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1. Introduction
For H a component of a stratum of the moduli space of translation surfaces, there is an
GL+(2, R)-action on H. The breakthrough work of Eskin, Mirzakhani, and Mohammadi
in [EM18, EMM15] showed that GL+(2, R) orbit closures of translation surfaces are
varieties that are cut out by linear equations in period coordinates. For a multi-component
stratum H1 × · · · × Hn, we have a diagonal GL+(2, R) action.

Definition 1.1. Let H = H1 × · · · × Hn be a product of connected components of
strata of translation surfaces. A multi-component invariant subvariety is a closed
GL+(2, R)-invariant variety L ⊂ H that is cut out by linear equations with real coefficients
in period coordinate charts. An invariant subvariety is single-component if n = 1.
Invariant subvarieties should be assumed to be single-component unless specified as
multi-component. The term invariant subvariety includes whole strata.

Definition 1.2. A multi-component invariant subvariety M ⊂ H1 × · · · × Hn is called
decomposable if up to reordering the Hi , there are multi-component invariant subvarieties
M1 ⊂ H1 × · · · × Hk , M2 ⊂ Hk+1 × · · · × Hn such that M = M1 × M2. Here, M
is prime if it is not decomposable.

One source of these multi-component invariant subvarieties comes from the
WYSIWYG boundary of Mirzakhani and Wright [MW17]. Starting with a stratum
of single-component translation surfaces, going to the boundary may produce
multi-component surfaces. Chen and Wright proved in [CW21, Theorem 1.2] that the
boundary of invariant subvarieties are multi-component invariant subvarieties.
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2 C. Zhang

LEMMA 1.3. Let M be an invariant subvariety. Then, the diagonal in M × M defined as

D := {(M , M) ∈ M × M : M ∈ M}
is an invariant subvariety. The antidiagonal defined as

D := {(M , −Id(M)) ∈ M × M : M ∈ M}
is also an invariant subvariety.

Proof. Here, D is GL+(2, R)-invariant since the action is the diagonal action. Let
a1, . . . , an be periods of the first surface and b1, . . . , bn be the periods of the same
saddles on the second surface. Then, ai = bi are equations that cut out D. The proof for D
is similar.

Remark 1.4. In hyperelliptic strata, the diagonal and antidiagonal are the same.

We generalize the above examples in the following definition.

Definition 1.5. Let M1, M2 be invariant subvarieties. A prime invariant subvariety � is a
quasidiagonal in M1 × M2 if the projection maps pi : � → Mi are dominant. We allow
dim � > dim Mi . As a shorthand, we will write ‘� ⊂ M1 × M2 is a quasidiagonal’.
By Proposition 2.4 and Remark 2.5 below, every quasidiagonal has a corresponding
quasidiagonal where both sides have equal area. Thus, we will assume throughout the
paper that both components have equal area.

Remark 1.6. Any prime invariant subvariety � is a quasidiagonal in p1(�) × p2(�).

Definition 1.7. Let X be a Riemann surface. A hyperelliptic involution j on X is an
automorphism of X whose quotient is P1. Let (X, ω) be a hyperelliptic translation surface
if there exists a hyperelliptic involution j : X → X such that j∗(ω) = −ω. Let H be a
component of a stratum of translation surfaces. The hyperelliptic locus in H is an invariant
subvariety that consists of all hyperelliptic translation surfaces of H.

The following is the main theorem of the paper and proves a conjecture by Apisa and
Wright [AW23b, Conjecture 8.35] in the case of Abelian differentials.

THEOREM 1.8. Let Mi be either a connected component of a stratum of translation
surfaces in genus g ≥ 2 (without marked points) or the hyperelliptic locus in such a stratum
for i = 1, 2. The only (equal area) quasidiagonals � ⊂ M1 × M2 are the diagonal and
antidiagonal when M1 = M2.

Example 1.9. We do not allow marked points because this will give rise to many uninter-
esting examples of quasidiagonals. For example, let � ⊂ M1 × M2 be a quasidiagonal.
Then, {((M1, p), M2) : (M1, M2) ∈ �, p ∈ M1} is a quasidiagonal in M∗

1 × M2. (Here,
M∗

1 denotes the invariant subvariety which is M1 along with a free marked point.)

Classifying quasidiagonals is helpful with inductive arguments that use the WYSIWYG
boundary. In addition, this classification is interesting since quasidiagonals show relation-
ships between M1 and M2.
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Quasidiagonals in strata of translation surfaces 3

Definition 1.10. A continuous, SL(2, R)-invariant map between invariant subvarieties
φ : M → N is called a morphism if it is linear in period coordinates.

A morphism φ : M → N between invariant subvarieties gives a quasidiagonal
{(M , φ(M)) : M ∈ M} ⊂ M × φ(M). For example, when H is not hyperelliptic, −Id
gives rise to a non-trivial automorphism of H. This corresponds to the antidiagonal.

COROLLARY 1.11. Let H, H′ be strata. There are no dominant morphisms φ : H → H′
other than Id, −Id : H → H.

The above support the following heuristic: a quasidiagonal � ⊂ M1 × M2 exists if
and only if M1 and M2 are ‘related’.

Example 1.12. Let H̃(2, 02) ⊂ H(22, 12) be the space of all double covers of surfaces
in H(2) branched at two marked points. There is a quasidiagonal � ⊂ H(2) × H̃(2, 02)

consisting of all (M , M̃), where M̃ is a branched double cover of M.

LEMMA 1.13. Given quasidiagonals �L ⊂ M1 × M2 and �R ⊂ M2 × M3, then
�L ∗ �R ⊂ M1 × M3 defined as {(M1, M3) ∈ M1 × M3 : there exists M2 such that
(M1, M2) ∈ �L, (M2, M3) ∈ �R} is a quasidiagonal.

Proof. Here, �L ∗ �R is prime since the absolute periods of each side determines
the absolute periods of the other. Additionally, p2(�L) ∩ p1(�R) is a Zariski open
subset of M2. Furthermore, p1 : �L ∗ �R → M1 is dominant since p1(�L × �R) =
p1(p

−1
2 (p2(�L) ∩ p1(�R))).

COROLLARY 1.14. Let M1, M2 be invariant subvarieties. We define M1 ∼ M2 if there
exists a quasidiagonal � ∈ M1 × M2. Then, ∼ is an equivalence relation.

Corollary 1.14 follows from Lemma 1.13. Theorem 1.8 implies that there are many
distinct ∼ equivalence classes. It would be interesting to classify these equivalence classes.

Another application of this work is to measurable joinings of Masur–Veech measures.

Definition 1.15. Let (X1, μ1, T1) and (X2, μ2, T2), where μi is a measure on a space
Xi and Ti : Xi → Xi is a measure-preserving transformation. A joining is a measure on
X1 × X2 invariant under the product transformation T1 × T2, whose marginals on Xi are
μi . A measure μ on a space X is prime if it cannot be written as a product μ = μ1 × μ2,
X = X1 × X2, where μi is a measure on Xi .

Assuming a multi-component version of Eskin and Mirzakhani’s measure classification
result, Theorem 1.8 classifies ergodic measurable joinings of Masur–Veech measures on
strata.

Assumption 1.16. (See [MW17, Conjecture 2.10]) We define an affine measure as in
[EM18, Definition 1.1]. For a multi-component stratum under the diagonal action of
SL(2, R), the only ergodic invariant measures are SL(2, R)-invariant and affine.
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COROLLARY 1.17. Let Mi be either a stratum of translation surfaces or the hyperelliptic
locus in such a stratum and μi be the Masur–Veech measure on the unit area locus
of Mi for i = 1, 2. Under Assumption 1.16, the only prime ergodic joinings of μ1, μ2

(under the diagonal action of SL(2, R)) are the Masur–Veech measure on the diagonal or
antidiagonal.

Proof. By Assumption 1.16, the only ergodic SL(2, R)-invariant measures are affine,
so they are supported on an affine subvariety M. Since the joining is prime, M must
be prime. The condition on the marginals implies that M must be a quasidiagonal in
M1 × M2. Our assumptions also guarantee equal area on both sides. We may now apply
Theorem 1.8.

1.1. Organization. Section 2 quickly summarizes the techniques used in the proof of the
main theorem. The proof will use induction. Section 3, which is slightly technical, is the
base case of the proof. The heart of the proof is in §4, which is quite short.

2. Background
In this section, we define notation and terminology, and list the background needed in the
paper. We also prove the results needed in the proof of the main theorem. By ‘stratum’,
we will refer to a ‘connected component of a stratum of connected translation surfaces
without marked points in genus at least 2’ unless otherwise stated. Let H be a stratum. We
will often use a single letter M = (X, ω) ∈ H to denote a translation surface, where X is
the underlying Riemann surface and ω the holomorphic 1-form.

2.1. Prime invariant subvarieties. The notion of a prime invariant subvariety
(Definition 1.2) was defined and studied in [CW21]. Here, we list some results about
them.

THEOREM 2.1. (Chen and Wright [CW21, Theorem 1.3]) Let M ⊂ H1 × · · · × Hn be
a prime invariant subvariety, where Hi is a stratum of translation surfaces of genus gi .
Let pi be the map and pi : M → H 1(Sgi

) be the projection of M on Hi followed by the
absolute period map. Then, all gi are equal and for any i, j , there is an invertible linear
map Aij : H 1(Sgi

) → H 1(Sgj
) such that Aij ◦ pi = pj . In particular, each component

must have the same rank. We will say that the absolute periods of M determine each other
to refer to this property.

Definition 2.2. Let M be a (single-component) invariant subvariety, and M ∈ M. Let
p : H 1(M , �; C) → H 1(M; C) be the forgetful map. The rank of M is 1

2 dim p(TMM).
The rank of a prime invariant subvariety N is rk pi(N ), which is independent of i by
Theorem 2.1.

Remark 2.3. By [AEM17, Theorem 1.4], p(TMM) is symplectic, so the rank of an
invariant subvariety is always an integer.
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PROPOSITION 2.4. (Chen and Wright [CW21, Corollary 7.4]) In a prime invariant
subvariety, the gt action is ergodic on the unit area locus. Thus, the ratio of areas of
the components is constant.

Remark 2.5. For any quasidiagonal �, we get an infinite number of quasidiagonals
�r = {(M1, rM2) : (M1, M2) ∈ �}. Thus, we can scale � so that both components have
the same area.

2.2. Cylinder deformations. By a cylinder C, we refer to a maximal topological open
annulus foliated by closed geodesics. If C is a cylinder on M, there is a corresponding
cylinder on every surface in a small enough neighborhood of M. As an abuse of notation,
we often refer to these corresponding cylinders as C. By core curve of a cylinder, we
refer to one of these closed geodesics. A cylinder has two boundary components, which
may overlap. Since cylinders are maximal, there is always at least one singularity on each
boundary component, and a cylinder is simple if each boundary component only contains
a single singularity. A cross curve is a saddle connection contained in C that goes from
one boundary component to the other.

Let M ⊂ H = H1 × · · · × Hn be a multi-component invariant subvariety. Let
C = {C1, . . . , Cr} be a collection of cylinders on M = (M1, . . . , Mn) ∈ M and let
γi be the core curve of Ci . The tangent space TMM is a subspace of TMH =
H 1(M , �; C) := H 1(M1, �; C) × · · · × H 1(Mn, �; C). Thus, there is a projection
π : H1(M , �; C) → (TMM)∗. We view γi as elements of H1(M , �; C) by setting the
H1(Mj , �; C) to be zero on the components Mj that do not contain Ci .

Definition 2.6. Here, C is called M-parallel if all π(γi) are colinear in (TMM)∗. Being
M-parallel is an equivalence relation on cylinders, so we call C an M-parallel class if it
is an equivalence class of M-parallel cylinders.

Intuitively, M-parallel means that there is a neighborhood M ∈ U ⊂ M such that all
cylinders in C remain parallel in this neighborhood. See [Wri15] for a more detailed
discussion on M-parallel cylinders.

We will sketch a proof of Wright’s cylinder deformation theorem [Wri15] for
multi-component strata. The proof is identical to the original proof, but we omit many
details. Let H = H1 × · · · × Hn be a multi-component stratum. First, we reproduce
a theorem by Smillie and Weiss [SW04, Theorem 5] that will be used in the proof.
The original theorem was only stated for single-component strata but the proof in the
multi-component case is identical. Let U = {(1 t

0 1) : t ∈ R} ⊂ SL(2, R).

THEOREM 2.7. (Smillie and Weiss) [SW04] Every U orbit closure contains a horizontally
periodic surface.

LEMMA 2.8. Let M = (M1, . . . , Mn) ∈ � be a prime invariant subvariety. Choose a
period coordinate chart U around M and let Mt = (Mt

1, . . . , Mt
n), t ∈ [0, 1], be a path in

U with M0 = M . If for some i, for each t, the imaginary parts of the absolute periods of
Mt

i are the same, then the same is true for all i.
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Proof. By Theorem 2.1, the absolute periods of Mi determine each other and M is cut
out by equations with real coefficients in period coordinate charts.

LEMMA 2.9. Let M = (M1, M2) ∈ M be a two-component prime invariant subvariety. If
M1 is horizontally periodic, then M2 must be horizontally periodic. In this case, we say
that M is horizontally periodic.

Proof. By Theorem 2.7, there exists a sequence tn → ∞ such that (1 tn
0 1)(M1, M2) →

(M∞
1 , M∞

2 ). Let (U1, U2) be a neighborhood around (M∞
1 , M∞

2 ) in period coordinates.
For large enough tn, M

tn
1 := (1 tn

0 1)M1 ∈ U1 and since M
tn
1 and M∞

1 all lie on T, they all
have the same real periods. Assume by contradiction that M2 was not horizontally periodic.
Then, for large enough n, there is a surface M

tn
2 := (1 tn

0 1)M2 such that there is some cylinder
C of M∞

2 that persists on M
tn
2 , but it is not horizontal. Thus, the core curve of C is an

absolute period that changes in imaginary part on a path from M
tn
2 to M∞

2 . This contradicts
Lemma 2.8.

Now, we continue to the statement of the cylinder deformation theorem. Let C consist
of cylinders C1, . . . , Cr , with heights h1, . . . , hr , and let αi be the cohomology class
associated to the core curve of Ci under Poincaré duality H1(M − �; C) ∼= H 1(M , �; C).
Define

ηC =
r∑

i=1

hiαi .

See also [Wri15, §2] for a more detailed definition of ηC . For horizontal cylinders, moving
in the direction of iηC in period coordinates stretches all the cylinders in C (in proportion
to the height of the cylinder) and does not change the rest of the surface. Moving in the
direction of ηC shears all the cylinders of C and does not change the rest of the surface. We
are now able to state the theorem.

THEOREM 2.10. (Cylinder deformation theorem [Wri15]) Let M ⊂ H be an invariant
subvariety of a multi-component stratum. Let C be an M-parallel class of cylinders on M.
Then, ηC ∈ TMM. (Here, TMM denotes the tangent space to M at M, which is a subspace
of H 1(M , �; C)).

The following lemma is [Wri15, Lemma 3.1].

LEMMA 2.11. Let M be horizontally periodic and C be an M-parallel class of cylinders.
Let the moduli of the cylinders of C be independent over Q of the moduli of the remaining
horizontal cylinders. Then, ηC ∈ TMM.

Proof. The U-flow of a horizontally periodic surface is the same as the flow on an
r-dimensional torus whose slope is determined by the moduli of the cylinders.

The following lemma can be found in [Wri15, Lemma 4.9].
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LEMMA 2.12. Let V be a finite-dimensional vector space and F ⊂ V ∗ a finite collections
of linear functionals on V, no two of which are colinear. The collection of functions 1/w for
w ∈ F are linearly independent over R. This remains true when the functions are restricted
to any non-empty open set of V.

Proof of Theorem 2.10. Let C be an M-parallel class of cylinders on M. By Theorem 2.7,
there is a horizontally periodic surface M ′ in the U orbit closure of M. The corresponding
set of cylinders, which we still call C, is an M-parallel class on M ′.

Claim 2.13. There is a surface M ′′ that is a real deformation of M ′ such that the moduli of
the cylinders in C are independent over Q of the moduli of the cylinders not in C [Wri15,
Lemma 4.10].

By the claim, we have a surface M ′′ where the moduli of the cylinders in C are
independent of the rest of the cylinders. Lemma 2.11 finishes the proof. Thus, it suffices
to prove the claim. Let Cr+1, . . . , Cl be the cylinders of M ′ not in C, and let mi be the
moduli of the cylinder Ci . Assume by contradiction that the claim is false. Because M is
cut out by real linear equations in period coordinates, there is some rational relation that
holds for small real deformations of M ′,

r∑
i=1

qimi =
l∑

j=r+1

qjmj

for some qi ∈ Q, where neither the right-hand nor the left-hand side is identically zero.
Recall that mi = hi/ci is the modulus of a cylinder. Since the cylinders in C are all
M-parallel, the ci are all multiples of each other in a small neighborhood. Allowing
the coefficients to be real numbers, we can remove all but one representative from each
M-parallel class. Thus, we have an equation of the form

r1m1 =
∑
j∈J ,

J⊂{r+1,...,l}

qjmj ,

where neither side is zero and no two of the cylinders Cj are M-parallel. However, 1/mij

are linear functional (over an open set in the space of real deformations) that are not
colinear, so this relation cannot hold by Lemma 2.12. This is a contradiction, so the claim
and the theorem are proven.

The following corollary, which is [NW14, Proposition 3.2], immediately generalizes to
the multi-component setting.

COROLLARY 2.14. Let M be a surface in a multi-component invariant subvariety M. Let
C, C′ be M-parallel classes of cylinders on M, and let C, D be cylinders in C′. Then,

area(C ∩ C)

area(C)
= area(D ∩ C)

area(D)
.
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LEMMA 2.15. Let M be a prime invariant subvariety and C be a M-parallel class of
cylinders on a surface M = (M1, . . . , Mn) ∈ M. Define Mi := pi(M) to be the closure
of the ith projection of M. Let Ci be the cylinders of C on Mi . Then, Ci is a non-empty
Mi-parallel class of cylinders.

Proof. First, we show each Ci is non-empty. Assume by contradiction that Mi does not
have a cylinder in C, but Mj does. By the cylinder deformation theorem, we can perform
standard cylinder dilation on C while remaining in �. This causes the absolute periods of
Mj to change without changing the absolute periods of Mi , which contradicts Theorem 2.1.

Now we show that each Ci is an Mi-parallel class. Let p : H 1(M , �; C) → H 1(M; C)

be the projection from relative to absolute cohomology. Then, (pTMM)∗ ⊂ (TMM)∗.
Since the core curves of cylinders γi are elements of absolute homology H1(M; C), we
have π(γi) ∈ (pTMM)∗ (where π is defined in the discussion before Definition 2.6). Now,
let {γj } be the core curves of cylinders of Mi . By [CW21, Theorem 1.3], (pTM�)∗ ∼=
(pTMi

Mi )
∗, so π(γi) are colinear in (pTMi

Mi )
∗ if and only if they are colinear in

(pTM�)∗. Thus, γi are Mi-parallel if and only if they are �-parallel.

2.3. WYSIWYG compactification. We give a short overview of the WYSIWYG com-
pactification. See [CW21, MW17] for more formal introductions.

Definition 2.16. Let H, H′ be strata of multi-component translation surfaces potentially
having marked points. Let Mn = (Xn, ωn) ∈ H and �n be its set of singularities and
marked points, and let M = (X, ω) ∈ H′ and � its set of singularities and marked points.
We say that Mn converges to M if there are decreasing neighborhoods � ⊂ Ui ⊂ M such
that there are gi : X − Ui → Xi that are diffeomorphisms onto their images satisfying:
(1) g∗

i (ωi) → ω in the compact-open topology on M − �;
(2) the injectivity radius of points not in the image of gi goes to zero uniformly in i.
See [MW17, Definition 2.2].

Thus, we can construct ∂H from H by including all H′ such that a sequence of surfaces
in H converges to a surface in H′. Multiple copies of a stratum can be included if there
are two sequences that converge to the same surface in H′ but are not close in H. We call
the union H = H ∪ ∂H (with the topology given by the above convergence of sequences)
the WYSIWYG partial compactification of H. For any invariant subvariety M ⊂ H, we
define ∂M to be M − M, where the closure M is taken in H.

Remark 2.17. Even if Mn is a convergent sequence of surfaces without marked points, its
limit may have marked points.

Let Mn = (Xn, ωn) ∈ M be a sequence of multi-component translation surfaces that
has a limit M = (X, ω) ∈ ∂M. Let H′ be the stratum with marked points that contains M.
Let N be the connected component of H′ ∩ ∂M that contains M. We call N the component
of the boundary of M that contains M. The sequence Xn will approach a limit X′ in the
Deligne–Mumford compactification. For large enough n, there is a map fn : Xn → X′
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Quasidiagonals in strata of translation surfaces 9

called the collapse map. There is also a map g : X → X′ identifying together marked
points of X. Define (fn)∗ : H1(Xn, �n) → H1(X, �) and Vn = ker((fn)∗).

PROPOSITION 2.18. After identifying H1(Xn, �n) for different n, Vn eventually becomes
constant which we call V. We call V the space of vanishing cycles. Here, TMH′ can be
identified with Ann(V ).

This proposition was proven for multi-component surfaces in [MW17, Propositions 2.5
and 2.6].

THEOREM 2.19. (Mirzakhani and Wright [MW17], Chen and Wright [CW21]) Let M be
an invariant variety in a stratum H of connected translation surfaces. Let Mn ∈ M be a
sequence that converges to M ∈ ∂M . Let H′ be the stratum that contains M and M′ be
the component of the boundary of M that contains M. By Proposition 2.18, we identify
TMH′ with Ann(V ). Then, TMM′ can be identified with TMnM ∩ Ann(V ). In particular,
the codimension of M′ in M is the dimension of the space of vanishing cycles, V.

This theorem was proven in [MW17, Theorem 1.1] when M is connected, and in
[CW21, Theorem 1.2] when M is disconnected.

2.4. Cylinder collapse. We will define cylinders collapse and diamonds in a similar
fashion to [AW23a, Lemma 4.9]. Let M be an invariant subvariety of multi-component
surfaces. Let M ∈ � and C be an M-parallel class of horizontal cylinders on M. Fix a
cross curve γ of some cylinder in C. We now define the operations uCs and aCt , which
are shearing and scaling the cylinders C, respectively. Let uCs (M) be the surface obtained
by adding sηC to M in period coordinates, where ηC is defined in the paragraph above
Theorem 2.10. Define aCt (M) to be the surface obtained by adding (et − 1)

√−1ηC to M
in period coordinates. We define ColC,γ M to be the following operation. Choose s so that
γ is vertical on uCs (M). Then,

ColC,γ M := lim
t→−∞ aCt uCs M .

This limit exists in the WYSIWYG compactification, see [MW17, Lemma 3.1] or [AW23a,
Lemma 4.9]. We also define

ColC,γ M

to be the component of ∂M that contains ColC,γ M . If C1, C2 are disjoint equivalence
classes of cylinders on M and γ1, γ2 are cross curves of cylinders of C1, C2, respectively,
we define

ColC1,C2,γ1,γ2 M = ColC1,γ1 ColC2,γ2 M = ColC2,γ2 ColC1,γ1 M .

Definition 2.20. Let M be a multi-component invariant subvariety. A surface M ∈ M is
called M-generic if two saddles on the same component of M are parallel only if they are
M-parallel. If M is clear from context, we will just call M generic.
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LEMMA 2.21. For any multi-component invariant subvariety, a dense Gδ set of surfaces
are generic.

Proof. The condition where two saddles that are not generically parallel are parallel
defines a linear subspace in period coordinates. There are countably many saddles on
a surface, and the coefficients of the equation must be in the field of definition of the
component on which the two saddles are. The field of definition is a finite extension of Q
by [Wri14, Theorem 1.1].

LEMMA 2.22. Let M be a stratum or hyperelliptic locus, and let M ∈ M be generic.
Then, every cylinder C on M is simple.

Proof. Assume by contradiction there was a cylinder C that was not simple. Then, there
would be a boundary component with more than one saddle. These saddles would be
M-parallel because M is generic. That is not possible in a stratum, so M must be a
hyperelliptic locus. Let γ1, γ2 be parallel saddles on the boundary of C. Every cylinder
on M is either fixed or swapped with another cylinder. In either case, the quotient surface
N has a corresponding cylinder, which we still call C, with two saddles, which we still call
γ1 and γ2. Now we appeal to [MZ08], and we will use the formulation and terminology of
[AW21, Proposition 4.4]. By this theorem, removing γ1, γ2 from N disconnects the surface
into two components A, B, and the component B not containing C has trivial holonomy.
Since M is hyperelliptic, N is genus 0, so B is topologically a cylinder. However, gluing
this cylinder back along γ1, γ2 would create genus. This is a contradiction since N is
genus 0. Thus, the cylinder C ⊂ M must have been simple.

LEMMA 2.23. Let M be a stratum or hyperelliptic locus. Let M ∈ M be generic, C ⊂ M

be an M-parallel class and γ a cross curve of C. Then, ColC,γ M is connected, and
ColC,γ M is codimension 1.

Proof. By Lemma 2.22, all the cylinders in C are simple. Collapsing a set of simple
cylinders does not disconnect a translation surface. Now, we show dim ColC,γ M =
dim M − 1. We note that after a standard shear of C, two saddles γ1, γ2 ⊂ C are parallel
if and only if they were parallel in M. Thus, every curve that goes to zero in ColC,γ M is
M-parallel. The space of vanishing cycles is dimension 1 when viewed as functionals on
TMM, so by Theorem 2.19, ColC,γ M is dimension one lower than M.

LEMMA 2.24. Let M be an invariant subvariety and N ⊂ M be a codimension 1
subvariety. Then, M, N must have the same rank.

Proof. Here, p(TN ) ⊂ p(TM) is codimension at most 1 and the symplectic form on
p(TM) restricts to a symplectic form on p(TN ), so in fact, p(TM) ∼= p(TN ).

LEMMA 2.25. Let � ⊂ M1 × M2 be a quasidiagonal, where Mi is a stratum or
hyperelliptic locus, M = (M1, M2) ∈ � is generic, C a �-equivalence class of cylinders
on M, and γ a cross curve of a cylinder C ∈ C on M1. If ColC,γ M1 is lower rank than
M1, then there must be a γ ′ ⊂ M2 generically parallel to γ that is a cross curve of a
cylinder in C.
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Proof. Assume by contradiction no saddle of M2 collapses in ColC,γ �, so
M′

2 := p2(ColC,γ �) ⊂ M2. However, M′
2 is dimension at most one less than M2 by

Lemma 2.23 and has lower rank than M2 by Theorem 2.1. This contradicts Lemma 2.24.
Thus, some γ ′ ⊂ M2 collapses in ColC,γ �. A priori, γ ′ may cross multiple adjacent
cylinders. Since we assumed M is generic, by Lemma 2.22, all cylinders must be simple.
Adjacent simple cylinders meet at marked points, but we assumed that there are no marked
points, so there are no adjacent cylinders.

LEMMA 2.26. Let � ⊂ M1 × M2 be a quasidiagonal, where Mi is a stratum or
hyperelliptic locus, M = (M1, M2) ∈ � is generic, C a �-equivalence class of cylinders
on M, and γ a cross curve of a cylinder C ∈ C. Let M′

i := pi(ColC,γ �). Then,
ColC,γ � ⊂ M′

1 × M′
2 is a quasidiagonal, and M′

i is a stratum or hyperelliptic locus.

Proof. Let �′ := ColC,γ �. By [AW23a, Lemma 9.1], �′ is a prime invariant
subvariety, so it is a quasidiagonal in M′

1 × M′
2. It remains to show that M′

i is
a stratum or hyperelliptic locus. Let M = (M1, M2) and Ci be the cylinders of C
on Mi . Let M ′ = (M ′

1, M ′
2) = ColC,γ M . Without loss of generality, let γ ⊂ M1.

Then, p1(�′) = ColC1,γ M1, which is codimension 1 by Lemma 2.23. In period
coordinates, TM� ⊂ H 1(M1, �1) × H 1(M2, �2), and the projection on each side gives
pi(TM�) = TMi

Mi . By Proposition 2.18, TM ′�′ can be viewed as a subspace of TM�,
so TM ′

2
M′

2 is codimension at most 1 in TM2M2. Thus, M′
2 is codimension at most 1. If

M′
2 ⊂ M2, M′

2 is full rank by Lemma 2.24. Otherwise, some saddle connection γ ′ ⊂ M2

collapses, so ColC,γ � = ColC,γ ′ � and M2 = ColC,γ ′ M2, which is full rank by
Lemma 2.24.

Definition 2.27. Let M be an invariant subvariety (in a potentially multi-component
stratum). Let M ∈ M and C1, C2 be two disjoint M-parallel classes of cylinders. Let γi

be a cross curve on a cylinder in Ci Then, (M, M , C1, C2, γ1, γ2) is called a diamond. A
diamond is called generic if M is generic and the components of F ColC1,γ1,C2,γ2 M have
no automorphisms other than the identity.

We show the existence of many diamonds in multi-component invariant subvarieties
similar to [AW23b, Lemma 3.31].

LEMMA 2.28. Let M be a prime invariant subvariety of rank k. Then, a dense open set of
surfaces in M has at least k disjoint equivalence classes of cylinders.

Proof. By Theorem 2.1, Mi = pi(M) has rank k. By [Wri15, Theorem 1.10], a dense set
of horizontally periodic surfaces of Mi has at least k disjoint cylinder equivalence classes,
so a dense set of surfaces M ∈ pi(M) has at least k disjoint cylinder equivalence classes.
Since pi is a submersion, there is a dense set of surfaces p−1

i (M) ⊂ M that have k disjoint
cylinder equivalence classes. There is an open subset around each of these points, where
these cylinders persist and remain disjoint.

LEMMA 2.29. Let � ⊂ M1 × M2 be an (equal area) quasidiagonal. We have the
following similar statements.
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(1) If, for any generic diamond (�, M , C1, C2, γ1, γ2), both ColCi ,γi
�, i = 1, 2,

are diagonals (respectively antidiagonals) up to rescaling (see Remark 2.5) and
ColC1,γ1,C2,γ2 � is not H(0), then � is a diagonal (respectively antidiagonal).

(2) If, for any generic diamond (�, M , C1, C2, γ1, γ2), both F ColCi ,γi
�, i = 1, 2,

are diagonals (respectively antidiagonals) up to rescaling (see Remark 2.5)
and F ColC1,γ1,C2,γ2 � has genus g ≥ 2, then � is a diagonal (respectively
antidiagonal).

Proof. Let (�, M , C1, C2, γ1, γ2) be any generic diamond. Assume both F ColCi ,γi
�,

i = 1, 2 are diagonals up to rescaling. Then, there are constants ri > 0 and isomorphisms
fi : F ColCi ,γi

M1 → riF ColCi ,γi
M2 that restrict to isomorphisms

ColC2,γ2 f1 : F ColC1,γ1,C2,γ2 M1 → r1F ColC1,γ1,C2,γ2 M2,

ColC1,γ1 f2 : F ColC1,γ1,C2,γ2 M1 → r2F ColC1,γ1,C2,γ2 M2.

We get that r1 = r2 because isomorphic translation surfaces must have the same area.
There is a unique translation surface isomorphism since we have chosen a generic diamond
and the genus is greater than 1. Thus, f1, f2 agree on their overlap, so they extend to an
isomorphism f : M1 → r1M2. We note that r1 = 1 because we assumed M1, M2 have the
same area. By Lemmas 2.21 and 2.28, a dense set of M belong to generic diamonds, so �

is a diagonal. The other cases are similar.

3. Genus 2
As a base case for the induction, we must prove Theorem 1.8 for quasidiagonals in
H(2) × H(2).

THEOREM 3.1. The only (equal area) quasidiagonal � ∈ H(2) × H(2) is the diagonal
{(M , M) : M ∈ H(2)}.

Let � ⊂ H(2) × H(2) be a quasidiagonal. Let (M , M ′) ∈ � be any generic surface. To
prove the theorem, it suffices to show that M ′ is equal to M, which is Lemma 3.4 below.

LEMMA 3.2. Let H1, H2 be hyperelliptic components and � ⊂ H1, ×H2 a quasidiago-
nal. Let C be a cylinder equivalence class on a surface M ∈ �. Then, C consists of one
cylinder on each component.

Proof. By Lemma 2.15, C consists of one H1-parallel class and one H2-parallel class. For
any stratum H, a H parallel class consists of an equivalence class of homologous cylinders,
and on a hyperelliptic component, no two cylinders can be homologous.

Choose two disjoint cylinders C1, D on M. By Lemma 3.2, there are cylinders C′
1, D′

on M ′ such that C1 = {C1, C′
1} and D = {D, D′} are �-parallel classes of cylinders. By

Corollary 2.14, C′
1, D′ must be disjoint. We rotate (M , M ′) to make C horizontal and

perform a cylinder shear on D until M is horizontally periodic. By Lemma 2.9, M ′ is
also horizontally periodic. Let C2 be the other horizontal cylinder on M. We fix a cross
curve γi of Ci , where γ2 is a boundary curve of D. Let ai be the period of γi . Let ci be the
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FIGURE 1. Horizontally periodic surface is H(2).

period of the core curve of Ci . See Figure 1. Because M is horizontally periodic, we have
that Im ci = 0. Label the corresponding cylinders, saddle connections, and periods of M ′
with primes.

Since � is cut out by linear equations in period coordinates, we have that

T ′ ·

⎛
⎜⎜⎝

a′
1

a′
2

c′
1

c′
2

⎞
⎟⎟⎠ = T ·

⎛
⎜⎜⎝

a1

a2

c1

c2

⎞
⎟⎟⎠

for some real matrices T , T ′ for all periods in this periodic coordinate chart. By Theorem
2.1, the absolute periods determine each other, so the above matrices are invertible. Thus,
we can assume T ′ = Id. By Lemma 2.25, we may choose a1, a′

1 so that they are �-parallel,
and a2, a′

2 are �-parallel since they are boundary curves of �-parallel cylinders. This
means that a′

i does not depend on any period except ai . Changing Im a1, Im a2 does not
affect Im c′

1, Im c′
2 since the surface must remain horizontally periodic by Lemma 2.9.

Thus, we can simplify the matrix

T =

⎛
⎜⎜⎝

f11 0 0 0
0 f22 0 0
0 0 g11 g12

0 0 g21 g22

⎞
⎟⎟⎠.

LEMMA 3.3. With the above notation, g12 = g21 = 0.

Proof. We can dilate D while keeping the surface horizontally periodic. This changes the
circumferences c2 without changing c1, so g12 = 0. The following combination of shears
will change c1 without changing c′

2 or a′
1. Dilate D while keeping the surface horizontally

periodic. Now shrink the whole surface in the real direction (that is, by a matrix of the form
(t 0
0 1)) so that c2 is its original size. This changes c1 without changing c2, so g21 = 0.

LEMMA 3.4. Let � ⊂ H(2) × H(2) be a quasidiagonal and (M , M ′) ∈ � be a generic
surface. Then, M , M ′ are isomorphic translation surfaces.
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Proof. We label the surfaces using the notation above. Because the combinatorics of the
surfaces are the same, it suffices to show that T = Id. We first show g22 = f22; f11 = g11

is similar. Let C2 := {C2, C′
2}. Start with C2 sheared so that γ2, γ ′

2 are purely imaginary.
We perform a cylinder shear on C2 until the first time C2 or C′

2 has a vertical saddle that is
not fixed by the hyperelliptic involution. In fact, both of them must have a vertical saddle,
and both saddles must not be fixed by the hyperelliptic involution since they are on the
boundary of D. Thus, both cylinders must have been sheared by one full rotation, so the
moduli must be equal. Let h2, h′

2 be the height of C2, C′
2, respectively. Then, c2/h2 =

c′
2/h

′
2 = g22c2/f22h2, so f22 = g22.

Now, we show g11 = f22. We shear C1, C2 so that γ1, γ2 are vertical, so that M , M ′ are
both vertically and horizontally periodic. By the same argument as above, D, D′, which
are now vertical cylinders, must have the same modulus. Thus,

c2 − c1

a2
= c′

2 − c′
1

a′
2

= g22c2 − g11c1

f22a2
,

so f11 = f22 = g11 = g22. Now, we see that⎛
⎜⎜⎝

a′
1

a′
2

c′
1

c′
2

⎞
⎟⎟⎠ = f11

⎛
⎜⎜⎝

1
1

1
1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a1

a2

c1

c2

⎞
⎟⎟⎠.

Since we assumed both sides have the same area, we have that f11 = 1. Thus, T = Id. This
finishes the proof of Theorem 3.1.

4. Proof of main theorem
Definition 4.1. Let H be a stratum and M ⊂ H an invariant subvariety. Here, M is full
rank if rk M = rk H.

THEOREM 4.2. [MW18, Theorem 1.1] An invariant variety is full rank if and only if it is
a full stratum or a hyperelliptic locus.

Thus, Theorem 1.8 is equivalent to the following.

THEOREM 4.3. Let M1, M2 be full rank invariant subvarieties in a stratum of translation
surfaces in genus g ≥ 2. The only (equal area) quasidiagonals � ⊂ M1 × M2 are the
diagonal and antidiagonal when M1 = M2.

Proof. We use induction on rank and rel as follows. The base case is when rk � = 2
and rel M1, rel M2 = 0, that is, M1 and M2 are H(2), which is proven in Theorem 3.1.
As the induction hypothesis, assume the theorem holds for any � ⊂ M1 × M2, where
M1, M2 are full rank, if rk � < r (and all values of rel M1, rel M2) or if rk � = r

and rel M1 + rel M2 < s. We will prove the theorem assuming rk � = r and rel M1 +
rel M2 = s. We choose a generic diamond (�, (M1, M2), C1, C2, γ1, γ2).

We first consider the rank 2 case. Let � ⊂ M1 × M2, where Mi are H(2) or
H(1, 1). We already proved the theorem for � ⊂ H(2) × H(2). Without loss of gen-
erality, we assume M1 = H(1, 1). We may choose the generic diamond such that
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C1, C2, γ1, γ2 ⊂ M1. By Lemma 2.26, ColCi ,γi
� ⊂ H(2) × M′

2 is a quasidiagonal, so it
is rank 2. Here, M2 is H(2) or H(1, 1), and M′

2 is a rank 2 and a collapse of M2, so it
does not have marked points. By the induction hypothesis, ColCi ,γi

� is a diagonal. Since
ColC1,γ1,C2,γ2 M1 = H(0, 0), we may use the first statement of Lemma 2.29 to conclude
that � is a diagonal.

Now we assume the rank is at least 3. By Lemma 2.26, ColCi ,γi
� ⊂ M′

1 × M′
2 is

a quasidiagonal, where M′
j are full rank. Since marked points do not affect the rank,

we may forget marked points. Let F be the functor that forgets marked points. By the
induction hypothesis, F ColCi ,γi

� is a diagonal or antidiagonal for i = 1, 2. If M1 and
M2 are hyperelliptic loci, then so are F ColCj ,γj

Mi , so F ColCj ,γj
� must be a diagonal

(recall that for a hyperelliptic locus, diagonals and antidiagonals are the same). Then by
Lemma 2.29, � must be a diagonal. Now it remains to consider when M1 or M2 is not
hyperelliptic. In this case, the rank is at least 3, so by Lemma 2.28, we can find three
disjoint equivalence classes of cylinders C1, C2, C3 such that each of F ColCi ,γi

� is a
diagonal or quasidiagonal. By the pigeon hole principle, there are two (Ci , γi) such that
F ColCi ,γi

� are either both diagonals or both quasidiagonals. Now, the second statement
of Lemma 2.29 finishes the proof.
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A. Appendix. Horizontally periodic surfaces
Definition A.1. A multi-component surface is horizontally periodic if each component is
horizontally periodic. Additionally, Ut is the unipotent subgroup of SL(2, R).

LEMMA A.2. Let M ∈ M be an invariant subvariety of multi-component quadratic
differentials. If O := UtM is contained in a compact set, then M is horizontally periodic.

Proof. Let M = (M1, . . . , Mn). Then, UtMi ⊂ pi(O), so it is contained in a compact
set. By [SW04, Theorem 5], Mi is horizontally periodic. This argument did not depend on
i, so M is horizontally periodic.
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