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Abstract

In 1988, Haagerup and Størmer conjectured that every pointwise inner automorphism
of a type III1 factor is a composition of an inner and a modular automorphism. We
study this conjecture and prove that every type III1 factor with trivial bicentralizer
indeed satisfies this condition. In particular, this shows that Haagerup and Størmer’s
conjecture holds in full generality if Connes’ bicentralizer problem has an affirmative
answer. Our proof is based on Popa’s intertwining theory and Marrakchi’s recent work
on relative bicentralizers.

1. Introduction

Let M be a von Neumann algebra and Aut(M) the set of all automorphisms on M . We say
that θ ∈ Aut(M) is pointwise inner [HS87] if for each positive linear functional ϕ ∈M+∗ , there
is a unitary u ∈ U(M) such that θ(ϕ) = uϕu∗, where we used the notation θ(ϕ) := ϕ ◦ θ−1

and xϕy := ϕ(y · x) for x, y ∈M . In other words, θ is pointwise inner if the induced map
θ : M+∗ →M+∗ is inner at a pointwise level. This notion naturally appeared in the study of
unitary equivalence relations on state spaces on von Neumann algebras and was intensively
studied by Haagerup and Størmer [HS87, HS88, HS91].

Any inner automorphism is pointwise inner. Indeed, we can choose the same unitary for all
elements in M+∗ . A nontrivial and motivating example comes from Tomita–Takesaki modular
theory, that is, every modular automorphism σϕt is pointwise inner, where ϕ ∈M+∗ is a faithful
state and t ∈ R; see § 2. Hence, every composition Ad(u) ◦ σϕt of an inner and a modular auto-
morphism is pointwise inner because the pointwise inner property is closed under compositions.
Haagerup and Størmer conjectured that the opposite phenomenon also holds for every type III1
factor [HS88].

Haagerup–Størmer conjecture. Let M be a type III1 factor with separable predual.
Then every pointwise inner automorphism is a composition of an inner and a modular
automorphism.

We note that if M is a factor that is not of type III1, similar results were obtained in [HS87,
HS88], hence the only remaining problem for characterizing pointwise inner automorphisms is
the case for type III1 factors. We also note that the separability assumption is necessary; see
[HS88, § 6] and [AH12, Remark 4.21].
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Haagerup and Størmer’s conjecture on pointwise inner automorphisms

In the present paper, we give a partial but satisfactory answer to this conjecture. To explain
it, we prepare some terminology. For an inclusion of von Neumann algebras N ⊂M , we say it
is irreducible if N ′ ∩M ⊂ N , and is with expectation if there exists a faithful normal conditional
expectation from M onto N . For every faithful state, or more generally, every faithful semifinite
normal weight, ϕ on M , we denote by Mϕ the centralizer of ϕ, which is the fixed point algebra
of σϕ. When M is a type III1 factor with separable predual, the existence of a faithful state
ϕ ∈M∗ with M ′

ϕ ∩M = C is equivalent to having trivial bicentralizer ; see § 2. In this case,
Mϕ ⊂M is an irreducible subfactor of type II1 with expectation, and the existence of such a
subfactor is very useful in many contexts. Connes’ bicentralizer problem, which is one of the most
important problems for type III factors, asks if every type III1 factor with separable predual has
trivial bicentralizer. To the best of our knowledge, all concrete examples of type III1 factors
have trivial bicentralizers. Further, if M is a type III1 factor, then the tensor product M ⊗R∞
has trivial bicentralizer, where R∞ is the Araki–Woods factor of type III1 [Mar18].

We now introduce our main theorem. For objects in (3) below; see § 2.

Theorem A. Let M be a type III1 factor with separable predual and assume it has trivial
bicentralizer. Fix a faithful state ϕ ∈M∗ such that M ′

ϕ ∩M = C. Then for each θ ∈ Aut(M),
the following conditions are equivalent.

(1) The automorphism θ is pointwise inner.
(2) For each faithful state ψ ∈M∗ with M ′

ψ ∩M = C, there exists u ∈ U(M) such that θ(x) =
uxu∗ for all x ∈Mψ.

(3) There exists u ∈ U(M) such that θω(x) = uxu∗ for all x ∈ (Mω)ϕω , where ω is a fixed free
ultrafilter on N.

(4) There exist u ∈ U(M) and t ∈ R such that θ = Ad(u) ◦ σϕt .

By the implication (1)⇒(4), we immediately get the following corollary.

Corollary B. The Haagerup–Størmer conjecture holds for every type III1 factor with separa-
ble predual that has trivial bicentralizer. In particular, the conjecture holds in full generality if
Connes’ bicentralizer problem has an affirmative answer.

We emphasize that Theorem A applies to all concrete examples of type III1 factors because
they have trivial bicentralizers. Although we do not know the complete answer to Connes’ bicen-
tralizer problem, if it is solved affirmatively, then our theorem solves the Haagerup–Størmer
conjecture. Even if the problem has a negative answer, we can apply the theorem to every type
III1 factor up to a tensor product with R∞. Thus, in any case, Theorem A covers a large class
of type III1 factors.

We explain item (2) in Theorem A. In all previous works for pointwise inner automorphisms,
a specific state (or weight) ϕ on a factor M plays a crucial role. More precisely, the implication
(1)⇒(2) in Theorem A for the specific ψ (= ϕ) is the key step of the proof. For example, ϕ is a
trace if M is of type II. If M is a type IIIλ (0 ≤ λ < 1) factor, then ϕ is a lacunary weight. We
note that, in these cases, the implication (2)⇒(4) also follows by the fact that ϕ is a specific one.
Unfortunately, if M is a type III1 factor, there are no such specific states or weights in general,
and this fact is the main difficulty for the conjecture. We do have a dominant weight, but it
is not enough for our purpose because Mϕ ⊂M is not with expectation. In [HS91, HI24], ϕ is
assumed to be an almost periodic state, but not all type III1 factors admit such a state.

In Theorem A, we do not assume ϕ is such a specific state or weight. We nevertheless prove
the implication (1)⇒(2). This is the main observation of the paper, so we briefly explain the idea
of the proof. Recall that, if ϕ is almost periodic, each element in M has a Fourier decomposition
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along the eigenspaces of ϕ. In [HS91, HI24], the Fourier decomposition of a unitary element
u ∈ U(M) satisfying θ(ϕ(a · )) = uϕ(a · )u∗ for some carefully chosen a ∈Mϕ is important in the
proof. In our setting, we cannot use such a decomposition since ϕ is not assumed to be almost
periodic. Instead, we use the embedding

uW∗{ait ⊗ λt | t ∈ R}u∗ ⊂ θ(A) ⊗ LR, A := W∗{a},
where the inclusion holds at a continuous core of M . By considering the cases of ap for 0 < p < 1,
we deduce the condition A 
M θ(A) in the sense of Popa’s intertwining theory [Pop01, Pop03].
Then, by the choice of A, we get a contradiction and the proof is done. Proving A 
M θ(A) is
the key technical step and we do it by the measurable selection principle.

Once we get (2), since it is a condition for every ψ with M ′
ψ ∩M = C, we can use recent

results from Marrakchi’s work on relative bicentralizers [Mar23] and get (4). Thus, our proof is
new even for the Araki–Woods factor R∞. This is why we can avoid the use of the classification
theorem of Aut(R∞) [KST89], which was necessary in all previous works [HS91, HI24] for the
type III1 factor case.

By a result in [AHHM18], we can also prove the equivalence to item (3) of Theorem A,
which is a condition on ultraproducts. This condition is interesting in the sense that ϕω has
more information than ϕ. Indeed, item (3) is a condition for a single ϕ, while item (2) is one for
many ψ.

2. Preliminaries

For a von Neumann algebra M , the L2-norm with respect to ϕ ∈M+∗ is denoted by ‖ · ‖ϕ. We
use the notation Mp := pMp for each projection p ∈M ∪M ′.

2.1 Tomita–Takesaki theory and Connes cocycles
Let M be a von Neumann algebra and ϕ ∈M+∗ a faithful functional. Throughout the paper,
the modular action for ϕ is denoted by σϕ : R � M . The crossed product M �σϕ R is called the
continuous core (with respect to ϕ) and is denoted by Cϕ(M). We say that M is a type III1
factor if Cϕ(M) is a factor. The centralizer algebra Mϕ is the fixed point algebra of the modular
action σϕ. See [Tak03] for details of these objects.

Let α : R � M be a continuous action and p ∈M a nonzero projection. We say that a
σ-strongly continuous map u : R → pM is a generalized cocycle for α (with support projection p)
if it satisfies

us+t = usαs(ut), usu
∗
s = p, u∗sus = αs(p), for all s, t ∈ R.

In this case, by putting αus (pxp) := usαs(pxp)u∗s for all x ∈M and s ∈ R, we have a continuous
R-action on pMp.

For ϕ,ψ ∈M+∗ with ϕ faithful and with s(ψ) the support projection of ψ, consider the
modular actions σϕ on M and σψ on Ms(ψ). The Connes cocycle (ut)t∈R (for ψ with respect to ϕ)
[Con72] is a generalized cocycle for σϕ with support projection s(ψ) such that (σϕ)u : R � Ms(ψ)

coincides with σψ. We denote it by ut = [Dψ : Dϕ]t for t ∈ R. See [Tak03, VIII.3.19–20] for this
nonfaithful version of the Connes cocycle.

Let θ = σϕt for some t ∈ R and we see that it is pointwise inner. Let ψ ∈M+∗ be a positive
functional and take a faithful ψ̃ ∈M+∗ with s(ψ)ψ̃ = ψ̃s(ψ) = ψ. Then since s(ψ) ∈M

ψ̃
and

σψ̃t (ψ) = ψ, ut := [Dϕ : Dψ̃]t satisfies

θ(ψ) = Ad(ut) ◦ σψ̃t (s(ψ)ψ̃) = utψu
∗
t .

Hence θ is pointwise inner.
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By the uniqueness of Connes cocycles, it is straightforward to check that, if ϕ,ψ are faithful,
v ∈M a partial isometry with e := vv∗ ∈Mψ, v∗v ∈Mϕ, and vϕv∗ = eψe, then for each x ∈M
and t ∈ R,

vσϕt (v∗xv)v∗ = σψt (exe), e[Dψ : Dϕ]t = [Deψe : Dϕ]t = vσϕt (v∗).

We prove some lemmas.

Lemma 2.1. Let N ⊂M be an inclusion of σ-finite von Neumann algebras with expectation EN .
Let ϕN ∈ N∗ be a faithful tracial state and put ϕ := ϕN ◦ EN . Let p, q ∈ N be projections such
that N ′

p ∩Mp ⊂ Np. Assume that there is a ∗-isomorphism θ : Mp →Mq such that θ(Np) = Nq.
We write θN := θ|Np .
(1) We have θ−1 ◦ EN = EN ◦ θ−1 on Mq. In particular,

[Dqθ(pϕp)q : Dϕ]t = [DqθN (pϕNp)q : DϕN ]t ∈ N, for all t ∈ R.

(2) There is a unique nonsingular, positive, self-adjoint element h, which is affiliated with Nq,
such that qθ(pϕp)q = ϕh.

(3) Assume that θ = Ad(v) ◦ θ′ for a ∗-isomorphism θ′ : pMp→ rMr, a projection r ∈M , and
a partial isometry v ∈ qMr. Then h in (2) satisfies

hit = v[Drθ′(pϕp)r : Dϕ]tσ
ϕ
t (v∗), for all t ∈ R.

Proof. Recall that a normal conditional expectation from M onto N is unique if N ⊂M is irre-
ducible ([Con72, § 1.4], [Tak03, Proposition IX.4.3]). Observe that Np ⊂Mp and Nq = θ(Np) ⊂
θ(Mp) = Mq are irreducible. In the proof below, for simplicity of notation, we sometimes omit
p, for example qθ(ϕ)q = qθ(pϕp)q.

(1) Since θ ◦ EN ◦ θ−1 : Mq → Nq is a normal conditional expectation, it coincides with
EN |Mq by uniqueness. We get θ−1

N ◦ EN = EN ◦ θ−1 on Mq, and hence

qθ(ϕ)q = q(ϕN ◦ EN ◦ θ−1)q = q(ϕN ◦ θ−1
N ◦ EN )q = q(θN (ϕN ) ◦ EN )q.

Take a faithful ψN ∈ N+∗ with qψNq = qθN (ϕN )q. Then by [Con72, Lemma 1.4.4], for each t ∈ R,

[Dqθ(ϕ)q : Dϕ]t = q[DψN ◦ EN : DϕN ◦ EN ]t

= q[DψN : DϕN ]t = [DqθN (ϕN )q : DϕN ]t ∈ N.

(2) Since ϕN is a faithful trace on N , there is a unique h, affiliated with Nq, such that
qθN (ϕN )q = (ϕN )h on Nq. Combined with (1), for each t ∈ R, we have

[Dqθ(ϕ)q : Dϕ]t = [DqθN (ϕN )q : DϕN ]t = hit.

Since h is affiliated with Mq, we also have hit = [Dϕh : Dϕ]t, hence we get qθ(ϕ)q = ϕh.
(3) Let ψ ∈M+∗ be a faithful element such that r ∈Mψ and rψr = rθ′(ϕ)r. Then for each

t ∈ R,

hit = [Dqθ(ϕ)q : Dϕ]t = [Dvθ′(ϕ)v∗ : Dϕ]t

= [Dvψv∗ : Dψ]t[Dψ : Dϕ]t

= vσψt (v∗)[Dψ : Dϕ]t

= v[Dψ : Dϕ]tσ
ϕ
t (v∗) = v[Drψr : Dϕ]tσ

ϕ
t (v∗),

and we are done. �
Lemma 2.2. Let M be a factor with a faithful state ϕ ∈M∗ such that M ′

ϕ ∩M = C. If θ ∈
Aut(M) satisfies θ(Mϕ) = Mϕ, then θ(ϕ) = ϕ. In particular, Mϕ ⊂M is singular in the sense
that uMϕu

∗ = Mϕ for u ∈ U(M) implies u ∈Mϕ.
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Proof. Put N := Mϕ and ϕN := ϕ|N . We apply Lemma 2.1(2) for the case p = q = 1, and take
h such that θ(ϕ) = ϕh. Since h is affiliated with N , we have ϕh|N = (ϕN )h. Since N is a finite
factor and since θ(ϕ)|N is a trace, we have θ(ϕ)|N = ϕN by the uniqueness of the trace. We get
(ϕN )h = ϕN and h = 1. This means θ(ϕ) = ϕ.

If uMϕu
∗ = Mϕ for u ∈ U(M), we can apply the first part of the lemma to Ad(u) ∈ Aut(M).

We get Ad(u)(ϕ) = ϕ and hence u is contained in Mϕ. �

Lemma 2.3. Let M be a factor with a faithful state ϕ ∈M∗ such that M ′
ϕ ∩M = C. Let θ ∈

Aut(M) and define an embedding

ιθ : M � x �→
[
x 0
0 θ(x)

]
∈M ⊗ M2.

If θ(ϕ) = ϕ, then the following conditions are equivalent:

(1) θ|Mϕ is outer;
(2) ιθ(Mϕ)′ ∩ (M ⊗ M2) ⊂M ⊕M .

Proof. If θ|Mϕ = Ad(u) for some u ∈ U(Mϕ), then
[
0 0
u 0

]
is contained in ιθ(Mϕ)′ ∩M ⊗ M2.

If (2) does not hold, then there is a nonzero a ∈M such that θ(x)a = ax for all x ∈Mϕ.
By M ′

ϕ ∩M = C, a is a scalar multiple of a unitary, so there is a unitary u ∈ U(M) such that
θ(x) = uxu∗ for all x ∈Mϕ. Then Ad(u) globally preserves Mϕ, hence u is in Mϕ by Lemma 2.2.
Thus (1) does not hold. �

2.2 Ultraproduct von Neumann algebras
Let M be a σ-finite von Neumann algebra and ω a free ultrafilter on N. Put

Iω = {(xn)n ∈ 
∞(N,M) | xn → 0 ∗-strongly as n→ ω},
Mω = {x ∈ 
∞(N,M) | xIω ⊂ Iω and Iωx ⊂ Iω},

where 
∞(N,M) is the set of all norm bounded sequences in M . The ultraproduct von Neumann
algebra [Ocn85] is defined as the quotient C∗-algebra Mω := Mω/Iω, which naturally admits
a von Neumann algebra structure. The image of (xn)n in Mω is denoted by (xn)ω. We have
an embedding M ⊂Mω as constant sequences, and this inclusion is with expectation Eω given
by Eω((xn)ω) = σ-weak limn→ω xn. For every faithful ϕ ∈M+∗ , we can define a faithful positive
functional ϕω := ϕ ◦ Eω on Mω.

Every θ ∈ Aut(M) induces θω ∈ Aut(Mω) by the equation θω((xn)ω) = (θ(xn))ω. In par-
ticular, the modular action of ϕω is given by σϕ

ω

t = (σϕt )ω for all t ∈ R [AH12]. For more on
ultraproduct von Neumann algebras, we refer the reader to [Ocn85, AH12].

2.3 Relative bicentralizer algebras
Let N ⊂M be an inclusion of von Neumann algebras with separable predual and with expec-
tation EN . Let ϕ ∈ N∗ be a faithful state and extend it to M by EN . We define the asymptotic
centralizer and the relative bicentralizer algebra (with respect to ϕ) as

ACϕ(N) := {(xn)n ∈ 
∞(N, N) | lim
n→∞ ‖xnϕ− ϕxn‖ = 0},

BCϕ(N ⊂M) := {x ∈M | lim
n→∞ ‖xnx− xxn‖ϕ → 0 for every (xn)n ∈ ACϕ(N)}.

This does not depend on the choice of ϕ up to a canonical isomorphism, if N is a type III1
factor. In the case N = M , we write BCϕ(M) = BCϕ(N ⊂M) and we call it the bicentralizer.
Then Connes’ bicentralizer problem asks if every type III1 factor M with separable predual has
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trivial bicentralizer, that is, BCϕ(M) = C. This condition is equivalent to having a faithful state
ϕ ∈M∗ such that M ′

ϕ ∩M = C [Haa85]. Here is a convenient expression by ultraproducts ([HI15,
Proposition 3.3], [AHHM18, Proposition 3.3]):

BCϕ(N ⊂M) = (Nω)′ϕω ∩M,

where ω is a fixed free ultrafilter on N.
The next theorem explains the importance of relative bicentralizers. This should be

understood as a type III counterpart of Popa’s work [Pop81].

Theorem 2.4 ([Haa85], [AHHM18, Theorem C]). Assume that N is a type III1 factor. If
BCϕ(N ⊂M) = N ′ ∩M , then there exists an amenable subfactor R ⊂ N of type II1 with
expectation such that R′ ∩M = N ′ ∩M .

Very recently, Marrakchi obtained a very general and useful criterion for computations of
relative bicentralizers. We will need the following statement. Recall that the inclusion N ⊂M is
regular if the normalizer NM (N) := {u ∈ U(M) | uNu∗ = N} of N in M generates M as a von
Neumann algebra.

Theorem 2.5 [Mar23, Theorem E(5)]. Assume that N is a type III1 factor. Assume that N
has trivial bicentralizer and that N ⊂M is regular. If N ′ ∩ Cϕ(M) ⊂ Cϕ(N), then we have
BCϕ(N ⊂M) = C.

Proof. By [Mar23, Theorem E(5)], we have

BCϕ(N ⊂ Cϕ(M)) = LR ∨ (N ′ ∩ Cϕ(M)) ⊂ Cϕ(N),

where the relative bicentralizer algebra is defined for arbitrary inclusions. This implies

BCϕ(N ⊂M) = M ∩ BCϕ(N ⊂ Cϕ(M)) ⊂M ∩ Cϕ(N) = N.

We get BCϕ(N ⊂M) ⊂ BCϕ(N) = C. �

2.4 Popa’s intertwining theory
We recall Popa’s intertwining theory [Pop01, Pop03]. For this, we fix a σ-finite von Neumann
algebra M and a finite von Neumann subalgebra B ⊂M with expectation EB. Fix a trace τB
on B. We can define a canonical trace Tr on the basic construction 〈M,B〉 satisfying Tr(xeBy) =
τB ◦ EB(yx) for x, y ∈M (see for example, [HI15, § 4]).

In this setting, we have the following equivalence. For the proof of this theorem, we refer the
reader to [HI15, Theorem 4.3]. Since B is finite, the canonical operator-valued weight TM from
〈M,B〉 to M , which appears in [HI15, Theorem 4.3 (6)], is unnecessary.

Theorem 2.6 [Pop01, Pop03]. Retain the setting of this section. For a finite von Neumann
subalgebra A ⊂M with expectation, the following conditions are equivalent.

(1) We have A 
M B. This means that there exist projections e ∈ A, f ∈ B, a partial isometry
v ∈ eMf , and a unital normal ∗-homomorphism θ : eAe→ fBf such that vθ(a) = av for all
a ∈ eAe.

(2) There exists no net (ui)i of unitaries in U(A) such that for every a, b ∈M ,

‖EB(b∗uia)‖τB → 0, as i→ ∞.

(3) There exists a nonzero positive element d ∈ A′ ∩ 〈M,B〉 such that Tr(d) <∞.

The next three lemmas are well known to experts. We include short proofs for the reader’s
convenience.
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Lemma 2.7. Retain the setting as in Theorem 2.6. Let A1, A2 ⊂M be finite von Neumann
subalgebras with expectation such that A1 and A2 are commuting with each other and that
A1 ∨A2 ⊂M is a finite von Neumann subalgebra with expectation.

Suppose that there are nonzero positive elements di ∈ A′
i ∩ 〈M,B〉 satisfying the condition

of item (3) in Theorem 2.6 for i = 1, 2 such that d1d2 �= 0. Then we have A1 ∨A2 
M B.

Proof. Consider Tr on 〈M,B〉 as in Theorem 2.6. Put

K := convσ-weak{ud1u
∗ | u ∈ U(A2)} ⊂ A′

1 ∩ 〈M,B〉.
By the normality of Tr, every element in K has finite value in Tr. By regarding K as a closed
subset of L2(〈M,B〉,Tr) (see [HI15, Lemma 4.4]), take the unique element d ∈ K which has the
minimum distance from 0. The uniqueness condition implies udu∗ = u for all u ∈ U(A2), hence
d is contained in (A1 ∨A2)′ ∩ 〈M,B〉. Then observe that d1, d2 ∈ L2(〈M,B〉,Tr), and for each
u ∈ U(A2),

〈ud1u
∗, d2〉Tr = Tr(d2ud1u

∗) = Tr(u∗d2ud1) = Tr(d2d1) = Tr(d1/2
1 d2d

1/2
1 ) > 0.

This implies that K does not contain 0, hence d �= 0. This implies A1 ∨A2 
M B. �
Lemma 2.8. Let M be a von Neumann algebra, ϕ ∈M∗ a faithful state, and A,B ⊂Mϕ

von Neumann subalgebras. If A �
M B, then A⊗ LR �
Cϕ(M) B ⊗ LR.

Proof. Let EB : M → B be the unique ϕ-preserving conditional expectation. Then since EB
commutes with σϕ, we can extend EB to one from Cϕ(M) onto B ⊗ LR. Take a net (ui)i of U(A)
as in item (2) in Theorem 2.6. Then it is easy to see that (ui ⊗ 1LR)i works for A⊗ LR �
Cϕ(M)

B ⊗ LR. �
In the lemma below, we need the case that A,B ⊂M are possibly nonunital finite von

Neumann subalgebras, where subalgebras A ⊂ 1AM1A and B ⊂ 1BM1B with units 1A, 1B
are assumed to be with expectation. In this case, we can use the same definition for A 
M B,
and item (2) in Theorem 2.6 works by replacing a, b ∈M by a, b ∈M1B. Item (3) is slightly
more complicated, but we do not need it. See [HI15, Theorem 4.3] for more on the nonunital
case.

Lemma 2.9. Let A,B1, . . . , Bn ⊂M be (possibly nonunital) inclusions of σ-finite von Neumann
algebras with expectation. Let EBk : M1Bk

→ Bk be faithful normal conditional expectations for
all k and assume that A,B1, . . . , Bn are finite with trace τk ∈ (Bk)∗ for all k. If A �
M Bk for all
k, then there exists a net (ui)i in U(A) such that for all k,

‖EBk(b∗uia)‖τk → 0, for all a, b ∈M1Bk .

Proof. Consider Mn := M ⊗ C
n and embeddings

Ã := A⊗ C1Cn ⊂Mn, B̃ := B1 ⊕ · · · ⊕Bn ⊂Mn.

Observe that A �
M Bk implies Ã �
Mn Bk for all k (use item (2) of Theorem 2.6). Then by [HI15,
Remark 4.2(2)], we have that Ã �
Mn B̃. Then a net of unitaries in item (2) of Theorem 2.6 for
Ã �
Mn B̃ works. �

3. Proof of Theorem A: (1)⇒(2)

We need two lemmas. The first one uses the measurable selection principle.

Lemma 3.1. Let M be a von Neumann algebra with separable predual, ϕ a faithful normal
state, and θ ∈ Aut(M) a pointwise inner automorphism. Then for each positive element a ∈Mϕ,
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there exist a compact subset K ⊂ (0, 1) with positive Lebesgue measure, and a continuous map
K � p �→ up ∈ U(M) such that

θ(ϕap) = upϕapu
∗
p, for all p ∈ K,

where U(M) is equipped with the ∗-strong topology.

Proof. Throughout the proof, we consider the ∗-strong topology for U(M) and we regard it as a
Polish space. Set

S := {(p, u) ∈ (0, 1) × U(M) | θ(ϕap) = uϕapu
∗}.

Then it is easy to see that S is a closed subset. Since θ is pointwise inner, we have (0, 1) = π1(S),
where π1 is the projection onto the first coordinate. Hence, with the Lebesgue measure on
(0, 1), we can apply the measurable selection principle (e.g. [KR97, Theorem 14.3.6]) and find a
Lebesgue measurable map

η : (0, 1) = π1(S) → U(M)

such that (p, η(p)) ∈ S for all p ∈ (0, 1). Since U(M) is a Polish space, we can apply Lusin’s
theorem to η and find a compact subsetK ⊂ (0, 1) such that η|K is continuous and that (0, 1) \K
has arbitrarily small Lebesgue measure. The conclusion follows. �

The second lemma uses the first. This lemma is the key observation of the paper.

Lemma 3.2. Let M be a von Neumann algebra with separable predual, ϕ ∈M∗ a faithful state,
and θ ∈ Aut(M) a pointwise inner automorphism such that θ(ϕ) = ϕ. Then, for each positive
invertible element a ∈Mϕ, we have A 
M θ(A), where A := W∗{a} ⊂Mϕ.

Proof. Observe that θ(Mϕ) = Mϕ and θ(A) ⊂Mϕ. Take u ∈ U(M) such that ϕθ(a) = θ(ϕa) =
uϕau

∗. Then since

[Dϕθ(a) : Dϕa]t = [Dϕθ(a) : Dϕ]t[Dϕ : Dϕa]t = θ(ait)a−it

and

[Duϕau∗ : Dϕa]t = uσϕat (u∗) = uaitσϕt (u∗)a−it,

we get θ(ait) = uaitσϕt (u∗) for all t ∈ R. Define

Ã := W∗{ait ⊗ λt | t ∈ R} ⊂ Cϕ(M),

where λt denotes the left regular representation on L2(R), and observe that Ã ⊂ Cϕ(M) is with
expectation. Then it is easy to see that Ad(u) restricts to a ∗-homomorphism from Ã into
θ(A) ⊗ LR, so that we get Ã 
Cϕ(M) θ(A) ⊗ LR. More precisely, if we denote by e the Jones
projection for a fixed faithful normal conditional expectation from Cϕ(M) onto θ(A) ⊗ LR, then
the projection u∗eu satisfies the condition of item (3) in Theorem 2.6.

Fix 0 < p < 1, and we consider the positive invertible element ap. Then, by the same reasoning
as above, we have that

Ãp 
Cϕ(M) θ(A) ⊗ LR, where Ãp := W∗{aipt ⊗ λt | t ∈ R},
together with the projection u∗peup, where up is a unitary satisfying ϕθ(ap) = upϕapu

∗
p. We note

that the algebra θ(A) ⊗ LR does not depend on p.
Now we claim that A⊗ LR 
Cϕ(M) θ(A) ⊗ LR. To see this, we first apply Lemma 3.1

and find a compact K ⊂ (0, 1) with positive measure and a continuous map K � p �→ up.
Then we take a sequence pn ∈ K such that pn converges to p ∈ K and p �∈ {pn}n. Then upn → up
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in the ∗-strong topology, hence

dpn := u∗pneupn → u∗peup =: dp

as well. In particular, we can find pn =: q such that q �= p and dqdp �= 0. Observe that Ãp ∨
Ãq = A⊗ LR, which is a finite von Neumann subalgebra in Cϕ(M) with expectation. Then by
Lemma 2.7, we have that

A⊗ LR = Ãp ∨ Ãq 
Cϕ(M) θ(A) ⊗ LR.

Hence the claim is proven.
Finally, this condition implies A 
M θ(A) by Lemma 2.8. �

Now we prove (1)⇒(2) of Theorem A. For the proof, we need Popa’s G-singular maximal
abelian ∗-subalgebra (MASA) technique for type III1 factors; see Theorem A.1.

Proof of Theorem A: (1)⇒(2). Let ψ ∈M+∗ be a faithful state such that M ′
ψ ∩M = C. Since θ

is pointwise inner, there is v ∈ U(M) such that Ad(v) ◦ θ(ψ) = ψ. So up to replacing Ad(v) ◦ θ
by θ, we may assume θ(ψ) = ψ. Then we show that θ|Mψ

is inner.
Suppose by contradiction that θ is not inner on Mψ. Then, putting G := {idM , θ−1}, we

apply Theorem A.1 and take a G-singular MASA A ⊂Mψ. Take a generator a of A which is
positive and invertible. We can apply Lemma 3.2 to a and get A 
M θ(A). Since A and θ(A)
are MASAs in M , by [HV12, Theorem 2.5], one can find a nonzero partial isometry v ∈M such
that

v∗v ∈ A, vv∗ ∈ θ(A), vAv∗ = θ(A)vv∗.

Thus Ad(v) restricts to a ∗-isomorphism from Av∗v onto θ(A)vv∗. Since A is diffuse, up to
exchanging v∗v with a smaller projection in A (or vv∗ with one in θ(A)) if necessary, we may
assume v∗v �= 1 and vv∗ �= 1. Then sinceM is a type III factor, 1 − v∗v and 1 − vv∗ are equivalent,
so we can take a partial isometry w ∈M such that w∗w = 1 − v∗v and ww∗ = 1 − vv∗. Then
ṽ := v + w ∈M is a unitary element satisfying ṽp = v where p := v∗v, so that

ṽApṽ∗ = vAv∗ ⊂ θ(A).

This means Ad(θ−1(ṽ)) ◦ θ−1(Ap) ⊂ A. By G-singularity, we have that θ−1 = idM , a contradic-
tion. �

4. Proof of Theorem A: (2)⇒(3) and (3)⇒(4)

Proof of Theorem A: (2)⇒(3). We may assume that θ is outer on M . Set M2 := M ⊗ M2 and
consider an embedding ιθ : M →M2 with expectation as in Lemma 2.3. Since θ is outer, we have
M ′ ∩M2 = C ⊕ C. We consider the relative bicentralizer

BCϕ(M ⊂M2) = (Mω)′ϕω ∩M2.

We claim BCϕ(M ⊂M2) �= M ′ ∩M2.
To see this, suppose by contradiction that BCϕ(M ⊂M2) = M ′ ∩M2. Then by Theorem 2.4,

there is an amenable II1 factor R ⊂M with expectation ER such that R′ ∩M2 = M ′ ∩M2 =
C ⊕ C. Put ψ := τR ◦ ER, where τR is the trace on R, and observe that R ⊂Mψ ⊂M . Then
since M ′

ψ ∩M ⊂ R′ ∩M = C (this follows by R′ ∩M2 = C ⊕ C), by assumption, there is u ∈
U(M) such that Ad(u) ◦ θ|Mψ

= idMψ
. Then

[
0 u
0 0

]
is contained in M ′

ψ ∩M2 ⊂ R′ ∩M2 = C ⊕ C.
This is a contradiction and the claim is proven.
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We take
[
a b
c d

] ∈ (Mω)′ϕω ∩M2, which is not contained in C ⊕ C. Then since (Mω)′ϕω ∩M =
BCϕ(M) = C, we have a, d ∈ C, hence b �= 0 or c �= 0. By taking the adjoint if necessary, we may
assume c �= 0. Then observe that θω(x)c = cx for all x ∈ (Mω)ϕω . Since (Mω)′ϕω ∩M = C, by
the polar decomposition, we can replace c by a unitary element. This means (3) holds. �

Proof Theorem A: (3)⇒(4). By assumption, take u ∈ U(M) such that Ad(u) ◦ θω = id on
(Mω)ϕω . Up to replacing Ad(u) ◦ θ by θ, we may assume u = 1. Then by Lemma 2.2, we have
that θ(ϕ) = ϕ. In particular, θ commutes with the modular action of ϕ.

We set

H(θ) := {n ∈ Z | θn = Ad(u) ◦ σϕt for some u ∈ U(M), t ∈ R}.

Observe that by M ′
ϕ ∩M = C and θ|Mϕ = id, the equality θn = Ad(u) ◦ σϕt implies u ∈ C, so we

can actually remove u ∈ U(M) in the definition of H(θ). Since H(θ) is a subgroup in Z, we can
write H(θ) = kZ for some k ≥ 0.

Assume that k > 0 and θk = σϕt . Then, putting θ̃ := σϕ−t/k ◦ θ, observe that H(θ̃) = H(θ),

θ̃k = id, and θ̃ω = id on (Mω)ϕω . Hence up to replacing θ̃ by θ, we may assume θk = id. If k = 0,
we do not need this replacement.

For each k ≥ 0, set G := Z/kZ and define an outer action G � M given by {θn}n∈Z. We
denote this action again by θ. Put M̃ := M �θ G with canonical expectation EM : M̃ →M and
note that M ′ ∩ M̃ = C by the outerness of θ. We extend ϕ to M̃ by EM . Since θ commutes with
the modular action of ϕ, the continuous core of M̃ is such that

Cϕ(M̃) = M �θ×σϕ (G× R) = Cϕ(M) �θ G,

where θ : G � Cϕ(M) on the right-hand side is the canonical extension.
The next claim is important to us.

Claim. We have M ′ ∩ Cϕ(M̃) = C.

Proof of Claim. Since the canonical extension θ : G � Cϕ(M) is still outer (e.g. [Tak03,
Lemma XII.6.14]), the crossed product Cϕ(M) �θ G is a factor. Let E := ϕ⊗ id : B(L2(M)) ⊗
B(L2(G× R)) → B(L2(G× R)), where ϕ is extended to a normal state on B(L2(M)), and observe
that it restricts to a conditional expectation M � (G× R) → L(G× R) (because θ and σϕ

preserve ϕ).
Since the G× R action is trivial on Mϕ, we have that

M ′
ϕ ∩ Cϕ(M̃) ⊂ (M ′

ϕ ∩M) ⊗ B(L2(G× R)) = C ⊗ B(L2(G× R)).

We have E(x) = x for all x ∈M ′
ϕ ∩ Cϕ(M̃), so that M ′

ϕ ∩ Cϕ(M̃) = L(G× R). Then since G× R

is abelian,

M ′ ∩ Cϕ(M̃) = M ′ ∩ L(G× R) ⊂ Z(Cϕ(M̃)).

Since Cϕ(M̃) is a factor, the conclusion follows. �

To finish the proof, we have to show k = 1. For this, suppose by contradiction that k �= 1 and
G = Z/kZ is a nontrivial group. Then observe that the inclusion M ⊂ M̃ is with expectation,
regular, BCϕ(M) = C, and M ′ ∩ Cϕ(M̃) ⊂ Cϕ(M). Hence we can apply Theorem 2.5 and get
that BCϕ(M ⊂ M̃) = C. Since G is nontrivial, 1 ∈ G (the image of 1 ∈ Z in G) is nontrivial.
We denote by λG1 ∈ LG the canonical unitary corresponding to 1 ∈ G. Then since θω = id on
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(Mω)ϕω and since Ad(λG1 ) ∈ Aut(M̃) coincides with θ on M , we get

λG1 ∈ (Mω)′ϕω ∩ M̃ = Bϕ(M ⊂ M̃) = C.

This is a contradiction because 1 ∈ G is nontrivial. Thus we get k = 1 and this finishes the
proof. �

Appendix A. Popa’s G-singular MASAs in type III1 factors

The following theorem is an analogue of [Pop83, Theorem 4.2] in the type III setting. It covers
the case that M is a type II1 factor, a type IIIλ factor (0 < λ < 1), or a type III1 factor with
trivial bicentralizer. The proof is a rather straightforward adaptation of [Pop16, HP17], so we
merely sketch it.

Theorem A.1. Let M be a factor with separable predual and ϕ ∈M∗ a faithful state such that
M ′
ϕ ∩M = C. Let {θn}n≥1 ⊂ Aut(M) be a countable subset such that

θn(ϕ) = ϕ and θn|Mϕ �∈ Int(Mϕ)

for all n ≥ 1. Put θ0 := idM and G := {θn}n≥0.
Then there is an abelian von Neumann subalgebra A ⊂Mϕ such that A is a MASA in M

and that A is G-singular in the following sense: if θ ∈ G satisfies

Ad(u) ◦ θ(Ap) ⊂ A

for some nonzero projection p ∈ A and u ∈ U(M), then θ = idM and up = pu ∈ A.

We note that, since idM is contained in G, the resulting MASA A ⊂M is singular in the
sense that uAu∗ = A for u ∈ U(M) implies u ∈ A.

The next lemma is a variant of [Pop16, Lemma 1.2.2].

Lemma A.2. Let M be a von Neumann algebra, ϕ ∈M∗ a faithful normal state, and N ⊂Mϕ

a diffuse von Neumann subalgebra. Then for every finite-dimensional abelian von Neumann
subalgebra D ⊂ N , finite subset X ⊂M , and ε > 0, there exists a finite-dimensional abelian von
Neumann subalgebra A ⊂ N containing D such that

‖EA′∩M (x) − EA∨(N ′∩M)(x)‖ϕ < ε, for all x ∈ X.

Proof. If M is a finite von Neumann algebra, this is an equivalent form of the last statement
of [Pop16, Lemma 1.2.2]. For a general M , since N is contained in Mϕ, we can use [Pop95,
Theorem A.1.2] and then follow the proof of [Pop16, Lemma 1.2.2]. �
Proof of Theorem A.1. We fix the following setting.

• LetM be a von Neumann algebra with separable predual, ϕ ∈M∗ a faithful state, andN ⊂Mϕ

a type II von Neumann subalgebra such that N ′ ∩M ⊂ N . Set

Autϕ(N ⊂M) := {θ ∈ Aut(M) | θ(ϕ) = ϕ, θ(N) = N}.
• Let {θn}n≥1 ⊂ Autϕ(N ⊂M) be such that

ιn(N)′ ∩ (M ⊗ M2) ⊂M ⊕M, for all n ≥ 1,

where ιn := ιθn is as in Lemma 2.3.

We will find A ⊂ N that satisfies the conclusion of Theorem A.1 for G = {θn}n≥0 with θ0 = id.
Thanks to Lemma 2.3, this gives the proof of Theorem A.1.
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For a von Neumann subalgebra B ⊂M that is globally invariant by σϕ, we denote by
EB : M → B the unique ϕ-preserving conditional expectation, and by eN the corresponding
Jones projection.

Lemma A.3. Retain the setting of the above proof. We fix a finite-dimensional abelian von
Neumann subalgebra A ⊂ N , a projection f ∈ A′ ∩N , and finite subsets X ⊂M and Y ⊂
Autϕ(N ⊂M). Then, for each ε > 0, there exist a finite-dimensional abelian von Neumann
subalgebra D ⊂ N , which contains A and f , and v ∈ U(Df) such that

‖ED′∩M (y∗θ(v)x)f⊥‖ϕ < ε for all x, y ∈ X and θ ∈ Y.

Proof. Since A ∨ Cf ⊂ N is finite-dimensional, by [Pop81, Theorem 3.3] (see also [HP17,
Lemma 2.2]), there is a commutative von Neumann subalgebra B ⊂ N that is a MASA in M
and that contains A ∨ Cf . We can write B =

∨
k Bk, where {Bk}k is an increasing sequence of

finite-dimensional von Neumann algebras such that B0 := A ∨ Cf .
Since A′

f ∩Nf is of type II and B is of type I, we have

A′
f ∩Nf �
M θ−1(Bf⊥), for all θ ∈ Y.

By Lemma 2.9, take v ∈ U(A′
f ∩Nf ) such that for all θ ∈ Y ,

‖EB(f⊥y∗θ(v)xf⊥)‖ϕ = ‖Eθ−1(Bf⊥)(θ
−1(f⊥y∗)vθ−1(xf⊥))‖ϕ < ε, for all x, y ∈ X.

By approximating v by finite sums of projections, we may assume that v is contained in a finite-
dimensional abelian subalgebra in A′

f ∩Nf . Hence there exists a finite-dimensional commutative
von Neumann algebra D1 ⊂ Nf containing v and Af .

Since eB′
k∩M → eB′∩M = eB strongly, there exists k such that

‖EB′
k∩M (y∗θ(v)x)f⊥‖ϕ = ‖EB′

k∩M (f⊥y∗θ(v)xf⊥)‖ϕ < ε, for all x, y ∈ X, θ ∈ Y.

Here we can exchange EB′
k∩M by ED′

2∩Mf⊥
, where D2 := (Bk)f⊥ . Then D := D1 ⊕D2 ⊂ Nf ⊕

Nf⊥ ⊂ N works. �

Take a ∗-strongly dense subset {xn}n∈N ⊂ (M)1. Take projections {en}n∈N in N which are
∗-strongly dense in all projections in N . We may assume that e0 = x0 = 1 and that each ek
appears infinitely many times in {en}n∈N.

For each n > 0, we denote the inclusion ιn(M) ⊂M ⊗ M2 by M ⊂Mn. For n = 0, we put
M0 := M .

Claim. There exist an increasing sequence of finite-dimensional von Neumann abelian subalge-
bras An ⊂ N , projections fn ∈ An, and unitaries vn ∈ U(Anfn) such that

(P1) ‖fn − en‖ϕ ≤ 7‖en − EA′
n−1∩N (en)‖ϕ,

(P2) ‖EA′
n∩M (x∗i θk(vn)xj)f

⊥
n ‖ϕ ≤ 1/n for all 0 ≤ i, j, k ≤ n,

(P3) ‖EA′
n∩M (xj) − EAn(xj)‖ϕ ≤ 1/n for all 0 ≤ j ≤ n,

(P4) ‖EA′
n∩Mk

(xj) − EAn∨(N ′∩Mk)(xj)‖ϕ ≤ 1/n for all 0 ≤ j ≤ n and 1 ≤ k ≤ n.

Proof. Suppose that (Ak, fk, vk) are constructed for 0 ≤ k ≤ n, and we will construct one for
k = n+ 1. Following the proof of the first part of [HP17, Theorem 1], by using Lemma A.3,
one can construct (An+1, fn+1, vn+1) that satisfies (P1), (P2), and (P3). To see (P4), we put
Dn+1 := An+1, and below we construct An+1 that satisfies all the desired conditions.

2491

https://doi.org/10.1112/S0010437X24007413 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007413


Y. Isono

We apply Lemma A.2 and find an abelian von Neumann subalgebra B0
n+1 ⊂ N containing

Dn+1 such that

‖E(B0
n+1)′∩M0

(xj) − EB0
n+1∨(N ′∩M0)(xj)‖ϕ ≤ 1

n+ 1
, for all 0 ≤ j ≤ n+ 1.

Next we again apply Lemma A.2 and find an abelian von Neumann subalgebra B1
n+1 ⊂ N

containing B0
n+1 such that the same inequality holds for the inclusion B1

n+1 ⊂ N ⊂M1. We
repeat this procedure and construct Bk

n+1 ⊂ N containing Bk−1
n+1 such that

‖E(Bkn+1)′∩Mk
(xj) − EBkn+1∨(N ′∩Mk)

(xj)‖ϕ ≤ 1
n+ 1

, for all 0 ≤ j, k ≤ n+ 1.

Put An+1 := Bn+1
n+1 . Then since the corresponding Jones projections satisfy

e(Bkn+1)′∩Mk
− eBkn+1∨(N ′∩Mk)

≥ eA′
n+1∩Mk

− eAn+1∨(N ′∩Mk)

for all 0 ≤ k ≤ n+ 1, An+1 satisfies (P4).
We next check (P1), (P2), and (P3) for this new An+1. We do not use An+1 in (P1), hence

it automatically holds. Regarding (P2) and (P3), since Dn+1 ⊂ An+1, one has

eA′
n+1∩M ≤ eD′

n+1∩M and eA′
n+1∩M − eAn+1 ≤ eD′

n+1∩M − eDn+1 ,

so that (P2) and (P3) still hold for An+1. �
Take An as in the claim, and define A :=

∨
nAn ⊂ N . Then (P3) and (P4) imply that A is

a MASA in M and that

A′ ∩Mn = A ∨ (N ′ ∩Mn) ⊂M ⊕M for all n ≥ 1.

We will show that A satisfies the conclusion of Theorem A.1.
Suppose now that there exist θ ∈ G, u ∈ U(M), and a nonzero projection p ∈ A such that

θu(Ap) ⊂ A, where θu := Ad(u) ◦ θ.
Since A, θu(A) are MASAs in M , putting q := θu(p) ∈ A, we have a ∗-isomorphism

θu : pMp→ qMq such that θu(Ap) = Aq.

Assume first θ = id and θu|Ap = idAp. Then since A is a MASA in M , we get up = pu ∈ A, which
is the conclusion. So from now on, we assume either that θ �= id, or θ = id and θu|Ap �= idAp.
Then we will deduce a contradiction.

Claim. There exists a nonzero projection z ∈ Ap such that θu(z)z = 0.

Proof. If θ = θn (n ≥ 1) and θu|Ap = idAp, then
[
0 pu
0 0

]
is contained in A′ ∩Mn ⊂M ⊕M , hence

we have a contradiction. So we have θu|Ap �= idAp in this case. The same holds if θ = θ0 = idM
by assumption.

Put q := θu(p). If p = q, then θu defines a nontrivial automorphism on Ap, so that z ∈ Ap
exists. If p �= q, then, putting z0 := p− pq ∈ Ap and w0 := q − pq ∈ Aq, we have z0 �= 0 or w0 �= 0.
If z0 �= 0, then z := z0 works. If w0 �= 0, then z := (θu)−1(w0) works. �

We apply Lemma 2.1(3) toA ⊂M and (θu)−1 : qMq → pMp with (θu)−1(Aq) = Ap. By using
(θu)−1 = Ad(θ−1(u∗)) ◦ θ−1 and θ(ϕ) = ϕ, there is a unique nonsingular positive self-adjoint
element h, which is affiliated with Ap, such that

p(ϕ ◦ θu)p = ϕh, σϕt (uθ(p)) = uθ(hit), t ∈ R.

There exists a spectral projection p0 ∈ Ap of h such that

p0z �= 0, δp0 ≤ hp0 ≤ δ−1p0 for some δ > 0.
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To deduce a contradiction, up to replacing p, z, q by p0, zp0, θ
u(p0), we may assume p = p0 (while

still z ≤ p). Then uθ(z) is a partial isometry, for which there are κ1, κ2 > 0 such that

‖xuθ(z)‖ϕ ≤ κ1‖x‖ϕ, ‖x(uθ(z))∗‖ϕ ≤ κ2‖x‖ϕ, for all x ∈M.

Claim. The following assertions hold.

(a) ‖zfn‖ϕ = ‖θ(vnz)‖ϕ ≤ κ1‖EA′
n∩M (uθ(vnz)u∗)z⊥‖ϕ, for all n ∈ N;

(b) ‖EA′
n∩M (uθ(vnz)u∗)z⊥‖ϕ ≤ ‖EA′

n∩M (xθ(vn)y)z⊥‖ϕ + κ2‖u− x‖ϕ
+ ‖x‖‖θ(z)u∗ − y‖ϕ, for all x, y ∈M and n ∈ N;

(c) ‖en − fn‖ϕ ≤ 7‖en − z‖ϕ, for all n ∈ N.

Proof. We have only to follow arguments in [HP17, Theorem 1], but we give proofs for the
reader’s convenience. We explain only (a) and (c), since (b) is straightforward.

For (a), since zfn = fnz, v∗nvn = fn and θ(ϕ) = ϕ,

‖fnz‖ϕ = ‖θ(vnz)‖ϕ = ‖u∗uθ(vnz)u∗uθ(z)‖ϕ ≤ κ1‖uθ(vnz)u∗‖ϕ.
Then since uθ(vnz)u∗ = θu(vnz)θu(z), zθu(z) = 0, and θu(vnz) ∈ Aq ⊂ A′ ∩M , one has

‖uθ(vnz)u∗‖ϕ = ‖uθ(vnz)u∗z⊥‖ϕ = ‖EA′
n∩M (uθ(vnz)u∗)z⊥‖ϕ.

We thus have (a).
For (c), since z ∈ A ⊂ A′

n−1 ∩N , combined with (P1), one has

‖en − fn‖ϕ ≤ 7‖en − EA′
n−1∩N (en)‖ϕ = 7‖(en − z) − EA′

n−1∩N (en − z)‖ϕ ≤ 7‖en − z‖ϕ.
We thus have (c). �

Take a subsequence {nk}k such that enk → z strongly. Then (c) implies that enk − fnk
converges to 0 strongly, so that zfnk → z as well. We show that zfnk also converges to 0, a
contradiction.

Fix ε > 0 and take xi, xj such that κ2‖u− x∗i ‖ϕ + ‖θ(z)u∗ − xj‖ϕ < ε. Then by (a) and (b),

κ−1
1 ‖zfn‖ϕ ≤ ‖EA′

n∩M (uθ(vnz)u∗)z⊥‖ϕ
≤ ‖EA′

n∩M (x∗i θ(vn)xj)z
⊥‖ϕ + ε

≤ ‖EA′
n∩M (x∗i θ(vn)xj)f

⊥
n ‖ϕ + ‖z⊥ − f⊥n ‖ϕ + ε.

Then (P2) implies

lim sup
k

‖zfnk‖ϕ ≤ κ1 lim sup
k

(‖EA′
nk

∩M (x∗i θ(vnk)xj)f
⊥
nk
‖ϕ + ‖z⊥ − f⊥nk‖ϕ) + κ1ε = κ1ε.

Letting ε→ 0, we get zfnk → 0 strongly, as desired. �
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