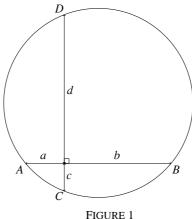
108.44 Expressing the area of a circle in terms of line segments of perpendicular chords

Claim: Let two perpendicular chords of a circle be cut into segments of length a, b, c and d as shown.



Then the area of the circle is $\frac{\pi}{4}(a^2 + b^2 + c^2 + d^2)$.

Proof: Construct a chord AX parallel to CD.

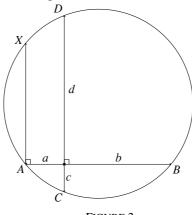


FIGURE 2

The radius of the circle perpendicular to both AX and CD bisects them.

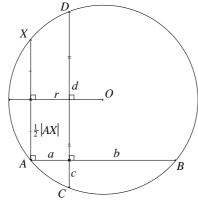


FIGURE 3

Therefore, $\frac{1}{2}|AX| + c = d - \frac{1}{2}|AX|$ and hence |AX| = d - c.

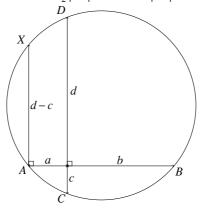


FIGURE 4

By the converse of Thales' theorem, BX is a diameter of the circle.

By Pythagoras' theorem,

 $|BX| = \sqrt{(a+b)^2 + (d-c)^2} = \sqrt{a^2 + 2ab + b^2 + d^2 - 2cd + c^2}.$ By the intersecting chords theorem, ab = cd implying

$$|BX| = \sqrt{a^2 + b^2 + c^2 + d^2}.$$

Therefore, the area of the circle is

$$\pi\left(\frac{\sqrt{a^2+b^2+c^2+d^2}}{2}\right)^2 = \frac{\pi}{4}(a^2+b^2+c^2+d^2).$$

Acknowledgement

The author would like to thank the anonymous referee for their useful comments in improving this proof.

10.1017/mag.2024.128 © The Authors, 2024	KARL BUSHNELL
Published by Cambridge University Press	Ribston Hall High School,
on behalf of The Mathematical Association	Stroud Road,
	Gloucester
	GL1 5LE

email: kbu@ribstonhall.gloucs.sch.uk

108.45 The golden section from three congruent semicircles

Let *R* be a positive real number and let A_1B_1 be a line segment with length 2*R*. Two rays ℓ , ℓ' with origins at A_1 , B_1 , respectively, are perpendicular to A_1B_1 . We show how to obtain the following configuration where $A_2B_2 = A_3B_3 = 2R$, points A_3 , B_3 are on ℓ , B_2 is on ℓ' , and the semicircles $\omega_1, \omega_2, \omega_3$ with respective diameters A_1B_1, A_2B_2, A_3B_3 satisfy:

- A_2B_2 is tangent to ω_1 at A_2
- ω_2 is tangent to ω_3 .

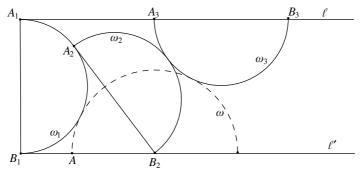


FIGURE 1

As a by-product, the construction will provide the following proposition:

Proposition 1: The semicircle ω with centre B_2 externally tangent to ω_1 is also tangent to ω_3 . In addition, if it intersects the line segment B_1B_2 in A, then $\frac{AB_2}{AB_1} = \phi$, the golden ratio $(\phi = \frac{1}{2}(\sqrt{5} + 1))$.

Constructing Figure 1

The construction of ω_2 is easy: since the tangents to ω_1 from B_2 are of equal length, we must have $B_2B_1 = B_2A_2 = 2R$. Thus, we first locate B_2 on ℓ such that $B_1B_2 = 2R$, then draw the tangent B_2A_2 to ω_1 and ω_2 follows.