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In (1957) Ward characterized trees as being certain compact idempotent
commutative monotone mobs. The purpose of the present note is to obtain a
similar characterization for the semitrees as studied by Muenzenberger and
Smithson (1973, 1975).

A mob is an associative semigroup together with a Hausdorff topology for
which the multiplication is continuous. A mob X is idempotent just in case
xx = x for all x G X. Moreover, X is monotone if and only if the set
{(a, b):ab = x) is connected in X x X for all x G X. In other words, multiplica-
tion is a monotone function.

A semilattice is a partially ordered set (X, S ) such that every pair of
points x, y £ X has an infimum x Ay in X. Let X be an idempotent commutative
mob (sometimes called a topological semilattice). We endow X with the
relation ^ defined by: x g y if and only if xy = x where x, y G X. Clearly,
XA)> = xy for all x, y G X. Ward (1957) showed that § is a partial order and
that L(x) = {y :y Sx} and M(x) = {y :x Sy} are closed for all x G X. He also
showed that S is order dense in case X is monotone. We shall use the
following condition of Ward (1957).

CONDITION 0. Let a,b,x G X. If ax = a and bx = b, then either ab = a or
ab =b.

Observe that condition 0 is equivalent to assuming that L(x) is a chain for
all x G X. A proof of the first lemma was given in the proof of Theorem 5 in
Ward (1957), but the assumption of compactness is not needed. We give a
slightly different proof.

LEMMA 1. If X is an idempotent commutative mob that satisfies condition
0, then M(x)-{x} is open for all x G X.
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PROOF. Let x G X and let {xa} be a net in X that converges to y G M(x) -
{x}. Then xay G L(y) D L(xa) since X is idempotent, and either xay § x or
x S x,,y since L (y) is a chain. If xay §i x for all a, then xay -^yy = y £ L ( x )
since L(x) is closed. Thus x < xay for some a, and so {x,,} meets M(x) — {x}
which implies that M(x) — {x} is open.

A portion of the next lemma also appears in Ward (1957).

LEMMA 2. If Xis an idempotent commutative monotone mob, then M(x)
is connected for all x G X. //, in addition, X satisfies condition 0, then every
nonempty subset of X that is bounded above has a supremum. In this case, X is
conditionally complete.

PROOF. Let m be the multiplication and let TT be projection onto the first
coordinate. If x G X, then M(x)Cvm~'(x) since M(x) x {x}Cm~'(x). On the
other hand, Trm '(x)CM(x) since yz = x implies y, zGM(x). Thus M(x) =
Trm'(x) is connected for each x G X.

Next let A be a nonempty subset of X and suppose that B =
n{M(a):a GA}^0. Note that B is closed. Also b,b' GB implies bb' G B
and bb' Si>,b'. Assume that sup A does not exist. Then for all b G B there
would be b'EB such that b'<b. It would follow that B =
U{M(b)-{b}:b £ B ) is open by Lemma 1. Thus B is a clopen set properly
contained in M(a) where a G A, whereas M(a) is connected. Consequently,
sup A must exist.

The authors are indebted to the referee for deleting a superfluous
hypothesis in the following theorem and for providing the elegant proof
presented below.

THEOREM 3. // X is an idempotent commutative monotone mob, then
L(x) is connected for all x G X.

PROOF. Let x G X. Then X = U {M(y):y G L(x)}. Each M(y) is con-
nected by Lemma 2, and so X is connected since x G M(y) for each y G L(x).
Therefore, L(x) = Xx is connected since multiplication is continuous.

Let (X, = ) be a partially ordered set. If x, y G X and x S y, then we define
[x, y] = Af (x) n L(y) = {2 :x g 2 g y},

[x,y) = {z:x S2 <y}, (x,y] = {2:x <2 gy} ,

and (x, y) = {: x < z <y}.
In order to obtain the desired connection between mobs and semitrees, we

need to obtain conditions under which L(x) is compact.

THEOREM 4. Let X be an idempotent commutative monotone mob that
satisfies condition 0 and has a zero. Then L (x) is compact for all x G X if and
only if inf A, sup/I G A* whenever A CX is nonempty and bounded above.
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PROOF. Suppose first that L(x) is compact for all x E X. In this case, the
assumption that X has a zero is redundant since Ward (1957) showed that L{x)
compact for some x £ X implies that X has a zero. Let A CX be nonempty
and bounded above. Suppose that 5 = sup A £ A*. Then there exists an open
set U containing 5 such that U D A = 0, and

°U ={L(s)-M(a):a EA}U{U}
would be an open cover of L(s) with no finite subcover. Thus s EA*, and
similarly inf A E A*.

To prove the converse, let 0 be the zero in X and let x EX. Then
L(x) = [0,x] is an order complete chain. Clearly, the relative topology on L(x)
contains the order topology. So we need only prove that the relative topology is
contained in the order topology. For this purpose, let y E U, a relatively open
subset of L(x). Suppose first that y ̂  0. If U does not contain a set of the form
(a, y] where 0 g a < y, then for each a £ [0, y) there would be ya such that
a <ya <y andya£ U. But then 0^ A ={ya :a E [0,y)}CL(x) and y = sup A,
whereas y £• A * since U (1 A = 0. Thus U must contain a set of the form (a, y ]
for some a £[0, y). On the other hand, an analogous argument shows that U
contains a set of the form [y,b) for some b G(y,x], if y^x. It now easily
follows that U is open in the order topology, completing the proof of the
theorem.

Observe from the proof that L(x) compact for x £ X implies that the
relative and order topologies on L(x) coincide, and thus L(x) must also be
connected (being order complete and dense) and locally connected.

We now give some examples to show the significance of the conditions we
have been using. Other pertinent examples will be presented later.

EXAMPLES. (1) Let X = [0,1] x [0,1] and set (x,y)-(x',y') =
(x AJt',y Ay') where A is the usual infimum in [0,1]. With the Euclidean
topology, X is a compact idempotent commutative monotone mob. But X does
not satisfy condition 0, and there is x E X such that M(x)-{x} is not open.
Observe that X-{(0,1)} is a mob that contains a chain with no supremum.

(2) Let X = [0,1] and define xy = x A y. We enlarge the usual topology on
X by declaring open sets of the form

( l - e , l ] - { l - l / n : n = 1,2,-}

where e >0. With this enlarged topology, X is an idempotent commutative
monotone mob that satisfies condition 0 and has a zero, but X contains a chain
A such that sup A & A *. Consequently, X is not compact.

(3) For n = 1,2, •••, erect at (l/n,0) in the plane a perpendicular interval
of length I In. Let X denote the union of the erected intervals and the unit
interval. We enlarge the Euclidean topology on X by requiring that the set
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consisting of the origin and everything above the x axis be open. Now X
admits the structure of a complete semilattice—see Muenzenberger and Smith-
son (1973) — in which M(x) is connected, M(x)-{x} is open, and L(x) is a
chain which need not be connected for each x E. X. Here A is not continuous. A
simple extension of this example produces a set Y and two topologies 5",, 3~2

for Y such that (Y, ST,) and (Y, ST2) are homeomorphic connected nonmetriza-
ble Hausdorff spaces whereas (Y, £fiv5"2) is not connected, and in fact
(Y, ?F\\i'31) is homeomorphic to a connected subset of the plane together with
an isolated point.

In view of the partial order structure on the mobs we are studying, the
characterization of a semitree as a certain kind of partially ordered set is the
most convenient for the purposes of this paper. Thus a semitree is a partially
ordered set (X, S ) that satisfies:

(1) There is a least element.
(2) The partial order § is order dense.
(3) Each nonempty subset of X has an infimum in X.
(4) For all x G X, L(x) is a chain.
(5) Each nonempty chain in X has a supremum in.X.
If X is an idempotent commutative monotone mob that satisfies condition

0 and has a zero, then (X, ̂ ) satisfies (1) through (4) and the following weaker
version of (5).

(5') X is conditionally complete.
However, we also wish to bring the topology on X into consideration, and this
can be most expeditiously done via a concept of Wolk (1958).

Let (X, S ) be a partially ordered set. The interval tdpology J is the
smallest topology on X for which L(x) and M(x) are closed for all x G X. A
topology ST for X is order compatible if and only if for all x G X, L(x) and
M(x) are closed and SF restricted to L(x) equals J> restricted to L(x). A
topology ST for X is strongly order compatible if and only if ST is order
compatible and M(x)-{x} is open for all x G X.

We showed in another paper (1975) that the above definition of order
compatible topology agrees with that of Wolk (1958) at least in a semitree. We
also gave several examples to illustrate the complexity of the spectrum of order
compatible topologies on a semitree. The topology in Example 1 is $. The
topology in Example 2 strictly contains 3, and so it is not order compatible.

We are now ready to state our first main theorem which easily extends to
semitrees. Local connectivity in part (iv) below is slightly more stringent than
usual, but the requirements should be clear from the proof.

THEOREM 5. Let (X, ST) be an idempotent commutative monotone mob
that satisfies condition 0 and has a zero. The following are equivalent.

https://doi.org/10.1017/S1446788700016918 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016918


60 T. B. Muenzenberger and R. E. Smithson [5]

(i) 9~ is strongly order compatible.
(ii) L(x) is compact for all x £ X.
(iii) inf A, sup A EL A* whenever A CX is nonempty and bounded.
(iv) L(x) is locally connected for all x E X.

If, in addition, each chain in X is bounded above, then (X, g ) is a semitree.

PROOF. The implications (i) =>(ii) =̂  (iii) => (iv) follow either from
Theorem 4, the proof of Theorem 4, or the observation immediately following
Theorem 4. Suppose that (iv) holds and let x E X. Since i C J , every 5"
connected subset of L(x) is $> connected and hence must be an interval. Thus
each ST open set contains an interval about each point, and so 3~ = 3 on L(JC).

Finally, if each chain is bounded above, then each chain has a supremum. So
(X, £ ) satisfies (5) above and is therefore a semitree.

Conditions (i), (iii), and (iv) in Theorem 5 are equivalent even without the
existence of a zero since the proof of Theorem 4 can be suitably modified to
handle the zeroless situation.

COROLLARY 6. " // (X, 3") is an idempotent commutative monotone mob
that satisfies condition 0 and has compact maximal chains, then (X, ?s) is a
semitree and 3~ is a strongly order compatible topology.

COROLLARY 7. If X is an idempotent commutative monotone mob that
satisfies condition 0 and has compact maximal chains, then

(i) (X, J>) is compact and
(ii) X has the fixed point property for increasing functions.

PROOF. Apply Theorem 6.13 of Muenzenberger and Smithson (1973) and
Corollary 6.

It is now most convenient to introduce two concepts used by the authors in
other papers. A mod is a semilattice (X, £ ) in which properties (2), (4), and (5')
hold. In other words, a mod is just a semitree perhaps with some endpoints
erased. As observed previously, the mobs considered in Theorems 4 and 5
admit the structure of mods with zero, and we now head toward converses of
Theorem 5 and Corollary 6.

LEMMA 8. Let (X, ^) be a mod. If ?f is an order compatible topology for
X, then L(x) and M(x) are connected for all x E X. If ST is strongly order
compatible, then (X, 3~) is Hausdorff.

PROOF. See Muenzenberger and Smithson (1975).
Let (X, S) be a semilattice and let y £ X. A branch B at y is a subset of

M(y) that is maximal with respect to:

If y , , y 2 £B-{y} , then y ,Ay 2 ££-{y} .
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REMARK. If Si is a nest of subsets of M (y) satisfying the above condition,
then U 2ft also satisfies the condition. So Zorn's Lemma implies that each
z G M(y) is contained in a branch at y. Note that each branch at y contains y.
Branches are powerful tools in semitrees; see Muenzenberger and Smithson
(1975). We prove two results in the theory of branches that are necessary for
our purposes.

LEMMA 9. Let (X, S) be a semilattice in which L(x) is a chain for all
x G X. If Bis a branch at y (EXandx GB-{y} , then [y,x]CB and M(x)CB.

PROOF. Let y , G ( y , x ] and let y 2 G B - { y } . Then y 1 Ay 2 § j r Ay2. Now

either y , S x A y 2 or X A y 2 S y , . If y , ^ j t A y 2 , then y . S y 2 and y,Ay2 = yi. If

x Ay2 § y,, then yiAy2 = x Ay2. In either case , y, Ay2 ^ y. Thus [y,x] CB by the

maximality of B, and M ( J C ) C B follows by a similar argument.

LEMMA 10. Let (X, =3) be a mod and let ?F be a strongly order
compatible topology for X. If B is a branch at y G X, then B is closed and
connected.

PROOF. If x<£ B, then we may assume that x G M(y)-{y} since M(y) is
closed and B CM(y). Pick z so that y<z<x. Then xGM(z)-{z} and
B n (M(z)-{z}) = 0 by Lemma 9. So B is closed.
Now

B - M = U{M(z):zGB-{y}}= U{M(z)-{z}: z G B -{y}}

is connected and open. If y g! (B - {y })*, then B - {y} is clopen, a contradiction.
So B = (B - {y})* is connected.

The operation A on a semitree is commutative and idempotent, but A need
not in general be continuous.

EXAMPLES. (4) For n a natural number, let Yn equal the union of the
segment from (l/22",0) to (1/22",1) and the segment from (l/22M/2) to
(l/22n+',l) in the plane. Also, let Y , = {(jt,0):0SJC S 1} and X =
U{Yn:n = - 1,0,1, •••}. Define a topology 2T for X as follows. Take the usual
open sets in X-{(0,0)}. A basic open set containing (0,0) will consist of the
points in X that are to the left of a line x = c and either above a line y = b or
below a line y = a where a,b,c G (0,1) and a <b. The basis at (0,0) is obtained
by letting a, b and c vary. Let S be the cutpoint order with least element (1,0).
Then (X, ^ ) is a semitree, and 2T is strongly order compatible. Nonetheless, A
is not continuous.

(5) Replace Yn(n ^ - 1) in Example 4 by a segment of length one and use
the same topology and order. This example shows that an idempotent com-
mutative monotone mob that satisfies condition 0 and has a zero need not be
locally connected.
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Consideration of Examples 4 and 5 leads to the following definition. Let
(X, S ) be a semilattice and let 9" be a topology for X. Then A is continuous on
the diagonal (with respect to 9") if and only if for each i £ X and each open set
U containing x, there is an open set V containing x such that V AV CU.

REMARK. Clearly, continuity implies continuity on the diagonal, but the
converse is false even for semitrees unless the topology is strongly order
compatible. (See Theorem 11 and Corollary 12.) If (X, ^ ) is a semitree, then A
is continuous on the diagonal with respect to any strongly order compatible
topology ZT for which (X, ST) is locally connected; see Muenzenberger and
Smithson (1975).

THEOREM 11. Let (X, § ) be a mod and 3 be a strongly order compatible
topology for X. If A is continuous on the diagonal, then (X,3~,/\) is an
idempotent commutative monotone mob that satisfies condition 0.

PROOF. Clearly, A is a commutative idempotent operation that satisfies
condition 0. We must show that A is continuous and monotone. To see that A is
monotone, note that for y £ X

A~'(y) = ({y}xM(y))U(M(y)x{y})u U® where

33 ={BxB':B,B' are distinct branches at y}.

For continuity, let y, z £ X and x = y A Z and let W be any open set
containing x. We must construct open sets U, V such that y G U, z £ V, and
U A V C W. The case y = z is exactly continuity on the diagonal. Suppose now
that y and z are not comparable. Then pick yi G (y hz, y) and zt G (y AZ, Z) and
set U = M(yO - {y,} and V = M(z,) — {z,}. Finally, suppose that z < y. We may
choose Xi£(x, y) to satisfy [x,Xi]CW since 3~ is order compatible. Define
U = M(xi) — {jti}. If x is a zero, then set V = W — M(xt). If x is not a zero, then
there is x2<x so that [x2,x]C W. In this case, set

(M(x2) - {x2})) - M(JC).

Thus A is continuous.

COROLLARY 12. Let (X, S ) be a semitree and let & be a strongly order
compatible topology for X. If A is continuous on the diagonal, then (X, &, A) is
an idempotent commutative monotone mob that satisfies condition 0 and has
compact maximal chains.

We obtain Ward's Theorem from Corollaries 6 and 12 and results of
Muenzenberger and Smithson (1975).
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THEOREM 13. A necessary and sufficient condition that X be a tree is that
Xbe a compact idempotent commutative monotone mob that satisfies condition
0.

We could obtain many fixed point theorems analogous to Corollary 7 by
combining Corollary 6 with the results of Muenzenberger and Smithson (1973,
1974). Rather than write these out explicitly, we close with a conjecture which
if true would be a generalization of several results including the Brouwer Fixed
Point Theorem.

CONJECTURE. A compact idempotent commutative monotone mob has the
fixed point property.

EXAMPLE. (6) The monotone assumption is critical to the worth of the
conjecture since Cohen (1974) has given several examples of compact connected
topological semilattices without the fixed point property. One can easily see that
Cohen's mobs are not monotone by computing M(l,l,0), for example, and
evoking Lemma 2. The authors are indebted to the referee for bringing Cohen's
paper to their attention.
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