),
(2.12), (S3′) and Fatou’s lemma that

0 = lim
n→∞

c + o(1)
‖un‖

p = lim
n→∞

Φ(un)
‖un‖

p

= lim
n→∞

[ 1
p
−

∫
RN

F(x, ũn)
|ũn|

p |wn|
p dx

]
= lim

n→∞

[ 1
p
−

∫
Ωn(0,r0)

F(x, ũn)
|ũn|

p |wn|
p dx −

∫
Ωn(r0,∞)

F(x, ũn)
|ũn|

p |wn|
p dx

]
≤ lim sup

n→∞

[ 1
p

+

( 1
pγp

p
+ C3rp∗−p

0

) ∫
RN
|wn|

p dx −
∫

Ωn(r0,∞)

F(x, ũn)
|ũn|

p |wn|
p dx

]
≤

1
p

+

( 1
pγp

p
+ C3rp∗−p

0

)
γ

p
p − lim inf

n→∞

∫
Ωn(r0,∞)

F(x, ũn)
|ũn|

p |wn|
p dx

=
1
p

+

( 1
pγp

p
+ C3rp∗−p

0

)
γ

p
p − lim inf

n→∞

∫
RN

|F(x, ũn)|
|ũn|

p [χΩn(r0,∞)(x)]|wn|
p dx

≤
1
p

+

( 1
pγp

p
+ C3rp∗−p

0

)
γ

p
p −

∫
RN

lim inf
n→∞

F(x, ũn)
|ũn|

p [χΩn(r0,∞)(x)]|wn|
p dx

= −∞,

which is a contradiction. Thus, {un} is bounded in E. �

Lemma 2.6. Under (V1), (S1), (S2′), (S3′) and (S6), any sequence {un} ⊂ E satisfying
(2.9) is bounded in E.

Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that
‖un‖ → ∞. Let vn = un/‖un‖. Then ‖vn‖ = 1. Passing to a subsequence, we may assume
that vn ⇀ v in E, vn → v in Ls

loc(RN), p ≤ s < p∗ and vn → v almost everywhere on RN .
If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)
|vn|

p dx = 0,

then by Lions’ concentration compactness principle [17] or [27, Lemma 1.21], vn → 0
in Ls(RN) for p < s < p∗. Fix q ∈ (p, p∗) and R > [p(c + 1)(γp

p + ε0)/ε0]1/p, where ε0 is
the same as in (2.7). By (S1) and (2.7), for ε = p∗/[4(Rγp∗)p∗] > 0 there exists Cε > 0
such that

| f (x, t)| ≤
1

γ
p
p + ε0

|t|p−1 + ε|t|p
∗−1 + Cε|t|q−1, ∀(x, t) ∈ RN × R.
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Then
|F(x, t)| ≤

1
p(γp

p + ε0)
|t|p +

ε

p∗
|t|p

∗

+
Cε

q
|t|q, ∀(x, t) ∈ RN × R.

It follows that

lim sup
n→∞

∫
RN

F(x,Rvn) dx ≤
(Rγp)p

p(γp
p + ε0)

+
ε(Rγp∗)p∗

p∗
+

RqCε

q
lim
n→∞
‖vn‖

q
q

=
(Rγp)p

p(γp
p + ε0)

+
1
4
. (2.13)

Since ‖un‖ → ∞, R/‖un‖ ∈ [0, θ0] for large n ∈ N. Hence, using (2.9), (2.13) and
Corollary 2.3,

c + o(1) = Φ(un) ≥ Φ(Rvn) +

( 1
p
−

Rp

p‖un‖
p

)
〈Φ′(un), un〉

=
Rp

p
−

∫
RN

F(x,Rvn) dx +

( 1
p
−

Rp

p‖un‖
p

)
〈Φ′(un), un〉

≥
ε0Rp

p(γp
p + ε0)

−
1
4

+ o(1) >
3
4

+ c + o(1),

which is a contradiction. Thus, δ > 0. The rest of the proof is the same as that of
Lemma 2.5. �

Lemma 2.7. Under (V1), (S1), (S2′) and (S7), any sequence {un} ⊂ E satisfying (2.9) is
bounded in E.

Proof. By (2.1), (2.2), (2.9) and (S7),

c + 1 ≥ Φ(un) −
1
µ
〈Φ′(un), un〉

=
µ − p

pµ
‖un‖

p +

∫
RN

[1
µ

f (x, un)un − F(x, un)
]

dx

≥
µ − p

pµ
‖un‖

p for large n ∈ N,

which implies that {un} is bounded in E. �

Lemma 2.8. Under (V1), (S1), (S2), (S3′) and (S5), (1.1) has a nontrivial solution, that
is,M , φ.

Proof. Lemma 2.4 implies the existence of a sequence {un} ⊂ E satisfying (2.6) and so
(2.9). By Lemma 2.5, {un} is bounded in E. Thus, there exists a constant C4 > 0 such
that

‖un‖p + ‖un‖p∗ ≤ C4.

If
δ := lim sup

n→∞
sup
y∈RN

∫
B1(y)
|un|

p dx = 0,
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then by Lions’ concentration compactness principle [17] or [27, Lemma 1.21], un → 0
in Ls(RN) for p < s < p∗. Fix q ∈ (p, p∗). By (S1) and (S2), for ε = c/(Cp

4 + Cp∗

4 ) > 0
there exists Cε > 0 such that

|t f (x, t) − pF(x, t)| ≤ ε(|t|p + |t|p
∗

) + Cε|t|q, ∀(x, t) ∈ RN × R.

Thus,

lim sup
n→∞

∫
RN

[ 1
p

f (x, un)un − F(x, un)
]

dx ≤
ε

p
(Cp

4 + Cp∗

4 ) +
Cε

p
lim
n→∞
‖un‖

q
q

=
c
p
,

which, together with (2.9), implies that

c = Φ(un) −
1
p
〈Φ′(un), un〉 + o(1)

=

∫
RN

[ 1
p

f (x, un)un − F(x, un)
]

dx + o(1) ≤
c
p

+ o(1).

This contradiction shows that δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ Z

N such
that

∫
B1+

√
N (kn) |un|

p dx > δ/2. Let us define vn(x) = un(x + kn) so that∫
B1+

√
N (0)
|vn|

p dx >
δ

2
. (2.14)

Since V(x) and f (x, u) are periodic, we have ‖vn‖ = ‖un‖ and

Φ(vn)→ c, ‖Φ′(vn)‖(1 + ‖vn‖)→ 0.

Passing to a subsequence, we have vn ⇀ v in E, vn → v in Ls
loc(RN), p ≤ s < p∗

and vn → v almost everywhere on RN . Thus, (2.14) implies that v , 0. For every
w ∈ C∞0 (RN),

〈Φ′(v),w〉 = lim
n→∞
〈Φ′(vn),w〉 = 0.

Hence, Φ′(v) = 0. This shows that v ∈ M is a nontrivial solution of (1.1). �

Lemma 2.9. Under (V1), (S1), (S2′), (S3′) and (S6) or (S7), (1.1) has a nontrivial
solution, that is,M , φ.

The proof is similar to that of Lemma 2.8, so we omit it. �

The proof of Theorem 1.2 is rather similar to that of Theorem 1.3, so we only give
the proof of Theorem 1.3.

Proof of Theorem 1.3. Lemma 2.9 shows that M is not an empty set. Let c0 =

infM Φ. By Corollary 2.3, one has Φ(u) ≥ Φ(0) = 0 for all u ∈ M. Thus, c0 ≥ 0.
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Let {un} ⊂ M be such that Φ(un)→ c0. Then 〈Φ′(un), un〉 = 0. In view of the proof of
Lemma 2.6 (c > 0 is not necessary), {un} is bounded in E, and

‖un‖
p =

∫
RN

f (x, un)un dx.

Let infn∈N ‖un‖ = δ0. If δ0 = 0, going if necessary to a subsequence, we may assume
that ‖un‖ → 0. Fix q ∈ (p, p∗); by (S1) and (S2′), there exist ε0 > 0 and C5 > 0 such
that

| f (x, t)| ≤
1

γ
p
p + ε0

|t|p−1 + |t|p
∗−1 + C5|t|q−1, ∀(x, t) ∈ RN × R.

Thus,

‖un‖
p =

∫
RN

f (x, un)un dx

≤
1

γ
p
p + ε0

‖un‖
p
p + ‖un‖

p∗

p∗ + C5‖un‖
q
q

≤
γ

p
p

γ
p
p + ε0

‖un‖
p + γ

p∗

p∗‖un‖
p∗ + C5γ

q
q‖un‖

q,

which implies that

ε0

γ
p
p + ε0

≤ γ
p∗

p∗‖un‖
p∗−p + C5γ

q
q‖un‖

q−p = o(1).

This contradiction shows that infn∈N ‖un‖ = δ0 > 0. Choose a constant C6 > 0 such that
‖un‖p∗ ≤ C6. If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)
|un|

p dx = 0,

then by Lions’ concentration compactness principle [27, Lemma 1.21], un → 0 in
Ls(RN) for p < s < p∗. Fix q ∈ (p, p∗). By (S1) and (2.7), for ε = ε0δ

p
0/[2(γp

p + ε0)Cp∗

6 ]
> 0, where ε0 is given by (2.7), there exists Cε > 0 such that

| f (x, t)| ≤
1

γ
p
p + ε0

|t|p−1 + ε|t|p
∗−1 + Cε|t|q−1, ∀(x, t) ∈ RN × R.

Thus,

‖un‖
p =

∫
RN

f (x, un)un dx ≤
γ

p
p

γ
p
p + ε0

‖un‖
p + ε‖un‖

p∗

p∗ + Cε‖un‖
q
q,

which yields that

ε0δ
p
0

γ
p
p + ε0

≤
ε0

γ
p
p + ε0

‖u‖p ≤ ε‖u‖p
∗

p∗ + Cε‖u‖
q
q ≤ εC

p∗

6 + o(1) =
ε0δ

p
0

2(γp
p + ε0)

+ o(1).

This contradiction shows that δ > 0.
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Going if necessary to a subsequence, we may assume the existence of kn ∈ Z
N such

that
∫

B1+
√

N (kn) |un|
p dx > (δ/2). Let us define vn(x) = un(x + kn) so that∫

B1+
√

N (0)
|vn|

p dx >
δ

2
. (2.15)

Since V(x) and f (x, u) are periodic, we have ‖vn‖ = ‖un‖ and

Φ(vn)→ c0, Φ′(vn) = 0.

Passing to a subsequence, we have vn ⇀ v0 in E, vn → v0 in Ls
loc(RN), p ≤ s < p∗

and vn → v0 almost everywhere on RN . Thus, (2.15) implies that v0 , 0. For every
w ∈ C∞0 (RN),

〈Φ′(v0),w〉 = lim
n→∞
〈Φ′(vn),w〉 = 0.

Hence Φ′(v0) = 0. This shows that v0 ∈ M and so Φ(v0) ≥ c0. On the other hand, by
using (S6) and Fatou’s lemma,

c0 = lim
n→∞

[
Φ(vn) −

1
p
〈Φ′(vn), vn〉

]
= lim

n→∞

∫
RN

[ 1
p

f (x, vn)vn − F(x, vn)
]

dx

≥

∫
RN

lim
n→∞

[ 1
p

f (x, vn)vn − F(x, vn)
]

dx

=

∫
RN

[ 1
p

f (x, v0)v0 − F(x, v0)
]

dx

= Φ(v0) −
1
p
〈Φ′(v0), v0〉 = Φ(v0).

This shows that Φ(v0) ≤ c0 and so Φ(v0) = c0 = infMΦ. �

Proof of Theorem 1.4. By the same proof of Theorem 1.3 using Lemma 2.7 instead
of Lemma 2.6, there exists v0 ∈ E \ {0} such that Φ′(v0) = 0. This shows that v0 ∈ M

and so Φ(v0) ≥ c0. On the other hand, by using (S7) and Fatou’s lemma,

c0 = lim
n→∞

[
Φ(vn) −

1
µ
〈Φ′(vn), vn〉

]
= lim

n→∞

{
µ − p

pµ
‖vn‖

p +

∫
RN

[1
µ

f (x, vn)vn − F(x, vn)
]

dx
}

≥
µ − p

pµ
lim inf

n→∞
‖vn‖

p +

∫
RN

lim inf
n→∞

[1
µ

f (x, vn)vn − F(x, vn)
]

dx

≥
µ − p

pµ
‖v0‖

p +

∫
RN

[1
µ

f (x, v0)v0 − F(x, v0)
]

dx

= Φ(v0) −
1
µ
〈Φ′(v0), v0〉 = Φ(v0).

This shows that Φ(v0) ≤ c0 and so Φ(v0) = c0 = infMΦ. �
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